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Section 1.1 - Systems of Linear Equations

A system of linear equations is a collection of one more linear
equations in the same variables. For example,

2x1 − x2 + 3
2x3 = 8

x1 − 4x3 = −7.

is a system of two equations in the three unknowns x1, x2, x3.

A solution to this system is given by (5, 13
2 , 3).

The set of all possible solutions is the solution set. Two systems are
equivalent if they have the same solution set.
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Consistency

The special case of 2× 2 systems corresponds to finding the points of
intersection of two lines. In this case we find that linear system has

no solution,

exactly one solution, or

infinitely many solutions.

In fact, this is true of all linear systems.

Definition

A linear system is consistent if it has a solution; it is inconsistent if it
has no solutions.
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Matrix Notation

We may rewrite linear systems in matrix form:

Example

The system

x1 − 2x2 + x3 = 0,

2x2 − 8x3 = 8,

5x1 − 5x3 = 10

corresponds to the 3× 4 augmented matrix 1 −2 1 0
0 2 −8 8
5 0 −5 10

 .
Removing the final column gives the 3× 3 coefficient matrix.
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Row Operations

We solve a linear system by performing row operations to replace it
with equivalent systems that are progressively easier to solve. The three
types of row operations are the following:

Definition (Elementary row operations)

1. (Replacement) Replace one row by the sum of itself and a multiple
of another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply the entries of a row by a nonzero constant.

If we can obtain a matrix B from a matrix A by a sequence of row
operations, we say that A and B are row equivalent.

Row equivalent matrices have the same solution set.
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Section 1.2 - Row Reduction and Echelon Forms

In this section we discuss the row reduction algorithm for solving linear
systems.

The key observation is that triangular linear systems are straightforward
to solve. So, given a linear system, we should perform row operations to
obtain a triangular matrix. This will be called echelon form.

In fact, once you have a matrix in echelon form, you can perform further
operations to make the system even simpler to solve. This will be called
reduced echelon form.
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Echelon and Reduced Echelon Forms

Definition (Echelon and Reduced Echelon Form)

A matrix is in echelon form if:

1. Nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading
entry of the row above it.

3. All entries in a column below a leading entry are zeros.

A matrix in echelon form is in reduced echelon form if additionally

4. The leading entry in each nonzero row is 1.

5. Each leading entry is the only nonzero entry in its column.

The Matlab command to compute the reduced echelon form of a matrix
A is rref(A).
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Examples: Echelon Form

Not in echelon form:  1 −2 1 0
0 2 −8 8
5 0 −5 10

 .
Echelon form, but not reduced echelon form: 2 −3 2 1

0 1 −4 8
0 0 0 5

2

 .
Reduced echelon form:  1 0 0 29

0 1 0 16
0 0 1 3

 .
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Existence and Uniqueness

Theorem (Theorem 1)

Any nonzero matrix is row equivalent to a unique reduced echeleon form
matrix.

On the other hand, matrices can be reduced to many different matrices
in echelon form.
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Pivots

Definition

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced echelon form of A. A pivot column is a column
of A that contains a pivot position.

Roughly speaking, the first several weeks of this class could be described
as ‘pivot counting’.
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Row Reduction Algorithm

The following algorithm describes how to put a matrix in reduced echelon
form:

1. Start with the leftmost nonzero column. The pivot position is at the
top.

2. Choose a nonzero entry in the pivot column to be the pivot (using
interchange to move this entry into the pivot position).

3. Use row replacement to create zeros in all positions below the pivot.

4. Repeat steps 1–3 on the sub-matrix that remains when you ignore
the row containing the pivot position (and any rows above it).
Repeat this until there are no more nonzero rows to modify.

5. Start with the rightmost pivot and work upward and to the left,
making zeros above each pivot. Make each pivot have the value 1.
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Example

Example

Reduce the matrix  0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15


to echelon form  3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1 4


and then to reduced echelon form 1 0 −2 3 0 −24

0 1 −2 2 0 −7
0 0 0 0 1 4

 .
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Solutions of Linear Systems

Variables corresponding to pivot columns are called basic variables,
while the remaining variables are called free variables.

Example

Suppose the matrix of a linear system has reduced echelon form 1 0 −5 1
0 1 1 4
0 0 0 0

 .
The associated system equations is

x1 − 5x3 = 1, x2 + x3 = 4.

Then x1, x2 are basic and x3 is free. The solution set can be written

x1 = 1 + 5x3, x2 = 4− x3, x3 is free.
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Another Example

Example

Find the solution set for a linear system whose augmented matrix has
been reduced to  1 6 2 −5 −2 −4

0 0 2 −8 −1 3
0 0 0 0 1 7

 .
This is in echelon form. Let’s put it in reduced echelon form: 1 6 0 3 0 0

0 0 1 −4 0 5
0 0 0 0 1 7


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Another Example (continued)

Example

The associated system is

x1 + 6x2 + 3x4 = 0, x3 − 4x4 = 5, x5 = 7.

The free variables are x2 and x4. The solution set is:

x1 = −6x2 − 3x4, x3 = 5 + 4x4, x5 = 7,

with x2 and x4 free variables.
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Existence and uniqueness

Theorem (Theorem 2)

(i) A linear system is consistent if and only if the rightmost column of
the augmented matrix is not a pivot column.

(ii) If a linear system is consistent and has no free variables, then it has
a unique solution.

(iii) If a linear system is consistent and has at least one free variable,
then it has infinitely many slutions.
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Row Reduction Method

To summarize, here is how to use row reduction to solve a linear system:

1. Write down the augmented matrix A for the system.

2. Use row reduction to reduce the matrix to echelon form. If the
system is inconsistent, stop.

3. If the system is consistent, put the matrix in reduced echelon form
U.

4. Write down the linear system corresponding to the reduced matrix U.

5. Express each basic variable in terms of free variables to describe the
solution set.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



A final example

Example

Find the general solution of the linear system whose augmented matrix is[
1 −3 −5 0
0 1 −1 −1

]
.
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Section 1.3 - Vector Equations

A vector in Rn is an ordered list of n real numbers, usually written as an
n × 1 column matrix. For example,

3
5
−2

1


is a vector in R4. A general vector in Rn will be written

u =


u1

u2

...
un

 ,
where u1, u2, · · · , un are the entries or components of the vector u.
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Algebraic Properties of Vectors

Addition/scalar multiplication are performed component-wise.

0 denotes the zero vector (all entries equal to zero), while a scalar
refers to a real number.
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Points in the plane

We identify a point (a, b) in the plane with the vector[
a
b

]
in R2. We can then add vectors according to the ‘parallelogram rule’:
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Linear Combinations

Definition

The linear combination of vectors v 1, . . . , vp in Rn with weights
c1, . . . , cp is the vector

y = c1v 1 + · · ·+ cpvp.

Example

The linear combination of

v 1 =

[
2
3

]
and v 2 =

[
1
−1

]
with weights c1 = 4 and c2 = 2 is[

10
10

]
.
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Example

Example

Determine whether b can be written as a linear combination of a1 and
a2, where

a1 =

 1
−2
−5

 , a2 =

 2
5
6

 , b =

 7
4
−3

 .
To solve this, we try to solve the system x1a1 + x2a2 = b. This leads to
the augmented matrix 1 2 7

−2 −5 4
−5 6 −3

 ∼
 1 0 3

0 1 2
0 0 0

 .
Solution: Use weights x1 = 3 and x2 = 2.
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Fundamental fact

A vector equation
x1a1 + · · ·+ xnan = b

has the same solution set as the linear system with augmented matrix

[a1 · · · an b] .

In particular: b can be written as a linear combination of a1, · · · , an if
and only if the linear system above is consistent.
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Span

Definition

The span of vectors v 1, . . . , vp is the set of all linear combinations of
v 1, . . . , vp. This set (which is a subset of Rn) is denoted

Span{v 1, . . . , vp}.

The following statements are equivalent:

The vector b belongs to Span{v 1, . . . , vp}.
The vector equation x1v 1 + · · ·+ xpvp = b has a solution.

The vector b can be written as a linear combination of v 1, . . . , vp.

The linear system with augmented matrix [v 1 · · · vp b] has a
solution.
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Span (Geometric Description)

If v is a nonzero vector in R3, then Span{v} is the set of points on the
line in R3 passing through v and 0.

If {v ,u} are nonzero vectors in R3, then Span{v ,u} is the plane in R3

contaning 0, v , and u.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Section 1.4 - The Matrix Equation Ax = b

Definition

Let A be an m × n matrix with columns a1, . . . , an. Let x ∈ Rn.
The product of A and x , denoted Ax , is the linear combination of the
columns of A using the entries of x as the weights:

Ax = [a1 a2 · · · an]

 x1

...
xn

 = x1a1 + · · ·+ xnan.

Example [
1 2 −1
0 −5 3

] 4
3
7

 =

[
3
6

]
.
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Linear Systems as Matrix Equations

Linear systems can be rewritten in the form Ax = b.

Example

The system

x1 + 2x2 − 3x3 = 4,

−5x2 + 3x3 = 1

can be written Ax = b, where

A =

[
1 2 −3
0 −5 3

]
, b =

[
4
1

]
,

and x ∈ R3.
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Theorem 3

Theorem (Theorem 3)

Let A be an m × n matrix with columns a1, . . . , an. Let b ∈ Rm.
The matrix equation Ax = b has the same solution set as the vector
equation

x1a1 + · · ·+ xnan = b,

which has the same solution set as the system of linear equations with
augmented matrix

[a1 · · · an b] .

In particular, we see that Ax = b has a solution if and only if b is a linear
combination of the columns of A.
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Existence of Solutions

Example

Let

A =

 1 3 4
−4 2 −6
−3 −2 −7

 .
Determine whether Ax = b is consistent for every choice of b.
Solution: 1 3 4 b1

−4 2 −6 b2

−3 −2 −7 b3

 ∼
 1 3 4 b1

0 14 10 b2 + 4b1

0 0 0 b1 − 1
2b2 + b3

 .
The answer is no. The system is consistent if and only if
b1 − 1

2b2 + b3 = 0.
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Theorem 4

Theorem (Theorem 4)

Let A be an m × n matrix. The following are equivalent:

a. For every b ∈ Rm, the equation Ax = b has a solution.

b. Every b ∈ Rm is a linear combination of the columns of A.

c. The columns of A span Rm.

d. A has a pivot position in every row.
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Alternate view of the product Ax

We can view the j th entry of Ax as the dot product between the j th row
of A and the vector x .

Example  2 3 4
−1 5 −3

6 −2 8

 x1

x2

x3

 =

 2x1 + 3x2 + 4x3

−x1 + 5x2 − 3x3

6x1 − 2x2 + 8x3

 .
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Algebraic Properties

Theorem (Theorem 5)

Let A be an m × n matrix, u and v vectors in Rn, and c a scalar. Then

A(u + v) = Au + Av , A(cu) = c(Au).
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Section 1.5 - Solution Sets of Linear Systems

A linear system is homogeneous if it is of the form Ax = 0, where A is
m × n, x ∈ Rn, and 0 is the zero vector in Rm.

Homogeneous systems always the solution x = 0 (the zero vector in Rm).
This is called the trivial solution, whereas a nonzero solution would be
called a nontrivial solution.

The homogeneous equation Ax = 0 has a nontrivial solution if and only
if the equation has at least one free variable.
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An example

Example

Describe the solution set for the following homogeneous system:

3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0.

Does the system have a nontrivial solution?

Solution: We form the augmented matrix. We can omit the final column. 3 5 −4
−3 −2 4

6 1 −8

 ∼
 3 5 −4

0 3 0
0 0 0

 .
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Example (Example, continued)

3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0.

→

 3 5 −4
0 3 0
0 0 0


The solution set is

x2 = 0, x3 free, x1 = 4
3
x3, i.e. x = x3

 4
3

0
1

 .
It has a non-trivial solution, e.g. (4, 0, 3).
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Parametric Vector Form

The solution set of a homogeneous equation Ax = 0 can always be
expressed in the form

Span{v 1, . . . , vp}
for some collection of vectors. Equivalently, we may write the general
solution as

x = c1v 1 + · · ·+ cpvp (1)

for arbitrary c1, . . . , cp ∈ R.

We call (1) the parametric vector form of the solution.
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Solutions of Nonhomogeneous Systems

Theorem (Theorem 6)

The general solution to Ax = b is of the form

x = xh + xp,

where xh is the general solution to the homogeneous equation Ax = 0
and xp is any particular solution to Ax = b.

Example

Describe all solutions to Ax = b, where

A =

 3 5 −4
−3 −2 4

6 1 8

 , b =

 7
−1
−4


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Example (continued)

Example

 3 5 −4 7
−3 −2 4 −1

6 1 8 −4

 ∼
 1 0 − 4

3 −1
0 1 0 2
0 0 0 0

→ x1 − 4
3x3 = −1

x2 = 2.
.

So the general solution is

x =

 −1
2
0

+ x3

 4
3
0
1

 , x3 ∈ R.

Remark. The solution set is a line through the origin in R3 translated by
a fixed vector.
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Practice Problem

Example

Write the general solution of

10x1 − 3x2 − 2x3 = 7

in parametric vector form.
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Section 1.6 - Applications of Linear Systems

Linear systems have many applications. For example, the book discusses
examples related to:

A homogeneous system in economics.

Balancing chemical equations.

Network flow.
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Chemical equation example

Example

Propane (C3H8) combines with oxygen (O2) to form carbon dioxide
(CO2) and water (H2O). We want to balance the equation

x1 · C3H8 + x2 · O2 → x3 · CO2 + x4 · H2O.

We write three equations, one for C , H, and O respectively:

x1

 3
8
0

+ x2

 0
0
2

 = x3

 1
0
2

+ x4

 0
2
1

 .
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Example (continued)

Example (Continued)

Equivalently, we need to solve the homogeneous system with matrix 3 0 −1 0
8 0 0 −2
0 2 −2 −1

 .
The general solution is

x1 = 1
4x1, x2 = 5

4x4, x3 = 3
4x4, x4 free.

The balanced equation is

C3H8 + 5O2 → 3CO2 + 4H2O.
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Section 1.7 - Linear Independence

Definition

A set of vectors {v 1, . . . , vp} is (linearly) independent if the vector
equation

x1v 1 + · · ·+ xpvp = 0

has only the trivial solution x = 0.

The set is (linearly) dependent if there exist weights c1, . . . , cp not all
zero such that

c1v 1 + · · ·+ cpvp = 0.
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Example

Example

Determine whether {v 1, v 2, v 3} is independent, where

v 1 =

 1
2
3

 , v 2 =

 4
5
6

 , v 3 =

 2
1
0

 .
If not, find a dependence relation between v 1, v 2, v 3.

Solution: We write 1 4 2
2 5 1
3 6 0

 ∼
 1 4 2

0 −3 −3
0 0 0

 .
This shows that the set is dependent.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Example (continued)

Example (continued)

To find a dependence relation, continue reducing: 1 4 2
2 5 1
3 6 0

 ∼
 1 4 2

0 −3 −3
0 0 0

 ∼
 1 0 −2

0 1 1
0 0 0

 .
This has the solution set

x1 = 2x3, x2 = −x3, x3 free.

So we can write (choosing x3 = 1, say) the dependence relation

2v 1 − v 2 + v 3 = 0.
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Matrix Columns

Applying the above definition to the columns of a matrix A, we find:

The columns of a matrix A are linearly independent if and only if the
equation Ax = 0 has only the trivial solution.
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Example

Example

Are the columns of the matrix

A =

 0 1 4
1 2 −1
5 8 0


independent?

Solution: Yes:

A ∼

 1 2 −1
0 1 4
0 0 13

 .
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Some simple cases.

A set {v} is independent if and only if v is not the zero vector.

A set {v 1, v 2} is independent if and only if neither vector is a
multiple of the other.

This generalizes to:

Theorem (Theorem 9)

If a set contains the zero vector, then it is linearly dependent.

Theorem (Theorem 7)

A set S is linearly dependent if and only if at least one of the vectors in S
is a linear combination of the others.
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A final theorem

Theorem (Theorem 8)

Any set {v 1, . . . , vp} in Rn is linearly dependent if p > n.

Proof.

Let A be the matrix with v 1, . . . , vp as its columns. Then the system
Ax = 0 has more variables than equations, and hence has a nontrivial
solution.
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Section 1.8 - Introduction to Linear Transformations

Definition (Transformation)

A transformation T from Rn to Rm is a rule that assigns to each vector
x ∈ Rn a vector T (x) ∈ Rm. We write

T : Rn → Rm.

We call Rn the domain of T and Rm the codomain.

We call T (x) the image of x . The set of all images is the range of T .
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Matrix Transformations

Given an m × n matrix A, we may define the transformation

T : Rn → Rm, T (x) = Ax .

The range of T is the span of the columns of A, i.e. the set of all linear
combinations of the columns of A.

Example

Consider the matrix transformation given by

A =

[
1 −3
3 5
−1 7

]
.

Set

u =

[
2
−1

]
, b =

 3
2
−5

 , c =

 3
2
5

 .
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Example (continued)

Example (Continued)

a. Find T (u). Answer:

 5
1
−9

 .
b. Find x ∈ R2 such that T (x) = b. Answer:

[
3/2
−1/2

]
.

c. Is c in the range of T? Answer: No.
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More examples

Example

The matrix transformation with

A =

 1 0 0
0 1 0
0 0 0


is a projection of R3 onto the xy plane.

Example

A matrix of the form

A =

[
1 λ
0 1

]
or A =

[
1 0
λ 1

]
gives rise to a shear transformation of the plane R2.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Linear Transformations

Definition

A transformation T is linear if

(i) T (u + v) = T (u) + T (v) for all u, v in the domain of T , and

(ii) T (cu) = cT (u) for all scalars c and all u in the domain of T .

Every matrix transformation is linear.

Linear transformations satisfy T (0) = 0.

(i) and (ii) can be combined to T (cu + dv) = cT (u) + dT (v).

More generally,

T (c1v 1 + · · ·+ cpvp) = c1T (v 1) + · · ·+ cpT (vp).
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Example

Example

Describe the geometric effect of the linear transformation corresponding
to the matrix [

0 −1
1 0

]
.

Solution. The transformation is a counterclockwise rotation by 90
degrees.
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Section 1.9 - The Matrix of a Linear Transformation

In the case that a linear transformation T : Rn → Rm arises
geometrically, we would like to write down an explicit formula for the
matrix giving rise to T . Here’s how to do it:

Theorem (Theorem 10)

Let T : Rn → Rm be a linear transformation. Then

T (x) = Ax ,

where A is the m × n matrix whose j th column is the vector T (e j):

A = [T (e1) · · · T (en) ].

