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Remanufacturing has acquired importance in recent years because of the
increasing environmental concerns of manufacturing processes that deplete the
Earth’s resources. Some examples of remanufactured products are automobile
parts, furniture, photocopiers, and computer printers. In a remanufacturing
setup, raw materials are drawn from two sources: (i) ‘cores’, which are obtained
from recycled products, and (ii) ‘non-recycled’ or unused materials, which are
produced from minerals freshly mined from the earth. An important decision for
the manager is to select material optimally from these two sources. Using
cores has environmental benefits, and because they are cheap, they reduce
manufacturing costs. However, their use generally increases the production time,
because of the additional pre-processing usually needed, which can negatively
impact service levels. When the supply of finished products is running low, to
satisfy service levels, it makes sense to use unused material. This research
focuses on identifying an optimal strategy of switching between the two sources of
material. A reinforcement learning algorithm is used to solve the switching
problem. The switching algorithm produced encouraging results, showing up to
65% cost improvements over a policy that uses only unused materials.

Keywords: process industry; process planning; processes; process economics;
reconfigurable manufacturing

1. Introduction

Manufacturing industry has evolved significantly since the industrial revolution. This has
led to a dramatic increase in the volume and variety of inexpensive products available
for use in our daily lives. Unfortunately, this is juxtaposed with excessive consumption of
minerals used in producing raw materials, which, if left unchecked, is bound to cause
severe shortages. In addition, at the end of their useful lives, products generate enormous
amounts of waste that are stressing landfills and resulting in hazardous consequences for
the environment and human health. Under this backdrop, recycling of products has
acquired increased importance.

The recycling of products returns them to their raw material state from which they
can be reused. An example of recycling is melting a used gear, or bearing, to obtain steel,
which is then reused. This helps to conserve materials. However, the labour and energy
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utilised in production are lost. The material value of any product is usually only about

5–10% of the value of the final product. The remaining value consists of processing raw

materials (RIT Website 2006).
Remanufacturing involves disassembly of the products into individual components,

upgrading the performance of the defective components (overhaul), and then

re-assembling the components to reproduce the product. This not only conserves the

material value of the product, but also conserves a considerable portion of the energy

utilised in production of those components. This has considerable environmental benefits.

Repairing only one or two defective components in the product is called refurbishing.

See Figure 1 for a pictorial description of the differences between recycling,

remanufacturing, and refurbishing. Remanufacturing involves not only the repair of all

the defective components, but an overhaul and upgrade of the entire product assembly.

It is clear that while recycling has smaller environmental benefits than remanufacturing,

refurbished products, usually, do not have the quality of remanufactured products.

Remanufactured products ideally match the customer requirements for a new product,

which cannot be said of refurbished products.
According to Lund and Bollinger (1981), remanufacturing of an automobile can help

to conserve 85% of its final product value. According to the RIT Website (2006), the

annual energy saved world-wide because of remanufacturing is equivalent to the electricity

produced by five nuclear power plants. Also, the amount of minerals saved by

remanufacturing is equivalent to 155,000 railroad cars completely filled, forming a train

as long as 1100 miles (RIT Website 2006). For the promotion of environmental

conservation and green manufacturing, a number of state laws in the United States are

giving incentives to companies involved in remanufacturing. The remanufacturing

industry is a $53 billion industry that includes approximately 70,000 small and mid-size

firms, and provides direct employment to 480,000 people (Lund and Bollinger 1981).

This makes the economics of remanufacturing equivalent to the entire pharmaceutical

industry in the US. Apart from the advantages of conservation of resources, the

remanufacturing industry has the potential to grow rapidly, and, hence, can lead to more

Raw
Material

Parts /
Components
Manufacturer

Product
Manufacturer User

Recycle

Remanufacture

Repair

Refurbish

Mining Disposal

Figure 1. Differences between recycling, remanufacture, repairing, and refurbishing.
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employment opportunities. The remanufacturing industry is expanding its horizons
rapidly, and it is also becoming profitable (Guide et al. 2000). Statistics show that 50% of
consumers prefer remanufactured products if they are 20% cheaper than non-
remanufactured products (RIT Website 2006). Some prominent remanufactured products
are: automobile parts (e.g., engines, gear boxes), printers, photo copiers, furniture,
compressors used in freezers and air-conditioners, electrical apparatus, laser toner
cartridges, musical instruments (e.g., keyboards, electric guitars), aircraft parts, bakery
equipment, and gaming machines.

Remanufacturing facilities usually accept products that are ready to be scrapped. Even
after the completion of their life, products often have reusable components. These parts,
which can be used in assembling new products, will be referred to as cores in this paper.
Cores are cleaned, inspected, reworked if necessary, and then used in the assembly of new
products. Unfit cores are sold as scrap with low profit margins. Any product of which at
least one component is a used part is called a remanufactured product.

According to the RIT Website (2006), parts in a given product can be termed
‘remanufactured’ if: (1) they can be cleaned or reworked so that they have the same
characteristics as the new parts; and (2) they can be disassembled to an extent where they
can be inspected thoroughly to determine their useful lives. Remanufactured products
are almost of the same quality as products produced from fresh materials, but with
a considerably lower cost of production. It should be noted that there is a considerable
amount of uncertainty associated with obtaining cores and also in the quality of the cores
obtained. It should also be noted that lower grades of cores require a considerable amount
of time for reworking and inspection, which unused materials, procured from fresh
minerals, do not need. Thus there is a trade-off, but in the end remanufacturing is a more
environmentally responsible route, and it is expected that associated with it there are
a number of hidden revenues.

