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Target-sensitive control of Markov and semi-Markov processes
Abhijit Gosavi

Abstract: We develop the theory for Markov and semi-Markov control using dynamic pro-
gramming and reinforcement learning in which a form of semi-variance which computes the
variability of rewards below a pre-specified target is penalized. The objective is to optimize
a function of the rewards and risk where risk is penalized. Penalizing variance, which is
popular in the literature, has some drawbacks that can be avoided with semi-variance.
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1. INTRODUCTION

Measures used to model risk in the Markov decision
process (MDP) include variance [41, 24, 28], exponen-
tial utility functions [31, 21, 22, 26, 19, 30, 8, 18, 6],
downside risk constraints [13, 44, 45, 25, 2], value at
risk [7] and HARA utility functions [35]. Markowitz
pioneered the popular use of variance in portfolio mod-
els: maximize E(Revenues)− θVar(Revenues) to keep
the risk in check.

There are at least four drawbacks, however, to us-
ing variance: (i) variability above the mean revenues,
which may be desirable, usually gets penalized, (ii) reg-
ular variance does not take into account any manager-
set targets for meeting revenues, (iii) variance works
well usually when the returns have a symmetric distribu-
tion, e.g., normal [23], and (iv) in the context of MDPs
[24], the resulting variance-penalizing problem has a
quadratic structure, solvable via quadratic programming
(QP), which makes it difficult to use dynamic program-
ming (DP). We use a different measure of risk called
target semi-variance risk (see [36] for an early defini-
tion), which measures variability only below a target rev-
enue. It can be handily incorporated within the following
Markowitz framework, which is commercially popular:

E(Revenues)−θSemiVar(Revenues)

More importantly, as we will show, unlike variance for
which one must use QP [24], one can develop a DP and
also an reinforcement learning (RL) framework for solv-
ing the resultant problem, since some of its properties
follow directly from those of the average reward prob-
lem.

The target semi-variance or the “semi-variance” met-
ric is of independent interest in economics because of ap-
plications in finance. In particular, it leads to a new type
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of behavior called mean-semi-variance equilibria [23],
which has some attractive properties of the expected util-
ity of risk. Also, semi-variance is related to downside
risk, i.e., the probability of the revenues falling below a
specified target and is popular in optimal hedging (see
[43]).

The contributions of this paper are as follows. We
present a new value iteration algorithm for the semi-
MDP (SMDP) and show the convergence of the relative
value iteration algorithm for the MDP. Although the case
of semi-variance penalties can be studied as a special
case of the classical average reward problem, we will
show that the SMDP value-iteration algorithm that we
develop here does not require discretization needed for
the value iteration approach in the average reward case
[5]. For the MDP, value iteration is known to converge
in the span; we show in this paper that relative value
iteration, which is numerically more stable than value
iteration, also converges in the span. For problems in
which transition probabilities are not available due to a
complex large-scale system, we present some new anal-
ysis for the RL algorithms for MDP and the SMDP. In
this paper, our main contribution is to analyze the use of
dynamic programming and its variants for semi-variance
penalties. In [29], we study its use on an industrial prob-
lem using a linear programming approach.

The rest of this paper is organized as follows. Some
definitions are presented in Section 2. DP algorithms are
discussed in Section 3. RL algorithms are developed in
Section 4. Our computational results are in Section 5.
Concluding remarks are in Section 6.

2. SEMI-VARIANCE

We will first define the semi-Markov case. Let A (i)
denote the finite set of actions allowed in state i, S
the finite set of states, and µ(i) the action chosen in
state i when policy µ is followed, where ∪i∈S A (i) =
A . Also, let r(., ., .) : S ×A ×S → ℜ and t(., ., .) :
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S ×A ×S → ℜ denote the reward in one transi-
tion and the time in one transition, respectively, and
p(., ., .) : S ×A ×S → [0,1] denote the associated
transition probability. Then the expected immediate re-
ward earned in state i when action a is selected in it is:
r̄(i,a) = ∑|S |j=1 p(i,a, j)r(i,a, j) and the expected imme-
diate time of transition from state i under action a is:

t̄(i,a) =
|S |

∑
j=1

p(i,a, j)t(i,a, j).

We will assume that every Markov chain in the problem
is regular. For the SMDP, the long-run average reward
of a policy µ starting at state i is:

ρµ(i)≡
liminfk→∞ Eµ [∑k

s=1 r̄(xs,µ(xs))|x1=i]/k

limsupk→∞ Eµ [∑k
s=1 t̄(xs,µ(xs))|x1=i]/k

, where xs is the

state occupied before the sth transition and Eµ is the ex-
pectation induced by µ . For the Markov case, the defini-
tion can be obtained by replacing the function t(., ., .) by
1. If the Markov chain of every policy is regular, it can
be shown that the average reward is independent of the
starting state.

In our notation, x⃗ will denote a column vector whose
ith element is x(i). Pµ will denote the transition prob-
ability matrix of µ . Let v(., ., .) : S ×A ×S → ℜ
denote the semi-variance, which would be defined as
follows for i ∈ S , j ∈ S , and a ∈ A (i): v(i,a, j) =[
{τt(i,a, j)− r(i,a, j)}+

]2
, where τ denotes the pre-set

target value for average reward per unit time (or simply
the “target”) and {a}+ = max(0,a). Also, for any i ∈S

and a ∈A (i), we define v̄(i,a) = ∑|S |j=1 p(i,a, j)v(i,a, j)
and for a given positive scalar θ , w(i,a, j) = r(i,a, j)−
θv(i,a, j) and w̄(i,a) = r̄(i,a)−θ v̄(i,a).
Definition 1. The long-run semi-variance of µ starting
at i for the SMDP

κ2
µ(i)≡

liminfk→∞ Eµ
[
∑k

s=1 v̄(xs,µ(xs))|x1 = i
]
/k

limsupk→∞ Eµ
[
∑k

s=1 t̄(xs,µ(xs))|x1 = i
]
/k

.