Here e j is the j th column of the identity matrix in Rn.
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Example

Example

Suppose that T is a linear transformation from R2 to R3 such that

T

([
1
0

])
=

 5
−7

2

 , T

([
0
1

])
=

 −3
−8

0

 .
Then T (x) = Ax , where

A =

 5 −3
−7 −8

2 0

 .
We call A the standard matrix of T .
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Rotations of the Plane

Example

Let T : R2 → R2 be a counterclockwise rotation of the plane through the
origin by angle φ. Since[

1
0

]
7→
[

cosφ
sinφ

]
and

[
0
1

]
7→
[
− sinφ

cosφ

]
,

the standard matrix of T is[
cosφ − sinφ
sinφ cosφ

]
.
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Transformations of the Plane
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Transformations of the Plane
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Transformations of the Plane
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Transformations of the Plane
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Transformations of the Plane
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More Definitions

Definition (Onto and one-to-one)

A mapping T : Rn → Rm is onto if each b ∈ Rm is the image of at least
one x ∈ Rn.

A mapping T : Rn → Rm is one-to-one if each b ∈ Rm is the image of
at most one x ∈ Rn.
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Example

Example

Let T : R4 → R3 be given by T (x) = Ax , where

A =

 1 −4 8 1
0 2 −1 3
0 0 0 5

 .
Then (by considering the equation Ax = b):

T is onto.

T is not one-to-one.
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Theorems

Theorem (Theorem 11)

Let T : Rn → Rm be a linear transformation. Then T is one-to-one if
and only if the equation T (x) = 0 has only the trivial solution x = 0.

Theorem (Theorem 12)

Let T : Rn → Rm be a linear transformation with standard matrix A.
Then

a. T is onto if and only if the columns of A span Rm.

b. T is one-to-one if the columns of A are linearly independent.
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Example

Example

Let
T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2).

Show that T is a one-to-one linear transformation that is not onto.

Solution. We write T : R2 → R3 as T (x) = Ax , with

A =

 3 1
5 7
1 3

 .
The columns are independent, but cannot span R3.
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Section 1.10 - Linear Models in Business, Science, and
Engineering

We focus on one example, namely, linear equations and electrical
networks.

Ohm’s law models the passage of current through a resistor by

V = RI ,

where

V (voltage) is measured in volts,

R (resistance) is measured in ohms,

I (current flow) is measured in amps.
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Example

Example

Determine the loop currents in the following circuit.
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Example (continued)

Example (continued)

We need to use Kirchhoff’s voltage law: the sum of the RI voltage
drops in one direction around a loop equals the sum of the voltage
sources in the same direction around the loop.

For loop 1, we get
11I1 − 3I2 = 30.

For loop 2, we get
−3I1 + 6I2 − I3 = 5.

For loop 3, we get
−I2 + 3I3 = −25.
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Example (continued)

Example (continued)

We get a linear system for I1, I2, I3, which we can solve for

I1 = 3, I2 = 1, I3 = −8.

We can use this to determine the current in each branch.
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Section 2.1 - Matrix Operations

The entries of an m × n matrix A are denoted aij .

The diagonal entries are a11, a22, . . . .

The n × n identity matrix (denoted In or just I ) is the diagonal
matrix with 1s along the diagonals.

The zero matrix (denoted by 0) has all aij = 0.
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Sums and Scalar Multiples

Sums and scalar multiples of matrices are defined similarly to the case of
vectors.

Example

Set

A =

[
4 0 5
−1 3 2

]
, B =

[
1 1 1
3 5 7

]
, C =

[
2 −3
0 1

]
.

Then

A + B =

[
5 1 6
2 8 9

]
,

while A + C is not defined. We also have

2B =

[
2 2 2
6 10 14

]
.
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Matrix Algebra - Summary

In other words, there is nothing unexpected when dealing with
matrix addition and scalar multiplication.
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Matrix Multiplication

��� Matrix Operations ��

The vector A.Bx/ is a linear combination of the vectors Ab1 ; : : : ; Abp , using the entries
in x as weights. In matrix notation, this linear combination is written as

A.Bx/ D Œ Ab1 Ab2 ! ! ! Abp !x

Thus multiplication by Œ Ab1 Ab2 ! ! ! Abp ! transforms x into A.Bx/. We have found
the matrix we sought!

%&' */ * 5 * 0/ If A is an m " n matrix, and if B is an n " p matrix with columns b1 ; : : : ; bp ,
then the product AB is the m " p matrix whose columns are Ab1 ; : : : ; Abp . That
is,

AB D A
!
b1 b2 ! ! ! bp

"
D
!
Ab1 Ab2 ! ! ! Abp

"

This definition makes equation (1) true for all x in Rp . Equation (1) proves that the
composite mapping in Figure 3 is a linear transformation and that its standard matrix is
AB . Multiplication of matrices corresponds to composition of linear transformations.

&9".1-& � Compute AB , where A D
#

2 3
1 #5

$
and B D

#
4 3 6
1 #2 3

$
.

40-65*0/ Write B D Œ b1 b2 b3 !, and compute:

Ab1 D
#

2 3
1 #5

$#
4
1

$
; Ab2 D

#
2 3
1 #5

$#
3

#2

$
; Ab3 D

#
2 3
1 #5

$#
6
3

$

D
#

1 1
#1

$
D
#

0
1 3

$
D
#

21
#9

$

❄ ❄
❄Then

AB D AŒ b1 b2 b3 ! D
#

1 1 0 21
#1 1 3 #9

$

✻ ✻ ✻
Ab1 Ab2 Ab3

Notice that since the first column of AB is Ab1 ; this column is a linear combination
of the columns of A using the entries in b1 as weights. A similar statement is true for
each column of AB:

Each column of AB is a linear combination of the columns of A using weights
from the corresponding column of B .

Obviously, the number of columns of A must match the number of rows in B in
order for a linear combination such as Ab1 to be defined. Also, the definition of AB
shows that AB has the same number of rows as A and the same number of columns
as B.

&9".1-& � If A is a 3 " 5 matrix and B is a 5 " 2 matrix, what are the sizes of
AB and BA, if they are defined?

SECOND REVISED PAGES

Here Ab1, . . . ,Abp denote the matrix-vector multiplication we
studied in Chapter 1.

If A is the standard matrix of a transformation T and B is the
standard matrix of a transformation S , then AB is the standard
matrix of the composition T ◦ S . This follows from the fact that

A(Bx) = (AB)x .
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Examples

Example

With

A =

[
2 3
1 −5

]
and B =

[
4 3 6
1 −2 3

]
,

we have

AB =

[
11 0 21
−1 13 −9

]
.

Note that each column of AB is a linear combination of the columns of A.

Example

If A is 3× 5 and B is 5× 2, what are the sizes of AB and BA (if they are
defined)?

Solution: AB is 3× 2; BA is not defined.
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Another Method to Compute AB

The ij th entry of AB (if it is defined) is the ‘dot product’ between the i th

row of A and the j th column of B:

(AB)ij = ai1b1j + · · ·+ ainbnj

when A has n columns and B has n rows.

Example [
2 3
1 −5

] [
4 3 6
1 −2 3

]
=

[
11 0 21
−1 13 −9

]
.
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Properties of Matrix Multiplication

��� Matrix Operations ��

&9".1-& � Find the entries in the second row of AB , where

A D

2

664

2 !5 0
!1 3 !4

6 !8 !7
!3 0 9

3

775; B D

2

4
4 !6
7 1
3 2

3

5

40-65*0/ By the row–column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

✲

2

664

2 !5 0
!1 3 !4

6 !8 !7
!3 0 9

3

775

2

4

❄
4

❄
! 6

7 1
3 2

3

5

D

2

664

! !
! 4 C 21 ! 12 6 C 3 ! 8

! !
! !

3

775 D

2

664

! !
5 1

! !
! !

3

775

Notice that since Example 6 requested only the second row of AB , we could have
written just the second row of A to the left of B and computed

!
!1 3 !4

"
2

4
4 !6
7 1
3 2

3

5 D
!

5 1
"

This observation about rows of AB is true in general and follows from the row–column
rule. Let rowi .A/ denote the i th row of a matrix A. Then

rowi .AB/ D rowi .A/ " B (2)

Properties of Matrix Multiplication
The following theorem lists the standard properties of matrix multiplication. Recall that
Im represents the m # m identity matrix and Imx D x for all x in Rm.

5)&03&. � Let A be an m # n matrix, and let B and C have sizes for which the indicated
sums and products are defined.

a. A.BC / D .AB/C (associative law of multiplication)
b. A.B C C / D AB C AC (left distributive law)
c. .B C C /A D BA C CA (right distributive law)
d. r.AB/ D .rA/B D A.rB/

for any scalar r

e. ImA D A D AIn (identity for matrix multiplication)

1300' Properties (b)–(e) are considered in the exercises. Property (a) follows from
the fact that matrix multiplication corresponds to composition of linear transformations
(which are functions), and it is known (or easy to check) that the composition of func-
tions is associative. Here is another proof of (a) that rests on the “column definition” of

SECOND REVISED PAGES
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Matrix Multipication is Not Commutative

We say A and B commute if AB = BA.

In general, matrix multiplication is not commutative.

Example

[
5 1
3 −2

] [
2 0
4 3

]
=

[
14 3
−2 −6

]
,[

2 0
4 3

] [
5 1
3 −2

]
=

[
10 2
29 −2

]
.
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Other Differences

In general AB 6= BA.

If AB = AC , we cannot conclude B = C .

If AB = 0, we cannot conclude that A = 0 or B = 0.
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Other operations

If A is an n × n matrix and k a positive integer, then Ak denotes
A · · ·A (k times).

If A is an m × n matrix, then the transpose of A is the n ×m
matrix AT obtained by interchanging the rows and columns of A.

Example

[
1 1 1 1
−3 5 −2 7

]T
=


1 −3
1 5
1 −2
1 7

 .
A convenient way to write a column vector is in the form
x = [1, 2, 3]T .
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Theorem about Transposes

��� Matrix Operations ���

Powers of a Matrix
If A is an n ! n matrix and if k is a positive integer, then Ak denotes the product of kWEB
copies of A:

Ak D A " " " A„ƒ‚…
k

If A is nonzero and if x is in Rn; then Akx is the result of left-multiplying x by A
repeatedly k times. If k D 0; then A0x should be x itself. Thus A0 is interpreted as the
identity matrix. Matrix powers are useful in both theory and applications (Sections 2.6,
4.9, and later in the text).

The Transpose of a Matrix
Given an m ! n matrix A, the transpose of A is the n ! m matrix, denoted by AT ,
whose columns are formed from the corresponding rows of A.

&9".1-& � Let

A D
!

a b
c d

"
; B D

2

4
#5 2

1 #3
0 4

3

5; C D
!

1 1 1 1
#3 5 #2 7

"

Then

AT D
!

a c
b d

"
; BT D

!
#5 1 0

2 #3 4

"
; C T D

2

664

1 #3
1 5
1 #2
1 7

3

775

5)&03&. � Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a. .AT /T D A

b. .A C B/T D AT C BT

c. For any scalar r , .rA/T D rAT

d. .AB/T D BTAT

Proofs of (a)–(c) are straightforward and are omitted. For (d), see Exercise 33.
Usually, .AB/T is not equal to ATBT, even when A and B have sizes such that the
product ATBT is defined.

The generalization of Theorem 3(d) to products of more than two factors can be
stated in words as follows:

The transpose of a product of matrices equals the product of their transposes in
the reverse order.

The exercises contain numerical examples that illustrate properties of transposes.

SECOND REVISED PAGES

Pay special attention to the order of multiplication in part d.
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Practice Problems

Compute xxT and xTx , where

x =

[
5
3

]
.

Let A be a 4× 4 matrix and x ∈ R4. What is the fastest way to
compute A2x?
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Section 2.1 - The Inverse of a Matrix

Definition (Inverse)

An n × n matrix A is invertible if there is an n × n matrix C such that

CA = AC = In.

In this case, C is an inverse of A.

Inverses are necessarily unique, and so we call C the inverse of A and
write C = A−1. Thus,

AA−1 = A−1A = In.

A non-invertible matrix is called singular. An invertible matrix is called
nonsingular.
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Example

Example

If

A =

[
2 5
−3 −7

]
,

then A is invertible and

A−1 =

[
−7 −5

3 2

]
.
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The 2× 2 case

Theorem (Theorem 4)

Let

A =

[
a b
c d

]
.

If ad − bc 6= 0, then A is invertible and

A−1 = 1
ad−bc

[
d −b
−c a

]
.

If ad − bc = 0, then A is not invertible.

The quantity ad − bc is called the determinant of A.
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Example

Example [
3 4
5 6

]−1

=

[
−3 2

5
2 − 3

2

]
.
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Usefulness of Matrix Inverses

Theorem (Theorem 5)

If A is an invertible n × n matrix, then for each b ∈ Rn the equation
Ax = b has the unique solution x = A−1b.

To verify this, note AA−1b = Inb = b.

For uniqueness: if Au = b, then we apply A−1 to get u = A−1b.
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Example

Example

Solve the system

3x1 + 4x2 = 3

5x1 + 6x2 = 7.

Solution: The system is equivalent to Ax = b, where

A =

[
3 4
5 6

]
, b =

[
3
7

]
.

The solution is given by

x = A−1b =

[
5
−3

]
.
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Properties of Matrix Inverses

��� The Inverse of a Matrix ���

three points to produce a unit deflection at point 1 and zero deflections at the other points.
Similarly, columns 2 and 3 of D!1 list the forces required to produce unit deflections at
points 2 and 3, respectively. In each column, one or two of the forces must be negative
(point upward) to produce a unit deflection at the desired point and zero deflections at
the other two points. If the flexibility is measured, for example, in inches of deflection
per pound of load, then the stiffness matrix entries are given in pounds of load per inch
of deflection.

The formula in Theorem 5 is seldom used to solve an equation Ax D b numerically
because row reduction of Œ A b ! is nearly always faster. (Row reduction is usually
more accurate, too, when computations involve rounding off numbers.) One possible
exception is the 2 ! 2 case. In this case, mental computations to solve Ax D b are
sometimes easier using the formula for A!1 , as in the next example.

&9".1-& � Use the inverse of the matrix A in Example 2 to solve the system

3x1 C 4 x2 D 3

5x1 C 6x2 D 7

40-65*0/ This system is equivalent to Ax D b, so

x D A!1b D
!

"3 2
5=2 "3=2

" !
3
7

"
D
!

5
"3

"

The next theorem provides three useful facts about invertible matrices.

5)&03&. � a. If A is an invertible matrix, then A!1 is invertible and

.A!1 /!1 D A

b. If A and B are n ! n invertible matrices, then so is AB , and the inverse of AB
is the product of the inverses of A and B in the reverse order. That is,

.AB/!1 D B!1 A!1

c. If A is an invertible matrix, then so is AT , and the inverse of AT is the transpose
of A!1 . That is,

.AT /!1 D .A!1 /T

1300' To verify statement (a), find a matrix C such that

A!1 C D I and CA!1 D I

In fact, these equations are satisfied with A in place of C . Hence A!1 is invertible, and
A is its inverse. Next, to prove statement (b), compute:

.AB/.B!1 A!1 / D A.BB!1 /A!1 D AIA!1 D AA!1 D I

A similar calculation shows that .B!1 A!1 /.AB/ D I . For statement (c), use Theorem
3(d), read from right to left, .A!1 /T AT D .AA!1 /T D I T D I . Similarly, AT .A!1 /T D
I T D I . Hence AT is invertible, and its inverse is .A!1 /T .

Remark: Part (b) illustrates the important role that definitions play in proofs. The the-
orem claims that B!1 A!1 is the inverse of AB . The proof establishes this by showing
that B!1 A!1 satisfies the definition of what it means to be the inverse of AB . Now, the
inverse of AB is a matrix that when multiplied on the left (or right) by AB , the product
is the identity matrix I . So the proof consists of showing that B!1 A!1 has this property.

SECOND REVISED PAGES

In general, the product of invertible matrices is invertible, with

[A1 · · ·Ak ]−1 = A−1
k · · ·A−1

1 .
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Elementary Matrices

Definition

An elementary matrix is a matrix obtained by performing a single
elementary row operation on the identity matrix.

Example

Let E correspond to a row replacement, e.g.

E =

 1 0 0
0 1 0
−4 0 1

 .
Then

E

 a b
c d
e f

 =

 a b
c d

e − 4a f − 4b

 .
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Elementary Matrices (Continued)

Elementary matrices correspond to row replacement, row
interchange, or scaling.

If E is an elementary matrix corresponding to a row operation, then
the product EA equals the matrix obtained by performing the same
row operation on A.

Every elementary matrix is invertible. To compute the inverse, just
‘undo’ the corresponding row operation.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Inverting Elementary Matrices

Example

Find the inverse of

E =

 1 0 0
0 1 0
−4 0 1


We transform E back into I3 by the row operation

R3 7→ R3 + 4R1,

which corresponds to

E−1 =

 1 0 0
0 1 0
4 0 1

 .
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Computing Matrix Inverses

Our method to compute matrix inverses is based off of the following
theorem:

Theorem (Theorem 7)

An n × n matrix A is invertible if and only if A is row equivalent to In.

In this case, if the row operations E1, . . . ,Ek reduce A to In, then the
same row operations transform In into A−1. In particular,

A−1 = Ek · · ·E1.

A invertible =⇒ Ax = b has a solution for every b.

n pivots ⇐⇒ invertible.

Ek · · ·E1A = In =⇒ A−1 = Ek · · ·E1.
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Computing A−1

Row reduce [A I ].

If A ∼ I , then [A I ] ∼ [I A−1].
Otherwise, A is not invertible.

Example

Determine whether

A =

 0 1 2
1 0 3
4 −3 8


is invertible. If so, compute its inverse.

Solution:

A−1 =

 − 9
2 7 − 3

2
−2 4 −1

3
2 −2 1

2

 .
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Another Viewpoint

When we row reduce [A I ], we are simultaneously solving Ax = e j

for each j = 1, . . . , n.

The columns of A−1 are then the solutions to each of these
equations.
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Section 2.3 - Characterizations of Invertible Matrices

��� $)"15&3 � Matrix Algebra

5)&03&. � 5IF *OWFSUJCMF .BUSJY 5IFPSFN
Let A be a square n ! n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.
b. A is row equivalent to the n ! n identity matrix.
c. A has n pivot positions.
d. The equation Ax D 0 has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation x 7! Ax is one-to-one.
g. The equation Ax D b has at least one solution for each b in Rn.
h. The columns of A span Rn.
i. The linear transformation x 7! Ax maps Rn onto Rn.
j. There is an n ! n matrix C such that CA D I .
k. There is an n ! n matrix D such that AD D I .
l. AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that state-

(c) (d)

( j)

(a)

(b)

'*(63& �

ment (j) is true, we say that (a) implies (j) and write (a) ) (j). The proof will establish
the “circle” of implications shown in Figure 1. If any one of these five statements is
true, then so are the others. Finally, the proof will link the remaining statements of the
theorem to the statements in this circle.

1300' If statement (a) is true, then A!1 works for C in (j), so (a) ) (j). Next, (j) ) (d)
by Exercise 23 in Section 2.1. (Turn back and read the exercise.) Also, (d) ) (c) by
Exercise 23 in Section 2.2. If A is square and has n pivot positions, then the pivots
must lie on the main diagonal, in which case the reduced echelon form of A is In: Thus
(c) ) (b). Also, (b) ) (a) by Theorem 7 in Section 2.2. This completes the circle in
Figure 1.