While many of the issues of production planning in remanufacturing are similar to
those of traditional manufacturing, it is a fact that there are several important
distinguishing features that we now address (van der Laan et al. 1996, Ferrer and
Whybark 2001, Guide and van Wassenhove 2001, Kongar and Gupta 2002, Ferrer and
Ketzenberg 2004, Savaskan et al. 2004). The following features bestow on the management
of remanufacturing systems a significant amount of complexity (Guide et al. 2000).

. Uncertainty in timing and volume of returns. The time between acquiring returns
(cores) depends on how quickly the product deteriorates, its expected life, and
how quickly technology changes. The actual volume of returns is also dependent
on these factors. This has a significant influence on raw-material inventory
control.

. System balance and materials management. A remanufacturing system has to
ensure that the rate of core acquisition is roughly equal to that of the demand;
again, this rate is dependent on technological innovation and the product’s
expected life. Also, if the outstanding demand is greater than what can be
delivered with cores, one must switch to unused materials. This makes the
materials management problem extremely complex because the system must
remain balanced in order to meet customer deadlines.

. Disassembly complexity. Different cores require different degrees of disassembly,
and hence firms in this business need a good understanding of the degree of
disassembly needed and the methods needed for disassembly.
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. Core valuation. The quality of the cores varies significantly. Identical-appearing
items can return different sets of parts to be remanufactured. Also, cores have
diverse properties and lives depending on their previous use. They need to be
distinguished and graded properly, so that remanufacturing operations can be
scheduled correctly. It is very difficult to identify desirable characteristics in cores,
and extensive research is required on this subject.

. Reverse logistics network. How products are acquired from the users, incentives
offered for them to return products, and transporting these products to the
remanufacturing facility are issues that have to be dealt with by the managers of
the reverse logistic networks. Some of these issues are quite challenging.

. Matching parts. Matching the parts obtained from cores to those in the products
that are being remanufactured is a major challenge. It must be tackled
comprehensively in order to be successful in meeting demand in terms of
specifications and time.

. Stochasticity. Because of the uncertain nature of the cores, there is a great deal of
uncertainty in the processing times and also in the actual routings on the shop
floor. This is unlike the use of unused materials where this uncertainty can be
minimised.

Classical manufacturing systems differ significantly from remanufacturing systems in
the following areas.

. Supply–demand logistics. Traditional systems do not have any returns or reverse
flows, and the flow is to a great extent dictated by demand for finished products,
unlike in remanufacturing where it is also dictated by the supply of cores.

. Shop floor control. In traditional systems, raw materials do not have to be
processed, they are not disassembled, and routings are to a great extent
deterministic. As discussed above, the opposite is true of remanufacturing
systems.

. Inventory control. In remanufacturing systems, the raw-material inventory is
composed of cores, substitute parts, and some OEM parts; also, all part types
must be tracked. In traditional systems, one tracks WIP and finished goods only.

. Forecasting and purchasing. Demand for both cores and product has to be
predicted separately in remanufacturing systems, whereas only product demand
needs to be forecasted in classical production planning. Also, purchasing in
remanufacturing systems is a highly stochastic affair because of the randomness
inherent in the quality and quantity of cores available, whereas it is a much more
deterministic affair in the classical case.

As discussed above, the materials-management problem in a remanufacturing setting is
a complex one. An important issue as discussed by Guide et al. (2000) is as follows:
‘‘A firm may need to manufacture new items to meet demands when too few cores are
available . . .’’ In this context, we must point out that since balancing the demand and the
core availability is so challenging, in order to produce new items the manager must resort
to using unused (new materials not derived from cores) raw materials when the desired
cores are not available. The question that arises then is: when should the manager use
cores, and when should he/she switch to unused materials? Since the system is very
random, due to the random processing times of processing cores, an appropriate model
must consider stochastic elements in the system. We will show that the problem that we
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discuss here can be set up near-exactly as a stochastic dynamic program. While heuristic

solution methods can be developed, an exact approach is clearly more attractive.

A traditional dynamic programming (DP) algorithm can be used to solve a stochastic

dynamic program. However, DP algorithms require accurate transition probability

functions, which are difficult to obtain for systems with a high degree of variability and

randomness, such as the system we consider here.
It turns out that Reinforcement Learning (RL) is a methodology that allows us to

generate near-optimal solutions to stochastic dynamic programs without the need for

transition probabilities. This is the motivation for using RL as a solution technique to this

problem. RL has a number of other features that make it very suitable for the problem

domain we consider here. RL can be implemented in a discrete-event simulation setting,

which turns out to be an appropriate modeling technique for systems with great

randomness and modeling complexity. While RL has been extensively used in machine

learning, to the best of our knowledge, this is the first use of RL in a remanufacturing

setting. A proper use of RL in a remanufacturing setup can kick-start a new field of study,

where RL could be applied to many other materials-management-related problems such as

scheduling and production planning in remanufacturing systems.
Section 2 discusses some of the relevant previous literature on remanufacturing.

Section 3 provides details of the mathematical model adopted here. The reinforcement

learning and simulation approach, adopted to solve this problem, is discussed in Section 4,

which is followed by numerical results in Section 5. Brief conclusions are presented

in Section 6.