Let v⃗µ and t⃗µ denote the column vectors whose ith el-
ement is v̄(i,µ(i)) and t̄(i,µ(i)) respectively. Then, from
the definition above, it follows that:

κ⃗2
µ =

(limk→∞
1
k ∑k−1

m=0 Pk
µ)v⃗µ

(limk→∞
1
k ∑k−1

m=0 Pk
µ)t⃗µ

. Since limk→∞
1
k ∑k−1

m=0 Pk
µ exists

for regular Markov chains, it follows that:
κ2

µ( j) = ∑i∈S Πµ (i)v̄(i,µ(i))
∑i∈S Πµ (i)t̄(i,µ(i)) for any j ∈ S , and that κ2

for a given policy does not depend on the starting state.
Then our objective function, or semi-variance-penalized
score, for a policy µ in the SMDP, with all policies hav-
ing regular chains, is: ϕµ ≡

ρµ −θκ2
µ =

∑i∈S Πµ(i) [r̄(i,µ(i)−θ v̄(i,µ(i))]
∑i∈S Πµ(i)t̄(i,µ(i))

(1)

=
∑i∈S Πµ(i)w̄(i,µ(i))
∑i∈S Πµ(i)t̄(i,µ(i))

.

Definition 2. If h⃗ denotes a vector in ℜ|S |, then we
define the transformation Lµ as: ∀i ∈S ,Lµ h(i) =

∑
j∈S

p(i,µ(i), j) [r(i,µ(i), j)−θv(i,µ(i), j)+h( j)]

and ∀i ∈S ,Lh(i) =

max
a∈A (i)

[
∑
j∈S

p(i,a, j) [r(i,a, j)−θv(i,a, j)+h( j)]

]
.

(2)
The following result can be obtained from the clas-

sical result for average reward (Prop. 4.2.1 in [5]) via
replacing the reward function r(., ., .) by w(., ., .).

Theorem 1: (Poisson equation) If ϕ ∈ ℜ and h⃗ ∈
ℜ|S | satisfy for all i ∈S :

h(i) = ∑
j∈S

p(i,µ(i), j)[r(i,µ(i), j)−

θv(i,µ(i), j)−ϕ t(i,a, j)+h( j)], (3)

then ϕ is the semi-variance score associated with the
policy µ . Furthermore (Bellman equation) if a scalar
ϕ ∗ ∈ℜ and J⃗ ∈ℜ|S | satisfy for all i ∈S

J(i) = max
u∈A (i)

[ ∑
j∈S

p(i,u, j)[r(i,u, j)−

θv(i,u, j)−ϕ ∗t(i,a, j)+ J( j)]], (4)

then ϕ ∗ is the semi-variance score associated with the
policy µ∗ that attains the max in the RHS of Equation
(4). The policy µ∗ is the optimal policy.

3. DP ALGORITHMS

MDP: We first present a value iteration (VI) and a rel-
ative VI (RVI) algorithm for the MDP. Note that the span
of vector x⃗: sp(⃗x) = maxi x(i)−mini x(i).
Steps in VI: Step 1: Set k = 0 and select an arbitrary
vector J⃗ 0. Specify ε > 0.
Step 2: For each i ∈S , compute:

Jk+1(i) = max
a∈A (i)

[
r̄(i,a)−θ v̄(i,a)+∑

j
p(i,a, j)Jk( j)

]
.

Step 3: If sp(J⃗ k+1− J⃗ k) < ε, go to Step 4. Otherwise
increase k by 1 and return to Step 2.
Step 4: The policy returned by the algorithm is d, which
is computed as follows: For each i ∈S choose,

d(i) ∈ argmax
a∈A (i)

[
r̄(i,a)−θ v̄(i,a)+ ∑

j∈S
p(i,a, j)Jk( j)

]
.

(5)
Steps in RVI: Step 1: Set k = 0, choose any state to be a
distinguished state, i∗, and select an arbitrary vector R⃗ 0.
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Specify ε > 0 and set R⃗ 0 = J⃗ 0− J0(i∗)⃗e, where e⃗ is a
column vector of ones.
Step 2: For each i ∈S , compute: Jk+1(i) =

max
a∈A (i)

[
r̄(i,a)−θ v̄(i,a)+ ∑

j∈S
p(i,a, j)Rk( j)

]
.

Then for each i ∈S , set Rk+1(i) = Jk+1(i)− Jk+1(i∗).
Step 3: If sp(R⃗ k+1− R⃗ k)< ε, go to Step 4; else increase
k by 1 and return to Step 2.
Step 4: For each i ∈S choose

d(i) ∈ argmax
a∈A (i)

[
r̄(i,a)−θ v̄(i,a)+ ∑

j∈S
p(i,a, j)Rk( j)

]
and stop. The policy returned by the algorithm is d.

For analyzing the RVI algorithm, we need the follow-
ing basic result (see e.g., Theorems 6.6.2 and 8.5.2 [37]).

Theorem 2: Suppose F is an M-stage span contrac-
tion mapping; that is, for any two vectors x⃗ and y⃗ in a
given vector space, for some positive, finite, and integral
value of M,

sp(FM x⃗−FM y⃗)≤ η sp(⃗x− y⃗) for 0≤ η < 1. (6)

Consider the sequence {⃗z k}∞
k=1 defined by:

z⃗ k+1 = F⃗z k = Fk+1⃗z 0. Then, there exists a z⃗ ∗

for which sp(F⃗z ∗− z⃗ ∗) = 0 and (7)

lim
k→∞

sp(⃗z k− z⃗ ∗) = 0. (8)

Also, given an ε > 0, there exists an N such that for all
k ≥ N:

sp(⃗z kM+1− z⃗ kM)< ε . (9)

We denote the delta coefficient of a matrix A by αA
(see Appendix for definition). We prove convergence of
the RVI algorithm in span under a condition for the ma-
trix in (10). The convergence of the VI algorithm in span
has been shown under a different condition in Theorems
8.5.2 and 8.5.3 of [37]; the following result (Theorem 3)
also holds under the condition of [37]. See the Appendix
for Lemma 2 and Lemma 3 (inspired by a result in [32])
which are needed below.