Next, (a) ) (k) because A!1 works for D. Also, (k) ) (g) by Exercise 24 in Sec-
tion 2.1, and (g) ) (a) by Exercise 24 in Section 2.2. So (k) and (g) are linked to
the circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in
Section 1.4 and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g) to
the circle.

Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are all
equivalent for anymatrix A. (See Section 1.7 and Theorem 12(b) in Section 1.9.) Finally,
(a) ) (l) by Theorem 6(c) in Section 2.2, and (l) ) (a) by the same theorem with A and
AT interchanged. This completes the proof.

(g)

(k)

(h)

(a)

(l)(a)

(i)(g)

(e) (f )(d)

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equation Ax D b has a unique solution for each b in Rn.” This statement
certainly implies (b) and hence implies that A is invertible.

The next fact follows from Theorem 8 and Exercise 8 in Section 2.2.

Let A and B be square matrices. If AB D I , then A and B are both invertible,
with B D A!1 and A D B!1 .
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Strategy of Proof

Matrix Algebra

Let A be a square n ! n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.
b. A is row equivalent to the n ! n identity matrix.
c. A has n pivot positions.
d. The equation Ax D 0 has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation x 7! Ax is one-to-one.
g. The equation Ax D b has at least one solution for each b in Rn.
h. The columns of A span Rn.
i. The linear transformation x 7! Ax maps Rn onto Rn.
j. There is an n ! n matrix C such that CA D I .
k. There is an n ! n matrix D such that AD D I .
l. AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that state-

(c) (d)

( j)

(a)

( b)
ment (j) is true, we say that (a) implies (j) and write (a) ) (j). The proof will establish
the “circle” of implications shown in Figure 1. If any one of these five statements is
true, then so are the others. Finally, the proof will link the remaining statements of the
theorem to the statements in this circle.

If statement (a) is true, then A!1 works for C in (j), so (a) ) (j). Next, (j) ) (d)
by Exercise 23 in Section 2.1. (Turn back and read the exercise.) Also, (d) ) (c) by
Exercise 23 in Section 2.2. If A is square and has n pivot positions, then the pivots
must lie on the main diagonal, in which case the reduced echelon form of A is In: Thus
(c) ) (b). Also, (b) ) (a) by Theorem 7 in Section 2.2. This completes the circle in
Figure 1.

Next, (a) ) (k) because A!1 works for D. Also, (k) ) (g) by Exercise 24 in Sec-
tion 2.1, and (g) ) (a) by Exercise 24 in Section 2.2. So (k) and (g) are linked to
the circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in
Section 1.4 and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g) to
the circle.

Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are all
equivalent for anymatrix A. (See Section 1.7 and Theorem 12(b) in Section 1.9.) Finally,
(a) ) (l) by Theorem 6(c) in Section 2.2, and (l) ) (a) by the same theorem with A and
AT interchanged. This completes the proof.

(g)

(k)

(h)

(a)

(l)(a)

(i)(g)

(e) (f )(d)

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equation Ax D b has a unique solution for each b in Rn.” This statement
certainly implies (b) and hence implies that A is invertible.

The next fact follows from Theorem 8 and Exercise 8 in Section 2.2.

Let A and B be square matrices. If AB D I , then A and B are both invertible,
with B D A!1 and A D B!1.

SECOND REVISED PAGES
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A Useful Fact

Let A,B be square matrices. If AB = I , then A and B are both
invertible, with A = B−1 and B = A−1.

This uses items j. and k. from the invertible matrix theorem, along with
the uniqueness of inverses.
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Application of Invertible Matrix Theorem

Example

Determine whether the matrix A invertible, where

A =

 1 0 −2
3 1 −2
−5 −1 9

 .
Solution: Perform row reduction to get

A ∼

 1 0 −2
0 1 4
0 0 3

 .
As A has three pivots, it is invertible.
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Invertible Linear Transformations

A linear transformation T : Rn → Rn is invertible if there exists a
transformation S : Rn → Rn so that

S(T (x)) = T (S(x)) = x for all x ∈ Rn.

Theorem (Theorem 9)

A linear transformation T is invertible if and only if its standard matrix A
is invertible. In this case, S(x) := A−1x is the inverse of T ; in particular,
S is also a linear transformation.
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Sample Problems

Show that if T : Rn → Rn is a one-to-one linear transformation,
then T is invertible.

Determine whether or not  2 3 4
2 3 4
2 3 4


is invertible.
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Section 2.5 - Matrix Factorizations

A factorization of a matrix A is an equation that expresses A as a
product of two or more matrices.

Matrix factorizations play an important role in applications, e.g. the
singular value decomposition in machine learning (to be discussed
later).

In this section we focus on the LU factorization, which is used to
efficiently solve sequences of equations all with the same coefficient
matrix.
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LU Factorization

Suppose A is an m × n matrix that can be reduced to echelon form
without row interchanges.

This means A can be written in the form A = LU, where

L is an m ×m unit lower triangular matrix.
U is an m × n echelon form of A, which is upper triangular.

To solve Ax = b, we can equivalently solve the pair of equations

Ly = b, Ux = y .

Each equation can be solved quickly because L and U are triangular.
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Example

Example

Use the LU factorization
3 −7 −2 2
−3 5 1 0

6 −4 0 −5
−9 5 −5 12


︸ ︷︷ ︸

A

=


1 0 0 0
−1 1 0 0

2 −5 1 0
−3 8 3 1


︸ ︷︷ ︸

L


3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1


︸ ︷︷ ︸

U

to solve Ax = b, where

b = [−9 5 7 11]T .
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Example (continued)

Example (Continued)

First solve Ly = b:

[L b] ∼ [I y ], y =


−9
−4

5
1

 .
Then solve Ux = y :

[U y ] ∼ [I x ], x =


3
4
−6
−1

 .

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Computational Efficiency

In the previous example, once we have determined L and U, it takes
12 arithmetic operations to find y , followed by 28 arithmetic
operations to find x .

By contrast, direct row reduction of [A b] to [I x ] requires 62
operations.

Thus, LU decomposition can increase computational efficiency in
cases in which one needs to solve Ax = b for a fixed A but many
different choices of b.
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LU Algorithm

Suppose A can be reduced to an echelon form U using only
replacements that add a multiple of one row to another row below it.

Then there exist unit lower triangular elementary matrices E1, . . .Ep

so that
Ep · · ·E1A = U.

This gives us a choice of U, and we may take

L = [Ep · · ·E1]−1.

[Remark: Why is L unit lower triangular?]

These same row operations reduce L to I .
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Example

Example

Find an LU factorization of

A =


2 4 −1 5 −2
−4 −5 3 −8 1

2 −5 −4 1 8
−6 0 7 −3 −1

 .
Solution:

2 4 −1 5 −2
−4 −5 3 −8 1

2 −5 −4 1 8
−6 0 7 −3 1

 ∼


2 4 −1 5 −2
0 3 1 2 −3
0 −9 −3 −4 10
0 12 4 12 −5


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Example (Continued)

Example (Continued)

∼


2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 4 7

 ∼


2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 0 5


︸ ︷︷ ︸

U

.

We take

L =


1 0 0 0
−2 1 0 0

1 −3 1 0
−3 4 2 1

 .
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General Case

In general, one needs to use row interchange when performing row
reduction.

In this case, the ‘L’ that one produces is a permutation of a lower
triangular matrix.
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Sample Problem

Example

Find an LU factorization of

A =


2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1
−6 3 3 4

 .
Note: A has only three pivots; the final two columns of L will come from
I5.
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Section 2.6 - The Leontief Input-Output Model

Suppose nation’s economy has n sectors.

x ∈ Rn: production vector

d ∈ Rn: final demand vector

C : n × n consumption matrix. [For each sector, how many units of each

other sector are consumed per unit of output?]

Cx ∈ Rn: intermediate demand vector

Leontief Input-Output Model:

x = Cx + d
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A relevant theorem

Theorem (Theorem 11)

If C and d have nonnegative entries and each column sum of C is less
than 1, then

x = (I − C )−1d

has nonnegative entries and is the unique solution to x = Cx + d .

To approximate (I − C )−1, use a Taylor series expansion:

(I − C )−1 = I + C + C 2 + C 3 + . . .

The entries in (I − C )−1 can be used to predict how the production
x must change in response to a change in the final demand d .
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Example

Example

An economy has three sectors: manufacturing, agriculture, and services,
with consumption matrix

C =

 .5 .4 .2
.2 .3 .1
.1 .1 .3

 .
Suppose the final demand is d = [50 30 20]T . Find the production level
x that satisfies this demand.

Solution: We solve (I − C )x = d by row reduction to deduce

x = [226 119 78]T .
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Section 2.7 - Applications to Computer Graphics

In this section we describe some basic applications of linear algebra
to 2D computer graphics.
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Basic Example

Example

We can represent a letter (say N) by using eight points in the plane. We
store this in a data matrix D, say

D =

[
0 .5 .5 6 6 5.5 5.5 0
0 0 6.42 0 8 8 1.58 8

]
.

Each column corresponds to a vertex in the 2D plane.

By applying the shear transformation

A =

[
1 λ
0 1

]
,

we can shear the N.
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Matlab Code

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Homogeneous Coordinates

Translation is not a linear transformation of the plane — indeed, it
does not send 0 to 0.

However, we can model translation of the 2D plane using a 3D
linear transformation together with homogeneous coordinates.

In particular, we associate a point (x , y) ∈ R2 with the point
(x , y , 1) ∈ R3.

Then translation by the vector [h, k]T is represented by the matrix 1 0 h
0 1 k
0 0 1

 ,
which sends  x

y
1

 to

 x + h
y + k

1

 .
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2D Transformations in Homogeneous Coordinates

We can still model a 2D linear transformation using homogeneous
coordinates. In particular, if the transformation has the 2× 2
standard matrix A, then we apply the matrix[

A 0
0 1

]
to the homogeneous coordinates, sending[

x
1

]
to

[
Ax

1

]
.

Composition of transformations corresponds to matrix multiplication
(even in the setting of homogeneous coordinates).
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Example: rotation about a point

Example

Find the matrix that performs rotation by angle φ about a p in R2.

Solution. We use homogeneous coordinates [x y 1]T .

We first translate by −p via

T− =

 1 0 −p1

0 1 −p2

0 0 1


Now perform a rotation by angle φ about the origin:

R =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1


Translate back to p via T+.

The transformation is given by the product T+RT−.
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Matlab Code
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Further Topics

See the textbook for further discussion of 3D graphics, homogeneous
coordinates in 3D, and perspective projections.
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Section 2.8 - Subspaces of Rn

Definition (Subspace)

A subspace of Rn is a set H in Rn satisfying the following three
properties:

a. H contains the zero vector 0.

b. If u and v are in H, then u + v is in H. [Closed under addition.]

c. If u is in H and c is a scalar, then cu is in H. [Closed under scalar
multiplication.]
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A Key Example

Example (Span)

If v 1 and v 2 are vectors in Rn and

H = Span{v 1, v 2},

then H is a subspace of Rn.

The same is true for any finite collection of vectors in Rn.

Later we will see that every subspace is of this form!

In the previous example, H is either a line (if {v 1, v 2} are
dependent) or a plane (if {v 1, v 2} are independent).

A line or a plane that does not pass through the origin is not a
subspace.
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Column Space and Null Space

Definition (Column Space)

The column space of a matrix A, denoted Col (A), is the set of all linear
combinations of the columns of A.

If A is m× n, then the column space of A is the span of the columns
of A and hence is a subspace of Rn.

Definition (Null Space)

The null space of a matrix A, denoted Nul (A), is the set of all solutions
x to the homogeneous equation Ax = 0.

Theorem (Theorem 12)

If A is an m × n matrix then Nul (A) is a subspace of Rn.
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Example

Example

Determine whether b is in Col (A), where

A =

 1 −3 −4
−4 6 −2
−3 7 6

 , b =

 3
3
−4

 .
Solution: We must determine whether Ax = b is consistent. As

[A b] ∼

 1 −3 −4 −3
0 −6 −18 15
0 0 0 0

 ,
we see that b ∈ Col (A).
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Bases

Definition

A basis for a subspace H of Rn is a linearly independent set in H that
spans H.

Example

The standard basis for Rn consists of the vectors

e1 =


1
0
...
0

 , . . . en =


0
...
0
1

 .

Example

The columns of any invertible n × n matrix form a basis for Rn.
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Basis for the Null Space

Example

Find a basis for the null space of

A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .
Solution: Write the solution to Ax = 0 in parametric vector form:

A ∼

 1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 ,
so x2, x4, x5 are free, with

x1 = 2x2 + x4 − 3x5, x3 = −2x4 + 2x5.
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Basis for the Null Space (Continued)

Example (Continued)

The general solution is

x = x2


2
1
0
0
0


︸ ︷︷ ︸

:=u

+x4


1
0
−2

1
0


︸ ︷︷ ︸

:=v

+x5


−3

0
2
0
1


︸ ︷︷ ︸

:=w

,

from which we can deduce {u, v ,w} is a basis for Nul (A).
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Basis for the Column Space

Example

Find a basis for the column space of

A =


1 3 3 2 −9
−2 −2 2 −8 2

2 3 0 7 1
3 4 −1 11 −8

 .
Solution. The columns of A span Col (A), but they are not independent.

A ∼


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0

 .
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Basis for the Column Space (continued)

Example (Continued)

Keeping the pivot columns of A, we obtain the basis


1
−2

2
3

 ,


3

−2
3
4

 ,


−9

2
1

−8


 .
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Pivot Columns; Practice Problems

Theorem (Theorem 13)

The pivot columns of a matrix A form a basis for the column space of A.

Given

A =

 0 1 0
0 0 1
0 0 0

 ,
find a vector in Nul (A) and a vector in Col (A).

Suppose an n × n matrix A is invertible. What can you say about
Col (A)? What can you say about Nul (A)?
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Section 2.9 - Dimension and rank

Definition (Coordinates)

If B = {b1, . . . ,bp} is a basis for a subspace H in Rn, then any x in H
may be written uniquely in the form

x = c1b1 + · · ·+ cpbp

for some weights c1, . . . , cp. We define the coordinates of x relative to
the basis B by

[x ]B =

 c1

...
cp

 .
Uniqueness is due to linear independence.
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Example

Example

Let

v 1 =

 3
6
2

 , v 2 =

 −1
0
1

 , x =

 3
12

7

 .
Then B = {v 1, v 2} is a basis for H = Span{v 1, v 2}.
(i) Show that x belongs to H.

(ii) Find [x ]B (the coordinates of x relative to B).
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Example (continued)

Example

Solution: We solve 3 −1 3
6 0 12
2 1 7

 ∼
 1 0 2

0 1 3
0 0 0

 ,
which shows that x ∈ Span{v 1, v 2} with

[x ]B =

[
2
3

]
.
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Dimension

If a subspace of H has a basis consisting of p vectors, then every
basis of H must have exactly p vectors.

Definition (Dimension)

The dimension of a nonzero subspace H, denoted by dimH, is the
number of vectors in any basis for H. The dimension of the subspace {0}
is defined to be zero.

Definition (Rank)

The rank of a matrix A, denoted rankA, is the dimension of the column
space of A.

Example

The dimension of the null space of a matrix A is the number of free
variables in the equation Ax = 0.
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Rank Theorem; Basis Theorem

Theorem (The Rank Theorem)

If a matrix A has n columns, then

rankA + dim Nul A = n.

Proof: Every column is either a pivot column or leads to a free variable in
the equation Ax = 0.

Theorem (The Basis Theorem)

Let H be a p-dimensional subspace of Rn. Any linearly independent set
of p elements of H is a basis for H; any set of p elements of H that
spans H is a basis for H.
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Continuation of Invertible Matrix Theorem

Theorem (The Invertible Matrix Theorem (continued))

Let A be an n × n matrix. The following are equivalent to the statement
that A is invertible:

m. The columns of A form a basis for Rn.

n. Col A = Rn.

o. dim Col A = n.

p. rankA = n.

q. Nul A = {0}.
r. dim Nul A = 0.
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Practice Problems

Is R3 a subspace of R4?

What is the basis of the subspace of R3 spanned by 2
−8

6

 ,
 3
−7
−1

 ,
 −1

6
7

 .
Let B be the basis for R2 with elements [1 2]T and [2 1]T . If
[x ]B = [3 2]T , then what is x?
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Chapter 3

Math 3108 - Fall 2019
Chapter 3: Determinants

Section 3.1 - Introduction to Determinants

Section 3.2 - Properties of Determinants

Section 3.3 - Cramer’s Rule, Volume, and Linear Transformations
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Section 3.1 - Introduction to Determinants

We encountered the determinant of a 2× 2 matrix when discussing
invertibility. We now extend this notion to higher order matrices.

The determinant of a 1× 1 matrix A = [a11] is simply

detA = a11.

The determinant of a 2× 2 matrix A = [aij ] is

detA = a11a22 − a12a21.

To describe the determinant of higher order (square) matrices, we
need to introduce the notion of a submatrix.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Higher Order Determinants

Given an n × n matrix, the submatrix Aij is the (n − 1)× (n − 1)
matrix obtained by removing row i and column j from A.

The determinant of a 3× 3 matrix A is

detA = a11 detA11 − a12 detA12 + a13 detA13.

Example

det

 1 2 3
2 3 4
3 4 5

 = 1 det

[
3 4
4 5

]
− 2

[
2 4
3 5

]
+ 3

[
2 3
3 4

]
= −1 + 4− 3 = 0.
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Determinants - General Definition

The general definition of the determinant is ‘inductive’:

Definition (Determinant)

For n ≥ 2, the determinant of an n × n matrix A = [aij ] is given by the
alternating sum

detA =
n∑

j=1

(−1)1+ja1j detA1j

= a11 detA11 − a12 detA12 + · · ·+ (−1)1+na1n detA1n.

Here Aij denotes the (n − 1)× (n − 1) submatrix of A obtained by
removing row i and column j .

We may also write |A| for detA.
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Cofactor Expansions

There are more ways to compute the determinant.

The (i , j) cofactor of A is defined by

Cij = (−1)i+j detAij .

The definition of determinant uses a ‘cofactor expansion across the
first row’.

Theorem (Theorem 1)

The determinant of an n × n matrix A can be computed using the
cofactor expansion across any row or column. That is:

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin for any i

= a1jC1j + a2jC2j + · · ·+ anjCnj for any j .
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Example

Compute detA, where

A =


3 −7 8 9 −6
0 2 −5 7 3
0 0 1 5 0
0 0 2 4 −1
0 0 0 −2 0

 .
Solution. Choose the most convenient cofactor expansions:

detA = 3 det


2 −5 7 3
0 1 5 0
0 2 4 −1
0 0 −2 0

 = 6 det

 1 5 0
2 4 −1
0 −2 0


= 6 · (−1) · (−2) · det

[
1 0
2 −1

]
= 12.
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Special Case: Triangular Matrices

Theorem (Theorem 2)

If A is a triangular matrix, then detA is the product of the entries along
the diagonal of A.