2. Literature review

We present a brief review of the literature on remanufacturing starting with some of the

earliest papers and ending with some of the recent papers on the topic. Hoshino et al.

(1995) proposed a theoretical model for understanding the fundamentals of optimal

recycling plans. The main objectives of the model were to maximise the total profits and

recycling carried out by a remanufacturing facility. This problem was addressed using

a goal-programming approach. This was one of the first works related to optimisation in

a remanufacturing facility. This was closely followed by the work of van der Laan et al.

(1996), who proposed a so-called (s,Q) inventory model for remanufacturing. On the basis

of these models, the authors developed a heuristic. The paper states that disposal of

cores at disassembly is necessary in order to keep the inventory from increasing to very

high levels.
Guide et al. (2000) presented an insightful paper that highlighted the differences

between inventory control in traditional manufacturing processes and in ‘recoverable’

manufacturing systems. More importantly, they explored at least seven reasons for the

uncertainty arising in the timing and quantity of returns (cores). Their focus is on what

needs to be done by the manager in order to smoothen the management of

remanufacturing systems.
Two important papers appeared in 2001: Guide and van Wassenhove (2001) and

Ferrer and Whybark (2001). Guide and van Wassenhove (2001) proposed a framework for

managing product returns in remanufacturing. Applying the core concepts of Economic-

Value Analysis, this paper discusses the influence of reuse activities on operational

requirements. They suggest that a market-driven approach where products returned are
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categorised is more beneficial for operational management than an approach where

products are returned through the waste stream. Secondly, an economic-value analysis

of reuse activities helps to justify the remanufacturing process and helps a manager in the

decision-making process. Ferrer and Whybark (2001) presented a material management

model for remanufacturing systems which is based on Material Resource Planning.

The proposed model optimises the number of parts required for assembly, the disassembly

schedule, and the number of cores procured as trade-in for finished products. Overall, this

model provides an effective material management system for a remanufacturing facility.

However, the model does not give us information on time and quantity of cores, and

unused parts to be purchased.
Kongar and Gupta (2002) proposed an integer-goal-programming approach for

balancing the supply chain in a remanufacturing setup. The integer-goal-programming

proposed in this paper was primarily focused on providing a feasible solution for

a desirable disassembly process plan. The paper discussed two different sets of approaches:

(i) concentration on a cost revenue function, and (ii) concentration on environmental

functions.
We cite three papers from 2004: Ferrer and Ketzenberg (2004), van der Laan and

Teunter (2004) and Savaskan et al. (2004). It was suggested by Ferrer and Ketzenberg

(2004) that the decision on using cores or unused parts in assembly depends on the yield

of the disassembled parts at that time. The unused parts to be purchased may have

a longer lead time and hence a decision may be needed before the disassembly yield is

known. Their paper studies four different kinds of models to evaluate the above situation.

van der Laan and Teunter (2004) proposed heuristic methods for near-optimal inventory

control policies in remanufacturing facilities. The heuristics help in finding when the

facility should start manufacturing instead of remanufacturing. Savaskan et al. (2004)

explore a closed-loop supply chain model for the collection of cores.
We now discuss some of the more recent papers. Bhattacharya et al. (2006) present

models for retailer order quantities in the context of remanufacturing under a number of

scenarios. Zhou et al. (2006) present a kanban model for a remanufacturing system.

Konstantarasa and Papachristos (2007) present an interesting model for a system in which

both manufacturing and re-manufacturing options are allowed. They discuss a periodic

review inventory model and explicitly model a switching period from remanufacturing to

manufacturing. Geyer et al. (2007) ‘‘quantifies the cost-savings potential of production

systems that collect, remanufacture, and re-market end-of-use products as perfect

substitutes while facing the fundamental supply-loop constraints of limited component

durability and finite product life cycles.’’ They also show the need to coordinate a number

of factors within production control to obtain cost savings. A very recent paper by

Zikopoulos and Tagaras (2008) provides a mathematical model for measuring the benefits

of sorting before disassembly in remanufacturing.
It is quite clear that remanufacturing is currently a topic of significant research interest,

and because of environmental concerns is likely to become a vital aspect of the

manufacturing industry. It is also clear that although there are a number of papers

that examine logistics issues in environments where remanufacturing is already in place,

not much work has been done on quantifying the benefits of using re-manufacturing in the

context of production planning. Our paper seeks to fill this gap by examining the

application of using recycled material in a production process where, usually, unused

materials are used.
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3. Problem description and mathematical modeling

The problem considered in this paper is related to material selection in a remanufacturing

facility. Before discussing details of the mathematical model, the related remanufacturing

system is described in some detail.