Theorem 3: (a). Consider a pair of finite sequences
of M stationary policies, S1 = {µ1,µ2, . . . µM} and S2 =
{ν1,ν2, . . . νM}. Further, consider the stacked matrix:

AS1,S2 ≡
[

Pµ1 ·Pµ2 · · ·PµM

Pν1 ·Pν2 · · ·PνM

]
. (10)

Assume that there exists an integral value for M≥ 1 such
that for every possible pair, (S1,S2), the delta coefficient
of AS1,S2 is less than 1. Then, the VI algorithm converges
in the limit to an optimal solution.
(b). The VI and RVI algorithms choose the same se-
quence of maximizing actions and terminate at the same
policy for a given value of ε .

Proof: (a). Consider the sequence of vectors J⃗ k in
VI. Then: J⃗ k+1 = LJ⃗ k, for all k = 1,2, . . . where L, de-
fined in (2), is the transformation used in Step 2 of
VI. The delta-coefficient condition in the assumption
above implies that Lemma 3, proved in Appendix, is
true, from which one has that Theorem 2 holds for L.
It follows from (7) then that there exists a J⃗∗ such that
LJ⃗∗ = J⃗∗+ψ1⃗e for some scalar ψ1. The above implies
from Theorem 1 (setting t(., ., .) = 1) that J⃗∗ is an opti-
mal solution of the MDP. However, from (8), we know
that limk→∞ J⃗ k = J⃗∗+ψ2⃗e for some scalar ψ2. From (5),
one has that J⃗∗ and (J⃗∗+ψ2⃗e) will result in the same pol-
icy. It follows from (9) that a finite termination rule can
be developed with a user-specified value of ε .
(b). Let R⃗ k denote the iterate vector in the kth iteration
of RVI. We will first show that:

R⃗ k = J⃗ k−
k

∑
l=1

xl⃗e, (11)

where xl is a scalar constant whose value depends on
iteration l and e⃗ is a vector of ones. We will use induction
on k. It is clear from Step 1 of RVI that: R⃗ 1 = J⃗ 1−
x1⃗e, where x1 = J1(i∗), and hence (11) is true for k = 1.
Assuming it is true for k = m, we have that:

R⃗ m = J⃗ m−
m

∑
l=1

xl⃗e. (12)

Now, since w(i,a, j) = r(i,a, j)−θv(i,a, j), from Step 2
of RVI, by setting xm+1 = Jm+1(i∗), we have that for all
i ∈S ,Rm+1(i):

= max
j∈S

(
∑
j∈S

p(i,a, j) [w(i,a, j)+Rm( j)]

)
− xm+1

= max
j∈S

(
∑
j∈S

p(i,a, j)

[
w(i,a, j)+ Jm( j)−

m

∑
l=1

xl

])
−xm+1 (from (12))

= max
j∈S

(
∑
j∈S

p(i,a, j) [w(i,a, j)+ Jm( j)]

)

−
m+1

∑
l=1

xl (13)

= Jm+1(i)−
m+1

∑
l=1

xl (from Step 2 of VI),

from which (11) follows for any k. The span of the dif-
ference vector in any iteration of both algorithms will be
equal, since: sp

(
R⃗ k+1− R⃗ k

)
= sp

(
J⃗ k+1− J⃗ k− xm+1⃗e

)
(from (11))

= sp
(

J⃗ k+1− J⃗ k
)
.
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The two algorithms will choose the same sequence of
maximizing actions (see Step 4 in each) since:

argmax
j∈S

[
∑
j∈S

p(i,a, j)
[
r(i,a, j)+Rk( j)

]]

= argmax
j∈S

[
∑
j∈S

p(i,a, j)

[
r(i,a, j)+ Jk( j)−

k

∑
l=1

xl

]]

= argmax
j∈S

[
∑
j∈S

p(i,a, j)
[
r(i,a, j)+ Jk( j)

]]
.

�

A note about notation: In a proof below, we will use
the following shorthand notation

x⃗≥ y⃗

for column vectors, x⃗ and y⃗, to indicate that for every row
i in the vector:

x(i)≥ y(i).

Thus, in the two-dimensional vector case this will imply:

x(1)≥ y(1) and x(2)≥ y(2).

The above notation will also be used in the context of≤,
<, and >.

SMDP: The average reward MDP can be solved by
solving an associated stochastic shortest path, abbrevi-
ated as SSP, problem (see Prop 7.4.1 in Vol I of [5]). We
will first extend this key result to the SMDP.

Lemma 1: Consider any recurrent state in the SMDP,
and number it, n. Consider an SSP with the same
Markov chains. Introduce a fictitious state, s, in the
SSP, and set p(i,a,n) = 0 and p(i,a,s) = p(i,a,n) for
all a ∈A (i). Let Rn(µ) and Tn(µ) denote the expected
total reward and the expected total time, respectively, in
one cycle from n to n if the policy pursued is µ . Then
define ρ̂ ≡ maxµ

Rn(µ)
Tn(µ) . Assume that the immediate re-

ward in the SSP is r(i,a, j)− ρ̂t(i,a, j). Then ρ̂ equals
the optimal long-run reward per unit time of the SMDP.

Proof: We first define the expected reward and the
expected time in one cycle as follows:

E[Rn(µ)]≡ R̄µ ; E[Tn(µ)]≡ T̄µ .

Let n = |S | without loss of generality. Via Prop 7.2.1 b
in [5] (Vol I), we have that h∗(i) for i = 1,2, . . . ,n, solves
the Bellman equation for the SSP:

h∗(i) = max
a∈A (i)

[
r̄(i,a)− ρ̂ t̄(i,a)+

n−1

∑
j=1

p(i,a, j)h∗( j)

]
.

In the RHS of the above, we omit h∗(n) since p(i,a,n) =
0. By its definition: hµ(i) =

lim
N→∞

1
N
E [ f (x,µ,N)|x1 = i]

where

f (x,µ ,N) =
N

∑
k=1

r(xk,µ(xk),xk+1)− ρ̂t(xk,µ(xk),xk+1),

and E[.] is an expectation over a random trajectory; when
xk+1 = n, we set xk+2 = i. Then, when i= n, we have that
the summation in the above is over cycles of the SSP, and
hence

hµ(n) = Rn(µ)− ρ̂Tn(µ),

which implies h∗(n) =

max
µ

[Rn(µ)− ρ̂Tn(µ)] = max
µ

[
Rn(µ)
Tn(µ)

− ρ̂
]

Tn(µ) = 0.