In general, cofactor expansion of an n × n matrix requires more than
n! multiplications.

This means that even for a 25× 25 matrix (say), with a calculator
performing one trillion multiplications per second, computing the
determinant would take several hundred thousand years...
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Practice Problem

Compute

det


5 −7 2 2
0 3 0 −4
−5 −8 0 3

0 5 0 −6

 .
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Section 3.2 - Properties of Determinants

If two matrices are connected by row operations, their determinants
are related as well.

Theorem (Theorem 3 - Row Operations and Determinants)

Let A be a square matrix.

If B is obtained from A by a row replacement, then detA = detB.

If B is obtained from A by a row interchange, then detB = − detA.

If B is obtained by scaling a row of A by k, then detB = k · detA.

This means we can use row reduction to efficiently compute
determinants!
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Example

Example

Compute detA, where

A =

 1 −4 2
−2 8 −9
−1 7 0

 .
Solution: Using two replacements and one interchange,

A ∼

 1 −4 2
0 0 −5
−1 7 0

 ∼
 1 −4 2
−1 7 0

0 0 −5


∼

 1 −4 2
0 3 0
0 0 −5

 .
Thus detA = 15.
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Another Example

Example

Compute

det


2 −8 6 8
3 −9 5 10
−3 0 1 −2

1 −4 0 6

 = −36.
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Generalizations

In general, we deduce that detA either equals

0, if A is not invertible (not equivalent to In), or
± the product of the pivots in any echelon form of A.

Theorem (Theorem 4)

A square matrix A is invertible if and only if detA 6= 0.
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Example

Example

Compute detA, where

A =


3 −1 2 −5
0 5 −3 −6
−6 7 −7 4
−5 −8 0 9

 .
Solution: Adding 2 times row 1 to row 3 yields the matrix

3 −1 2 −5
0 5 −3 −6
0 5 −3 −6
−5 −8 0 9

 .
Thus detA = 0.
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Cofactor Expansion and Row Reduction

Computer programs use this ‘row reduction’ method to compute
detA. This requires about 2n3/3 operations. Thus only 10,000
operations are required for a 25×25 matrix, which takes a fraction of
a second.

Cofactor expansion can be used together with row reduction.

Example

Compute the determinant of
0 1 2 −1
2 5 −7 3
0 3 6 2
−2 −5 4 2

 .
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Example (continued)

Example

Compute the determinant of
0 1 2 −1
2 5 −7 3
0 3 6 2
−2 −5 4 2

 .
Answer: -30.
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Column Operations

Theorem (Theorem 5)

If A is an n × n matrix, then detAT = detA.

(Recall that AT is the transpose of A, obtained by interchanging the rows
and columns of A.)

The proof is by induction and cofactor expansion.

This theorem shows that ‘column operations’ have the same effect
on determinants as row operations.

We focus on row operations.
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Determinants and Matrix Products

Theorem (Theorem 6)

If A and B are n × n matrices, then

detAB = (detA) · (detB).

We won’t prove this, but at least let’s see it in action!

Example

First, compute [
6 1
3 2

] [
4 3
1 2

]
=

[
25 20
14 13

]
.

Next, observe
9 · 5 = 45 = 325− 280.
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Practice Problems

Use a determinant to determine if the following three vectors are
independent:  5

−7
9

 ,
 −3

3
−5

 ,
 2
−7

5

 .
Suppose A is n × n and A2 = I . Show that detA equals 1 or −1.
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Section 3.3 - Cramer’s Rule, Volume, and Linear
Transformations

In this section we will briefly mention some further applications of
determinants.

Theorem (Theorem 7 - Cramer’s Rule)

Let A be an n × n invertible matrix and b ∈ Rn. Then unique solution of
Ax = b has entries given by

xi =
detAi (b)

detA
,

where Ai (b) is the matrix obtained from A by replacing column i with
the vector b.

Application: In engineering, systems of differential equations are
converted to systems of algebraic equations by the Laplace
transform. These systems may then be solved by Cramer’s rule.
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A Formula for Matrix Inverses

Since the j th column of A−1 is the solution to Ax = e j , Cramer’s
rule implies

A−1
ij =

detAi (ej)

detA
,

where the notation Ai (·) is as in Cramer’s theorem.

By cofactor expansion, we have

detAi (e j) = Cji ,

where Cji is the cofactor introduced above. So we can also write

A−1
ij = 1

det ACji .
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Geometric Interpretation of Determinant

Theorem (Theorem 9)

If A is a 2× 2 matrix, then the area of the parallelogram determined
by the columns of A is equal to | detA|.
If A is a 3× 3 matrix, then the volume of the parallelepiped
determined by the columns of A is | detA|.

Proof (sketch): It is true for diagonal matrices, and so you need to
check what happens under row operations.
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Linear Transformations

Theorem

Let T : R2 → R2 be a linear transformation with standard matrix A. If S
is a parallelogram in R2, then

Area{T (S)} = | detA| · Area(S).

If instead T : R3 → R3 has standard matrix A and S is a parallelepiped
in R3, then

Volume{T (S)} = | detA| · Volume(S).

This generalizes to any region S in R2 or R3.
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Section 4.1 - Vector Spaces and Subspaces

��� $)"15&3 � Vector Spaces

on vector spaces of functions, and Chapter 4 extends the
theory of vectors in Rn to include such functions. Later on,

you will see how other vector spaces arise in engineering,
physics, and statistics.

WEB

The mathematical seeds planted in Chapters 1 and 2 germinate and begin to blossom
in this chapter. The beauty and power of linear algebra will be seen more clearly when
you view Rn as only one of a variety of vector spaces that arise naturally in applied
problems. Actually, a study of vector spaces is not much different from a study of Rn

itself, because you can use your geometric experience with R2 and R3 to visualize many
general concepts.

Beginning with basic definitions in Section 4.1, the general vector space framework
develops gradually throughout the chapter. A goal of Sections 4.3–4.5 is to demonstrate
how closely other vector spaces resemble Rn. Section 4.6 on rank is one of the high
points of the chapter, using vector space terminology to tie together important facts about
rectangular matrices. Section 4.8 applies the theory of the chapter to discrete signals and
difference equations used in digital control systems such as in the space shuttle. Markov
chains, in Section 4.9, provide a change of pace from the more theoretical sections of
the chapter and make good examples for concepts to be introduced in Chapter 5.

��� 7&$503 41"$&4 "/% 46#41"$&4
Much of the theory in Chapters 1 and 2 rested on certain simple and obvious alge-
braic properties of Rn, listed in Section 1.3. In fact, many other mathematical systems
have the same properties. The specific properties of interest are listed in the following
definition.

%&' */ * 5 * 0/ A vector space is a nonempty set V of objects, called vectors, on which are de-
fined two operations, called addition and multiplication by scalars (real numbers),
subject to the ten axioms (or rules) listed below.1 The axioms must hold for all
vectors u, v, and w in V and for all scalars c and d .

1. The sum of u and v, denoted by u C v, is in V .
2. u C v D v C u.
3. .u C v/ C w D u C .v C w/.
4. There is a zero vector 0 in V such that u C 0 D u.
5. For each u in V , there is a vector !u in V such that u C .!u/ D 0.
6. The scalar multiple of u by c, denoted by cu, is in V .
7. c.u C v/ D cu C cv.
8. .c C d/u D cu C du.
9. c.du/ D .cd/u.

10. 1u D u.

1 Technically, V is a real vector space. All of the theory in this chapter also holds for a complex vector space
in which the scalars are complex numbers. We will look at this briefly in Chapter 5. Until then, all scalars are
assumed to be real.

SECOND REVISED PAGES

We may also use complex vectors and complex scalars.
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Examples

The fundamental example in this class is V = Rn.

Let S be the space of all doubly infinite sequences of numbers

{yk} = (. . . , y−2, y−1, y0, y1, y2, . . . ).

For n ≥ 0, let Pn be the set of all polynomials of the form

p(t) = a0 + a1t + a2t
2 + · · ·+ ant

n.

Let F (R) be the set of all functions f : R→ R.

Let C (R) be the set of all continuous functions f : R→ R.

And so on...
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An Important Question

What is a vector?
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Subspaces
��� Vector Spaces and Subspaces ���

Subspaces
In many problems, a vector space consists of an appropriate subset of vectors from some
larger vector space. In this case, only three of the ten vector space axioms need to be
checked; the rest are automatically satisfied.

%&' */ * 5 * 0/ A subspace of a vector space V is a subset H of V that has three properties:

a. The zero vector of V is in H .2

b. H is closed under vector addition. That is, for each u and v in H , the sum
u C v is in H .

c. H is closed under multiplication by scalars. That is, for each u in H and each
scalar c, the vector cu is in H .

Properties (a), (b), and (c) guarantee that a subspace H of V is itself a vector
space, under the vector space operations already defined in V . To verify this, note
that properties (a), (b), and (c) are Axioms 1, 4, and 6. Axioms 2, 3, and 7–10 are
automatically true in H because they apply to all elements of V , including those in H .
Axiom 5 is also true in H , because if u is in H , then .!1 /u is in H by property (c), and
we know from equation (3) earlier in this section that .!1 /u is the vector !u in Axiom 5.

So every subspace is a vector space. Conversely, every vector space is a subspace
(of itself and possibly of other larger spaces). The term subspace is used when at least
two vector spaces are in mind, with one inside the other, and the phrase subspace of V
identifies V as the larger space. (See Figure 6.)

0

H

V

'*(63& �

A subspace of V .

&9".1-& � The set consisting of only the zero vector in a vector space V is a
subspace of V , called the zero subspace and written as f0g.

&9".1-& � Let P be the set of all polynomials with real coefficients, with opera-
tions in P defined as for functions. Then P is a subspace of the space of all real-valued
functions defined on R. Also, for each n " 0, Pn is a subspace of P , because Pn is a
subset of P that contains the zero polynomial, the sum of two polynomials in Pn is also
in Pn, and a scalar multiple of a polynomial in Pn is also in Pn.

&9".1-& � The vector space R2 is not a subspace of R3 because R2 is not even a
subset of R3 . (The vectors in R3 all have three entries, whereas the vectors in R2 have
only two.) The set

H D

8
<

:

2

4
s
t
0

3

5 W s and t are real

9
=

;

is a subset of R3 that “looks” and “acts” like R2 , although it is logically distinct from
R2 . See Figure 7. Show that H is a subspace of R3 .

x3

x2

x1

H

'*(63& �

The x1 x2 -plane as a subspace of
R3 .

40-65*0/ The zero vector is in H , and H is closed under vector addition and scalar
multiplication because these operations on vectors in H always produce vectors whose
third entries are zero (and so belong to H/. Thus H is a subspace of R3 .

2 Some texts replace property (a) in this definition by the assumption that H is nonempty. Then (a) could be
deduced from (c) and the fact that 0u D 0. But the best way to test for a subspace is to look first for the zero
vector. If 0 is in H , then properties (b) and (c) must be checked. If 0 is not in H , then H cannot be a
subspace and the other properties need not be checked.
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Note that any subspace is itself a vector space.
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Examples

The zero subspace is the subspace {0}.
For any n, Pn is a subspace of the vector space P of all polynomials,
which is in turn a subspace of C (R), which is a subspace of F (R).

R2 is not a subspace of R3, but the set

H =


 s

t
0

 : s, t ∈ R


is a subspace of R3.

A plane in R3 is a subspace of R3 if and only if it contains the zero
vector.
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Subspaces Spanned by a Set

In the setting of a general vector space, we still have the notions of
linear combination and span.

Theorem (Theorem 1)

If v 1, . . . , vp are vectors in a vector space V , then Span{v 1, . . . , vp} is a
subspace of V .

To prove this, you must check the definition of subspace.

Example

The set of all vectors of the form (a− 3b, b − a, a, b) is a subspace, since
it is equal to the span of

1
−1

1
0

 and


−3

1
0
1

 .
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Practice Problems

The set of points of the form (3s, 2 + 5s) is not a vector space.

Show that the set of symmetric n × n matrices is a subspace of the
vector space of all n × n matrices.
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MyLab Problems
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MyLab Problems
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Section 4.2 - Null Spaces, Column Spaces, and Linear
Transformations

Recall that we studied null spaces and column spaces of matrices in
Chapter 2.

Definition

The null space of an m × n matrix A is

NulA = {x ∈ Rn : Ax = 0}.

Theorem (Theorem 2)

The null space of an m × n matrix A is a subspace of Rn.
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Column Space

Definition

The column space of an m × n matrix

A = [a1 · · · an]

is defined by
ColA = Span{a1, . . . , an}.

Theorem (Theorem 3)

The column space of an m × n matrix is a subspace of Rm.

Note that

ColA = {b ∈ Rm : Ax = b for some x ∈ Rn}.
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Examples

Example

Show that the set of vectors in R4 whose coordinates a, b, c, d satisfy

a− 2b + 5c = d and c − a = b is a subspace.

Solution. The set is the same as the null space of[
1 −2 5 −1
−1 −1 1 0

]
.

Example

Write the set 6a− b
a + b
−7a

 , a, b ∈ R as the column space of a matrix.

Solution. A =

 6 −1
1 1
−7 0

 .
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Null Space Versus Column Space

��� $)"15&3 � Vector Spaces

$POUSBTU #FUXFFO /VM " BOE $PM " GPS BO N Y O .BUSJY "
Nul A Col A

1. Nul A is a subspace of Rn. 1. Col A is a subspace of Rm.
2. Nul A is implicitly defined; that is, you are

given only a condition .Ax D 0/ that vec-
tors in Nul A must satisfy.

2. Col A is explicitly defined; that is, you are
told how to build vectors in Col A.

3. It takes time to find vectors in Nul A. Row
operations on Œ A 0 ! are required.

3. It is easy to find vectors in Col A. The
columns of A are displayed; others are
formed from them.

4. There is no obvious relation between Nul A
and the entries in A.

4. There is an obvious relation between Col A
and the entries in A, since each column of
A is in Col A.

5. A typical vector v in Nul A has the property
that Av D 0.

5. A typical vector v in Col A has the property
that the equation Ax D v is consistent.

6. Given a specific vector v, it is easy to tell if
v is in Nul A. Just compute Av.

6. Given a specific vector v, it may take time
to tell if v is in Col A. Row operations on
Œ A v ! are required.

7. Nul A D f0g if and only if the equation
Ax D 0 has only the trivial solution.

7. Col A D Rm if and only if the equation
Ax D b has a solution for every b in Rm.

8. Nul A D f0g if and only if the linear trans-
formation x 7! Ax is one-to-one.

8. Col A D Rm if and only if the linear trans-
formation x 7! Ax maps Rn onto Rm.

%&' */ * 5 * 0/ A linear transformation T from a vector space V into a vector space W is a rule
that assigns to each vector x in V a unique vector T .x/ in W , such that

(i) T .u Cv/ D T .u/ CT .v/ for all u, v in V , and
(ii) T .cu/ D cT .u/ for all u in V and all scalars c.

The kernel (or null space) of such a T is the set of all u in V such that T .u/ D 0
(the zero vector in W /. The range of T is the set of all vectors in W of the form T .x/
for some x in V . If T happens to arise as a matrix transformation—say, T .x/ D Ax
for some matrix A—then the kernel and the range of T are just the null space and the
column space of A, as defined earlier.

It is not difficult to show that the kernel of T is a subspace of V . The proof is
essentially the same as the one for Theorem 2. Also, the range of T is a subspace of W .
See Figure 2 and Exercise 30.

Kernel is a 
subsp ace of V

Range is a 
subsp ace of W

Domain
Range

0

T

0

V

Kern
el

W

'*(63& � Subspaces associated with a
linear transformation.

In applications, a subspace usually arises as either the kernel or the range of an
appropriate linear transformation. For instance, the set of all solutions of a homoge-
neous linear differential equation turns out to be the kernel of a linear transformation.

SECOND REVISED PAGES

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Linear Transformations (General Case)

Definition

A linear transformation T from a vector space V to a vector space W
is a function T : V →W such that

(i) T (u + v) = T (u) + T (v) for all vectors u, v ∈ V ,

(ii) T (cu) = cT (u) for all vectors u ∈ V and scalars c .

Here are some examples:

If A is an m × n matrix, then T (x) = Ax is a linear transformation
from Rn to Rm.

If V is the vector space of differentiable functions, then Tf = d
dx f is

a linear transformation from V to F (R).
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Kernel, Range

Definition

Let T : V →W be a linear transformation.

The kernel (also called null space) of a linear transformation T is the
set of all vectors u such that T (u) = 0.

The range of T is the set of all vectors of the form T (x) for x ∈ V .

Note that if T : V →W is a linear transformation, then the kernel
of T is a subspace of V and the range of T is a subspace of W .
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Example

Example

Let ω ∈ R and let T be the linear transformation

T = d2

dx2 + ω2.

Then the kernel of T is the set of solutions to the differential equation

y ′′ + ω2y = 0.

In particular, the set of solutions forms a vector space.

(In fact, this is a two-dimensional vector space, and a basis is given by
the functions {cos(ωt), sin(ωt)}.)
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Practice Problems

Let A be an n × n matrix. Suppose ColA = NulA. Show that
NulA2 = Rn.

Solution. For any x ∈ Rn, Ax belongs to the column space, and hence
the null space of A. Thus

A2x = A(Ax) = 0.

This means A2 is the zero matrix, so NulA2 = Rn.
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MyLab Problems
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MyLab Problems
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Section 4.3 - Linearly Independent Sets; Bases

The definition of linear independence in a general vector space is identical
to the definition in Rn:

Definition (Linearly Independent)

A set of vectors {v 1, . . . , vp} in a vector space V is linearly
independent if the equation

c1v 1 + · · ·+ cpvp = 0

has only the trivial solution c1 = · · · = cp = 0.

Otherwise, we call the set linearly dependent.

Theorem (Theorem 4)

A set {v 1, . . . , vp} of two or more vectors with v 1 6= 0 is linearly
dependent if and only if some v j (with j > 1) can be written as a linear
combination of the preceding vectors v 1, . . . , v j−1.
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Examples

In a general vector space, the equation

c1v 1 + · · ·+ cpvp = 0

cannot generally be written as a matrix vector equation.

Example

The polynomials p1(t) = 1, p2(t) = t, and p3(t) = 4− t are linearly
dependent in P since p3 = 4p1 − p2.

Example

The set {sin t, cos t} is linearly independent in F (R). The set
{sin t cos t, sin 2t} is linearly dependent.
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Bases

The definition of a basis in a general vector space is also the same as in
the setting of Rn:

Definition (Basis)

Let H be a subspace of a vector space V . A set B = {b1, . . . ,bp} in V
is a basis for H if:

(i) B is a linearly independent set, and

(ii) H = Span{b1, . . . ,bp}.
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Examples

Example

All of the old examples from Rn are pertinent.

Example

The set S = {1, t, t2, . . . , tn} is a basis for Pn. This is the standard
basis for Pn.

