Composition of Multi-dimensional Application Needs in
Wireless Sensor Networks

Qi Han
Department of Mathematical and Computer Sciences
Colorado School of Mines, Golden, CO 80401

E-mail: ghan@mines.edu

1 Introduction

The emergence of micro-sensor nodes that integrate computation, networking, and sensing capabili-
ties into a single device has created the possibility to build reactive systems that have the ability to
monitor and react to physical events/phenomena. Given the importance and potential of the impact
of sensor technologies, over the past decade, significant progress has been made on techniques to ar-
chitect and program large-scale sensor systems. However, current research has primarily considered
functional aspects of distributed sensor systems focusing on techniques to sense, capture, communi-
cate, and compute over sensor networks. As sensor applications become more complex and diverse,
non-functional application needs (such as timeliness, reliability, accuracy) become important and one
application may even have several non-functional needs. As an illustrative example, consider a network
of sensors monitoring ground movement to detect presence/arrival of enemy forces in a given region in
a command and control application. Timeliness and reliability of sensing (in the presence of failures)
might be of essence here if the countering maneuver requires immediate detection. Such timeliness and
reliability requirements, however, come at certain costs, namely additional communication overheads,
energy costs, etc. Furthermore, different applications over a given sensor infrastructure may have differ-
ing non-functional requirements. For instance, an online surveillance and actuation application might
have real-time requirements, an analysis application over the same sensor system might only require
that data be collected in a repository (eventually) at a given level of accuracy or spatial and temporal
frequency. Such differing application requirements may pose competing requirements on the underlying
sensor data collection, coordination, and storage mechanisms. For instance, from the perspective of
the archival application, it might be both feasible and desirable that the data be collected, temporarily
stored, compressed and then transmitted to the repository. A real-time monitoring/actuation applica-
tion, however, may demand low latency. These non-functional needs are cross-cutting issues and better
addressed by interactions among different layers: from medium access and networking to duty cycling,
from data collection services to query services and applications layer.

2 Important Research Challenges

Often, sensor-based systems are built with narrow application goals in mind. We anticipate that as
sensor network infrastructures become more sophisticated, they will have to accommodate several con-
current applications, some of which may have conflicting requirements in terms of timeliness, reliability
and data accuracy. It is important for future sensor systems to accommodate alternative application
types, and ensure that their conflicting requirements mesh with each other gracefully.



In order to cover a wide spectrum of sensor applications, we first differentiate between different
application types based on the temporal aspect of sensor data: archival applications focus on historical
(past) data, e.g., in order to detect patterns over time and build time-varying models. Real-time
data collection is not critical here, but high quality and reliable archival of sensor-generated data is;
monitoring applications are interested in current sensor values such as intrusion detection systems;
and forecasting applications are interested in predicting future sensor values, where human operators
involved in decision making processes can avail of information about trends in sensor values.

2.1 Specification and Translation of Application Needs

To ensure end-to-end support for applications with multiple non-functional needs, it is essential to
provide a channel for applications to specify what they need and in what manner. Hence, we will need a
high level declarative language, using which applications can specify both functional and non-functional
needs. The specification of high level application needs will also be either translated to data needs or
tradeoffs to guide sensing and collection planning.

Language Support: Sensor applications are often interested in data of certain type (e.g., temper-
ature, or humidity data), and they are not interested in where and how the data is obtained. TinyDB
uses a modified version of traditional SQL, focusing on issues related to when and how often data are
acquired. We plan to further extend the query language of TinyDB and provide other clauses for users
to specify non-functional needs: accuracy, energy efficiency, timeliness, and reliability.

Translation of Application Needs: In fact, an application’s non-functional needs manifest them-
selves in the several layers of the system; by adapting and translating non-functional requirements be-
tween different layers in the system, we are able to satisfy the application requirements in a manner that
is sensitive to the underlying resource availability. The complexity of mapping an application’s non-
functional needs to requirements over sensor measurements depends on both the application as well as
the nature of the underlying sensor network. For instance, an accuracy requirement implies differently
at application layer, query service layer and data collection layer. When we use acoustic sensors to track
a moving object, the measurement at the sensor cannot directly translates to the displacement of the
object. We should allow the application writers to adapt the application logic to deal with imprecise
data without worrying about the underlying translation of data to measurement accuracy.

2.2 Architectures for Executing Sensor Applications

Given applications data needs, expressed in the form of a query, multiple execution architectures are
possible. A traditional client-server approach would collect data at a (logically) centralized repository
and evaluate queries over such a repository. Such an approach does not exploit the computation and
storage capabilities available within the sensor network at sensor nodes. Recent work has seen a trend
towards “in-network” computation that exploits resource at the sensors to trade computation for reduced
communication. By computing directly in the sensor network, the data routing and computing can
be co-optimized, resulting in higher scalability. There are, however, limitations of such an approach
including limitations on types of data access that can be supported in-network, complexity of optimally
splitting computation between sensors and servers, no direct way of exploiting application’s tolerance
to errors and faults. Yet another approach is a hierarchical view in which the actual placement of
the distributed server functionality is a function of the node capabilities in a hierarchical setting, the
architecture allowing for dynamic migration of functionality based on the well-developed client server
model. The exploration of such architectures has, in the literature, been motivated from a narrow
perspective of suitability for one (or more) sensor application scenarios (e.g., monitoring, archiving), a
comprehensive understanding of the suitability and feasibility of diverse architectures under different
situations and blend of application loads is missing. Furthermore, what is entirely missing is the



implications of supporting non-functional requirements over these architectures. Therefore, there is a
need to develop a thorough comprehensive analysis of possible architectures with the focus on supporting
non-functional application requirements. Appropriate data model and data placement strategies also
need to be explored in the architecture.

2.3 Development of Composition Techniques

The goal here is to address the specific issue of cross-layer composability, i.e., processing of queries
while ensuring the multiple non-functional needs posed by application queries are met in a cost-effective
manner. However, application requirements may conflict with each other. Consider the following
cases. (a) accuracy vs. timeliness: Frequent updates from sensors will undoubtedly improve accuracy,
however, it might also leave the server not enough time to process user queries, hence violating many
time constraints. (b) timeliness vs. reliability: In order to ensure reliability in the presence of faults,
there may be a need to re-transmit data; however, this recovery can be time-consuming, hence leading
to degradation in timeliness satisfaction. (c) reliability vs. accuracy: queries may derive some missing
sensor data based on historical or neighboring reports, and this might be sufficient for reliability needs;
however, this implies that the derived data may not be accurate. Therefore, arbitrary composition of
those techniques developed for addressing each individual non-functional need will result in undesirable
system performance. To ensure judicious composition, several general strategies can be exploited: error-
aware prediction, spatiotemporal sensor data correlation, and application-aware caching. Finally, we
should support two complementary types of sensor applications.

e Maximize certain combination of performance metrics (timeliness, reliability, or accuracy) without
exceeding energy budget: with the finite remaining energy level on each sensor node, we are faced
with a joint optimization problem when the objective of an application is to maximize more than
one metric (i.e., two or three among reliability, timeliness, accuracy).

e Minimize energy consumption while achieving a minimum acceptable level of performance metrics:
the multiple constraints can be any combination of requirements for timeliness, reliability and
accuracy.



