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Unexpected failures can reduce throughput—especially if the 
failure affects the process bottleneck. Furthermore, when a 
failure occurs, it usually takes longer to correct than a scheduled 
maintenance activity would, resulting in significantly higher 
costs. It has been empirically shown that preventive maintenance 
can reduce the frequency of unexpected failures and, if done at 
appropriate time intervals, can reduce the overall costs (Askin 
and Goldberg, 2002). TPM is now viewed as an integral part 
of regular operations in production firms. With the advent of 
computers and the cheap availability of personal computers in the 
last couple of decades, computerized maintenance systems have 
become increasingly popular in industry (Westerkamp, 2006). 
Such systems make it easy to collect and maintain historical 
data of machine failures, their frequencies, and down-times 
due to repairs and maintenance. These databases can be used 
to determine parameters (such as distribution type, mean, etc.) 
of  system failures, providing an excellent basis to model and 
improve the maintenance process.    It is no exaggeration to state 
that production systems cannot remain healthy and productive 
without a good TPM program; however, developing effective 
operational strategies for TPM can be quite challenging because 
of numerous complicating factors, such as random failures of 
the different machines and pieces of equipment in a system, 
randomness in repair/maintenance times due to variability in 
the availability of spare parts and repairpersons, and the complex 
stochastic dynamics of production systems. The manager has to 
analyze the underlying stochastic processes, costs, and revenues, 
and a host of other factors in order to develop an effective  
TPM program. 

Problem Statement
Production managers must balance the need to reduce lost 
production costs due to equipment failures with preventive 
maintenance costs. Managers do this by developing preventative 
maintenance schedules. Most statistical models in reliability and 
preventive maintenance (PM) attempt to optimize the system over 
the long-run (i.e., an infinite time horizon) to minimize long-run 
and average costs. While this leads to good long-run performance, 
in a finite time horizon such a scheduling policy can exceed short-
run maintenance department budgets. Our goal in this research 
is to develop maintenance schedules that minimize the long-run 
average costs over the infinite time horizon, but at the same time 
minimize the chances of costs exceeding a predetermined daily 
or weekly budget. To accomplish this we employ a relatively 
less known measure of risk called semi-variance that measures 
variability of costs rising above a predetermined threshold (target 
or ceiling). The advantage of this metric is that when suitably 
combined with the long-run average cost metric, it can produce 
solutions that seek to keep the long-run average cost under 
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Total Productive Maintenance (TPM) is a program that 
began in the 1970s in Japan. Seiichi Nakajima popularized 
TPM throughout Japan and is widely recognized as a 

pioneering practitioner of this field. One of the main goals of 
TPM is to maximize equipment effectiveness and availability. In 
the 1980s, TPM started gaining popularity in the United States. 
The initial interest may have been due to competition from Japan 
and the need for cutting costs. It quickly became clear that a well-
designed TPM program would lead to less lead time variability, 
which in turn, significantly lessened the need to carry finished 
goods inventory. Since the late 1990s, many manufacturers have 
transitioned from make-to-stock (push) to either make-to-order 
(pull) or delayed differentiation strategies. To be competitive, 
make-to-order requires significantly reduced lead time and is less 
tolerant of unexpected machine failures disrupting production. 
Consequently, the need for TPM has increased in recent years. 
TPM is no longer viewed just as a continuous improvement tool 
to cut costs but is also considered a critical tool in keeping lead 
time in check, which is absolutely essential for survival in a world 
where customers demand low prices and rapid delivery.   

TPM is oftentimes implemented in multiple phases, the 
first phase being linked to the philosophy of being pro-active 
in order to improve equipment performance. A modification 
of a popular slogan in industry captures the TPM philosophy: 
“If it ain’t broke, fix it anyway!” TPM’s overall goal is to prevent 
the unexpected failure that can disrupt a production schedule. 
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control and at the same time minimize the chances of costs rising 
above the threshold. 

We present two statistical models, both of which are based 
on well-known stochastic models. The first is based on renewal 
theory (see Askin and Goldberg, 2002, for applications in a lean 
manufacturing setting); the second is based on semi-Markov 
decision processes (SMDPs) theory (Howard, 1971). The 
SMDP model is a generalized version of the more well-known 
MDP (Markov decision process) model. The theory of renewal 
processes captures the dynamics of cyclical phenomena that 
occur in stochastic systems. The renewal reward theorem (Ross, 
1997) is a key tool that supplies the much needed cost-and-
reward structure to the renewal process and thereby provides a 
mechanism to measure the performance of systems that can be 
modeled with renewal processes. The SMDP model is based on 
construction of a Markov chain, which assumes that the system 
transitions randomly from one state to another. Embedded within 
the Markov chain is a reward and cost structure that can be used 
to optimize the system. 

The renewal-theoretic model that we develop can be applied 
with less effort than the SMDP model. The SMDP model is more 
applicable to more complicated systems consisting of several units 
that can fail. Renewal-theoretic models in preventive maintenance 
have been widely used in industry (Askin and Goldberg, 2002) 
because they require less work for the analyst and are very 
transparent. In the context of this article, the renewal-theoretic 
model is likely to be more useful for components of manufacturing 
systems, such as conveyor systems or heat-treatment units. The 
MDP model is applicable for a larger system such as a production 
line consisting of numerous machines or a fleet of automated 
guided vehicles (AGVs). The ground work in the SMDP model 
consists of identifying system states and calculating transition 
probabilities. While the SMDP model is more sophisticated, it 
has seen fewer applications in the real world—probably because 
of the additional modeling effort it demands. 

After developing the models, we tested them numerically. 
For the renewal-theoretic model, we present numerical results 
gathered from a New York manufacturer. The data have been 
modified for proprietary reasons. For the SMDP model, the data 
used are from the literature. Our numerical results show that our 
models can produce maintenance schedules that with a slight 
increase in the average long-run cost minimize the variability of 
costs rising above a predetermined budget. The computational 
formulas are simple enough to be implemented using spreadsheet 
software, such as Microsoft Excel.  

Literature Review
The literature on TPM is vast, and it has been adequately surveyed 
in review articles (McCall, 1965; Valdez-Flores and Feldman, 
1989; McKone and Weiss, 1998; Wang, 2002; Ahuja and Khamba, 
2006), which have appeared with an increasing frequency. This 
regularity of appearance is indicative of TPM’s widespread use 
and importance in industry. The focus of this article is on those 
aspects of TPM that are related to determination of the interval 
for preventive maintenance. We now describe some of the related 
literature, linking the different streams of research that have  
been performed.  