Example (Fourier Series)

The set containing {sin(nt), cos(nt)}, where n = 0, 1, 2, . . . is a basis for
square-integrable periodic functions on [−π, π] (written L2(T)).
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A More Familiar Example

Example

Let

v 1 =

 0
2
−1

 , v 2 =

 2
2
0

 , v 3 =

 6
16
−5


and set H = Span{v 1, v 2, v 3}.
Since v 3 = 5v 1 + 3v 2, we may actually write

H = Span{v 1, v 2}.

In particular, {v 1, v 2} is a basis for H.
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Spanning Set Theorem

Theorem (Theorem 5)

Let S = {v 1, . . . , vp} be a set in a vector space V and let
H = Span{v 1, . . . , vp}.

a. If a vector v k in S is a linear combination of the other vectors in S,
then the set obtained by removing v k from S still spans H.

b. If H 6= {0}, then some subset of S is a basis for H.
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Bases for NulA and ColA.

Recall that to find a basis for the null space of a matrix A, we write
the general solution to Ax = 0 in parametric vector form. This
writes the general solution as a linear combination of the basis
vectors.

To find a basis for the column space of a matrix A, we put the
matrix in echelon form to identify the pivot columns. We then keep
the pivot columns in the original matrix.
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Practice Problems

Example

Let V and W be vector spaces.

Suppose T : V →W and U : V →W are linear transformations.

Let {v 1, . . . , vp} be a basis for V .

Show that if T (v j) = U(v j) for every j = 1, . . . , p, then T (x) = U(x)
for every vector x in V .
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MyLab Problems
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Section 4.4 - Coordinate Systems

Theorem (Unique Representation)

Let B = {b1, . . . , bn} be a basis for a vector space V . Then for each
x ∈ V , there exist unique scalars c1, . . . , cn such that

x = c1b1 + · · ·+ cnbn.

Definition

We define the coordinates of x relative to B to be the vector

[x ]B =

 c1

...
cn

 .
The mapping

x 7→ [x ]B

is called the coordinate mapping.
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Examples (Rn Case)

All of the old examples from Rn are relevant here:

Finding the coordinates of x with respect to a basis B is equivalent
to solving Ac = x , where the columns of A are given by the vectors
in B.
If [x ]B = c , then x = Ac , where the columns of A are given by the
vectors in B.

Given a basis B = {b1, . . . ,bn} for Rn, we set

PB = [b1 b2 · · · bn].

We call this the change-of-coordinates matrix from B to the
standard basis. We have

x = PB [x ]B .

The inverse of PB is precisely the coordinate mapping:

P−1
B x = [x ]B .
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Example

Example

It can be shown that

B = {1 + t, 1 + t2, t + t2}

is a basis for P2. Find the coordinates of p(t) = 6 + 3t − t2 relative to B.

Solution: [p]B =

 5
1
−2

.
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The Coordinate Mapping

Theorem (Theorem 8)

Suppose B is a basis for a vector space V . Then the coordinate map
x 7→ [x ]B is a one-to-one linear transformation from V onto Rn.

We say that the coordinate map is an isomorphism between V and
Rn (i.e. one-to-one and onto).

This tells us that any vector space with a basis consisting of n
elements is essentially ‘the same’ as Rn.

Useful Fact: If V is isomorphic to Rn and has a basis {b1, . . .bn}, then a
set {v 1, . . . , vp} in V is independent if and only {[v 1]B , . . . , [vp]B} is
independent.
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Example: Polynomials

Example

The basis B = {1, t, . . . , tn} shows that Pn is isomorphic to Rn+1. In
particular, we naturally identify a polynomial

p(t) = c0 + c1t + · · ·+ cnt
n

with its coordinates

[p]B =


c0

c1

...
cn

 .
However, we can use a different basis for Pn; then the coordinates would
change...
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Section 4.5 - The Dimension of a Vector Space

Theorem (Theorem 10)

If a basis V has a basis with n vectors, then every basis of V has exactly
n vectors.

Proof.

Suppose B is a basis with n elements and C is a basis with m elements.
Passing through the coordinate map, we can construct an isomorphism
between Rn and Rm. Thus n = m.

Definition

If V is spanned by a finite set, we call V finite-dimensional. Then (by
the Spanning Set Theorem), V has a basis. We define dimV to be the
number of elements in this (and any) basis.

The dimension of the vector space {0} is zero by definition.

If V is not spanned by a finite set then V is infinite dimensional.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Examples

The dimension of Rn is n.

Subspaces of R3 have dimension 0, 1, 2, or 3.

The dimension of Pn is n + 1.

The dimension of P is infinite.

The dimension of S (the sequence space) is infinite.

The dimension of the kernel of

T = d2

dx2 + ω2

is two.

The dimension of the range of d
dx is infinite.
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Another example

Example

Find the dimension of the subspace

H =

{
a− 3b + 6c

5a + 4d
b − 2c − d

5d

 : a, b, c , d ∈ R
}
.

We write this as the span of
1
5
0
0

 ,

−3

0
1
0

 ,


6
0
−2

0

 ,


0
4
−1

5

 .
Using this, we may deduce dimH = 3.
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Subspaces and the Basis Theorem

Theorem (Theorem 11)

Let H be a subspace of a finite-dimensional vector space V . Any linearly
independent set in H can be extended (if necessary) to a basis of H.
Furthermore, H is finite-dimensional and

dimH ≤ dimV .

Theorem (Theorem 12 - The Basis Theorem)

Suppose V is a p-dimensional vector space with p ≥ 1. Any linearly
independent set of exactly p elements in V is automatically a basis for V .
Any set of exactly p elements that spans V is automatically a basis for V .
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Dimensions of Familiar Subspaces

For the null space and column space of a matrix A we have the following:

The dimension of NulA is the number of free variables in the
equation Ax = 0.

The dimension of ColA is the number of pivot columns in A.

We discussed this in Chapter 2. You will work out numerical examples
in the MyLab homework.
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MyLab Problems
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MyLab Problems
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Section 4.6 - Rank

For an m× n matrix A, we define the column space ColA to be the
span of the columns of A. It is a subspace of Rm.

We define the row space Row A to be the span of the rows of A. It
is a subspace of Rn.

The null space NulA is the set of solutions to Ax = 0. It is a
subspace of Rn.

Definition (Rank)

The rank of A is the dimension of the column space of A.

Theorem (Theorem 14 - The Rank Theorem)

Let A be m × n. We have

rankA = dim Col A = dim Row A = # of pivot positions in A.

Furthermore,
rankA + dim Nul A = n.
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Row Space

The only new part in the Rank Theorem is the part about the row
space. We need the following:

Theorem (Theorem 13)

If A and B are row equivalent, then RowA = Row B.

If B is in echelon form, then the nonzero rows of B form a basis for
Row A.

Key Observation: if B is obtained from A by row operations, then
the rows of B are linear combinations of the rows of A.

With this theorem in place, we can see that the column and row
spaces have the same dimension.
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Example

Example

Find bases for the row space, column space, and null space of

A =


−2 −5 8 0 −17

1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

 .

Solution. Reduce A to an echelon form:

A ∼


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0

 .
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Example (Continued)

Example

Basis for RowA:

{(1, 3,−5, 1, 5), (0, 1,−2, 2,−7), (0, 0, 0,−4, 20)}.

Basis for ColA: {
−2

1
3
1

 ,


−5

3
11

7

 ,


0
1
7
5

}.
Basis for NulA: We should put the matrix in reduced echelon form.
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Example (Continued)

Example

A ∼ B ∼


1 0 1 0 1
0 1 −2 0 3
0 0 0 1 −5
0 0 0 0 0

 .
Thus a basis for NulA is

{
−1

2
1
0
0

 ,


−1
−3

0
5
1


}
.
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More Examples; MyLab Problem

If A is 7× 9 and dim NulA = 2, what is the rank of A?

Can a 6× 9 matrix have a two-dimensional null space?
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MyLab Problem
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Section 4.7 - Change of Basis

Theorem (Theorem 15)

Let B = {b1, . . . ,bn} and C = {c1, . . . , cn} be bases for a vector space
V . There exists a unique n × n matrix PC←B (the
change-of-coordinates matrix) such that

[x ]C = PC←B [x ]B

for every x in V .

The columns of PC←B are given by

PC←B =
[

[b1]C [b2]C · · · [bn]C
]
.

Proof.

Writing ek for the standard basis vectors, we have ek = [bk ]B .
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Visualizing PC←B

��� $)"15&3 � Vector Spaces

This formula gives Œ x !C , once we know the columns of the matrix. From (1),

Œ b1 !C D
!

4
1

"
and Œ b2 !C D

!
!6

1

"

Thus (3) provides the solution:

Œ x !C D
!

4 !6
1 1

"!
3
1

"
D
!

6
4

"

The C-coordinates of x match those of the x in Figure 1.

The argument used to derive formula (3) can be generalized to yield the following
result. (See Exercises 15 and 16.)

5)&03&. �� Let B D fb1; : : : ; bng and C D fc1; : : : ; cng be bases of a vector space V . Then
there is a unique n " n matrix PC B such that

Œ x !C D PC B Œ x !B (4)

The columns of PC B are the C-coordinate vectors of the vectors in the basis B.
That is,

PC B D
#

Œb1!C Œb2 !C # # # Œbn!C
$

(5)

The matrix PC B in Theorem 15 is called the change-of-coordinates matrix from
B to C. Multiplication by PC B converts B-coordinates into C-coordinates.2 Figure 2
illustrates the change-of-coordinates equation (4).

!n !n

[  ]C

[x]C

x

[  ]B

C←B

multiplication

by     P [x]B

V

'*(63& � Two coordinate systems for V .

The columns of PC B are linearly independent because they are the coordinate
vectors of the linearly independent set B. (See Exercise 25 in Section 4.4.) Since PC B
is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both
sides of equation (4) by . PC B /!1 yields

. PC B /!1Œ x !C D Œ x !B

2 To remember how to construct the matrix, think of PC B Œ x !B as a linear combination of the columns of
PC B . The matrix-vector product is a C-coordinate vector, so the columns of PC B should be C-coordinate

vectors, too.

SECOND REVISED PAGES
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Example

Example

Let

b1 =

[
−9

1

]
, b2 =

[
−5
−1

]
, c1 =

[
1
−4

]
, c2 =

[
3
−5

]
.

To compute PC←B we solve

[c1 c2 |b1 b2 ] ∼
[

1 0 6 4
0 1 −5 −3

]
,

yielding

PC←B =

[
6 4
−5 −3

]
.
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Remarks

The previous example generalizes: in the case of V = Rn, we may
compute PC←B by

[ c1 c2 · · · cn | b1 b2 · · · bn] ∼ [In | PC←B ].

(PC←B)−1 = PB←C

If V = Rn and E denotes the standard basis, then PE←B is the same
as the change of coordinates matrix PB from Section 4.4.

Using the previous observation, we deduce

PC←B = P−1
C PB .
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Practice Problems

Example (MyLab Problem)

If B = {b1,b2} and C = {c1, c2} are bases for V and

b1 = −4c1 + 2c2 and b2 = 8c1 − 6c2,

then

PC←B =

[
−4 8

2 −6

]
.

If x = 7b1− 6b2, then to find [x ]C we apply the matrix above to

[
7
−6

]
.
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MyLab Problem
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Section 4.9 - Applications to Markov Chains

A vector with nonnegative entries that add up to 1 is called a
probability vector.

A stochastic matrix is a square matrix whose columns are
probability vectors.

A Markov chain is a sequence of probability vectors x0, x1, x2,
together with a stochastic matrix P such that

xk+1 = Pxk for k = 0, 1, 2, . . .

We call each xk a state vector.
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Example

��� $)"15&3 � Vector Spaces

could indicate that 60% of the population lives in the city and 40% in the suburbs. The
decimals in x0 add up to 1 because they account for the entire population of the region.
Percentages are more convenient for our purposes here than population totals.

A vector with nonnegative entries that add up to 1 is called a probability vector. A
stochastic matrix is a square matrix whose columns are probability vectors. A Markov
chain is a sequence of probability vectors x0; x1; x2 ; : : :, together with a stochastic
matrix P , such that

x1 D P x0; x2 D P x1; x3 D P x2 ; : : :

Thus the Markov chain is described by the first-order difference equation

xkC1 D P xk for k D 0; 1; 2 ; : : :

When a Markov chain of vectors in Rn describes a system or a sequence of
experiments, the entries in xk list, respectively, the probabilities that the system is in
each of n possible states, or the probabilities that the outcome of the experiment is one
of n possible outcomes. For this reason, xk is often called a state vector.

&9".1-& � Section 1.10 examined a model for population movement between a
city and its suburbs. See Figure 1. The annual migration between these two parts of the
metropolitan region was governed by the migration matrix M :

From:
City Suburbs To:

M D
!
:95
:05

:03
:97

"
City
Suburbs

That is, each year 5% of the city population moves to the suburbs, and 3% of the
suburban population moves to the city. The columns of M are probability vectors, so
M is a stochastic matrix. Suppose the 2014 population of the region is 600,000 in the
city and 400,000 in the suburbs. Then the initial distribution of the population in the
region is given by x0 in (1) above. What is the distribution of the population in 2015?
In 2016?

.03

.05
.95 .97

City Suburbs

'*(63& � Annual percentage migration between city and suburbs.

40-65*0/ In Example 3 of Section 1.10, we saw that after one year, the population

vector
!

600;000
400;000

"
changed to

!
:95 :03
:05 :97

"!
600;000
400;000

"
D
!

582 ;000
418;000

"

SECOND REVISED PAGES
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Steady-State Vectors

A steady-state vector for a stochastic matrix P is a probability vector q
so that

Pq = q.

Theorem (Theorem 18)

If P is a ‘regular’ stochastic matrix, then P has a unique steady-state
vector q. Furthermore, if x0 is any initial state and xk+1 := Pxk for
k ≥ 0, then the Markov chain xk converges to q as k →∞.

To find a steady state vector, we should find a basis for the null
space of P − I , which is evidently one-dimensional. Then ‘normalize’
to produce a probability vector.
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Chapter 5
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Section 5.1 - Eigenvectors and Eigenvalues

Definition

An eigenvalue of an n × n matrix A is a scalar λ such that the equation

Ax = λx has a nontrivial solution.

A nonzero solution to Ax = λx is called an eigenvector of A
(corresponding to λ).

Warning! Although we primarily consider matrices with real-valued
entries, the eigenvalues of A may be complex-valued, and the
entries of the eigenvectors may also be complex-valued!

By definition, eigenvectors must be nonzero. Why is this
reasonable?

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Examples

Example

Let

A =

[
1 6
5 2

]
, u =

[
6
−5

]
, v =

[
3
−2

]
.

Are u and v eigenvectors of A?

Solution. Compute

Au =

[
−24

20

]
= −4u,

so u is an eigenvector, but

Av =

[
−9
11

]
6= λv for any λ.
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Examples

Example

Show that 7 is an eigenvalue of

A =

[
1 6
5 2

]
.

Solution. We need to find a nontrivial solution to

Ax = 7x , i.e. (A− 7I )x = 0.

Since

A− 7I =

[
−6 6

5 −5

]
∼
[

1 −1
0 0

]
,

we find that 7 is an eigenvalue. Any multiple of [1 1]T is an eigenvector.
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Eigenspaces

If λ is an eigenvalue of A, then the eigenspace Eλ of A is defined to
be the null space of A− λI .
In particular, Eλ consists of all eigenvectors of A corresponding to
eigenvalue λ, together with the zero vector.

In the preceding example, we saw that E7 is the line through the
origin in R2 spanned by [1 1]T .
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Example

Example

Let

A =

 4 −1 6
2 1 6
2 −1 8

 .
Given that λ = 2 is an eigenvalue, find a basis for the eigenspace E2.

Solution. Note that

A− 2I =

 2 −1 6
2 −1 6
2 −1 6

 ∼
 2 −1 6

0 0 0
0 0 0

 .
Thus a basis is given by 

 1
2
0

 ,
 −3

0
1

 .
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Special Cases

Theorem (Theorem 1)

The eigenvalues of a triangular matrix are given by its diagonal entries.

Proof.

If λ equals one of the diagonal entries, then A− λI will not have a pivot
in every column.

A matrix A has eigenvalue λ = 0 if and only if A is not invertible.

Indeed, both are equivalent to the fact that Ax = 0 has a non-trivial
solution.
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Independence of Eigenvectors

Theorem (Theorem 2)

Suppose v 1, . . . , v r are eigenvectors corresponding to distinct
eigenvalues λ1, . . . , λr of a matrix A. Then the set {v 1, . . . , v r} is
linearly independent.

Proof.

Suppose {v 1, . . . , v k} is independent. Now suppose

c1v 1 + · · ·+ ck+1v k+1 = 0. (1)

Apply A to get
λ1c1v 1 + · · ·+ λk+1ck+1v k+1 = 0.(2)

Multiply (1) by λk+1 and subtract from (2) to get

(λ1 − λk+1)c1v 1 + · · ·+ (λk − λk+1)ckv k = 0.

Thus...
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Practice Problems

If x is an eigenvector of A corresponding to eigenvalue λ, what is
A3x?

If λ is an eigenvector of an invertible matrix A, then λ−1 is an
eigenvalue of A−1.

Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of
AT .
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MyLab Problems
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MyLab Problems
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Section 5.2 - The Characteristic Equation

We need a systematic way of determining the eigenvalues λ of a
matrix A. (Once we have done so, we can find eigenvectors by
solving the homogeneous equation (A− λI )x = 0.)

Finding λ such that A− λI is not invertible is equivalent to finding
λ such that

det[A− λI ] = 0. (∗)
The equation (∗) is called the characteristic equation.
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Example

Example

Find the characteristic equation of

A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1

 .
Solution. As the matrix is triangular we deduce

det[A− λI ] = (5− λ)2(3− λ)(1− λ).

In particular, the eigenvalues are λ = 5, 3, 1. We say that λ = 5 has
multiplicity 2.
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The Characteristic Polynomial

Given an n × n matrix A, we may define p : C→ C by

p(λ) = det[A− λI ].

Then the characteristic equation becomes p(λ) = 0.

In fact, it turns out that p(λ) is a degree n polynomial in λ, called
the characteristic polynomial of A.
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Example

Example

If the characteristic polynomial of a 6× 6 matrix is λ6 − 4λ5 − 12λ4, find
the eigenvalues and multiplicities.

Solution. Factor the polynomial as

λ4(λ2 − 4λ− 12) = λ4(λ− 6)(λ+ 2).

The eigenvalues are λ = 0 (with multiplicity 4), λ = 6, and λ = −2.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Similarity of Matrices

Definition

Two n × n matrices A and B are similar if there exists an invertible
matrix P such that A = PBP−1.

Similarity of matrices is an equivalence relation.

Similarity is not related to row equivalence.

Theorem (Theorem 4)

If A and B are similar, then they have the same characteristic polynomial
and hence the same eigenvalues (including multiplicities).

Matrices can have the same eigenvalues without being similar.
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Dynamical Systems

A dynamical system is given by an initial state vector x0 ∈ Rn and an
n × n matrix A through the recursion relation

xk+1 = Axk .

For example, Markov chains are examples of dynamical systems; steady
state vectors are eigenvectors with eigenvalue λ = 1.