The above implies that h∗(n) = 0 and for i= 1,2, . . . ,n−
1

h∗(i) = max
a∈A (i)

[
r̄(i,a)− ρ̂ t̄(i,a)+

n

∑
j=1

p(i,a, j)h∗( j)

]
.

(14)
We define J⃗0 = h⃗∗ and for some stationary policy µ , us-
ing r⃗µ to denote the vector whose ith element is r̄(i,µ):

J⃗k+1 = r⃗µ +Pµ J⃗k. (15)

Then, if τ⃗µ denotes the vector whose ith element
is t̄(i,µ(i)), we will show via induction that:

ρ̂
m

∑
k=1

Pk
µ τ⃗µ + J⃗0 ≥ J⃗m. (16)

Now, from Eqn. (14), for any given stationary policy µ ,

h⃗∗ ≥ r⃗µ − ρ̂Pµ τ⃗µ +Pµ⃗ h∗, i.e., J⃗0 ≥ r⃗µ − ρ̂Pµ τ⃗µ +Pµ⃗ h∗

from which we have, using (15),

ρ̂Pµ τ⃗µ + J⃗0 ≥ r⃗µ +Pµ⃗ h∗ = r⃗µ +Pµ J⃗0 = J⃗1; i.e.,

ρ̂Pµ τ⃗µ + J⃗0 ≥ J⃗1. (17)

Multiplying both sides of the above by Pµ and then
adding r⃗µ to both sides, we obtain:

ρ̂P2
µ τ⃗µ +Pµ J⃗0 + r⃗µ ≥ Pµ J⃗1 + r⃗µ , which using (15)

becomes ρ̂P2
µ τ⃗µ + J⃗1 ≥ J⃗2. (18)

Adding (17) and (18), we have: ρ̂ ∑2
k=1 Pk

µ τ⃗µ + J⃗o ≥ J⃗m,
i.e., (16) holds for m = 2. We now assume (16) to be true
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for m = l, then multiply both of its sides by Pµ and then
add r̄µ to both sides to obtain:

ρ̂
l

∑
k=1

Pk+1
µ τ⃗µ +Pµ J⃗0 + r̄µ ≥ Pµ J⃗l + r̄µ , which results in

ρ̂
l

∑
k=1

Pk+1
µ τ⃗µ + J⃗1 ≥ J⃗l+1. (19)

Adding (19) and (17), we have ρ̂ ∑l+1
k=1 Pk

µ τ⃗µ + J⃗0 ≥ J⃗l+1,
which completes the induction. Then dividing both sides
of (16) by m and taking the limit as m→ ∞, we have:

ρ̂ lim
m→∞

∑m
k=1 Pk

µ τ⃗µ

m
+ lim

m→∞

J⃗0

m
≥ lim

m→∞

J⃗m

m
. (20)

Now, from Prop. 4.1.1 of vol II of [5], using e⃗ to denote
a column vector whose every element is 1,

lim
m→∞

∑m
k=1 Pk

µ τ⃗µ

m
=

(
∑

i∈S

Πµ τµ(i)

)
e⃗≡ T̄µ e⃗.

Also, from section 4.3 of vol II of [5],

lim
m→∞

J⃗m

m
= R̄µ e⃗

Since J0(i) is finite for every i,

lim
m→∞

J⃗0

m
= 0⃗e.

Then, using the above, we can write (20) as:

ρ̂ T̄µ e⃗≥ R̄µ e⃗, i.e., ρ̂ e⃗≥
R̄µ

T̄µ
e⃗. (21)

Since, the numerator in the RHS of (21) equals the ex-
pected reward in one transition under µ and the denom-
inator denotes the expected time in one transition, via
the renewal reward theorem [38], the RHS of (21) is ρµ ,
the long-run reward per unit time of the policy µ , i.e.,
ρ̂ ≥ ρµ . The equality in (21) applies when one uses the
policy µ∗, whose average reward is ρ∗, that uses the max
operator in (14). Then µ∗ is optimal for the SMDP (via
Prop 5.3.1 in [5], Vol II); i.e., ρ̂ = ρµ∗ = ρ∗. �

We can apply the above result for our semi-variance-
penalized case by replacing the function r by w. We
now present an action-value-based DP algorithm for the
SMDP. It is derived from the two-time-scale RL algo-
rithm for the MDP in [1]. We note that the algorithm be-
low solves the SMDP without discretization (discretiz-
ing the SMDP); the existing value iteration approach in
the literature for SMDPs (see Prop. 5.3.3 in vol II of
[5]) requires discretization. The main update of the al-
gorithm is that for all (i,a) pairs,

Qk(i,a) = (1−αk)Qk(i,a)+

αk

[
∑
j∈S

p(i,a, j)
{

r(i,a, j)−θv(i,a, j)−ϕ kt(i,a, j)
}]

+αk

[
∑
j ̸=i∗

p(i,a, j) max
b∈A ( j)

Q( j,b)

]
,

and after one update of all action-values, update ϕ k+1 =
Π
[
ϕ k +β k maxb∈A (i∗) Q(i∗,b)

]
where i∗ is a special

state that can be any state in the system (we assume
that all Markov chains are regular) and Π[.] is a projec-
tion onto [−L,L] where L = maxi, j,a |w(i,a, j)|. The step
sizes, α and β , in addition to the usual conditions (sums
equal infinity and sums of squares equal a finite number),
must satisfy: limk→∞ β k/αk = 0. We define Q∗(i,a) to
be the optimal Q-value for (i,a) pair that solves the Q-
version of the Bellman equation (4). In the above, one
essentially solves the equivalent SSP for the SMDP.

Theorem 4: Qk(i,a) tends to Q∗(i,a) for all (i,a) and
ϕ k tends to ϕ ∗ almost surely as k tends to ∞.

Proof: Using Lemma 1 to invoke the connection with
the SMDP and noting that the transformation underlying
the main update has the weighted norm contraction, the
result follows directly from Theorem 4.5 of [1] after set-
ting their martingale noise terms to 0. �

4. REINFORCEMENT LEARNING
ALGORITHMS

Vanishing Discount Algorithm: We now present for
the MDP a single time scale algorithm that uses the van-
ishing discount approach. Given a sequence {λk}∞

k=1, for
all i ∈S consider Vλ (i) =

max
a∈A (i)

{
∑
j∈S

p(i,a, j) [r(i,a, j)−θv(i,a, j)+λVλ ( j)]

}
.