Early Days of PM
In the early days of the industrial revolution, maintenance was 
synonymous with repair. In other words, resources were allocated 
to repairing machines after they failed rather than doing anything 

to minimize the chances of failure. The science of statistics offered 
a path for better understanding failure mechanisms, which led to 
the birth of a field now called reliability-centered maintenance 
(RCM). RCM was invented formally at Boeing in the early 
1970s. Barlow and Proschan (1965) published the first textbook 
to have addressed this issue as a statistical science. It gradually 
became clear that one could reduce the total costs of repair and 
maintenance if one were to proactively maintain machines, 
e.g., lubricate bearings that can cause failure or do a complete 
overhaul by shutting down a machine that is functioning properly 
for maintenance after an appropriate time interval. This led to 
the modern era of TPM. The term TPM was popularized first at 
Toyota Motor Company. 

Stochastic Processes
A great majority of the papers that study the statistical aspects 
of the failure mechanism exploit stochastic processes, either 
renewal processes or some variants of the Markov decision 
process (MDP). Some of the earlier models for RCM were 
based on the assumption of “shocks” in the form of failures 
that lead to Markov chains and were aimed at minimizing the 
total discounted costs over an infinite time horizon (Chitke and 
Deshmukh, 1981; Anderson, 1981). Dada and Marcellus (1994) 
modeled the problem as an MDP and used notions of out-of-
control and in-control processes. Such decision-theoretic models 
have since been used widely in modeling the RCM problem— 
see Das and Sarkar (1999) and references therein. For a textbook 
description of the use of renewal theory for maintenance, which is 
also called age replacement, see Gertsbakh (2000), which provides 
a comprehensive account of the related literature.    

Industrial Implementation
Repair and maintenance costs can account for about 15-40% of 
production costs in industries (McKone and Weiss, 1998). As a 
result, one finds a number of case studies of TPM applications 
in the literature (Shimburn, 1995; Wilmeth and Usrey, 2000). 
A detailed analysis of how widespread TPM is within industry 
can be found in McKone et al., (1999); also see Nayak and  
Shayan (1998).  

Systems Viewpoint
A branch of the related literature seeks to integrate TPM with 
other functions in production management. Some of this work 
includes integrating quality (Panagiotidou and Tagaras, 2007), 
lead time constraints (Sheu and Chien, 2004), and job scheduling 
constraints within PM scheduling (Cassady and Kutanoglu, 
2005). This has lead to some new advances in PM scheduling 
that adopt a systems viewpoint that seeks to minimize PM 
costs and at the same time minimize other costs incurred in the  
production system.

Recent Work
Much of the recent work has attempted to overcome some of the 
classical obstacles to implementing TPM in industry. Some of 
these obstacles have come in the form of the assumptions made in 
many TPM models: (i) the machine is as good as new after repair 
or maintenance, (ii) the machine operates as a solitary unit in the 
production system (whereas in most systems machines are a part 
of a production line and their operations are inter-dependent), 
and (iii) operators are available all the time for maintenance. We 
now cite some papers that seek to address these issues. El-Ferik 
and Ben-Daya (2006) study a scenario where the machine ages 
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after every repair or maintenance. Quan et al. (2007) sought to 
model operator (workforce) availability constraints in an aircraft 
maintenance facility within a TPM schedule, while Dellagi et 
al. (2007) studied TPM of two interconnected machines, whose 
operations are dependent on each other. TPM is a topic that 
continues to attract research interest. 

Risk-Averse Preventive Maintenance
All of the models described above attempt to minimize the long-
run average costs with no consideration of the variability or “risks” 
involved in these policies. Such models will be referred to as risk-
neutral models. The first paper that considers risk in the literature 
is Chen and Jin (2003), where they use variance as a measure of 
risk. They measure risk in a renewal process but set the time of 
each transition to one. Subsequently, Gosavi (2006) pursued a 
model that employed cyclical variance using renewal processes 
and one-step variance in the MDP model. Both papers seek to 
combine, within the performance measure, the expected costs 
and the variability of the costs. Here, our goal is to use a different 
measure of risk, namely target semi-variance (or semi-variance 
for short), within the RCM framework both for renewal processes 
and SMDPs. Target semi-variance has a notable advantage over 
variance in that it accounts for variability in costs incurred above 
the budget set by senior management. Using variance in a model, 
on the other hand, considers situations where the costs below 
and above the mean are of the same importance. In application, 
a manager would be pleased with costs below the department’s 
budget and concerned with those exceeding the budget. Penalizing 
variance leads to penalizing variability that is actually welcome. 
Using semi-variance to penalize variance, on the other hand, 
leads to budget-sensitive behavior that more closely represents 
the concerns of engineering managers.

Porter (1974) provides an early definition of semi-variance. 
Target semi-variance, or simply semi-variance, is now used 
in financial portfolio analysis as an alternative to variance in 
measuring risks. The mathematical development of MDP theory 
using semi-variance is the subject of a companion paper (Gosavi, 
2010) that is likely to be of interest to theoreticians. In this article, 
we focus on the application and the implementation aspects that 
are of more interest to the practitioner.

Models for Budget-Sensitive PM Scheduling
As we present the mathematical details of the two models, some 
definitions and assumptions are necessary. Time for failure is 
the amount of time it takes a new machine or a machine that 
is newly repaired or maintained to fail. We assume that the 
machine is as good as new after every maintenance or repair. This 
assumption implies that after every maintenance or repair, the 
time for failure of the machine has the same distribution. This 
is a standard assumption in the literature (Gertsbakh, 2000) and 
representative of many industrial situations. It is assumed that 
the modeler has sufficient knowledge concerning the equipment 
involved to develop appropriate failure distribution(s); often 
these distributions can be determined from historical machine 
maintenance data. It is also assumed that the costs of repair and 
maintenance are known.  

Renewal-Theoretic Model
We first describe the physics of the renewal process and then 
derive a formula that measures the semi-variance of the cost per 
unit time. The “age” of a machine is assumed to be the time elapsed 
since it was repaired or maintained. As stated above, we assume 

that the unit is as good as new after repair or maintenance. That 
is represented by the machine’s age being set to zero after repair 
or maintenance. The unit ages only when it is in operation. The 
following notation is used in the model: 

X: the time for failure of the system, which is a random variable,
T: the unit’s age when PM is performed
F(∙): the cumulative distribution function (cdf) of X
f(∙): the probability density function (pdf) of X
Cr: the expected cost of one repair
Cm: the expected cost of one PM activity
tr : the expected time required to perform one repair
tm : the expected time required to perform one PM activity
τ: the budget rate for TPM 
E(R): the expected cost in one renewal cycle
E(L): the expected cycle time in the renewal cycle

In renewal theory, one uses the notion of cycles to describe 
stochastic events. Here we will assume that a new cycle starts 
when production begins on a new machine, or a machine that has 
just been repaired or maintained. One of the following two events 
end the cycle: (i) the machine fails and a repair is performed, and 
(ii) the machine is preventively maintained before it fails. When a 
cycle ends and production starts, a new cycle begins. In renewal 
theory, our attempt is to measure the mean net cost incurred in 
the cycle, denoted by E(R), and the mean time spent in one cycle, 
E(L). According to the renewal reward theorem (Ross, 1997), the 
mean (expected) cost rate (in $/hr), denoted by ρ, is given by 

E(Cost Rate) = ρ = E(R)
E(L)

.                (1)

Minimizing the mean cost rate leads to a PM policy that 
minimizes the average long-run cost, but may lead to a situation 
where the cost in unit time exceeds a budget (ceiling or target) τ. 
Usually, the budget is available for the year or month. From this 
one can compute the hourly budget. For instance, if B denotes the 
annual budget for TPM, and if H denotes the number of hours for 
which machines are used each year, then 

τ = BH
.