3.1 The remanufacturing system

Although a remanufacturing facility is similar to a typical manufacturing facility, it has

several distinctive features. Unlike traditional manufacturing, remanufacturing involves

different kinds of cores. The methods used in the procurement of cores depend on the kind

of setup established in remanufacturing. Cores coming into the facility can either be

purchased, like other raw materials, or may be traded-in with the customers for finished

products.
It has been noted in the literature (Guide et al. 2000) that there is a great deal of

uncertainty in obtaining cores of desirable quality. Hence in all our models we use the

exponential distribution, which has a significant variance, to model the inter-arrival time

between successive cores to the facility. Also, as discussed previously, all cores are not

similar and they differ in their functional characteristics. Hence they need to be graded and

marked into different categories for rework. It is assumed that while procuring the cores,

they are sorted according to their merit, and stored as inventory in the facility. Also, the

unused material, which may be required in case of a shortage of cores, is stacked as

inventory in the remanufacturing facility. Hence, in one of our models, we have assumed

that there are two types of cores available.
Figure 2 shows the different types of raw materials available for use, which are core 1,

core 2, etc., and unused raw material. One can consider different bins of raw materials

Finished goods

Assembly

Unused raw material BCore 2BCore 1B

Unused
raw materialA 

Core 2A

Core 1A

Selection
of raw

material

Selection
of raw

material

 

 

C
om

po
ne

nt
 X

Component Y

Figure 2. Remanufacturing environment with two parts (x and y) at the assembly station.
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inventory in the remanufacturing facility. Any finished product consisting of cores is
considered to be a remanufactured product. If no cores are available, manufacturing
is carried out using unused raw materials. The decision related to selection of raw materials
is not simple, and an incorrect selection of raw material can lead to reduction of profits.

3.2 The material-selection problem

Cores require time for rework and inspection. Hence cores can take additional production
time, which is not needed with unused material. If the rate of arrival of demand for
finished goods is high, then the additional time consumed by cores can result in
cancellation of orders and revenue loss. It is wise to use unused material instead of cores
if the finished goods inventory is at low levels. On the contrary, if finished goods inventory
is sufficiently high, then using cores makes business sense. For the manager of
a remanufacturing facility, one of the most important decisions required is to select the
kind of raw material to be used – in order to ensure that profits are not diminished and, at
the same time, cores are used at an optimal level.

There exists a trade-off between conservation of energy and profits of a company.
The factors affecting this trade-off need to be addressed and controlled. The manager has
to be aware of the profits associated with the selection of any given type of raw material.
Selection of raw material should be based on factors affecting this trade-off. Monitoring
the service level of the facility can help determine the rate of demand for finished goods,
and this information can be utilised in the selection of raw material. Also, the inventory
level of the final product provides information about the rate of demand. Monitoring
inventory levels gives better control in evaluating the demand for the final product.
It makes sense for the manager to determine the nature of the raw material to be used by
observing the amount of finished-goods inventory.

This production system involves a number of random variables, such as (i) the time
between arrivals of raw materials, (ii) the time required for repair operations, (iii) the time
required for assembly operations, and (iv) the time between demand arrivals for finished
products. All these random variables together make this system a complex one, which
requires a sophisticated mathematical approach for analysis. In the next section, a semi-
Markov decision model will be presented to solve the material-selection problem discussed
above.

3.3 A semi-Markov decision model

A SMDP (semi-Markov decision problem) consists of five elements (S, p,A, r, t) (Bertsekas
1995), where S denotes the set of states, A denotes the set of actions, p denotes the
transition probability function, r denotes the transition reward function, and t denotes the
transition time function. Consider a stochastic process (X,T )� {Xn,Tn : n2N } where
Xn2S and Tn2Rþ where Rþ¼ [0,1]. Here Xn denotes the state of the system in the nth
decision epoch and Tn the time at the nth decision epoch.

The above process is said to satisfy the following semi-Markovian condition if
(Bertsekas 1995)

PfXnþ1 ¼ j,Tnþ1 � Tn � t j X0, . . . ,Xn,T0, . . . ,Tng

¼ PfXnþ1 ¼ j,Tnþ1 � Tn � t j Xn,Tng,

940 P. Shah et al.
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where the notation P{. j .} denotes a conditional probability in which the values of the

variables in the condition are assumed to be known. Here, the finished goods inventory

level is used as the state of the system.
In the SMDP, at every decision-making epoch, the decision maker (manager) has

to select the action that controls the path of the stochastic process. For instance, in

the remanufacturing problem, the manager of the remanufacturing facility must decide

which raw material is to be used for the assembly process. A solution of a SMDP is

called a policy. If � denotes a policy, then �(i) will denote the action chosen in state i.

The goal of the SMDP is to find an optimal policy that minimises some performance

metric (measure), e.g. long-run average cost per unit time. We now present some details

of a SMD model.

3.3.1 Transition probability function p(., ., .)

The transition probability denotes the chance of going from one state to another

for a specific action. Now, p(i, a, j) will denote the transition probability of going from

state i to state j under the condition that action a is selected in state i. Transition

probabilities of complex systems are difficult to find. This issue will be discussed in detail

below.

3.3.2 Cost function r(., ., .)

On the successful completion of a transition from one state to another, the given action

based on its performance is either rewarded or punished. In our example we have costs

incurred while the transitions are in progress. Thus at the end of each transition, the

accumulated costs are assigned to the specified action as fixed penalties. Now, r(i, a, j) will

denote the cost incurred from state i to state j under the condition that action a is selected

in state i.

3.3.3 Time function t(., ., .)

One of the distinctive features of a SMDP that makes it different from a MDP (Markov

decision problem) is that the SMDP incorporates the time function in its reward

calculations. Here, t(i, a, j) will denote the transition time in going from state i to state j

given that action a is chosen in state i.