The eigenvalues/eigenvectors of A may allow us to determine the
‘long-time behavior’ of the dynamical system.

For example, if {v 1, . . . , vn} were a basis of eigenvectors for A with
eigenvalues λ1, . . . , λn and

x0 = c1v 1 + · · ·+ cnvn,

then we would have

xk = c1λ
k
1v 1 + · · ·+ cnλ

k
nvn.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Section 5.3 - Diagonalization

In applications, it is desirable to construct a basis of eigenvectors for
a given matrix A.

Finding a basis of eigenvectors is equivalent to diagonalizing the
matrix A.

Definition

A square matrix A is diagonalizable if it is similar to a diagonal matrix,
that is, if

A = PDP−1

for some invertible matrix P and diagonal matrix D.
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The Diagonalization Theorem

Theorem (Theorem 5 - The Diagonalization Theorem)

An n × n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.

In fact, A = PDP−1 if and only if the columns of P are n linearly
independent eigenvectors of A. In this case, the entries of D are the
corresponding eigenvalues.

Proof Sketch: Observe that A = PDP−1 is equivalent to AP = PD,
which in turn is equivalent to

Av i = λiv i ,

where v i is the i th column of P and λi is the i th entry of D along
the diagonal.
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Example 1

Example

If possible, diagonalize the following matrix:

A =

 1 3 3
−3 −5 −3

3 3 1

 .
The steps are as follows:

Find the eigenvalues of A.

Find three linearly independent eigenvectors of A.

Construct P and D so that A = PDP−1.
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Example 1 (Continued)

Example (Continued)

To find the eigenvalues of A, we solve the characteristic equation:

0 = det(A− λI ) = −λ3 − 3λ2 + 4 = −(λ− 1)(λ+ 2)2.

The eigenvalues are λ = 1 and λ = −2 (multiplicity 2).
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Example 1 (Continued)

Example (Continued)

We next find a basis for each eigenspace Eλ, i.e. the null space of
A− λI .

Basis for λ = 1 is given by v 1 =

 1
−1

1

.

Basis for λ = −2 is given by v 2 =

 −1
1
0

 and v 3 =

 −1
0
1

.
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Example 1 (Continued)

Example (Continued)

Now we form the matrices P and D:

P =

 1 −1 −1
−1 1 0

1 0 1

 , D =

 1 0 0
0 −2 0
0 0 −2

 .
We can then verify that A = PDP−1.
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Example 2

Example

Diagonalize the following matrix, if possible:

A =

 2 4 3
−4 −6 −3

3 3 1

 .
The characteristic equation is the same as in Example 1, and so the
eigenvalues are

λ = 1 and λ = −2 (with multiplicity 2).
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Example 2 (Continued)

Example (Continued)

We next find bases for the eigenspaces Eλ:

Basis for λ = 1 is given by v 1 =

 1
−1

1

.

Basis for λ = −2 is given by v 2 =

 −1
1
0

.

Conclusion: The matrix A is not diagonalizable.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Diagonalizability

Theorem (Theorem 6)

An n × n matrix with n distinct eigenvalues is diagonalizable.

Proof.

Eigenvectors corresponding to distinct eigenvalues are independent.

This gives a sufficient condition for diagonalizability, although it is
not necessary (cf. Example 1 above).
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Example

Example

Determine whether or not the following matrix is diagonalizable:

A =

 5 −8 1
0 0 7
0 0 −2

 .
Solution. The matrix is triangular and has eigenvalues λ = 5, 0,−2.
Thus A is diagonalizable.
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Powers of a Diagonalizable Matrix

Diagonalizing a matrix A is useful if you need to compute powers of
A, since

A = PDP−1 =⇒ Ak = PDkP−1,

and computing powers of a diagonal matrix is straightforward, cf. a 0 0
0 b 0
0 0 c

k

=

 ak 0 0
0 bk 0
0 0 ck

 .
Application: Computing matrix exponentials to solve linear systems
of differential equations.
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Repeated Eigenvalues
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Example

Example

Diagonalize the following matrix if possible:

A =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 −3


Solution: The matrix is triangular and has eigenvalues λ = 5,−3, each
with multiplicity 2.

We look for bases for each eigenspace.
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Example (Continued)

Basis for λ = 5: v 1 =


−8

4
1
0

 , v 2 =


−16

4
0
1

.

Basis for λ = −3: v 3 =


0
0
1
0

, v 4 =


0
0
0
1

 .
The matrix is diagonalizable, with

P = [v 1 v 2 v 3 v 4] and D = diag{5, 5,−3,−3}.
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Practice Problems

Suppose A is 4× 4 and has eigenvalues 5, 3,−2. Suppose E3 is
two-dimensional. Is A diagonalizable?

How would you compute A8 if A =

[
4 −3
2 −1

]
?
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MyLab Problems
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MyLab Problems
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Section 5.4 - Eigenvectors and Linear Transformations

Recall that any linear transformation T : Rn → Rm may be
represented by an m × n matrix A (the standard matrix of T ), i.e.

T (x) = Ax for all x ∈ Rn.

More generally, suppose T : V →W is a linear transformation with
dimV = n and dimW = m. Let B,C be bases for V ,W ,
respectively. Now define the m × n matrix M by

M =
[

[T (b1)]C · · · [T (bn)]C
]
.

It follows that

[T (x)]C = M[x ]B for all x ∈ V .

We call M the matrix for T relative to the bases B and C .
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Matrix of a Linear Transformation

Eigenvectors and Linear Transformations

The Matrix of a Linear Transformation
Let V be an n-dimensional vector space, let W be an m-dimensional vector space, and
let T be any linear transformation from V to W . To associate a matrix with T , choose
(ordered) bases B and C for V and W , respectively.

Given any x in V , the coordinate vector Œ x !B is in Rn and the coordinate vector of
its image, Œ T .x/ !C , is in Rm, as shown in Figure 1.

[x]B

!n
!m

x

V T W

T(x)

[T(x)]C

A linear transformation from V to W .

The connection between Œ x !B and Œ T .x/ !C is easy to find. Let fb1; : : : ; bng be the
basis B for V . If x D r1b1 C ! ! ! C rnbn, then

Œx!B D

2

64
r1
:::

rn

3

75

and
T .x/ D T .r1b1 C ! ! ! C rnbn/ D r1T .b1/ C ! ! ! C rnT .bn/ (1)

because T is linear. Now, since the coordinate mapping from W to Rm is linear
(Theorem 8 in Section 4.4), equation (1) leads to

Œ T .x/ !C D r1Œ T .b1/ !C C ! ! ! C rnŒ T .bn/ !C (2)

Since C-coordinate vectors are in Rm, the vector equation (2) can be written as a matrix
equation, namely,

Œ T .x/ !C D M Œ x !B (3)

where

M D
!

Œ T .b1/ !C Œ T .b2/ !C ! ! ! Œ T .bn/ !C
"

(4)

The matrix M is a matrix representation of T , called the matrix for T relative to the
bases B and C. See Figure 2.

[T(x)]C

T(x)
T

x

Multiplication
by M

[x]B

Equation (3) says that, so far as coordinate vectors are concerned, the action of T
on x may be viewed as left-multiplication by M .

Suppose B D fb1; b2g is a basis for V and C D fc1; c2; c3g is a basis
for W . Let T W V ! W be a linear transformation with the property that

T .b1/ D 3c1 " 2c2 C 5c3 and T .b2/ D 4c1 C 7c2 " c3

Find the matrix M for T relative to B and C.

SECOND REVISED PAGES
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Example

Example

If B = {b1,b2} and C = {c1, c2, c3} are bases for V , W , and
T : V →W is a linear transformation such that

T (b1) = 3c1 − 2c2 + 5c3 and T (b2) = 4c1 + 7c2 − c3,

then

M =

 3 4
−2 7

5 −1

 .
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Linear Transformations on V

Often, we take V = W and C = B, in which case the matrix M is
called the matrix for T relative to B, or the B-matrix for T ,
denoted by [T ]B . In particular,

[T (x)]B = [T ]B [x ]B for all x ∈ V .
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Example

Example

Let T : P2 → P2 be given by T (p) = p′.

(i) Find the B matrix for T , where B = {1, t, t2}. (ii) Check that
[T (p)]B = [T ]B [p]B .

Solution. (i) Since

T (1) = 0, T (t) = 1, T (t2) = 2t,

we get

[T ]B =

 0 1 0
0 0 2
0 0 0

 .
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Example (Continued)

Example (Continued)

(ii) Note that
T (a0 + a1t + a2t

2) = a1 + 2a2t,

so

[T (p)]B = [a1 + 2a2t]B =

 a1

2a2

0

 ,
while

[T ]B [p]B =

 0 1 0
0 0 2
0 0 0

 a0

a1

a2

 =

 a1

2a2

0

 .
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Linear Transformations on Rn

Theorem (Theorem 8 - Diagonal Matrix Representation)

Suppose A = PDP−1, where D is a diagonal n × n matrix. If B is the
basis of Rn formed from the columns of P, then D is the B-matrix for
the transformation x 7→ Ax .

Proof.

The essential facts are

P[x ]B = x and [x ]B = P−1x .
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Example

Example

Let T : R2 → R2 be given by T (x) = Ax , with

A =

[
7 2
−4 1

]
.

Find a basis B for R2 such that the B-matrix for T is diagonal.

Solution. Diagonalize A as A = PDP−1, where

P =

[
1 1
−1 −2

]
and D =

[
5 0
0 3

]
.

Let B = {b1,b2} be the basis consisting of the columns of P.

Then D is the B-matrix of T .
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Similarity of Matrix Representations

• More generally, if A and C are similar n × n matrices, then they
represent the same linear transformation.

Indeed: if T (x) = Ax and A = PCP−1, then C = [T ]B , where B is the
basis consisting of the columns of P.

• In fact, if B is any basis for Rn, then [T ]B is similar to A.

To see this, define P to have columns given by the vectors in B. Then

A = P[T ]BP
−1.

• As before, the essential facts are P[x ]B = x and [x ]B = P−1x .
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Section 5.5 - Complex Eigenvalues

The characteristic polynomial of a (real-valued) n × n matrix A is a
degree n polynomial, and hence it has n roots (“fundamental
theorem of algebra”).

Roots may be repeated (as we have seen), but they may also be
complex.

A complex number has the form

z = x + iy

where x , y are real numbers and i satisfies i2 = −1. We write z ∈ C.

The magnitude of z is |z | =
√
x2 + y2.

A complex vector is a vector with complex entries. We write
x ∈ Cn.
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Complex Eigenvalues and Eigenvectors

A complex eigenvalue/eigenvector pair for a matrix A is a
complex number λ and a non-zero complex vector x satisfying

Ax = λx .

The method for finding complex eigenvalues/eigenvectors is the
same as the real case; however, now we have to work with complex
numbers.

Real matrices may have complex eigenvalues/eigenvectors.
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Example

Example

Let

A =

[
0 −1
1 0

]
.

This is counterclockwise rotation by 90◦. There are no real
eigenvalues/eigenvectors.

The characteristic equation is λ2 + 1 = 0, which has roots λ = ±i .
Eigenvectors corresponding to λ = ±i are given by[

1
−i

]
and

[
1
i

]
.
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Example

Example

Find the eigenvalues and eigenvectors of

A =

[
.5 −.6
.75 1.1

]
.

Solution. The characteristic equation is

0 = det

[
.5− λ −.6

.75 1.1− λ

]
= λ2 − 1.6λ+ 1.

By the quadratic formula, the eigenvalues are

λ = .8± .6i .
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Example (Continued)

Example (Continued)

Let λ = .8− .6i . We look for the eigenspace Eλ:

A− (.8− .6i)I =

[
−.3 + .6i −.6

.75 .3 + .6i

]
.

We use either row. We need to solve

.75x1 + (.3 + .6i)x2 = 0,

which we may solve with

x =

[
−2− 4i

5

]
.
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Example (Continued)

Example (Continued)

Similarly, we can find an eigenvector for λ = .8 + .6i is given by

x2 =

[
−2 + 4i

5

]
.
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Real and Imaginary Parts of Vectors

If z = x + iy is a complex number, then we write x = Re z and
y = Im z for the real and imaginary parts of z .

Similarly, a complex vector can be written as v = [ Re v ] + i [ Im v ],
where we take the real and imaginary part of each entry.

The complex conjugate of z = x + iy is given by z̄ = x − iy .

Similarly, the complex conjugate of a complex vector v is given by

v̄ = Re v − i Im v .

Example:  3− i
i

2 + 5i

 =

 3
0
2

+ i

 −1
1
5

 .
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Some Algebraic Properties

Let r be a scalar, x a vector, and B,C matrices. Then

rx = r̄ x̄ , Bx = B̄ x̄ , BC = B̄C̄ , rB = r̄ B̄.

Suppose A is a real matrix. Then

Ax = Āx̄ = Ax̄ .

If λ is an eigenvalue with eigenvector x ∈ Cn, then

Ax = Ax = λx = λ̄x̄ .

Thus λ̄ is an eigenvalue, with x̄ an eigenvector.

Conclusion: When A is real, complex eigenvalues and eigenvectors
occur in conjugate pairs.
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Example

Example

Let

C =

[
a −b
b a

]
, a, b ∈ R, a, b 6= 0.

The eigenvalues of C are λ = a± bi .

Define r = |λ| =
√
a2 + b2. Then, writing a

r = cosϕ, we can factor

C =

[
r 0
0 r

] [
cosϕ − sinϕ
sinϕ cosϕ

]
.

Then C consists of a rotation by ϕ and a scaling by |λ|.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



General Case - Complex Eigenvalues

Theorem (Theorem 9)

Let A be a real 2× 2 matrix with complex eigenvalue λ = a− bi (with
b 6= 0) and associated eigenvector v ∈ C2. Then

A = PCP−1,

where

P = [ Re(v) Im(v) ] and C =

[
a −b
b a

]
.

In higher dimensions, a complex conjugate eigenvalue pair for A
corresponds to a plane on which A acts as a rotation combined with
a scaling.
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Example

Example

Return to the matrix

A =

[
.5 −.6
.75 1.1

]
, with λ = −8− 6i and v 1 =

[
−2− 4i

5

]
.

Set

P =

[
−2 −4

5 0

]
and C =

[
.8 −.6
.6 .8

]
.

Then A = PCP−1. Note that C is a pure rotation.
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MyLab Problems
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Section 5.7 - Applications to Differential Equations

Remark. My presentation deviates from the book significantly.

A system of linear differential equations takes the form

x ′(t) = Ax(t),

where x(t) is a function of t taking values in Rn, A is an n × n
matrix, and x ′(t) is the component-wise derivative of x(t).

Example

A second order ODE of the form

y ′′ + by ′ + cy = 0

may be rewritten as

x ′ = Ax , x =

[
y
y ′

]
, A =

[
0 1
−c −b

]
.
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The Matrix Exponential

When n = 1, solutions to x ′ = Ax are of the form x(t) = eAtc .

The same will be true for n > 1.

Definition (Matrix Exponential)

For an n × n matrix A, we define

eA =
∞∑
k=0

1
k!A

k .

Theorem

Solutions to x ′ = Ax are of the form x(t) = eAtc , where c is a fixed
vector in Rn.

(In fact, c = x(0), called the initial condition.)
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Examples

Example

If A = diag(λ1, . . . , λn), then

eA = diag(eλ1 , . . . , eλn).

Example

If A = PDP−1, then
eA = PeDP−1.

Combining these two examples, we find that if A is diagonalizable, then
we can compute its matrix exponential.
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Examples

Example

We have e0 = I .

More generally, if A is ‘nilpotent’ (meaning Ap = 0 for some p), then

eA =

p−1∑
k=0

1
k!A

k .

Example

If AB = BA, then
eA+B = eAeB = eBeA.

In particular, eA is always invertible, with

(eA)−1 = e−A.
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Numerical Example

Example

Consider

y ′′ − 4y ′ + 3y = 0 =⇒ x ′ = Ax , A =

[
0 1
−3 4

]
.

To solve to ODE x ′ = Ax , we diagonalize A:

A = PDP−1, P =

[
1 1
1 3

]
, D = diag(1, 3).

Then
etA = P[diag(et , e3t)]P−1.
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Numerical Example (continued)

Example (Continued)

Computing etApj for pj equal to the columns of P, we get the solutions

etApj = Pdiag(et , e3t)e j ; x(t) =

[
et

et

]
,

[
e3t

3e3t

]
.

In terms of the original ODE, this gives the solutions y(t) = et and
y(t) = e3t .

In fact, any solution is a linear combination of the two (independent)
solutions above, because the set of solutions is a vector space with
dimension two.
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Complex Eigenvalues

If A is diagonalizable with complex eigenvalues, then the method
above will yield complex-valued solutions to a real-valued ODE. /

Instead, recall that if A is a real-valued 2× 2 matrix with complex
eigenvalues λ = a± bi , then we can write

A = PCP−1, C =

[
a −b
b a

]
,

where the columns of P are given by Re(v) and Im(v) for an
eigenvector v corresponding to λ = a− bi .
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Complex Eigenvalues (continued)

To compute eCt , write

C = aI + bσ, σ =

[
0 −1
1 0

]
and note that Iσ = σI = σ.

Now compute

σ2 = −I , σ3 = −σ, σ4 = I , . . .

from which we deduce

ebtσ =

[
cos(bt) − sin(bt)
sin(bt) cos(bt)

]
.
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Complex Eigenvalues (Continued)

Finally (recalling A = PCP−1),

eAt = eatPebtσP−1 = eatP

[
cos(bt) − sin(bt)
sin(bt) cos(bt)

]
P−1.

As before, to solve the ODE we would use the vectors comprising
the columns of P. This leads to the following solutions:

x1(t) = eatP

[
cos(bt)
sin(bt)

]
= eat [cos(bt) Re(v) + sin(bt) Im(v)],

x2(t) = eatP

[
− sin(bt)

cos(bt)

]
= eat [− sin(bt) Re(v) + cos(bt) Im(v)].
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Complex Eigenvalues (conclusion)

Theorem

Consider the real-valued 2× 2 ODE system

x ′ = Ax .

Suppose A has eigenvalues λ = a± ib and that v is an eigenvector
corresponding to eigenvalue λ = a− ib. A basis of solutions is given by

x1(t) = eat [cos(bt) Re(v) + sin(bt) Im(v)],

x2(t) = eat [− sin(bt) Re(v) + cos(bt) Im(v)].
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Phenomenology in Planar Systems

In the case of diagonalizable, invertible 2× 2 matrices, we can find the
following behaviors of solutions to the corresponding ODE systems
(characterized by the eigenvalues):

Source: ++

Sink: −−
Saddle point: +−
Center: complex, a = 0

Spiral source: complex, a > 0

Spiral sink: complex, a < 0
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ODE Trajectories
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ODE Trajectories
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ODE Trajectories
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Non-diagonalizable Matrices

While not every matrix is diagonalizable, every matrix can be put in
Jordan canonical form (which is closely related).

This form can be used to compute the matrix exponential.