                                               
(2)

The goal is to derive a performance measure that attempts 
to keep the cost rate under control but at the same time also 
minimizes the chances of the hourly (or weekly or monthly) costs 
exceeding τ. Semi-variance is used to achieve this goal as opposed 
to variance, which does not account for performance with respect 
to budgets. Variance measures the variability above and below the 
mean. Semi-variance measures variability above a given budget 
(threshold) rate, τ, for costs. The multi-objective metric in risk-
sensitive formulations that seek to simultaneously minimize the 
average cost and the variability can be defined as follows:

Minimize E (Cost Rate) + θ Risk Rate               (3)                      

where the term Risk Rate could be a function of variance or 
semi-variance depending on how the manager wants to measure 
risk (depending on the risk metric preferred) and θ denotes the 
risk-sensitivity factor, which is indicative of how risk-averse the 
manager is. Typically, θ in Equation 3 assumes small values in the 
range of (0,0.5). The greater the value of this factor, the higher the 
risk-averseness; however, very high values of θ (i.e., above 0.5) 
will lead to a solution in which the risk becomes more important 
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than the expected cost, and can produce solutions which are 
very expensive but have low variability. A value of 0 for θ implies 
that the manager is risk-neutral. This kind of a formulation was 
invented by Markowitz (1952) and is now widely used in portfolio 
optimization. The Risk Rate in Equation 3 is defined as follows: 

Risk Rate = Risk
E(L)  .                                                 (4)   

The precise definition of risk in Equation 4 will depend on 
the metric chosen, and details will be provided in the model 
development. Using the standard mechanism for building the 
model for machine maintenance (e.g., Askin and Goldberg, 
2002), results in the following expression for the expected cost:

  E(R)= Cr P(X<T) + Cm P(X≥T) = Cr F(T) + Cm(1-F(T)).  (5)

Equation 5 can be explained as follows: X (a random variable) 
denotes the time at which failure occurs and T (a deterministic 
variable) denotes the age at which the machine is maintained. 
Hence the cycle ends either with preventative maintenance being 
performed (when X>T), which costs Cm, or failure (when X<T), 
which costs Cr. Hence the expected cost of any cycle is the cost 
of a failure (Cr) times the probability of failure plus the cost of 
preventative maintenance times the probability of preventative 
maintenance being performed in that period. Similarly, the 
mean cycle time in the renewal process (see Ross, 1997) can be 
estimated as follows:

E(L)= ∫   (x+tr)ƒ(x)dx+(T+tm)(1−F(T)).
T

0               (6)                            

To define the terms for semi-variance, we first introduce 
the following notation: [a]+ = max (0,a). Then, in a manner 
analogous to the formula in Equation 5, the semi-variance of R 
can be defined as:

Svar(R) = ∫   [Cr−τ(x+tr)]  ƒ(x)dx + [Cm− τ (x + tm)]  (1 − F(T)).
T

0
2
+

2
+

       (7)

Following Equations (3), (1), and (4); the budget-sensitive 
performance metric will be defined as:

g (T, θ) =  E(R)
E(L)

+ θ Svar(R,L)
E(L)                                             (8)

 
where the quantities E(R), E(L), and Svar(R,L) are defined 

in Equations 5, 6, and 7, respectively.  The notation g(T,θ) will 
be used to denote that this is a function of T, the age at which 
the machine is maintained, and θ, the risk-averseness factor; note 
that T and θ are inputs for Equation 8. 

The intent here is to compare the performance of the semi-
variance model with the variance models in the literature. When 
cyclical variance in a renewal process is used, one has that 

                       (9)

Then, using Equations 3, 1, and 4, the variance-penalized 
performance metric will be defined as:

g (T, θ) =  E(R)
E(L)

+ θ Var1(R)
E(L)  

                                        (10)
                                                            

The cyclical variance Var1(R) can be replaced by the more 
general asymptotic variance. To use asymptotic variance (Brown 
and Solomon, 1975; Gosavi, 2008), instead of Var1(R) in  
Equation 10, we use Var2(R,L), which is defined as follows:

Var2(R,L) = E(R2) − 2ρ2(E(L))2 + (ρ2E(L2).                (11)

in which ρ is as defined as in Equation 1 and E(L) is defined as in 
Equation 6, 

E(L2) = ∫  (x + tr)
2 f (x)dx + (T + tm)2 (1 − F(T)),

T

0     (12)

and

E(R2) = Cr
2F(T) + Cm

2 (1 − F(T)).                                   (13)

Equation 10 can be used again as the variance-penalized 
objective function after replacing Var1(R) by Var2(R,L).  

The formulas presented above will be used to optimize 
the system with respect to Equation 8 in order to determine the 
budget-sensitive optimal time, T*, for preventative maintenance. 
This time should be compared to that obtained from a risk-neutral 
optimization—again via Equation 8 but with θ = 0. The system 
will also be optimized with respect to Equation (10). The variance-
penalized metric in Equation 10 is already available in the literature 
(Chen and Jin, 2003; Gosavi, 2006) for deriving variability-penalized 
policies demonstrating its usefulness as a budget-sensitive metric.  

SMDP Model
The SMDP model seeks to capture the behavior of a more complex 
system with several components that can fail. A Markov chain is 
constructed to model the system dynamics. A cost structure is 
then added to the Markov chain. Like a discrete-event simulator 
of the system, the Markov chain can be used to predict the 
values of system performance measures. One can easily combine 
the Markov chain to an optimizer to determine the optimal 
values of the decision variable(s). The process of optimization 
can be performed either with linear programming or dynamic 
programming. For additional details on Markov chains and 
MDPs, see Bertsekas (2007). 

In order to define a problem as an MDP or SMDP, one must 
define the system states and determine the optimal action to be 
chosen in each state. For the TPM problem, the states are defined 
by the age of the system. For this model, the age is assumed to 
be a discrete variable rather than a continuous variable as was 
used in the Renewal-Theoretic Model. When the machine is 
maintained or repaired, the age will be automatically set to be 
zero. Further it is assumed that age will increase in discrete steps 
and the unit of days is used. The action in each state will either be 
produce (do no maintenance) for one more cycle or maintain the 
system. The optimal solution for this problem is then defined by 
the optimal action in each state. Thus for instance, if one possible 
solution is to produce until the age is five days, the implication is 
that one must produce at all ages of the system until the system’s 
age becomes five or more at which time the machine should 
be maintained. Performance metrics (in terms of dollars and 
hours) are associated with each possible solution. The goal of this 
approach is to determine the optimal solution with respect to the 
performance metrics.  