3.3.4 Average cost

Let ik represent the kth decision-making epoch, and if policy � is pursued, �(ik)
will denote the action taken in that epoch. Then, under a policy � with s as the

starting state, the average cost of the SMDP, which is to be minimised, is given

by Bertsekas (1995)

��ðsÞ ¼ lim sup
T!1

E
�PT

k¼1 rðik,�ðikÞ, ikþ1Þ j i1 ¼ s
�

E
�PT

k¼1 tðik,�ðikÞ, ikþ1Þ j i1 ¼ s
� :

It is well known that if the underlying Markov chains are recurrent and irreducible, the

average cost is independent of s.
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3.3.5 Discounted cost

The long-run discounted cost for policy � starting at state s is defined as

��ðsÞ ¼ lim sup
T!1

XT
k¼1

E½ð kÞ
k�1rðik,�ðikÞ, ikþ1Þ j i1 ¼ s�,

where the continuous-time discount factor,  k, in the kth epoch is defined as

 k¼ exp(��t(ik, ak, ikþ1)), where ak is the action chosen in the kth epoch. It is well

known that, as the discount factor tends to 1, i.e. as �! 0, optimising with ��(s) for all s is
equivalent to optimising with ��.

3.3.6 The SMDP Bellman equation

The well-known Bellman’s equation for a SMDP is given as follows. For every state i2S,

there exists a scalar, v*(i), that satisfies

v�ðiÞ ¼ min
a2AðiÞ

X
j2S

pði, a, j Þ rði, a, j Þ þ

Z 1
0

expð��tÞv�ð jÞFi,a dt

� �" #
,

where Fi,a(t) denotes the sojourn-time distribution for (i, a). It has also been established

(Bertsekas 1995) that the policy defined as follows for all i2S,

dðiÞ 2 argmin
a2AðiÞ

X
j2S

pði, a, j Þ rði, a, j Þ þ

Z 1
0

expð��tÞv�ð j ÞFi,a dt

� �" #
,

is optimal.

3.3.7 Value iteration algorithm

The value iteration algorithm provides a mechanism to obtain approximate estimates

of v*. As mentioned before, the remanufacturing system is a complex one, the transition

probabilities of which are hard to find. If it were possible to compute the transition

probabilities, the value iteration algorithm would have been an excellent choice to solve

the raw-material selection under the given conditions. However, since the transition

probabilities are not available, an alternative algorithm that can do without transition

probabilities must be used. As stated above, Reinforcement Learning (RL) is one method

that does not require transition probabilities, but generates near-optimal solutions.

4. RL

RL is an artificial intelligence algorithm that can easily be incorporated into simulation

models. Also, as stated before, it does not require the transition probabilities between

the states. RL is often described as a technique used in teaching an agent how to act by

rewarding and punishing it on a continuous basis (Bertsekas and Tsitsiklis 1996, Sutton

and Barto 1998, Gosavi 2003). A popular algorithm called Q-learning is due to Watkins

(1989). It has been extended to semi-Markov problems by Bradtke and Duff (1995), where

they use a continuous cost rate; Gosavi (2003) consider a lump sum cost. We use the

algorithm from Gosavi (2003) for semi-Markov problems in this paper.
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Within a simulation run of a RL algorithm, the system gradually learns (decides) which

decision is the best. At the end of each state transition, the knowledge base of the

algorithm is updated. The knowledge base of the RL algorithm is composed of Q-factors,

which share the following relationship with the value function of dynamic programming.

For every i2S,

v�ði Þ ¼ min
a2AðiÞ

Q�ði, aÞ,

where Q*(i, a) denotes the optimal Q-factor for state i and action a and A(i) is the set of

actions allowed in state i. As shown in Figure 3, the agent learns via trial and error

by visiting each state several times. At the end of the learning process, one has the optimal

Q-factors for each state. From the optimal Q-factors, the optimal policy, �*, can be

determined as follows. For every i,

��ði Þ ¼ argmin
a2AðiÞ

Q�ði, aÞ:

4.1 Algorithm description

As discussed above, RL is a viable alternative to the value iteration algorithm. A RL

algorithm for solving the discounted cost SMDP (introduced by Gosavi (2003) and

convergence proved by Gosavi (2007)) is described below.

. Step I. Set the iteration count, k, to 0. Initialise action values Qk(i, u)¼ 0 for all

i2S and u2A(i). Set � to a small number less than 1. Start system simulation.
. Step II. While m5MAX-STEPS doIf the system starts at iteration k is i2S,

1: With a probability of 1/jA(i)j, choose an action a2A(i) that minimises Qk(i, a).
2: Simulate the chosen action a. Let the system state at the next decision epoch be j.

Also, let t(i, a, j) be the transition time, and r(i, a, j) be the immediate cost incurred

in the transition resulting from taking action a in state i.
3: Update Q(i, a) using

Qkþ1ði, aÞ  ð1� �ÞQkði, aÞ þ � rði, a, jÞ þ e��tði,a, jÞ min
b2Að jÞ

Qkð j, bÞ

� �
:

Simulator

RL Agent
Action

Response

Figure 3. Schematic showing how RL works.
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4: Set the current state i to the new state j. Also, decay �, and increment k by 1, then
go to Step II(1).

The decay of � is done according to the rule �¼ 1/k. For other rules, see Gosavi (2003).
RL works in a simulator, and at the end of the learning process provides the optimal
Q-factors for each state. From the optimal Q-factors, the optimal raw-material selection
policy for each state of the remanufacturing environment can be obtained.