(22)
Now if we fix a state i∗ and define for all i ∈S , Jλ (i) =
Vλ (i)−Vλ (i∗), the above becomes:

(1−λ )Vλ (i
∗)+ Jλ (i) =

max
a∈A (i)

{
∑
j∈S

p(i,a, j) [r(i,a, j)−θv(i,a, j)+λJλ ( j)]

}
.

(23)
Theorem 6.18 and Corollary 6.20 in Ross [38] together
imply that: for all i ∈ S , there exists limλ→1 Jλ (i) =
J(i) and limλ→1(1− λ )Vλ (i∗) = ϕ ∗, where ϕ ∗ is some
constant. It then follows that as λk tends to 1, Equation
(23) becomes Equation (4). Now we define for all (i,a):

Q(i,a) = ∑
j∈S

p(i,a, j) [r(i,a, j)−θv(i,a, j)+λVλ ( j)] ,

(24)
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where V⃗λ denotes the optimal value function for a given
value of λ . Equations (22) and (24) imply that for ev-
ery i ∈S , Vλ (i) = maxa∈A (i) Q( j,a), which from (24)
implies that Q(i,a) =

∑
j∈S

p(i,a, j)
[

r(i,a, j)−θv(i,a, j)+λ max
b∈A ( j)

Q( j,b)
]
.

(25)
This motivates the following RL algorithm (along the
standard lines of Q-Learning):

Q(i,a)← (1−α)Q(i,a)+

α
[

r(i,a, j)−θv(i,a, j)+λ max
b∈A ( j)

Q( j,b)
]
. (26)

Theorem 5: The RL algorithm in (26) converges to
an optimal solution of the semi-variance-penalized prob-
lem almost surely, as λ tends to 1.

Proof: The transformation in Equation (25) can be
shown to be contractive, and hence it has a unique fixed
point and it is non-expansive. Then, if the iterate Q(., .)
remains bounded, convergence to the fixed point of the
transformation follows from Lemma 2.4 in [10]. We
now need to show that the iterate Q(i,a) is bounded.

Setting, m = (i,a), we define g : ℜn→ℜn as:

gi,a(Q⃗) =−Q(i,a)+

∑
j∈S

p(i,a, j)
[

r(i,a, j)−θv(i,a, j)+λ max
b∈A ( j)

Q( j,b)
]
.

Define a scaled function gζ : ℜn→ℜn as: gζ (⃗x) = g(ζ x⃗)
ζ .

It follows then that g∞ exists and is given as:

g∞
i,a(Q⃗) = λ ∑

j∈S
p(i,a, j) max

b∈A ( j)
Q( j,b)−Q(i,a).

It also follows that g is Lipschitz continuous. We re-
write the matrix g∞(.) as: g∞(Q⃗) = λP′− I, where P′ is
a matrix whose every element is a transition probabil-
ity or 0, and I is the identity matrix; the above follows
from the definition of g∞(.). Since, λ < 1, we have that
||λP′||∞ < 1, and hence σ(λP′)< 1, where σ(.) denotes
the spectral radius. If ψ denotes an eigenvalue of λP′,
then the above implies: |ψ|< 1. Now, the eigenvalue of
λP′− I must equal the eigenvalue of λP′ minus 1, and
hence the eigenvalue of λP′− I must be strictly nega-
tive. This implies from a basic result in linear systems
(see Theorem 4.1 on page 151 of [15]) that the zero so-
lution of the ODE, d⃗x(t)

dt = g∞(⃗x(t)), must be asymptoti-
cally stable. This implies from Theorem 2.1 (i) of [11]
that the iterate Q(i,a) remains bounded.

The unique fixed point to which the values converge
is the optimal solution of the λ -discounted problem, i.e.,
solution of (25) or (22) in terms of the value function.
As λ tends to 1, as argued above, we obtain a policy that
satisfies a Q-version of (4). From Theorem 1 (setting
t(., ., .) = 1), this is the optimal solution. �

For the SMDP, under discounting, where wR(i,a, j)
denotes the continuous rate of variance-penalized reward
from state i to j under action a, and wI(i,a, j) denotes the
variance-penalized reward earned from i immediately af-
ter action a is taken and the system goes to j, the Bell-
man equation (vol II of [5]) is:

J(i) = max
a∈A (i)

[
∑
j∈S

p(i,a, j)wI(i,a, j) +

W (i,a)+∑
j

∫ ∞

0
exp(−λ̃ t)J( j) fi,a, j(t)dt

]
,

where λ̃ is the continuous discount factor,

W (i,a) = ∑
j

∫ ∞

0
wR(i,a, j)

1− exp(−λ̃ t)
λ̃

fi,a, j(t)dt

and limt→∞ fi,a, j(t) = p(i,a, j). This suggests the fol-
lowing RL algorithm: For all (i,a),

Q(i,a)← (1−α)Q(i,a)+α[wI(i,a, j)+wR(i,a, j)×

1− exp(−λ̃ t(i,a, j))
λ̃

+exp(−λ̃ t(i,a, j)) max
b∈A ( j)

Q( j,b)].