Decisions are made at the end of a production cycle, after 
repairs, and after preventative maintenance. When the decision 
to produce is made, the system either completes the production 
successfully and its age is increased by the duration of the 
production cycle, or it may fail during the production. If the 
system fails, it is repaired, which takes a random amount of time, 

Var1(R) = ∫   [Cr− E(R)]  ƒ(x)dx + [Cm− E(R)]  (1 − F(T)).
T

0
2 2
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at the end of which the system is assumed to be as good as new 
and the age is reset to zero. The randomness of the repair time 
stems from the fact that every failure is unique, and significant 
fluctuations in the time required to determine the problem and 
fix it are common. When the decision to perform preventive 
maintenance is made, the maintenance work also takes a random 
amount of time; however, the mean and variability for preventative 
maintenance times tends to be less than that of repair time. At the 
end of the PM, the system’s age returns to zero. Generally, the 
probability of failure starts increasing with the age. This is called 
increasing failure rate in reliability. The notation for this model 
follows: 

S•	 : finite set of states
A•	 (i): set of action allowed in state i
p•	 (i, a, j): transition probability of going from state i to j 
under action a
t•	 (i, a, j): time of transition in going from i to j under action a
c•	 (i, a, j): cost of transition from i to j under action a
                                               : the expected cost of •	
transitioning from i under action a
        : the budget-sensitive semi-•	
variance in cost incurred in transitioning from i to j under 
action a
               : the expected budget-sensitive •	
semi-variance in transitioning from i under action a
d•	 : policy or solution of the decision process, where d(i) will 
denote the action prescribed by d in state i
The purpose of the SMDP model is to•	

Minimize:                        (14)     

                
where πd(i) denotes the steady-state probability of being in 
state i when policy d is used. The term in both denominators 
represents the expected time per transition of the system when 
policy d is pursued. The numerator ∑j∈Sπd(i)c(i, d(i)) in the first 
term denotes the expected cost per transition when policy d is 
pursued while the numerator ∑j∈Sπd(i)v(i, d(i)) in the second term 
denotes the expected semi-variance per transition when policy d 
is pursued. The goal is to determine the policy that minimizes 
the function in Equation 14. In order to use this to solve the 
problem, one would have to exhaustively determine the steady-
state probabilities of each policy. Fortunately, it is not necessary 
to search over all solutions to solve this problem; the optimal 
solution can be obtained by solving a linear program (LP) as 
shown in Tijms (2003) for the SMDP (the original formulation 
for the MDP is from D’Epeneoux [1960] and Manne [1960]). The 
LP is formulated as follows:

Minimize  ∑iS ∑aA (i) c(i, a)x(i, a) + θ ∑iS ∑aA (i) v(i, a)x(i, a)  (15) 

such that     

∑aA (j) x(j, a) − ∑iS ∑aA (i) p(i, a, j)x(i, a) = 0    for all jS  (16)

∑iS ∑aA (i) x(i, a)t(i, a) = 1    and x(i, a) ≥ 0   for all iS and a A(i)    (17)

The optimal policy can be obtained as follows from the 
solution of the above LP as follows:

 d*(i, a) =                              for all iS and aA(i)
∑aA (i) x* (i, a)

x* (i, a)
          

(18)

where x*(i,a) denotes the optimal solution of the LP above. It can 
be shown (Tijms, 2003) that d*(i,a) will return a 0 or a 1, which 
can be interpreted as: if d*(i,a) = 1, action a is optimal for state i, 
and if d*(i,a) =0, it is not optimal for i. 

In order to benchmark the performance of the budget-
sensitive algorithm, two other approaches are used for comparison: 
(i) a risk-neutral approach, which follows the above with θ =0 and 
(ii) the variance-penalized approach. For the variance-penalized 
approach, one needs to solve the following quadratic program 
(Filar et al., 1989). The quadratic program is as follows:

Minimize  ∑iS ∑aA (i) [c(i, a) + θ c2(i, a)]x(i, a) − θ ∑iS ∑aA (i)c(i, a)x(i, a)  (19)

subject to constraints (16) and (17) above.  

Application of the Budget-Sensitive Models
In order to test the renewal theory model, data was gathered from a 
New York manufacturer of alternators and starter motors. The data 
came from an alternator series that had the greatest contribution 
to the company in terms of sales and warranty returns. It was 
determined by the company that a significant reduction in the 
warranty return cost could be realized with PM of the alternator 
production line. The data presented in this article were modified 
to protect the manufacturer’s privacy. The nature of original data 
was retained. The data were collected over five years. The data 
for the second Markov-chain based model are a modification of 
the industrial data used in Gosavi (2006). The original data were 
collected from a different manufacturer in New York and have been 
significantly modified to protect the interests of the firm.

Renewal-Theoretic Model
Exhibit 1 shows that the budget-sensitive objective function 
(see Equation 8) is a convex function with a unique minimum 
for one particular case. This indicates that this problem is well 
posed and that by selecting the optimal time of maintenance, 
the manager can expect to achieve the best behavior in terms 
of the budget-sensitive performance metric. We would also 
like to note that both forms of variance, cyclical (defined in  
Equation 9) and asymptotic (defined in Equation 11), produced 
the same solution numerically in our experiments. Hence, in what 
follows, we present results from only one variance model.

The input parameters for the systems tested are enumerated 
in Exhibit 2, which defines the nine cases that we have studied. 
Cases 1 and 2 are based closely on real-world data obtained from 
a New York manufacturer. In order to generate additional data to 
test our models, seven other cases were developed by modification 
of one or more parameters in Cases 1 and 2. Cr is the cost to 
repair the equipment once it has broken, and it is set to $33 or 
$83 for the various cases. By comparison the cost of preventative 
maintenance, Cm, is significantly less at either $2 or $5. If the costs 
were comparable, then there would be no reason to implement 
TPM. Typically a repair is going to be unscheduled, is more 
difficult, and requires more time than a preventative maintenance 
activity. The time difference is reflected in the differences between 
tr and tm. The budget, τ, was varied over a range of values to test 

∑jSπd(i)c(i, d(i))
∑jSπd(i)t(i, d(i))

∑jSπd(i)v(i, d(i))
∑jSπd(i)t(i, d(i))

+ θ

c(i, a) = ∑js p(i, a, j)c(i, a, j)

v(i, a, j) = c(i, a, j) − τ x t(i, a, j)]2
+

v(i, a) = ∑js p(i, a, j)v(i, a, j)
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the performance of this model. The risk sensitivity factor was 
varied between the values of 0.2 and 0.3.