The RL algorithm is centred on updating the Q-factor values. The Q-factors
are updated in a process that requires the reward function r(i, a, j) and the time
function t(i, a, j). Note, however, the transition probabilities, p(i, a, j), are not required.
An alternative to RL is to use a ‘brute-force’ simulation model to determine the
performance of a given switching policy. Clearly, this approach is feasible when the state
space is small, so that the set of switching policies is small.

4.2 Simulation models

The simulator used here is designed using the ARENA software. The simulator consists of
different modules, and each module has a specific function to perform. Three different
classes of realistic scenarios are tested and analysed in this simulation. Different scenarios
require different modules to obtain the final output from the simulator. These modules are
explained next.

4.2.1 Model X

A small-size real-world problem is studied as Model X. The remanufacturing facility
simulated is assumed to have only one kind of core in the facility in addition to unused
material. The outputs from the RL algorithm simulation are the Q-factors, which can be
collectively analysed to derive the optimal switching policy for selection of raw materials.
Model X is a small-scale problem, and it can also be studied via brute-force simulation.
Only two actions are possible in this situation: selecting cores as raw material and selecting
unused material. In the brute-force approach, every possible switching policy is simulated.
The simulation is run for a long duration of time until the average cost stabilises.

4.2.2 Model Y

InModel Y, the manager has to choose from two different grades of cores, named A and B,
and, of course, unused material. Thus, here, the manager has additional options available
for raw-material selection. With the increase in the available options, the size of the
problem expands drastically. The RL algorithm can be implemented as before; however,
due to the large size of the problem, validation with a brute-force simulation is not
feasible.

4.2.3 Model Z

In the previous two models, only one component was required for the assembly process
from the remanufacturing stream. In this model, two distinct types of component parts,
named I and II, will be assumed to be needed for the assembly process from the
remanufacturing stream. Each of these required components can be selected from their
respective core stocks or their unused material stocks. Since the assembly cannot take
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place without the availability of both the components at the assembly station, selection of
one component as a core or unused material may delay the final production, depending
upon the repair time and their availabilities.

4.3 ARENA modules

The designed simulator has a number of modules depending on the scenario being
simulated. A broad classification of the modules is as follows.

(1) Cores arrival module.
(2) Unused material procurement module.
(3) Finished goods demand module.
(4) Agent (decision-maker) module.
(5) Data collection module.

4.3.1 Cores arrival module

Cores are generally bought by trading-off finished products. The arrival of cores in the
simulation is represented by the generation of entities. The inter-arrival time of cores is
assumed to be exponentially distributed in the simulation. See Figure 4.

4.3.2 Unused material procurement module

Unused materials are procured from outside suppliers. These materials are procured using
a periodic-review order-up-to-R policy for inventory control. See Figure 5.

4.3.3 Finished-goods demand module

The demand for the final product in the remanufacturing facility simulation is generated
with a Poisson process. Demand generation and the rate of production are adjusted to

Cores
Arrival

Update
core stock

Dispose
entity

Disassemble
or not?

Figure 4. Core arrival module in ARENA.

Stock
below

reorder?

No

YesUnused
material

Material
procuredLead time

Daily

scan

Figure 5. Unused material procurement module in ARENA.
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have a stable system. As shown in Figure 6, as soon as the demand is created, a check is
performed to determine whether this demand can be satisfied by available inventory of
finished goods. If finished goods are available, the demand is met; otherwise the demand is
back-ordered, and a penalty is imposed on the system. When the finished product becomes
available, the back-orders are satisfied in the order in which they were recorded.

4.3.4 Agent module

Figures 7, 8, and 9 display the ARENA agent modules for Models X, Y, and Z,
respectively. The decision of raw-material selection is incorporated into this module.
The repair and assembly blocks have uniformly distributed time delays, which are different
for the different systems studied. The Q-factor values for different polices and the average
cost of simulation are also computed in this module.

4.3.5 Data-collection module

This module is required to collect the data generated during the simulation. It writes the
Q-factor values into a file at the end of the simulation run. For the validation of the
simulation in Model X, the average cost is also written into a file at the end of each
simulation (Figure 10).

5. Numerical results

In this section, we describe the results of experiments performed with RL and a simulator
of the remanufacturing environment. As described in the previous section, Models X, Y,
and Z are simulated and analysed.

Table 1 describes the cases (systems) studied for Model X and also enumerates the
optimal switching points for RL and a brute-force analysis. Here a periodic review
inventory control for the unused material’s procurement uses 1 day as the period and
order-up-to-10 units as the policy. The switching points in the last two columns of Table 1
are from the core to unused material. Tables 2 and 3 list the cases for Models Y and Z.

Table 4 enumerates the Q-factors for Case 1 of Model X. A trend can be observed from
the values of the Q-factors. The Q-factors for unused material have lower values than those
of the cores until state 4. At state 5 and above, the Q-factors for unused material are higher
than those for the cores. Thus the results of the RL algorithm suggest that a switching

Demand
module

start

Is
Finished product

available?

Is
backorder
limit full?

No

Yes

No

Backorder
Demand

Decrease
Inventory

Dispose
entity

Decrease
Inventroy

Yes

Figure 6. Demand generation for finished-goods module in ARENA.
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point exists at state 4. In other words, RL recommends switching from the core to unused

material when the finished goods inventory falls to 4 or below. For every case in Table 1,
a similar switching trend was observed; however, we do not show the actual Q-factor

values for every case. Brute-force simulation is used to compute the average cost for all

switching points. Figure 11 shows the average cost at each switching point for Case 1
obtained via brute force. From the graph it is obvious that the least average cost is for

switching at state 6. Thus, clearly, RL does not produce an optimal policy. See, however,

Table 5, which shows the gap between RL and the brute-force optimal solution.