We will not pursue the general theory, but let us consider one
example.
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Example

Example

Consider

y ′′ − 2y ′ + y = 0 =⇒ x ′ = Ax , A =

[
0 1
−1 2

]
The eigenvalues of A are λ = 1 (multiplicity 2); however,

A− I =

[
−1 1
−1 1

]

has one-dimensional null space, spanned by

[
1
1

]
.

So A is not diagonalizable!

Observe, however, that (A− I )2 = 0.
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Example (Continued)

Example (Continued)

So, we may write

eAt = e Ite(A−I )t = et
{
I + (A− I )t} = et

[
1− t t
−t 1 + t

]
.

To find solutions, we first use the eigenvector, yielding the solution

x1(t) = eAt
[

1
1

]
= et

[
1
1

]
.

We next choose a vector independent of the eigenvector, e.g.

x2(t) = eAt
[

0
1

]
= et

[
t

1 + t

]
.

In terms of the original ODE, we get the solutions

y1(t) = et , y2(t) = tet .
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MyLab Problems
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MyLab Problems
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MyLab Problems
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Section 5.8 - Iterative Estimates for Eigenvalues

The power method applies to an n × n matrix with a strictly dominant
eigenvalue λ1, i.e. an eigenvalue larger in absolute value than all others.
The power method produces a sequence of scalars approximating λ1 and
a sequence of vectors approximating a corresponding eigenvector.
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The Power Method

Iterative Estimates for Eigenvalues

for Example 1. The eigenvalue !1 can be estimated from the sequence fxkg, too. When
xk is close to an eigenvector for !1, the vector Axk is close to !1xk , with each entry in
Axk approximately !1 times the corresponding entry in xk . Because the largest entry in
xk is 1, the largest entry in Axk is close to !1. (Careful proofs of these statements are
omitted.)

Eigenspace

A3x

A2x
Ax
x1 x2 x3

x4

x1

x2

41

Multiple of v1

1

2

x = x0

Scaled multiples of x, Ax, A2x; : : : ; A7x.

1. Select an initial vector x0 whose largest entry is 1.
2. For k D 0; 1; : : : ;

a. Compute Axk .
b. Let "k be an entry in Axk whose absolute value is as large as possible.
c. Compute xkC1 D .1="k/Axk .

3. For almost all choices of x0, the sequence f"kg approaches the dominant
eigenvalue, and the sequence fxkg approaches a corresponding eigenvector.

Apply the power method to A D
!

6 5
1 2

"
with x0 D

!
0
1

"
. Stop

when k D 5, and estimate the dominant eigenvalue and a corresponding eigenvector
of A.

Calculations in this example and the next were made with MATLAB,
which computes with 16-digit accuracy, although we show only a few significant figures
here. To begin, compute Ax0 and identify the largest entry "0 in Ax0:

Ax0 D
!

6 5
1 2

"!
0
1

"
D
!

5
2

"
; "0 D 5

Scale Ax0 by 1="0 to get x1, compute Ax1, and identify the largest entry in Ax1:

x1 D 1

"0
Ax0 D 1

5

!
5
2

"
D
!

1
:4

"

Ax1 D
!

6 5
1 2

"!
1
:4

"
D
!

8
1:8

"
; "1 D 8

Scale Ax1 by 1="1 to get x2, compute Ax2, and identify the largest entry in Ax2:

x2 D 1

"1
Ax1 D 1

8

!
8

1:8

"
D
!

1
:225

"

Ax2 D
!

6 5
1 2

" !
1

:225

"
D
!

7:125
1:450

"
; "2 D 7:125

SECOND REVISED PAGES
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The Inverse Power Method

The inverse power method approximates the value of an arbitrary
eigenvalue, provided one has a good initial estimate α of the true
eigenvalue λ. It works by applying the power method to B = (A− αI )−1,
relying on the fact that if the eigenvalues of A are λ1, . . . , λn, then the
eigenvalues of B are

1
λ1−α , . . . ,

1
λn−α

with the same eigenvectors.
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Inverse Power Method

Iterative Estimates for Eigenvalues

!

1. Select an initial estimate ˛ sufficiently close to !.
2. Select an initial vector x0 whose largest entry is 1.
3. For k D 0; 1; : : : ;

a. Solve .A ! ˛I /yk D xk for yk .
b. Let "k be an entry in yk whose absolute value is as large as possible.
c. Compute #k D ˛ C .1="k/.
d. Compute xkC1 D .1="k/yk .

4. For almost all choices of x0, the sequence f#kg approaches the eigenvalue !
of A, and the sequence fxkg approaches a corresponding eigenvector.

Notice that B , or rather .A ! ˛I /!1, does not appear in the algorithm. Instead of
computing .A ! ˛I /!1xk to get the next vector in the sequence, it is better to solve
the equation .A ! ˛I /yk D xk for yk (and then scale yk to produce xkC1/. Since this
equation for yk must be solved for each k, an LU factorization of A ! ˛I will speed up
the process.

It is not uncommon in some applications to need to know the smallest
eigenvalue of a matrix A and to have at hand rough estimates of the eigenvalues.
Suppose 21, 3.3, and 1.9 are estimates for the eigenvalues of the matrix A below. Find
the smallest eigenvalue, accurate to six decimal places.

A D

2

4
10 !8 !4
!8 13 4
!4 5 4

3

5

The two smallest eigenvalues seem close together, so we use the inverse
power method for A ! 1:9I . Results of a MATLAB calculation are shown in Table 3.
Here x0 was chosen arbitrarily, yk D .A ! 1:9I /!1xk , "k is the largest entry in yk ,
#k D 1:9 C 1="k , and xkC1 D .1="k/yk . As it turns out, the initial eigenvalue estimate
was fairly good, and the inverse power sequence converged quickly. The smallest
eigenvalue is exactly 2.

k 0 1 2 3 4

xk

2

4
1
1
1

3

5

2

4
:5736
:0646

1

3

5

2

4
:5054
:0045

1

3

5

2

4
:5004
:0003

1

3

5

2

4
:50003
:00002

1

3

5

yk

2

4
4:45
:50

7:76

3

5

2

4
5:0131
:0442

9:9197

3

5

2

4
5:0012
:0031

9:9949

3

5

2

4
5:0001
:0002

9:9996

3

5

2

4
5:000006
:000015

9:999975

3

5

"k 7.76 9.9197 9.9949 9.9996 9.999975
#k 2.03 2.0008 2.00005 2.000004 2.0000002

If an estimate for the smallest eigenvalue of a matrix is not available, one can simply
take ˛ D 0 in the inverse power method. This choice of ˛ works reasonably well if the
smallest eigenvalue is much closer to zero than to the other eigenvalues.

SECOND REVISED PAGES
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The Real Inner Product

We previously encountered the dot product (also called the inner
product) between two vectors in Rn, e.g.

u · v = u1v1 + · · ·+ unvn.

We may express this in terms of matrix multiplication by making use
of the transpose operation:

u · v = uTv .

Example

[−2 − 5 1]

 3
2
−3

 = −1,

[3 2 − 3]

 2
−5

1

 = −1.
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Algebraic Properties of the Real Inner Product

Here c refers to a real scalar.
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Conjugate Transpose

From this point forward, we will regularly consider the case of
complex vectors u ∈ Cn.

For a complex matrix A ∈ Cm×n, we define the conjugate
transpose or adjoint of A by

A∗ = (Ā)T ∈ Cn×m.

For example, [
1 1 + i
2 3i

]∗
=

[
1 2

1− i −3i

]
.

We have the following algebraic properties:

(αA + βB)∗ = ᾱA∗ + β̄B∗, (AC )∗ = C∗A∗.
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Complex Inner Product

When u and v are vectors in Cn, we define the inner product of u
and v

u · v = u∗v .

This means  a1

...
an

 ·
 b1

...
an

 = ā1b1 + · · ·+ ānbn ∈ C.

For A = [u1 · · ·uk ] ∈ Cn×k and B = [v 1 · · · v `] ∈ Cn×`, we have

(A∗B)ij = u i · v j .
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Algebraic Properties of the Complex Inner Product

Theorem

For u, v ,w ∈ Cn and α ∈ C:

u · v = v · u
u · (v + w) = u · v + u ·w
α(u · v) = (ᾱu) · v = u · (αv)

If u = [a1 · · · an]T , then

u · u = |a1|2 + · · ·+ |an|2 ≥ 0,

and u · u = 0 if and only if u = 0.

Warning! Some algebraic properties are different in the real and
complex cases!
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Length, Norm, Distance

Definition

The length or norm of a vector v is the nonnegative real number ‖v‖
defined by

‖v‖ =
√

v · v .

Why take the square root?

The definition is the same whether v ∈ Rn or v ∈ Cn.

This notion of length agrees with the standard geometric notion.

Example. The length of v = [1 − 2 2 0]T is ‖v‖ = 3.

A vector u is a unit vector if ‖u‖ = 1.

We use the norm to measure distances between vectors:

distance between u and v = ‖u − v‖.
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Properties of Length

Theorem

For vectors u, v and a scalar α:

‖αu‖ = |α| ‖u‖
‖u · v‖ ≤ ‖u‖ ‖v‖ ( Cauchy–Schwarz inequality)

‖u + v‖ ≤ ‖u‖+ ‖v‖ ( triangle inequality)

This theorem holds in both the real and complex cases.
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Proofs of Inequalities (real-valued case)

Proof of Cauchy–Schwarz.

Define f (λ) = 〈u + λv ,u + λv〉 ≥ 0. Now note that

f (λ) = λ2‖v‖2 + 2λ〈u, v〉+ ‖u‖2 ≥ 0

is a quadratic polynomial in λ. So its discriminant is ≤ 0.

Triangle Inequality.

‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2u · v + ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.
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Examples

Example

Let u = [7 1]T and v = [3 2]T .

(i) Find a unit vector that gives a basis for Span{u}. (Equivalently:
find a unit vector in the same direction as u.)

(ii) Compute the distance between u and v .

(i): Compute

u
‖u‖ = 1√

50
u =

[
7/
√

50

1/
√

50

]
.

(ii): Compute

‖u − v‖ =
√

42 + (−1)2 =
√

17.
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Orthogonality

By the Cauchy–Schwarz inequality, we always have

−1 ≤ u · v
‖u‖ ‖v‖ ≤ 1 (for u, v ∈ Rn).

Thus there exists θ such that

u · v = ‖u‖‖v‖ cos θ.

We call θ the angle between u and v .

Definition

Two vectors u and v are orthogonal (or perpendicular) if u · v = 0.

[Note: The definition is the same whether the vectors are in Rn or Cn.]
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Orthogonality

Definition

Two vectors u and v are orthogonal if u · v = 0

A set S is orthogonal if u and v are orthogonal for every distinct
u, v ∈ S .

A set S is orthonormal if it is orthogonal and every element of S is
a unit vector.

Note: The zero vector is orthogonal to every other vector.

Notation. If u and v are orthogonal, we write u ⊥ v .
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The Pythagorean Theorem

Theorem (Theorem 2)

Two vectors u and v are orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2.

Proof (real-valued case).

‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2u · v .
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Orthogonal Complements

Definition

Let W be a set of vectors. The orthogonal complement of W is the set

W⊥ := {all vectors v such that v ·w = 0 for every w ∈W }.

The definition is the same for Rn and Cn.

For any set W , the set W⊥ is a subspace.

Typically, we consider the case when W itself is a subspace.

The only vector belonging to both W and W⊥ is 0.

What is (W⊥)⊥?

Example

The orthogonal complement of the xy -plane in R3 is the z-axis.
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Orthogonal Complements - Key Theorem

Theorem (Theorem 3 - Real Case)

Let A be a real-valued matrix. Then

[Col A]⊥ = Nul (AT ).

This follows from the more general complex-valued case:

Theorem (Theorem 3 - Complex Case)

Let A be a matrix. Then

[Col A]⊥ = Nul(A∗).
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Orthogonal Complements - Key Theorem

Proof.

Write A = [v 1 · · · vn]. Then

0 = A∗x =

 v∗1
...

v∗n

 x =

 v∗1x
...

v∗nx

 =

 v 1 · x
...

vn · x


if and only v 1 · x = · · · = vn · x = 0.

In the real case, this implies Nul (A) = [Row (A)]⊥
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Example

Example

Find a basis for the orthogonal complement of W = span{v 1, v 2}, where

v 1 =


1
−1

1
−1

 , v 2 =


1
1
1
1

 .
Solution. Let A = [v 1 v 2]. Then

W⊥ = [ColA]⊥ = Nul(AT ).
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Example (Continued)

Example (Continued)

Since

AT =

[
1 −1 1 −1
1 1 1 1

]
∼
[

1 0 1 0
0 1 0 1

]
,

we find W⊥ = span{v 3, v 4}, where

v 3 =


−1

0
1
0

 , v 4 =


0
−1

0
1

 .
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MyLab Problem
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Section 6.2 - Orthogonal Sets

Recall that a set S of vectors is orthogonal if every pair of distinct
vectors in S is orthogonal.

If S is orthogonal/orthonormal and linearly independent, then we
call S an orthogonal/orthonormal basis for Span(S).

Example

Let

v 1 =

 1
0
1

 , v 2 =

 0
1
0

 , v 3 =

 −1
0
1


S = {v 1, v 2, 0} - orthogonal, not a basis for R3

S = {v 1, v 2, v 3} - orthogonal basis for R3

S = { 1√
2
v 1, v 2,

1√
2
v 3} - orthonormal basis for R3.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



A Test for Orthogonality

Question. Given {v 1, . . . , vn} in Cm, how can we determine whether
these vectors are orthogonal/orthonormal?

Answer. Form the matrix A = [v 1 · · · vn] ∈ Cm×n, and observe that

A∗A =

 v 1 · v 1 · · · v 1 · vn

...
. . .

...
vn · v 1 · · · vn · vn

 ∈ Cn×n.

Thus {v 1, . . . , vn} is orthogonal if and only if A∗A is diagonal.

Moreover, {v 1, . . . , vn} is orthonormal if and only if A∗A = In.

In the real-valued case, we replace A∗ with AT .

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Unitary Matrices

The previous discussion leads us to the following definition:

Definition

A matrix A ∈ Cn×n is unitary if A∗A = In.

In particular, the columns of A are orthonormal if and only if A is unitary.

For the real-valued case, we have the following:

Definition

A matrix A ∈ Rn×n is orthogonal if ATA = In.

Unitary/orthogonal matrices preserve angles and lengths, cf.

(Ax) · (Ay) = (Ax)∗Ay = x∗A∗Ay = x∗y = x · y .
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Example

Example

The matrix

U = 1√
2

[
1 i
1 −i

]
is unitary. The columns form an orthonormal set.
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Orthogonality and Independence

Theorem (Theorem 4)

If S = {v 1, . . . , vp} is an orthogonal set of non-zero vectors, then S is
independent and hence is a basis for span(S).

Proof.

Suppose c1v 1 + · · ·+ cpvp = 0. Now take an inner product with v 1 to
deduce

c1‖v 1‖2 = 0 =⇒ c1 = 0.

And so on...

This result holds in both the real and complex settings.
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Why do we care?

Given a subspace W with a basis B, finding the B-coordinates of a
vector v involves solving a system of linear equations.

If B is an orthogonal/orthonormal basis, then finding the
coordinates relative to B becomes very simple.

Theorem (Theorem 5)

If B = {u1, . . . ,up} is an orthogonal basis for W and y ∈W, then

y =
u1 · y
‖u1‖2

u1 + · · ·+ up · y
‖up‖2

up.

To prove it, suppose y = α1u1 + · · ·+ αpup and compute u j · y for
each j .

Warning: The order u j ·y (versus y ·u j) matters for complex vectors.
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Example

Example

The set {u1,u2,u3} is an orthogonal basis for R3, where

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , u3 =

 −1/2
−2
7/2

 .
Write the vector

y =

 6
1
−8


as a linear combination of u1,u2,u3.
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Example (Continued)

Example (Continued)

Recall

u1 =

 3
1
1

 , u2 =

 −1
2
1

 , u3 =

 −1/2
−2
7/2

 , y =

 6
1
−8

 .
Thus

y = u1·y
‖u1‖2 u1 + u2·y

‖u2‖2 u2 + u3·y
‖u3‖2

= 11
11u2 + −12

6 u2 + −33
33/2u3

= u1 − 2u2 − 2u3.
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Remark about MyLab Homework

Homework from Section 6.2 will involve questions about orthogonal
projection and distance minimization. We discuss these topics in the
slides for Section 6.3.
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MyLab Problems
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MyLab Problems
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Section 6.3 - Orthogonal Projections

Our first main goal in this section is to prove the following theorem:

Theorem (Orthogonal Decomposition Theorem - Theorem 8)

Let W be a subspace of Cn. For every x in Cn, there exist unique y ∈W
and z ∈W⊥ such that x = y + z .

Assuming the theorem, we define the orthogonal projection of x
onto W by

projW (x) = y , where x = y + z , y ∈W , z ∈W⊥.

Note: Orthogonal projection is a linear transformation.

Note: If x ∈W , then projW (x) = x .

Later we will need to figure out how to actually compute these
things!
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Preliminary Lemmas

Lemma

If S is an independent set in W and T is an independent set in W⊥,
then the union of S and T is an independent set.

Proof.

Essential fact: W and W⊥ share only the zero vector.

Lemma

If W ⊂ Cn has dimension p, then W⊥ has dimension n − p.

Proof.

Essential facts: Rank-Nullity Theorem and [ColA]⊥ = Nul (A∗).
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Orthogonal Decomposition

Proof of Orthogonal Decomposition.

Let B be a basis for W and C be a basis for W⊥. By the lemmas above,
the union of B and C is a basis for Cn. Then every x ∈ Cn has a unique
representation as x = y + z , where y ∈ Span(B) and z ∈ Span(C ).

As mentioned above, given this decomposition we define

projW (x) = y .

Observe that projW (x) always belongs to W .

Observe also that

x − projW (x) = projW⊥(x).
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Simple Example

Example

If W is the xy -plane in R3, then the orthogonal projection of a vector
v = [v1 v2 v3]T is simply [v1 v2 0]T .

In general, it is not so obvious how to compute the orthogonal projection
onto a subspace...
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The Plan

The orthogonal projection projW defines a linear transformation
from Cn to Cn (or Rn to Rn), but at this moment it is only
abstractly defined.

Goal 1. Find a formula for the matrix representation of projW .

Goal 2. Show that if we have an orthogonal/orthonormal basis
for W , the formula is very simple.

Goal 3. Compute some numerical examples!

Goal 4. Relate orthogonal projection to the problem of distance
minimization.
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Goal 1. Matrix Representation

Setup. B = {w 1, . . . ,wp} is a basis for W ⊂ Cn.

We seek a matrix M such that projW (x) = Mx .

Let us first find the B-coordinates of projW (x): write

x = α1w 1 + · · ·+ αpwp + z , z ∈W⊥,

where  α1

...
αp

 = [projW (x)]B= α.
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Goal 1 (continued)

Take the inner product of

x = α1w 1 + · · ·+ αpwp + z

with w 1, . . . ,wp. This yields

w∗1x = α1w∗1w 1 + · · ·+ αpw∗1wp

...
...