The time between successive failures is assumed to have a 
gamma distribution, whose parameters are (r,λ). The means the 
random variable is rλ. The gamma distribution ensures that the 
system has an increasing failure rate. Recall that Equations 8 
and 10 are functions of T, the age of the machine since repair 
or maintenance. The goal is to determine the optimal value of 
T, the time when the manager should shut down the machine 
for preventive maintenance. The calculations in Equations 8 
and 10 require only simple integration, which can be done with 
Microsoft Excel or MATLAB. The equations have to be evaluated 
over a range of T values from 0 to a number K, where K is taken to 
be five times the mean length of the machine’s life; the reason for 
choosing K in this style is that for the gamma distribution, at five 
times the mean machine life, failure is almost certain. A finite set 

Exhibit 1. Objective Function vs. Time Since Last Repair or Maintenance 
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Exhibit 2. Input Parameters for the Renewal-Theoretic Model

Case Gamma (r, λ) Cr  ($) Cm ($) τ ($/hrs) tr  (hrs) tm  (hrs) θ
  

1 (6,12.5) 33 2 0.3 25 7.5 0.2

2 (8,12.5) 83 2 0.45 50 15 0.2

3 (4,12.5) 83 5 1.8 25 7.5 0.3

4 (12,8.33) 83 5 0.7 50 15 0.3

5 (6,12.5) 33 2 0.5 25 7.5 0.3

6 (9,10) 33 2 0.16 50 15 0.3

7 (10,11.11) 83 5 0.7 25 7.5 0.2

8 (11,6.67) 83 5 0.65 50 15 0.2

9 (10,10) 33 2 0.3 25 7.5 0.3

of T values is selected in the range from 0 to K; the values being 
(0, 0.1, 0.2, 0.3,…, K). In other words, the function in Equation 
(8) is evaluated over possible values of T. The optimal value of 
T is determined for the variance-penalized case (Equation 10) 
and the risk-neutral case (when θ =0 in Equation 8). The optimal 
times for maintenance obtained from these three models for each 
system are shown in Exhibit 3.  

A pattern emerges from the solutions presented in  
Exhibit 3 and the results provide insights for managers. The 
risk-neutral policy seems to wait too long to perform PM, while 
the variance-penalized policy appears to perform premature 
maintenance. It needs to be kept in mind that the optimal 
value, which is provided by the semi-variance metric, seeks to 
minimize the average costs and at the same time limit the semi-
variance. Hence it is necessary to determine the deviation of the 
risk-neutral and variance-penalized policies from the optimal 
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Case T* with Semi-Variance Model (hrs) T* with Risk Neutral Model (hrs) T* with Variance Model (hrs) 

1 17 24 15

2 21 30 18

3 8 12 4

4 37 43 28

5 20 24 14

6 25 34 23

7 35 46 30

8 24 30 20

9 34 41 28

Exhibit 3. Optimal Time, T*, for PM in the Renewal-Theoretic Model Using the Three Criteria 

objective function (i.e., Equation 8). Exhibit 4 shows the values 
of g(T,θ) where T is obtained from optimizing for either semi-
variance, risk-neutrality, or variance-penalties, along the expected 
costs obtained when θ =0. The values of the objective function of 
the cyclical variance and asymptotic variance are the same. This 
result shows that optimizing with respect to variance or using a 
risk-neutral objective can significantly affect the semi-variance-
penalized score, which should be ideally minimized in order to 
obtain a budget-sensitive policy. The improvement in percent in 
the variance-penalized score over the risk-neutral and variance 
case is defined as follows:

Improvement (Risk − neutral)  = 
g(T*(Risk−neutral),θ) − g(T*(Risk−variance),θ)

x  100;
g(T*(Risk−neutral),θ)

 (20)

Improvement (Variance)  = 
g(T*(Variance),θ) − g(T*(Semi−variance),θ)

x  100.
g(T*(Variance),θ)

 (21)

When θ = 0, the negative of the value of the formula in 
Equation 20 represents the increase (in %) in the expected cost 
due to the use of the semi-variance policy. This value reflects the 
downside of using a risk-penalized policy from the perspective of 
expected costs. When a manager looks at the gains obtained from 
using a risk-penalized policy, he or she may also be interested in 
examining the increase in the expected cost that will result from 
using the risk-averse policy. Exhibit 5 shows the improvements 
and the increases in costs. The improvements in the budget-
sensitive score range from 2.9% (Case 5) to 27.9% (Case 2) over 
the risk-neutral policy. The improvements in the same score 

over the variance-penalized policy range from 1.26% (Case 6) to 
10.13 % (Case 3). The increase in expected cost can range from 
3.38 % (Case 5) to 11.92 % (Case 2). It should be noted that a 
given percent of increase in the expected cost cannot be equated 
or compared to the same increase in percent terms of the semi-
variance score, since the two do not have the same units. In fact, 
the semi-variance score contains two terms with different units 
($/hour and $2/hour). And yet, the improvement in the score and 
increase in the expected cost (both in percent) should for very 
useful metrics for guiding the manager in decision-making. It is 
also important to understand that the actual improvement will 
depend on two other factors: (i) the risk-averseness of the manager 
(i.e., value of θ) and the magnitude of the inherent randomness 
(variability) in the system. The latter is hard to quantify; however, 
clearly a system with very little randomness should perform 
similarly under the risk-neutral and the risk-averse criteria. 
The results in Exhibit 5 show that the improvement in the semi-
variance score of the semi-variance policy over the risk-neutral 
policy can vary significantly: from 2.93% (Case 5) to 27.97% 
(Case 2); thus, a manager in a system such as the one in Case 5 
may be less willing to embrace a risk-averse policy especially if 
the expected cost increase is significant. Overall, the results show 
that managers can expect significant gains from using budget-
sensitive policies, but should also consider the corresponding 
increases in expected costs. The improvements over risk-neutral 
policies, which tend to be the most popular policies in TPM, are 
more significant than those over the variance-penalized policies. 
While this is expected from our explanation of variance and semi-

Case g(T*,θ) (semi-
variance model)

Cost (semi- 
variance model)

g(T*,θ) (risk- 
neural model)

Cost (risk-neutral 
model)

g(T*,θ) (variance 
model)

Cost (variance 
model)

1 0.0953 0.0850 0.1103 0.0767 0.0972 0.0909

2 0.0618 0.0563 0.0858 0.0503 0.0631 0.0609

3 0.4009 0.3423 0.4375 0.3189 0.4461 0.4369

4 0.107 0.0993 0.1116 0.0952 0.1179 0.1166

5 0.0892 0.0793 0.0919 0.0767 0.0977 0.0945

6 0.0548 0.0508 0.0667 0.0458 0.0555 0.0531

7 0.1348 0.1205 0.1616 0.1080 0.1402 0.1344

8 0.1394 0.1306 0.155 0.1221 0.146 0.1435

9 0.0555 0.0502 0.0602 0.0472 0.0587 0.0569

Exhibit 4. The Scores and Expected Costs Associated with the Three Criteria
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variance, the results also show that the manager should be careful 
about how risk is measured for TPM purposes, and whether risk 
should be a consideration in the decision-making. 