The convergence of the above can be worked out in a
manner similar to that for the MDP above (Theorem 5).
Note that as λ̃ → 0, the vanishing discount condition
here, we should have no discounting; this is easily veri-
fied: as λ̃ → 0, 1−exp(−λ̃ t(i,a, j))

λ̃
→ t(i,a, j) and

exp(−λ̃ t(i,a, j))→ 1. For the risk-neutral case in [14],
replace w by r, noting that they ignore the immediate
reward.
A Two-time-Scale Algorithms: We now present two al-
gorithms, one based on the SSP and the other based on a
conditioning factor for the transition matrix. Condition-
ing factors are used commonly in policy gradient algo-
rithms to ensure that a matrix is invertible [3, 40]. The
SSP algorithm is based on the average reward algorithm
in [27]; however, in [27] the slower iterate is assumed to
start in the vicinity of its own optimal value, an assump-
tion that we do not need here. For the SSP algorithm,
after transition from i to j under a, update:

Qk+1(i,a)← (1−αk)Qk(i,a)+αk[r(i,a, j)−

θv(i,a, j)−ϕ kt(i,a, j)+ I{ j ̸=i∗} max
b∈A ( j)

Qk( j,b)] (27)

where ϕ k is the current estimate of the semi-variance-
penalized long-run average reward, i∗ is a special state
chosen at the start, and I{} is an indicator function that
equals 1 when the condition in the curly braces is met
and is 0 otherwise. Here ϕ , and two other quantities, Γ
and Ω, are updated in this transition only if a is a greedy
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action; the updates are as follows:

Ωk+1←Ωk + r(i,a, j)−θv(i,a, j);

Γk+1← Γk + t(i,a, j);

ϕ k← (1−β k)ϕ k +β k(Ωk/Γk)

(28)

in which step-sizes, α and β , are chosen such that
limk→∞ β k/αk = 0. We will initialize ϕ , Ω and Γ to 0.
Also, α and β must satisfy the standard conditions for
stochastic approximation.

The algorithm based on the conditioning factor, which
helps produce a contraction, is as follows for the Q-
factor:

Qk+1(i,a)← (1−αk)Qk(i,a)+αk×[
r(i,a, j)−θv(i,a, j)−ϕ kt(i,a, j)+η max

b∈A ( j)
Qk( j,b)

]
(29)

where η ∈ (0,1) is the conditioning factor and the up-
date on ϕ is as in (28). Note that if t(i,a, j) = 1 in the
above, we obtain the MDP version of the conditioning
factor algorithm, which is different from the vanishing
discount algorithm (see Equation (26)) because of the
presence of the term ϕ . This difference ensures that the
conditioning factor can be quite small and still allow us
to obtain optimal solutions.

We define T : ℜ|S |×|A |×1→ℜ|S |×|A |:

(T (Q,ϕ))(i,a) =
|S |

∑
j=1

p(i,a, j)[r(i,a, j)−θv(i,a, j)−

ϕ t(i,a, j)+ I{ j ̸=i∗} max
j∈A (i)

Q( j,b)].

and Tη : ℜ|S |×|A |×1→ℜ|S |×|A |:

(Tη(Q,ϕ))(i,a) =
|S |

∑
j=1

p(i,a, j)×[
r(i,a, j)−θv(i,a, j)−ϕ t(i,a, j)+η max

j∈A (i)
Q( j,b)

]
.

In general, we will denote the update of ϕ by:

ϕ k+1← ϕ k +β k(Ωk/Γk−ϕ k) = ϕ k +β k( f (Qk,ϕ k)),
(30)

where
f (Qk,ϕ k)≡Ωk/Γk−ϕ k. (31)

Our main equation in terms of T is:

Q(i,a) = (T (Q,ϕ))(i,a) ∀(i,a). (32)

and that for Tη is:

Q(i,a) = (Tη(Q,ϕ))(i,a) ∀(i,a). (33)

Assumption A1: The set of fixed points for the transfor-
mation T (.,ϕ) or Tη(.,ϕ) for fixed ϕ is non-empty. We

will denote any fixed point in this set generally by Q(ϕ)
for a given value of ϕ .
Assumption A2: f : ℜ|S |×|A |→ℜ is Lipschitz.
Assumption A3: ∂ f (Q,ϕ)

∂ϕ < 0.

Theorem 6: The RL algorithm in (27) and (28) con-
verges to an optimal solution almost surely.

Proof: We first verify Assumption A1. Transforma-
tion T (.,ϕ) is contractive with respect to a weighted max
norm for any ϕ (see [4]), and hence has a unique fixed
point. For a fixed value of ϕ , that transformation T (.,ϕ)
is non-expansive can be easily verified. Consider the
O.D.E: dϕ(t)

dt = 0 and

dQ(t)
dt

= T (Q(t),ϕ(t))−Q(t). (34)

Under Assumption A1, from the result in [12], Q(ϕ)
is an asymptotically stable equilibrium of the O.D.E in
(34). It turns out that limζ→0

T (ζ Q,ϕ)
ζ exists since for ev-

ery (i,a),

lim
ζ→0

T (ζ Q,ϕ)(i,a)
ζ

=
|S |

∑
j=1

p(i,a, j)I{ j ̸=i∗} max
j∈A (i)

Q( j,b)

≡ T∞(Q)(i,a).

But from Assumption A1, the transformation T∞(Q),
which is a special case of T (Q) with w(., ., .) ≡ 0, must
have at least one fixed point. Hence, the ODE

dQ(t)
dt

= T∞(Q(t))−Q(t)

has an asymptotically stable equilibrium. But the origin
is the only fixed point here, and hence is the globally
asymptotically stable equilibrium of (34). This implies
from the result in [11] that Qk remains bounded for a
fixed ϕ . But the boundedness, along with Assumption
A2, which follows from the definition of f (.) in (31),
the fact that T is Lipschitz continuous, and the condi-
tions on the step sizes, implies from the two-time scale
result in [9] that almost surely Qk → Q(ϕ k). Then if
δ k = f (Qk,ϕ k)− f (Q(ϕ k),ϕ k), a.s. δ k→ 0.

That ϕ is bounded is easily shown. Let

maxi,a, j |w(i,a, j)|
mini,a, j t(i,a, j)

= M < ∞,

where we assume that t(i,a, j)> 0 always. We can show
that |ϕ k| ≤M for all k. Since ϕ 1 = 0, we have:

|ϕ 2| ≤ (1−β k)|ϕ 1|+β k maxi,a, j |w(i,a, j)|
mini,a, j t(i,a, j)

= βM < M;

|ϕ k+1| ≤ (1−β k)|ϕ k|+β k
∣∣∣∣Ωk

Γk

∣∣∣∣
≤ (1−β )M+β

(
k maxi,a, j |w(i,a, j)|

k mini,a, j t(i,a, j)

)
= M.
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We now show that ϕ k → ϕ ∗, where ϕ ∗ is the optimal
variance-penalized average reward. Our arguments are
based on those in [1]; however, since our update on the
slower time scale is different, we need to work out the
details. We define ∆k = ϕ k−ϕ ∗. Then, from the defini-
tion of δ k and (30):