The optimality gap shown in Table 5 is defined as

�RL � �
�

��
� 100

� �
:

Assembly

Update
final stock

Update
Q-factors

Decrease core
I stock

&
Repair

Decrease core
II stock

&
Repair  

Decrease
unused I
material

Decrease
unused II
material

Switching
decision

point
Part I

Switching
decision

point
Part II

Core I

Unused I

Core II

Unused II

Split entity

Production
Module

Is
production

needed?

No

Wait

Yes

Figure 9. Production module in ARENA for Model Z.

Is
counter

full?

Data
Module

start

Write
Data File

Increment
counter

Stop

Figure 10. Data collection module in ARENA.
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Table 1. Parameters for the cases studied and simulation results for Model X. Here, expo(�)
denotes an exponentially distributed random variable with a mean of 1/�. Time between successive
core arrivals is expo(4).

Case

Demand
interarrival
time (days)

Core
material
cost ($)

Unused
material
cost ($)

Back-order
cost ($)

Repair time
(days)

RL switching
point

Brute-force
switching point

1 expo(5.8) 2 2.5 3.5 unif(4, 5) 4 6
2 expo(5.9) 2 3 17 unif(5, 6) 6 9
3 expo(5.1) 2 2.5 4 unif(4, 5) 7 9
4 expo(5) 3 4 7 unif(3, 5) 5 7
5 expo(5.8) 3 4 7 unif(3, 5) 5 8
6 expo(5.2) 2 3 4 unif(4, 5) 5 8
7 expo(5) 2 2.5 3.5 unif(4, 5) 6 9
8 expo(5.7) 3 4 7.5 unif(4, 5) 4 7
9 expo(5.9) 2 3 15 unif(5, 6) 6 9
10 expo(5.8) 2 4 6 unif(4, 5) 3 6

Table 2. Parameters for the cases studied and simulation results for Model Y. Legend: x is the level
of inventory at which the RL policy switches from core A to core B; y is the same at which it switches
from core B to unused. Time between successive core arrivals is expo(4).

Case

Demand
interarrival
time (days)

Core-A
mat.

cost ($)

Core-B
mat.

cost ($)

Unused
material
cost ($)

Back-order
cost ($)

Repair time
for A

Repair time
for B

RL switching
points (x, y)

1 expo(10) 2 5 9 20 unif(10, 15) unif(2.5, 3) (1, 4)
2 expo(11) 10 12 15 15 unif(10, 15) unif(2.5, 3) (1, 3)
3 expo(11) 10 12 15 35 unif(16, 17) unif(2, 3) (2, 4)
4 expo(11) 11 12 15 35 unif(16, 17) unif(5, 6) (2, 5)
5 expo(13) 10 12 15 15 unif(16, 17) unif(2, 3) (1, 4)
6 expo(6.5) 1 2 7 20 unif(5, 8) unif(2, 5) (2, 5)
7 expo(6.5) 1 2 7 10 unif(5, 8) unif(2, 5) (1, 4)
8 expo(12) 1 3 7 10 unif(15, 20) unif(5, 8) (2, 4)
9 expo(10) 8 9 15 30 unif(14, 15) unif(2.5, 3) (2, 6)
10 expo(10) 8 9 11 20 unif(14, 15) unif(2.5, 3) (3, 6)

Table 3. Average costs ($ per day) for Model Y.
Improvement¼ (�Unused� �RL)/�Unused.

Case RL policy Unused material only Improvement (%)

1 0.70284 1.3572 48.2
2 1.5530 1.9198 19.1
3 1.6702 2.2932 27.2
4 1.7739 2.2932 10.9
5 1.3955 2.2122 36.9
6 3.6529 3.7338 2.2
7 1.9403 2.2072 12.1
8 0.6518 1.9090 65.8
9 1.3206 2.1999 39.9
10 1.2340 1.5759 21.7
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In the worst case, it is 10.9% and, in the best case, it is 1.4%. This provides sufficient
encouragement that RL can produce near-exact solutions for these switching problems,
and is likely to be useful where brute-force simulations are not possible because of problem
size (Models Y and Z). In the context of the optimality gap, we need to point out that
a change in the distributions of the repair time and the inter-arrival time for demands and

Table 4. Q-Factor values (Q(i, a)) for Case 1 of
Model X.

State
(i)

Core
(a¼ 1)

Unused
(a¼ 2)

�5 27.932965 25.794344
�4 27.888983 25.713552
�3 27.291605 24.982103
�2 26.459577 23.580912
�1 24.829261 21.554531
0 23.476489 19.288763
1 18.454407 15.707347
2 15.406330 13.920903
3 13.677106 13.266556
4 12.865773 12.804720

5 12.168334 12.286075
6 11.771908 11.978448
7 11.463808 11.622253
8 10.726801 10.500255
9 9.249244 8.228756
10 6.666473 4.835276

Note: The values in bold are for the state where
switching must occur.