SMDP Model
For the SMDP model, some assumptions are made that are 
justifiable for a large transfer line in an automotive plant. 
It is assumed that the state is modeled by the number of days 
since equipment was last repaired or maintained. Under action 
“produce,” the transition probability is defined as follows:

 p(i, produce, i + 1) = 1 – p(i, produce, 0)            (22)

where p(i,produce,0) denotes the probability of failure after the 
decision to produce is made in state i. For a complex system 
with numerous components and random variables, it is easier to 
determine the transition probability of failure from historical data. 
To do this let K(i) denote the number times the system transitions 
from day i to i+1 without failure in the historical data set. Let K'(i) 
denote the number of times the system fails during the day after a 
decision to produce is made on day i. Then for every i,

                       (23)

Clearly, as the denominator starts becoming large, the 
estimates of this probability improve. The mean time taken by 
the production cycle is denoted by tp. It is assumed that when 
a machine fails it is repaired after a time interval whose mean 
duration since the start of the production cycle is M1*tp time 
units. Also when the machine is maintained, the maintenance 
is complete after a time interval whose mean duration since the 
start of the production cycle is approximately M2*tp time units. 
The values of M1 and M2 depend on the system modeled. This 
assumption about the duration of the repair and maintenance 
time is rather general and allows our model to be applicable over 
a large range of systems. 

Typically preventive maintenance is useful only in systems 
with increasing failure rates (Lewis, 1995), i.e., systems in which 
the probability of failure increases as the system ages. The value 
of p(i,produce,0), which is the probability of failure when its age 
is i, depends on the numerous random variables, such as the time 
between failures of all the interacting system components, repair 
times, and maintenance times. In order to capture the general 

behavior of any complex system that has an increasing failure 
rate, a generic model that provides the probability, p(i,produce,0), 
will be used in the numerical experiments. The advantage of the 
generic model is that it can be applied to any complex production 
line regardless of the number of components in it that can fail. 
The generic model is as follows:

 p(i,produce,0) = 1 – ψi                     (24)              

where ψ is a small positive number whose value will depend 
on the system being studied, and the precise value of ψ must 
be estimated from historical data of past failures of the system 
studied. In the generic model above, as i increases, p(i,produce,0)  
increases and tends to 1 as i tends to infinity; this essentially 
captures the phenomenon of the probability of failure increasing 
with an aging system and the fact that ultimately an unattended 
system fails with probability 1.  

It is not hard to see that c(i,produce,0)=Cr and c(i,maintain,0) 
=Cm. The example used to illustrate this model is based on a large 
automobile assembly line in New York. The advantage of the 
generic model in Equation 24 is that it is widely applicable to a 
range of complex production lines and is highly compatible with 
the SMDP solution methodology.  

For the computational study, the LP and the quadratic 
program described above are used. The expression in Equation 
15 or 19, which is the objective function for the SMDP model, can 
also be expressed as S(criterion).  Note that S(.) is a function of the 
criterion used for determining the optimal maintenance policy. 
For the semi-variance criterion, Equation 15 is used with a strictly 
positive value for θ. For the risk-neutral criterion, Equation 15 is 
used with θ = 0. For the variance criterion, Equation 19 is used 
with a strictly positive θ. The expected cost, γ, for risk-neutral 
case equals the value in Equation 15 with θ = 0; for the variance 
criterion, it is the value of the sum of terms without θ in Equation 
19, and for the semi-variance criterion, it is the first term in 
Equation 15. Improvements of the semi-variance criterion over 
the risk-neutral and variance criteria and the increase in expected 
cost over the risk-neutral criterion are defined in a manner 
analogous to that for the renewal theory model. 

Exhibit 6 describes the input parameters for the different 
cases evaluated by the SMDP model. Note that τ = 0.15 in 
dollars per day was used for all the cases. The data here is 
based on data in Gosavi (2006), which in turn was based on 

Case Improvement of score  
over risk-neutral policy

Improvement of score  
over variance policy

Increase of expected cost  
over risk-neutral policy

1 13.59% 1.95% 10.82%

2 27.97% 2.06% 11.92%

3 8.36% 10.13% 7.34%

4 4.12% 9.24% 4.3%

5 2.93% 8.70% 3.38%

6 17.84% 1.26% 10.91%

7 16.58% 3.85% 11.57%

8 10.06% 4.52% 6.96%

9 7.80% 5.45% 9.63%

Exhibit 5. Improvement in the Score of the Semi-Variance Policy over that of the Risk-Neutral and Variance Policies and Increase in Cost of the 
Semi-Variance-Optimal Policy over that of Risk-Neutral Policy

p(i, produce, 0) = K'(i)
K(i) + K'(i)

.
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historical failures in an automotive plant in New York. Exhibit 
7 lists the results of optimizing with respect to the semi-
variance criterion (Svar), the risk-neutral (RN) criterion, and 
the variance (Var) criterion. The exhibit also lists the value of 
i, the age in number of days, at which the system should be 
maintained, depending on the criterion chosen. It can be seen 
that like the renewal-theoretic model, the optimization models 
recommend premature maintenance with the variance criterion 
and late maintenance with the risk-neutral criterion. Again, 
this is due to the fact that the risk-neutral criterion ignores the 
variability and occasional failures that cause the costs to exceed 
the budget. The variance criterion is over-sensitive to variability, 
since it measures variability both above and below the mean. 
This causes it to recommend maintenance early in order to 
minimize the chances of any variation, including perhaps the 
variation of the costs below the targets, which are actually 
welcome. Exhibit 8 shows the resulting semi-variance scores 
and expected costs of the policies that optimize with respect 
to the three criteria. Exhibit 9 contains the improvements in 
the scores range from 1.57% (Case 3) to 50.21% (Case 5) over 
the risk-neutral criterion and from 0.08% (Case 3) to 4.27%  
(Case 5) over the variance criterion, and the increases in the 
expected costs that range from 0.22% (Case 3) to 12.00%  

(Case 4).   As stated in the context of the previous model, the 
manager must carefully weigh the downside of increased cost 
against the reduced variability before implementing a policy.  

Both models, the renewal reward model and the SMDP 
model, can be solved using either a spreadsheet package (such 
as Microsoft Excel) or a computational software package (such as 
MATLAB). Models were also coded in MATLAB and are available 
upon request from the first author. 