∆k+1 = ∆k +β k f (Q(ϕ k),ϕ k)+β kδ k. (35)

Using Assumption A3, which follows from the fact that
∂ f (Q,ϕ)

∂ϕ =−1 (see (31)), we have upper and lower
bounds on the derivative, and hence there exist L1,L2 ∈
ℜ where 0 < L1 ≤ L2 such that:

−L2(ϕ1−ϕ2)≤ f (Q(ϕ1),ϕ1)− f (Q(ϕ2),ϕ2)

≤−L1(ϕ1−ϕ2)

for any scalar values of ϕ1,ϕ2. If the update in (27) is
employed with ϕ k ≡ ϕ ∗, then because T will be non-
expansive, from Assumption A1, using the result in [12],
we will have that Qk tends to a fixed point of T , but since
the fixed point is a solution of the Q-factor version of
the SSP Bellman equation in Lemma 1, Qk→ Q∗. As a
result, (Ωk/Γk)→ ϕ ∗ (since Ω and Γ are updated only
under a greedy action), and from (30), f (Q(ϕ ∗),ϕ ∗) = 0.
So if, ϕ2 = ϕ ∗ and ϕ1 = ϕ k, the above will lead to:

−L2∆k ≤ f (Q(ϕ k),ϕ k)≤−L1∆k.

Because β k > 0, the above leads to:

−L2∆kβ k ≤ β k f (Q(ϕ k),ϕ k)≤−L1∆kβ k.

The above combined with (35) leads to:

(1−L2β k)∆k +β kδ k ≤ ∆k+1 ≤ (1−L1β k)∆k +β kδ k.

Then for any ε > 0, we have that:

(1−L2β k)∆k +β kδ k− ε ≤ ∆k+1

≤ (1−L1β k)∆k +β kδ k + ε.

Then the rest of the proof goes through as in Theorems
4.5 and 4.6 of [1] and we have that a.s., as k→ ∞, ∆k→
0, i.e., ϕ k → ϕ ∗, whence, Qk → Q(ϕ ∗), but as argued
above, Q(ϕ ∗) = Q∗. �

Theorem 7: The RL algorithm in (29) and (28) con-
verges to an optimal solution almost surely.

Proof: Assumption A1 will be true because Tη(.,ϕ)
is contractive in the max-norm, since 0<η < 1. The rest
of the proof is similar to that above. However, the con-
vergence will be to a solution of Equation (33), which
technically will tend to the optimal solution as η → 1.
In practice, as we will show later, the conditioning fac-
tor can be quite small for obtaining optimal results. �

5. COMPUTATIONAL EXPERIMENTS

We consider a 2-state problem to illustrate the useful-
ness of the semi-variance metric. For µ , let Rµ denote
the transition reward matrix and σ2

µ the variance. The
values shown in Tables 1 and 2 are for the MDP and are
obtained via exhaustive evaluation of the policies. They
show that the variance-penalized optimal policy and the
semi-variance-penalized optimal policy is not necessar-
ily the same. In fact, the variance-penalized optimal pol-
icy is (1,2), while the semi-variance-penalized optimal
policy is (2,1). In our experiments, we used θ = 0.15,
τ = 10, and:

P(1,1) =

[
0.7 0.3
0.4 0.6

]
;P(2,2) =

[
0.9 0.1
0.1 0.9

]
;

R(1,1) =

[
6.0 −5
7.0 12

]
;R(2,2) =

[
5.0 68
−2 12

]
.

Policy ρ σ2 κ2

(1,1) 5.8285 30.1420 46.5142
(1,2) 8.6250 31.2843 30.4750
(2,1) 11.0400 287.2384 18.7200
(2,2) 10.9500 187.5475 18.4500

Table 1: The average reward, variance, and semi-
variance of different policies

Policy ρ−θσ 2 ρ−θκ2

(1,1) 1.3072 -1.14857
(1,2) 3.9323 4.0537
(2,1) -32.0457 8.2320
(2,2) -17.1821 8.1825

Table 2: Variance-penalized and semi-variance-
penalized scores of the different polices.
The semi-variance-penalized optimal solution
is in bold.

The RVI algorithm converged to optimality in 12 it-
erations for ε = 0.001, while the vanishing-discount RL
algorithm took no more than 100 iterations. We also con-
ducted tests with a 2-state SMDP for we use the MDP
above for the underlying Markov chains and the transi-
tion times in hours assume the following distributions.
Under action 1: from state 1, unif(2,4) and from state
2, unif(3,5); under action 2, from state 1, unif(4,8) and
from state 2, unif(6,10). We used θ = 0.15 and τ = 1
per hour. Exhaustive evaluation was done to determine
the optimal policy which is action 2 in state 1 and ac-
tion 1 in state 2. For the optimal policy, ρ = 1.9714,
κ2 = 0.1429, and ϕ ∗ = 1.95. All three of the two-time-
scale algorithms, the one based on DP and the the two



International Journal of Control, Automation and Systems Vol. , No. , 9

based on RL, converged to the optimal solution. Table 3
shows the Q-factors obtained from the three algorithms.
The conditioning RL, the SSP-RL and the DP algorithms
converged to optimality, producing ϕ = 1.88, ϕ = 1.79,
ϕ = 1.942, respectively. For DP, ε = 0.01; also for all al-
gorithms, β k = 90/(100+k) and αk = log(k)/k. For the
conditioning RL algorithm, η = 0.99; however, it pro-
duced optimal solutions for values as low as η = 0.505.

(i,a) Conditioning RL RL-SSP DP
(1,1) 8.01 0.14 -4.4021
(1,2) 18.64 0.76 -0.0201
(2,1) 25.23 9.153 5.4670
(2,2) 14.73 9.145 -1.6106

Table 3: Q-factors from the DP and RL algorithms

6. CONCLUSIONS

We introduce a new risk measure, semi-variance, for
MDPs and SMDPs in this paper. One of its notable
advantages over variance is that it captures variability
in a more accurate manner, while the associated con-
trol problem can still be solved, analogous to average
reward, via DP. We proved that RVI (MDP case) for
our problem converges in span; note that RVI, which
is more stable than VI, has been shown to converge via
other methods, but not in the span (in [20] via Lyapunov
functions; [5] via Cauchy sequences; [42] via perturba-
tion transformations). We extended a key SSP result
for MDPs from [5], used widely in the literature (see
e.g., [34]), to the SMDP case and presented a two-time-
scale VI algorithm which exploits this result to solve
the SMDP without discretization (conversion to MDP).
For RL, we showed that eignenvalues of the transition
matrix can be exploited for showing boundedness of a
vanishing-discount procedure and also analyzed the un-
discounted two-time-scale procedure.