4 2 0 2 4 6 8 10
0.5

1
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2
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4

Switching point for Case 1

A
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Figure 11. Average cost associated with different switching points obtained by brute force
in Model X.
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cores can influence the optimality gap. However, our choice of these distributions is based
on the following assumptions. There is a great deal of variability in the time between
arrivals of cores and also demands, and hence the choice of the exponential distribution
is made. Repair times are also likely to be random variables, but the variance is likely to
be less. It was pointed out by a reviewer that the optimality gap could very well be
a function of the choice of the distributions for these random variables. Hence, in order for
a real-world manager to use these results, it is imperative that a thorough data-collection
exercise be carried out in the beginning to determine the distributions in an appropriate
manner. We must also point out that since the models we present are simulation-based,
changing distributions in the simulator is not difficult.

Table 3 displays the results of the RL simulation for Model Y. In Model Y, there are
two switching points: one from core A (cheaper core) to core B (costlier core), and the
second from core B to unused material. Finally, the results of the product-mix model
(Model Z) are displayed in Tables 6–8. Here, two different raw materials are required at
the assembly facility from the remanufacturing stream of raw materials. The RL switching
points for both parts are displayed in the results.

Table 5. Average costs ($ per day) for Model X.

Case RL policy (�RL)
Unused material

only
Brute-force
optimal (�*)

Optimality
gap (%)

1 0.4464 0.7141 0.4122 8.2
2 0.5028 0.6724 0.4716 6.6
3 0.4924 0.7935 0.4553 1.4
4 0.8470 1.1430 0.7631 10.9
5 0.6589 1.1426 0.6393 3.0
6 0.6004 1.1422 0.5529 9.6
7 0.5079 0.7144 0.4880 4.0
8 0.6719 0.6903 0.6622 1.5
9 0.4867 0.8560 0.4652 4.6
10 0.6810 1.2862 0.6480 5.1

Table 6. Simulation inputs for Model Z.

Case

Time between
core

arrivals I

Time between
core

arrivals II

Time
between
demands

Core I
cost ($)

Unused I
cost ($)

Core II
cost ($)

Unused II
cost ($)

Back-order
cost ($)

1 expo(2) expo(8) 17 8 10 5 8 24
2 expo(1) expo(2) 11 5 7 3 5 10
3 expo(1) expo(1) 11 5 7 3 8 10
4 expo(2) expo(2) 12.5 5 7 3 8 10
5 expo(2) expo(4) 17 5 7 10 15 15
6 expo(2) expo(8) 17 9 10 10 12 24
7 expo(2) expo(8) 16 9 10 10 12 24
8 expo(1) expo(2) 12 5 7 3 5 20
9 expo(2) expo(2) 17 8 10 5 8 24
10 expo(2) expo(2) 18 8 10 5 7 30
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6. Conclusions

Remanufacturing is a philosophy that is gaining in popularity in the production world.

It poses several new and exciting challenges to the production planner. As this philosophy

becomes more visible, it is likely that the importance of studying logistics problems
related to it will become more widely known. In this paper, we addressed an important

problem of raw-material selection in a remanufacturing facility. If remanufacturing,

which has tremendous environmental benefits, is to become economically viable, the

raw-material selection problem described here has to be solved in a near-optimal fashion.

This problem is complex and, as we have shown, it can be set up as a semi-Markov

decision problem, the transition probabilities of which are not easily available for

large-size real-world problems. Hence it cannot be solved easily via classical dynamic

programming. An alternative to dynamic programming is to use brute-force simulation,

which also is intractable for large-size problems. Hence, in this paper, we used a machine

learning approach, namely reinforcement learning, which uses concepts of approximate

dynamic programming within simulators, thereby bypassing the need for transition

probabilities. The main attraction of RL is that it can scale up well to large problems.

We demonstrate that, in general, the RL approach shows cost improvements over

Table 7. Simulation inputs and results for Model Z.

Case Repair time for I Repair time for II
RL switching

point (I)
RL switching
point (II)

1 unif(18, 20) unif(18, 20) 3 4
2 unif(12, 13) unif(6, 7) 3 3
3 unif(12, 13) unif(6, 7) 4 0
4 unif(12, 13) unif(12, 13) 3 3
5 unif(19, 20) unif(12, 13) 3 2
6 unif(18, 20) unif(12, 13) 4 3
7 unif(18, 20) unif(12, 13) 5 4
8 unif(6, 7) unif(9, 10) 3 2
9 unif(18, 20) unif(18, 20) 3 2
10 unif(18, 20) unif(18, 20) 4 3

Table 8. Average costs ($ per day) for Model Z.
Improvement¼ (�Unused� �RL)/�Unused.

Case RL policy Unused material only Improvement

1 1.0064 1.3936 27.7
2 1.3393 1.7664 24.2
3 1.5785 2.0167 22.7
4 1.4613 1.6018 8.7
5 1.7196 1.9450 11.6
6 1.5147 2.6446 42.7
7 2.1173 2.7689 23.5
8 1.8186 2.2729 19.9
9 1.8634 2.3574 20.9
10 1.0122 2.0433 50.5
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a strategy that uses unused material only. We believe that this is the first use of RL for

environmentally conscious manufacturing.
A number of directions for future research can be envisaged. First, the problem studied

here could be expanded to a much larger setting where scores of machines and multiple
component types are involved. This will require a neural network to approximate the value

function. Another possibility is to develop robust heuristics to determine the switching
policy.
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