Conclusions and Managerial Insights
This article presented improvements in planning maintenance 
scheduling for Total Productive Maintenance (TPM). It has been 
recognized over the last five decades that TPM saves thousands 
of dollars in lost production, reduces production lead time, 
makes systems less variable, and can extend equipment lifespan. 
Much of the existing maintenance scheduling literature seeks to 
minimize the long-run average costs with no regard to ongoing 
maintenance budgets. These risk-neutral policies are based on 
variance. This article presented two models that exploit a less-
known measure of risk, called semi-variance. This combined with 
long-run cost criterion results in preventive maintenance policies 
that minimize long-run average costs and at the same time reduce 
the frequency of costs exceeding the budget. The performance of 

Case ψ Cr ($) Cm ($) θ

1 0.94 5 2 0.2

2 0.92 6 4 0.2

3 0.91 7 5 0.1

4 0.88 8 5 0.3

5 0.93 6 2 0.2

6 0.92 7 5 0.2

7 0.89 6 4 0.3

8 0.96 6 2 0.2

9 0.90 5 2 0.2

10 0.95 10 7 0.1

Exhibit 6. Input Parameters for the SMDP Model 

(Note: Number of States is 100 and M1=2, M2=1.25, and tp=15 hours. A day is 
assumed to be composed of 16 hours.)

Case S(Semi-variance) γ(Semi-variance) S(Variance) γ(Variance) S(Risk-neutral) γ(Risk-neutral)

1 0.0559 0.0495 0.0775 0.0531 0.0568 0.0491

2 0.0970 0.0752 0.1077 0.0775 0.0976 0.0741

3 0.1123 0.0911 0.1141 0.0915 0.1124 0.0909

4 0.2109 0.1302 0.7472 0.2667 0.2199 0.1161

5 0.0694 0.0592 0.1394 0.0681 0.0725 0.0584

6 0.1277 0.0875 0.1363 0.0891 0.1280 0.0866

7 0.1211 0.0860 0.1410 0.0897 0.1221 0.0845

8 0.0564 0.0473 0.1030 0.0516 0.0579 0.0465

9 0.0676 0.0608 0.1018 0.0689 0.0691 0.0604

10 0.1529 0.1021 0.1613 0.1031 0.1538 0.1014

Exhibit 8. The SMDP Model Performance with Varying Policies after Optimizing 

Exhibit 7. Optimal Time for Maintenance under Various Policies

Case Policy (Variance) Policy  
(semi-variance)

Policy  
(Risk-neutral)

1 3 days 4 days 5 days

2 5 days 6 days 9 days

3 7 days 8 days 10 days

4 1 day 3 days 6 days

5 2 days 3 days 4 days

6 6 days 7 days 10 days

7 4 days 5 days 7 days

8 3 days 4 days 5 days

9 2 days 3 days 4 days

10 8 days 9 days 12 days
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the semi-variance-penalized criterion, also called the budget-
sensitive criterion, was compared to that of the risk-neutral 
criterion and to the variance-penalized criterion. Numerical 
results indicate that the budget-sensitive criterion outperforms 
the risk-neutral and the variance-penalized criterion.   

TPM is an important tool in the engineering manager’s arsenal. 
It is useful in reducing lead time and keeping system variability in 
check. Our results show that the commonly used policies based 
on the industry standard, which happens to be risk-neutral, has 
the potential to exceed budgets. Although variance is a popular 
measure of risk and variability, using variance-penalized policies 
may actually turn out to be worse than the risk-neutral standard 
from the perspective of meeting budgets, as was shown in some 
of the cases presented in this article.

Many production operations collect a wealth of historical 
data. The models presented can be easily implemented with data 
related to equipment failures, repairs, and maintenance activities. 
For simpler systems composed of one or two pieces of equipment, 
the Markov chain model with its transition probabilities may be 
deemed too time consuming. The simpler renewal reward model 
will provide improved scheduling with a manageable amount 
of effort. The Markov chain model is best suited for a complex 
system composed of numerous pieces of equipment. An interim 
approach could be to model a key piece of equipment (the process 
bottleneck) using the renewal reward model and verify the 
resulting improvements before modeling the entire process using 
the semi-Markov decision process model.   

The budget-sensitive aspect of the semi-variance metric 
lends itself more naturally to a finite horizon analysis of the 
problem. Hence, although PM problems for production machines 
are typically studied over the infinite horizon when modeled as 
MDPs, one potential direction for future research could be the 
development of a finite horizon model for the problem studied 
here. The target in this model could be defined as the total 
maintenance budget for the time horizon, which could have the 
duration of a few months, as is typically the case with budgets set 
by production firms.  

Acknowledgements 
The authors would like to thank the three anonymous reviewers 
whose comments significantly improved the quality of this 

work and its presentation. The first author would also like to 
acknowledge support from the NSF via grant ECS: 0841055. 

References
Ahuja, Inder, and Jana. S. Khamba, “Total Productive Maintenance: 

Literature Review and Directions,” The International 
Journal of Quality & Reliability Management, 25:7 (2008),  
pp. 709-756. 

Anderson, Michael Q., “Monotone Optimal Preventive 
Maintenance Policies for Stochastically Failing Equipment,” 
Naval Research Logistics Quarterly, 28 (1981), pp. 347-358.

Askin, Ronald G., and Jeffrey B. Goldberg, Design and Analysis of 
Lean Manufacturing Systems, John Wiley  (2002). 

Gosavi, Abhijit, “A Risk-Sensitive Approach to Total Productive 
Maintenance,” Automatica, 42 (2006), pp. 1321-1330.

Gosavi, Abhijit, “On Step Sizes, Stochastic Shortest  
Paths, and Survival Probabilities in Reinforcement 
Learning,” Proceedings of the Winter Simulation Conference, 
(2008).

Gosavi, Abhijit, “Semi-Variance Sensitive Control of Markov and 
Semi-Markov Processes,” Working Paper at the Missouri 
University of Science and Technology (2010).

Barlow, Richard E., and Frank Proschan, Mathematical Theory of 
Reliability, John Wiley (1965).

Bertsekas, Dimitri, Dynamic Programming and Optimal Control, 
Volume II, 3rd Ed., Athena Scientific (2007). 

Brown, Mark, and Herbert Solomon, “A Second-Order 
Approximation for the Variance of a Renewal Reward 
Process,” Stochastic Processes and their Applications, 3 (1975), 
pp. 301-314.

Cassady, Richard, and Erhan Kutanoglu, “Integrating Preventive 
Maintenance and Production Scheduling for a Single 
Machine,” IEEE Transactions on Reliability, 54:2 (2005).

Chen, Yong, and Jonghua Jin, “Cost-Variability-Sensitive 
Preventive Maintenance Considering Management Risk,” IIE 
Transactions, 35:12 (2003), pp. 1091-1102.

Chitke, Satya, and Satish Deshmukh, “Preventive Maintenance 
and Replacement under Additive Damage,” Naval Research 
Logistics Quarterly, 28 (1981), pp. 33-46.

Dada, Maqbool, and Richard Marcellus, “Process Control with 
Learning,” Operations Research, 42:2 (1994), pp. 323-336.