Two avenues for future research are the study of semi-
variance with policy gradients for semi-Markov control
(see [17]; see also [16] for an excellent survey) and hi-
erarchical control of semi-Markov processes (see [33]).
Both [17, 33] present some path-breaking results in the
field of semi-Markov control.
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APPENDIX A

Def 3. Let A be a matrix with W rows and C columns
with non-negative elements; additionally, let the ele-

ments in each row of this matrix sum to 1. Let W =
{1,2, . . . ,W} and C = {1,2, . . . ,C}. Now let b(i, j, l) =
minl∈C {A(i, l),A( j, l)} for every (i, j) ∈W ×W , where
A(i, j) denotes the element of the ith row and the jth col-
umn in A. Further let B(i, j) = ∑C

l=1 b(i, j, l) for every
(i, j) ∈W ×W . The delta-coefficient, α , of a matrix, A,
is then defined as:

αA = 1− min
(i, j)∈W ×W

B(i, j). (A,1)

Lemma 2: Let x⃗ be any arbitrary column vector with
C components and A be a matrix with C columns, where
C is finite. Then, sp(A⃗x)≤ αA sp(⃗x).

For a proof of the above lemma, see Seneta [39]. The
following notational conventions will be adopted in what
follows: Lk+1⃗z ≡ L

(
Lk⃗z
)
, and a vector z⃗ k transformed

m times will be referred to as z⃗ k+m. Also, for any i∈S ,

dxk(i) ∈ argmax
a∈A (i)

[
w̄(i,a)+ ∑

j∈S

p(i,a, j)xk( j)

]
. (A,2)

Thus dxk will denote a policy that will prescribe the ac-
tion defined in (A,2) for the ith state. If y⃗ k is a vector,

Ldxk yk(i) =

[
w̄(i,dxk(i))+ ∑

j∈S

p(i,dxk(i), j)yk( j)

]

for every i ∈S . Thus, for every i ∈S and any vector
x⃗ k,

Lxk(i)≡ Ldxk xk(i). (A,3)

Lemma 3: Let L denote the Bellman optimality op-
erator defined in (2) and M be a positive finite integer.
Consider two vectors x⃗ 1 and y⃗ 1 that have |S | compo-
nents. Also, using Pµ to denote the transition probability
matrix associated with policy µ , we define the following
matrices:

AM
x ≡PdxM PdxM−1 . . .Pdx1 and AM

y ≡PdyM PdyM−1 . . .Pdy1 .

Then sp(LM y⃗ 1−LM x⃗ 1)≤ αA sp(⃗y 1− x⃗ 1), where A≡[
AM

y
AM

x

]
.

Proof: Let states s∗ and s∗ be defined as follows:

s∗ = argmax
s∈S

{LMy1(s)−LMx1(s)};

s∗ = argmin
s∈S

{LMy1(s)−LMx1(s)}.

For any i ∈S ,LMx1(i) = LdxM LdxM−1 . . .Ldx2 Ldx1 x1(i).
(A,4)

We can show that

LMy1(i)≥ LdxM LdxM−1 . . .Ldx2 Ldx1 y1(i)∀i. (A,5)
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The above can be proved as follows. From definition,
for all i ∈S , Ly1(i) ≥ Ldx1 y1(i). Since L is monotonic
(from Lemma 1.1.1 of [5] (Vol 2, pp 7) via replacing r̄
by w̄), for all i ∈S , L

(
Ly1(i)

)
≥ L

(
Ldx1 y1(i)

)
. From

definition of L in (Def 2.), for all i ∈ S , L
(
Ly1(i)

)
≥

Ldx2

(
Ldx1 y1(i)

)
. From the preceding inequalities, for all

i ∈S , L
(
Ly1(i)

)
≥ Ldx2

(
Ldx1 y1(i)

)
. In this way, by re-

peatedly using the monotonicity property, we can estab-
lish (A,5). From (A,4) and (A,5), it follows that

LMy1(s∗)−LMx1(s∗)

≥ [LdxM LdxM−1 . . .Ldx1 y1(s∗)]− [LdxM LdxM−1 . . .Ldx1 x1(s∗)]

= [w̄(s∗,dx1(s∗))+ w̄(s∗,dx2(s∗))+ · · ·+ w̄(s∗,dxM (s∗))+

PdxM PdxM−1 . . .Pdx1 y1(s∗)]−
[w̄(s∗,dx1(s∗))+ w̄(s∗,dx2(s∗))+ · · ·+ w̄(s∗,dxM (s∗))+

PdxM PdxM−1 . . .Pdx1 x1(s∗)] = AM
x (y1− x1)(s∗).

Thus:

LMy1(s∗)−LMx1(s∗)≤ AM
x (y1− x1)(s∗). (A,6)

Using logic similar to that used above:

LMy 1(s∗)−LMx 1(s∗)≤ AM
y (y1− x1)(s∗). (A,7)

Then,

sp(LM y⃗ 1−LM x⃗ 1)

= {LMy1(s∗)−LMx1(s∗)}−{LMy1(s∗)−LMx1(s∗)}
≤ AM

y (y1− x1)(s∗)−AM
x (y1− x1)(s∗)

(from (A,6) and (A,7))

≤max
s∈S

AM
y (y1− x1)(s)−min

s∈S
AM

x (y1− x1)(s)

≤max
s∈S

[
AM

y

AM
x

]
(y1− x1)(s)−min

s∈S

[
AM

y

AM
x

]
(y1− x1)(s)

= sp

([
AM

y

AM
x

](⃗
y 1− x⃗ 1))

≤ αA sp(⃗y 1− x⃗ 1) (from Lemma 2).

�
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