Exhibit 9. Improvement in the Score of the Semi-Variance Policy over that of the Risk-Neutral and Variance Policies and increase in Cost of the 
Semi-Variance-Optimal Policy over that of Risk-Neutral policy

Case Improvement of score over  
risk-neutral policy

Improvement of score over  
variance policy

Increase of expected cost over  
risk-neutral policy

1 1.58% 27.87% 0.81%

2 0.61% 9.93% 1.48%

3 0.09% 1.57% 0.22%

4 4.09% 71.77% 12.00%

5 4.28% 50.21% 1.36%

6 0.23% 6.31% 1.04%

7 0.82% 14.11% 1.77%

8 2.59% 45.24% 1.72%

9 2.17% 33.60% 0.66%

10 0.59% 5.21% 0.69%



56 September  2011Vol. 23 No. 3Engineering Management Journal

Das, Tapas K., and Sudeep Sarkar, “Optimal Preventive 
Maintenance in a Production Inventory System,” IIE 
Transactions, 31 (1999), pp. 537–551.

Dellagi, Sofiane, Nidhal Rezg, and Xiao-Lan Xie, “Preventive 
Maintenance of Manufacturing Systems under Environmental 
Constraints,” International Journal of Production Research, 
45:5 (2007), pp. 1233-1254.

D’epenoux, F., “Sur un Probleme de Production et de Stockage dans 
l’Aleatoire,” Revue Francaise de Recherche Operationnelle, 
14 (1960).

El-Ferik, Sami, and Mohamed Ben-Daya, “Age-Based Hybrid 
Model for Imperfect Preventive Maintenance,” IIE 
Transactions, 38 (2006), pp. 365-375.

Filar, Jerzy, Lodewijk Kallenberg, and H. Lee. “Variance-Penalized 
Markov Decision Processes,” Mathematics of Operations 
Research, 14:1 (1989), pp. 147-161.

Gertsbakh Ilya, Reliability Theory with Applications to Preventive 
Maintenance, Springer (2000).

Howard, Ronald A., Dynamic Probabilistic Systems, Vol. II: Semi-
Markov and Decision Processes, John Wiley & Sons (1971).

Lewis, Elmer, Introduction to Reliability Engineering 2nd Ed., John 
Wiley and Sons (1995).

Manne, A., “Linear Programming and Sequential Decisions,” 
Management Science, 6 (1960), pp. 259-267.

Markowitz, Harry, “Portfolio Selection,” Journal of Finance, 7:1 
(1952), pp. 77-91.

McCall, John J., “Maintenance Policies for Stochastically Failing 
Equipment: A Survey,” Management Science, 11:5 (1965),  
pp. 493-524. 

McKone, Kathleen E., Roger G. Schroeder, and Kristy O. Cua, 
“Total Productive Maintenance: A Contextual View,” Journal 
of Operations Management, 17 (1999), pp. 123-144. 

McKone, Kathleen E., and Eliott N. Weiss, “TPM: Planned and 
Autonomous Maintenance: Bridging the Gap Between 
Practice and Research,” Production and Operations 
Management, 7:4 (1998), pp. 335-351. 

Nayak, Bijay, and Ebrahim Shayan, “Maintenance Improvement 
Opportunities and Benchmarketing Practices in Australian 
Manufacturing Industry,” Engineering Management Journal, 
10:2 (1998), pp. 33-37.

Panagiotidou, Sofia, and George Tagaras, “Optimal Preventive 
Maintenance for Equipment with Two Quality States and 
General Failure Time Distributions,” European Journal of 
Operational Research, 180 (2007), pp. 329-353.

Porter, Burr, “Semi-Variance and Stochastic Dominance,” 
American Economic Review, 64 (1974), pp. 200-204.

Quan, Gang, Garrison W. Greenwood, Donglin Liu, and Sharon 
Hu, “Searching for Multi-Objective Preventive Maintenance 
Schedules: Combining Preferences with Evolutionary 
Algorithms,” European Journal of Operational Research, 177 
(2007), pp. 1969-1984.

Ross, Sheldon, Introduction to Probability Models 6th Ed., Academic 
Press (1997). 

Sheu, S.H., and Y.H. Chien, “Optimal Age-Replacement Policy 
of a System Subject to Shocks with Random Lead-Time,” 

European Journal of Operational Research, 159:1 (2004),  
pp. 132-144.

Shimbun, Nikkan (Ed.), TPM Case Studies, Productivity Press 
(1995).

Tijms, Henk, A First Course in Stochastic Models, Wiley (2003). 
Valdez-Flores, Ciriaco, and Richard M. Feldman, “A Survey 

of Preventive Maintenance Models for Stochastically 
Deteriorating Single-Unit Systems,” Naval Research Logistics 
Quarterly, 36 (1989), pp. 419-446.

Wang, Hengzhou, “A Survey of Maintenance Policies of 
Deteriorating Systems,” European Journal of Operational 
Research, 139 (2002), pp. 469-489.

Westerkamp, Thomas, “Maintaining Maintenance,” IIE Solutions, 
38:7 (July 2006), pp. 37-42.

Wilmeth, Randall G., and Michael W. Usrey, “Reliability-Centered 
Maintenance: A Case Study,” Engineering Management 
Journal, 12:4 (2000), pp. 25-31.

About the Authors
Abhijit Gosavi has a BE and an MTech in mechanical 
engineering and a PhD in industrial engineering from the 
University of South Florida. He joined the Department of 
Engineering Management and Systems Engineering at the 
Missouri University of Science and Technology (Missouri 
S&T) in 2008 as an assistant professor. His research 
interests are in simulation, reinforcement learning, and 
manufacturing.

Susan L. Murray, PhD, PE is a professor of Engineering 
Management and Systems Engineering at Missouri University 
of Science and Technology. She received her PhD (1994) and 
BS in industrial engineering from Texas A&M University 
and an MS degree in IE from the University of Texas-
Arlington. Her research interests include safety engineering, 
human systems integration, industrial engineering, and  
human factors.  

V. Manojramam Tirumalasetty has a BE in electrical 
and electronics from Anna University, Chennai, India.  
He obtained an M.S. in engineering management from 
Missouri S&T in 2010. He was the recipient of the best 
graduate research assistant award from the Department 
of Engineering Management and Systems Engineering 
at Missouri S&T in 2009. He is currently employed as a 
systems analyst in Ungerboeck Systems International in St. 
Louis, MO.

Shreerang Shewade has a BE in mechanical engineering 
from the University of Pune, India. He obtained an MS in 
operations research from the University at Buffalo (SUNY) 
in 2006, where his research was focused on semi-variance 
modeling and data collection for machine failures. He is 
currently employed as an engineering associate in Analytical 
Mechanics Associates in Plano, TX. 

Contact:  Dr. Susan Murray, Missouri S&T, EMSE, 600 
West 14th Street, Engineering Management Bldg., Rolla, MO 
65409; phone: 573-341-4038; murray@mst.edu