...

w∗px = α1w∗pw 1 + · · ·+ αpw∗pwp.

This may be written compactly as

A∗Aα = A∗x , A = [w 1 · · ·wp] ∈ Cn×p.

This is called the normal system. The matrix A∗A ∈ Cp×p is called
the Gram matrix.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Goal 1 (continued)

We will show:

* If A = [w 1 · · ·wp] with B = {w 1, . . . ,wp} a basis for W , then the
Gram matrix A∗A is invertible, and so the normal system has
solution

α = [projW (x)]B = (A∗A)−1A∗x .

Thus (using y = A[y ]B) we get:

Theorem (Goal 1. Matrix Representation)

We have
projW (x) = A(A∗A)−1A∗x ,

where B = {w 1, . . . ,wp} is any basis for W and A = [w 1 · · ·wp].
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Invertibility of the Gram Matrix

Lemma

If A ∈ Cn×p then A∗A ∈ Cp×p satisfies

Nul(A∗A) = Nul(A) and Rank(A∗A) = Rank(A).

In particular, since rank(A) = p in our setting, the Gram matrix is
invertible.

Proof of Lemma.

Key Fact: Nul(A∗) = [Col(A)]⊥, so if Ax ∈ nul(A∗) then Ax = 0.
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Goal 2. Orthogonal Basis Case

Setup. Suppose B = {w 1, . . . ,wp} is an orthogonal basis for
W ⊂ Cn.

Writing A = [w 1 · · ·wp], we seek a simple formula for the matrix
representation for projW (x), namely,

A(A∗A)−1A∗.

Since B is an orthogonal basis,

(A∗A)−1 = diag{ 1
‖w1‖2 , · · · , 1

‖wp‖2 },

and so

A(A∗A)−1A∗ = 1
‖w1‖2 w 1w∗1 + · · ·+ 1

‖wp‖2 wpw∗p.
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Goal 2. Summary.

Theorem (Goal 2. Orthogonal Basis Case)

Suppose B = {w 1, . . . ,wp} is an orthogonal basis for W . Then projW
has the matrix representation

QQ∗ = 1
‖w1‖2 w 1w∗1 + · · ·+ 1

‖wp‖2 wpw∗p,

where Q = [w 1 · · ·wp]. That is,

projW (x) =
w 1 · x
‖w 1‖2

w 1 + · · ·+ wp · x
‖wp‖2

wp.

The projection is written as the sum of p ‘rank-one’ projections onto
the lines spanned by each w j .

Remark: We saw this formula already when computing coordinates
of a vector relative to an orthogonal basis!
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Goal 3. Numerical Examples!

Example

Let W = Span{v 1, v 2} ⊂ R3, where

v 1 =

 1
2
0

 , v 2 =

 0
1
2

 .
Find the matrix representation for projW and compute projW (e1).

Solution. Write A = [v 1 v 2]. Compute

ATA =

[
5 2
2 5

]
=⇒ (ATA)−1 = 1

21

[
5 −2
−2 5

]
.

Then

A(ATA)−1AT = 1
21

 5 8 −4
8 17 2
−4 2 20

 =⇒ projW (e1) = 1
21

 5
8
−4

 .

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Goal 3. Numerical Examples!

Example

For the subspace in the previous example, we may also write
W = Span{w 1,w 2} ⊂ R3, where

w 1 =

 1
2
0

 , w 2 =

 −2/5
1/5

2

 .
Find the matrix representation for projW and compute projW (e1).

Solution. This is an orthogonal basis, so we get

1
‖w1‖2 w 1w∗1 + 1

‖w2‖2 w 2w∗2 = ...
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Example (Continued)

Example (Continued)

... = 1
5

 1 2 0
2 4 0
0 0 0

+ 5
21

 4/25 −2/25 −4/5
−2/25 1/25 2/5
−4/5 2/5 4


= 1

21

 5 8 −4
8 17 2
−4 2 20

 .
This the same answer as before, since after all it is the same subspace.
To compute projW (e1), we can write

projW (e1) = w1·e1

‖w1‖2 w 1 + w2·e1

‖w2‖2 w 2 = 1
21

 5
8
−4

 .
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Interlude — why do we care?

Given any basis for a subspace, we have found an explicit formula for
the matrix representation of projW .

This formula is much simpler if we can find an orthogonal basis for
W .

We will return to the problem of constructing orthogonal bases in
the next section (‘the Gram–Schmidt algorithm’).

Before that, we once again ask ourselves... why do we care (about
orthogonal projections)?
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Goal 4. Distance Minimization

Theorem (Theorem 9 - Best Approximation Theorem)

Let W be a subspace. Then projW (y) is the closest point in W to y , i.e.

‖y − projW (y)‖ ≤ ‖y − v‖ for all v ∈W ,

with equality if and only if v = projW (y).

Proof.

By the Pythagorean theorem, for any v in W ,

‖y − v‖2 = ‖projW (y)− v‖2 + ‖projW⊥(y)‖2 ≥ ‖projW⊥(y)‖2,

with equality if and only if v = projW (y).

Remark. This also shows that the distance from y to W equals

‖projW⊥(y)‖ = ‖y − projW (y)‖.
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Example

Example

Find the distance from y to W = Span{u1,u2}, where

y =

 −1
−5
10

 , u1 =

 5
−2

1

 , u2 =

 1
2
−1

 .
Solution. We first compute projW (y). Since u1 ⊥ u2, we can use

projW (y) = u1·y
‖u1‖2 u1 + u2·y

‖u2‖2 u2 = ... =

[ −1
−8

4

]
.

So the distance from y to W is given by

‖y − projW (y)‖ =
√

45.
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Section 6.4 - The Gram–Schmidt Process

The Gram–Schmidt algorithm takes as input a set of vectors
Sin = {w 1, . . .wp} and returns an orthogonal set of vectors
Sout = {v 1, . . . , vp} such that Span(Sin) = Span(Sout).

The idea is straightforward: at each stage, one performs an
orthogonal projection of w j away from the span of the preceding
vectors.
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Gram–Schmidt Algorithm

Theorem (Theorem 11)

Let Sin = {w 1, . . . ,wp}.
Let v 1 = w 1 and Ω1 = Span{v 1}.
Let v 2 = projΩ⊥

1
w 2 and Ω2 = Span{v 1, v 2}.

. . .

Let v j+1 = projΩ⊥
j

(w j+1) and set Ωj+1 = Span{v 1, . . . , v j+1}.
The process ends when j + 1 = p. It produces the orthogonal set

Sout = {v 1, . . . , vp}

with Span(Sout) = Span(Sin). Finally, observe that

v j+1 = 0 ⇐⇒ w j+1 ∈ Ωj ,

so that if Sin is independent then Sout contains nonzero vectors.
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Example

Example

Find an orthogonal basis for the span of the following vectors:

w 1 =


1
0
1
0

 , w 2 =


1
1
1
1

 , w 3 =


1
−1

1
−1

 , w 4 =


0
0
1
1

 .
Solution. Apply Gram-Schmidt. Set v 1 = w 1. Then

v 2 = w 2 − v 1 · w 2

‖v 1‖2
v 1 =


0
1
0
1

 .
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Example (Continued)

Example (Continued)

Next,

v 3 = w 3 −
v 1 ·w 3

‖v 1‖2
v 1 −

v 2 ·w 3

‖v 2‖2
v 2 = · · · = 0.

(This reflects the fact that w 3 ∈ Span{w 1,w 2}.) Finally,

v 4 = w 4 −
v 1 ·w 4

‖v 1‖2
− v 2 ·w 4

‖v 2‖2
= 1

2

 −1
−1

1
1

 .
Then {v 1, v 2, v 4} is an orthogonal basis for Span{w 1,w 2,w 3,w 4}.
Remark. To make an orthonormal basis, divide each basis vector by its
length.
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QR Factorization of Matrices

Performing the Gram–Schmidt algorithm for vectors {w 1, . . . ,wp}
in Cn is equivalent to performing a QR factorization for the matrix
A = [w 1 · · ·wp] ∈ Cn×p.

QR factorization refers to the following:

Theorem (Theorem 12 - The QR Factorization)

Any matrix A ∈ Cn×p can be written as A = QR, where the columns of
Q ∈ Cn×p are orthogonal and R ∈ Cp×p is an invertible upper triangular
matrix.

To prove this, we need to rewrite the w ’s in terms of the v ’s in the
Gram–Schmidt algorithm.
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QR Factorization (continued)

Since the {v j} are orthogonal, we can write

projΩj
(w j+1) =

v1·w j+1

‖v1‖2 v 1 + · · ·+ v j ·w j+1

‖v j‖2 v j ,

where we only include nonzero v ’s in the sum above. So, defining

rk,j+1 =

{
v k ·w j+1

‖v k‖2 if v k 6= 0

any number you want! if v k = 0,

we get

v j+1 = w j+1 − projΩj
(w j+1) = w j+1 − r1,j+1v 1 − · · · − rj,j+1v j ,

or equivalently: w j+1 = r1,j+1v 1 + · · ·+ rj,j+1v j + v j+1.
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QR Factorization (conclusion)

Rewrite w j+1 = r1,j+1v 1 + · · ·+ rj,j+1v j + v j+1 in vector form:

w j+1 = [v 1 · · · v j+1]


r1,j+1

...
rj,j+1

1

 ,
So A = QR, where A = [w 1 · · ·w p], Q = [v 1, . . . , v p] and

R =


1 r1,2 · · · r1,p

. . .
. . .

...
. . . rp−1,p

1

 , rk,j+1 =

{ vk ·w j+1

‖vk‖2 if v k 6= 0

anything if v k = 0.
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Example

Example

Return to the previous example. Then the QR factorization for
A = [w 1 · · ·w 4] is given by A = QR, with Q = [v 1 v 2 0 v 4] and

R =


1 1 1 1/2
0 1 −1 1/2
0 0 0 c
0 0 0 1

 ,
where c is arbitrary. The coefficients are determined by

rk,j+1 =
v k ·w j+1

‖v k‖2
for v k 6= 0.
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Practice Problem

Example

Let

w 1 =


1
1
1
0

 , w 2 =


0
1
−1

1

 , w 1 ⊥ w 2.

Extend {w 1,w 2} to an orthogonal basis for R4.

Solution Sketch:

Write A = [w 1 w 2] and W = Col(A).

(i) Find a basis for W⊥ = Nul(AT ) (row reduction).

(ii) Apply Gram-Schmidt to the basis obtained in (i).

w 1, w 2, and the basis obtained in (ii) give you an orthogonal basis
for R4.
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Section 6.5 - Least-Squares Problems

One of the first topics we discussed was to determine consistency
and find solutions to systems of the form Ax = b.
When Ax = b is not consistent, we would like to find an x that
comes ‘as close as possible’ to solving the system.

Definition

If A is an m× n matrix and b ∈ Cm, a least squares solution of Ax = b
is an x̂ ∈ Cn such that

‖b − Ax̂‖ ≤ ‖b − Ax‖

for all x ∈ Cn.

Note: If Ax = b is consistent, then any solution is automatically a least
squares solution.
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Least Squares Solutions; Projections; Normal System

The system Ax = b is inconsistent if b does not belong to Col(A).

To remedy this, we instead consider the system

Ax = b̂, b̂ := projCol(A)(b),

which always has a solution (and is equivalent to Ax = b if
b ∈ Col(A)).

Furthermore, these are guaranteed to be least squares solutions by
the best approximation theorem, cf.

‖b − b̂‖ ≤ ‖b − v‖ for any v ∈ Col(A).

To compute the matrix representation for the projection of b onto
Col(A), we need to solve the normal system A∗Aα = A∗b. The
projection is then given by Aα.
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Least Squares Solutions

Theorem (Theorem 13)

The normal system A∗Ax = A∗b is always consistent. Solutions to this
system are precisely the least squares solutions to Ax = b.

Proof.

We showed rank(A∗A) = rank(A∗), which implies col(A∗A) = col(A∗).

Next, if A∗Ax̂ = A∗b, then

b − Ax̂ ∈ Nul(A∗) = [Col(A)]⊥.

Since Ax̂ ∈ Col(A), it follows that Ax̂ = b̂ = projCol(A)(b).

Similarly, if Ax̂ = b̂ then A∗Ax̂ = A∗b̂ = A∗b, since

b − b̂ ∈ [Col(A)]⊥ = Nul(A∗).
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Example

Example

Show that Ax = b is inconsistent, where

A =

 1 0 1
1 −1 0
0 1 1

 , b =

 1
0
−1

 .
Then find the least squares solution(s) to Ax = b.

Solution. First, the system is inconsistent since

[A | b] ∼

 1 0 1 0
0 1 1 0
0 0 0 1

 .
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Example (Continued)

Example (Continued)

Now compute ATA and ATb and perform row reduction to find

[ATA | ATb] ∼

 1 0 1 1/3
0 1 1 −1/3
0 0 0 0

 ,
giving the least squares solutions

x̂ =

 1/3
−1/3

0

+ z

 −1
−1

1


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Uniqueness/Nonuniqueness

In the previous example, the free variable appeared due to the fact
that A has a nontrivial null space.

The least square solution is unique if and only if the columns of A
are independent, which holds if and only if A∗A is invertible. In this
case, the unique solution is

x̂ = (A∗A)−1A∗b.
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Example

Example

Find the least squares solution(s) for the inconsistent system Ax = b,
where

A =

 4 0
0 2
1 1

 , b =

 2
0

11

 .
Solution. We find

ATA =

[
17 1

1 5

]
is invertible. So the unique solution is

x̂ = (ATA)−1ATb = · · · =

[
1
2

]
.
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Least Squares Error

The least squares error for the system Ax = b is defined by the
smallest possible value of

‖b − Ax‖

over all choices of x . It is achieved by choosing any least squares
solution x̂ (cf. the best approximation theorem).

The least squares error computes the distance between b and Col(A).
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Examples

Example

In the first example, the least squares error is

‖Ax̂ − b‖ = 2
3

√
3.

In the second example, the least squares error is

‖Ax̂ − b‖ = 2
√

21.
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Other Approaches...

If the columns of A are orthogonal, then we can compute b̂ simply
and then solve Ax = b̂.

If A has linearly independent columns and A = QR is the QR
factorization of A, then the least squares solution is given by

x̂ = R−1Q∗b,

since then
Ax̂ = QQ∗b,

and QQ∗ is the orthogonal projection onto Col(A).
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MyLab Probems
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MyLab Probems

True or False Questions:
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Section 6.6 - Applications to Linear Models

This section covers several applications, including (i) least squares
lines and linear models, (ii) more general least squares curves, (iii)
multiple regression.

We focus on the case of least squares lines.
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Least-Squares Lines

Suppose we want to fit data points (x1, y1), . . . , (xn, yn) to a line
y = β0 + β1x . This corresponds to trying to solve the linear system

Xβ = y , X =

 1 x1

...
...

1 xn

 , β =

[
β0

β1

]
, y =

 y1

...
yn

 .
Typically this system will not be consistent, so instead we find the
least squares solution β.

This yields the least-squares line for the data.

This is equivalent to minimizing the length of the residual vector
ε = y − Xβ over all choices of β.

This extends naturally to higher order polynomial approximations.
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Multiple Regression

This technique also extends to the case when the data depends on
multiple variables. For example, if one assumes a relationship of the
form y = β0 + β1u + β2v (a plane instead of a line), then we should
find the least squares solution to Xβ = y , where

X =

 1 u1 v1

...
...

...
1 un vn

 , β =

 β0

β1

β0

 , y =

 y1

...
yn

 .
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Section 6.7 - Inner Product Spaces

The following is the definition of a (real) inner product space:
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General Properties

Whenever we have an inner product on a vector space, we get the
following:

Length, distance, angle

Cauchy–Schwarz inequality

Triangle inequality

Orthogonality, Pythagorean theorem

Orthogonal bases

Orthogonal projections

Gram–Schmidt algorithm...
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Examples

Let V = Rn and A ∈ Rn×n be a positive definite real symmetric
matrix (A = AT ). Then

〈x , y〉 = xTAy

is a real inner product.

Let V = Cn and A ∈ Cn×n be a positive definite hermitian matrix
(A = A∗). Then

〈x , y〉 = x∗Ay

is a (complex) inner product.

Let V = C ([0, 2π]). Then

〈f , g〉 =

∫ 2π

0

f (t)g(t) dt

is a real inner product on V .
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Section 6.8 - Applications of Inner Product Spaces

In the book, several applications are discussed, including weighted
least squares, trend analysis, and Fourier series.

We will focus on a short discussion of Fourier series.
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Fourier Series

The aim of Fourier series is to represent an arbitrary continuous
function f on [0, 2π] as a linear combination of waves of fixed
frequencies.

In particular, for each n = 1, 2, . . . , we want to find the best
approximation to f using the functions from

Sn = {1, cos t, cos 2t, . . . , cos nt, sin t, sin 2t, . . . , sin nt}.

We already know what to do: we should use the orthogonal
projection

fn = projSpan(Sn)f .

Note: This notion of orthogonality and projection is given in terms
of the inner product on C ([0, 2π])!
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Orthogonality

The orthogonal projection onto Span(Sn) is straightforward to
compute because Sn is an orthogonal set!

Example

For m 6= n,

〈cosmt, cos nt〉 =

∫ 2π

0

cosmt cos nt dt

= 1
2

∫ 2π

0

[cos((m + n)t) + cos((m − n)t) dt = · · · = 0.
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Orthogonal Projection

Since Sn is orthogonal, we may write

fn = 1
2a0 + a1 cos t + · · ·+ an cos nt + b1 sin t + · · ·+ bn sin nt,

where

ak =
〈cos kt, f 〉
‖ cos kt‖2

= 1
π

∫ 2π

0

f (t) cos kt dt,

bk =
〈sin kt, f 〉
‖ sin kt‖2

= 1
π

∫ 2π

0

f (t) sin kt dt

for k ≥ 1, and a0 = 1
π

∫ 2π

0
f (t) dt.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Example
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Fourier Series

For f ∈ C ([0, 2π]), the Fourier series expansion of f is given by

f (t) = 1
2a0 +

∞∑
m=1

(am cosmt + bm sinmt),

where am, bm are defined as above.

This series converges to f in the sense of norm convergence, namely,

lim
n→∞

‖f − projSpan(Sn)f ‖ = 0.
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Chapter 7

Math 3108 - Fall 2019
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Section 7.1 - Diagonalization of Symmetric Matrices

Section 7.4 - The Singular Value Decomposition

Section 7.5 - Applications to Image Processing and Statistics
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Section 7.1 - Diagonalization of Symmetric Matrices

A real matrix is symmetric if A = AT .

In this section, we will show:

Theorem (Spectral Theorem for Symmetric Matrices)

Every symmetric matrix is diagonalizable. In fact, we can find an
orthonogonal basis of eigenvectors. This means

A = PDPT

for a real diagonal matrix D and an orthogonal matrix P.

In fact, we will prove a spectral theorem for normal matrices,
which means AA∗ = A∗A. This includes symmetric matrices as a
special case.
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Motivation: Orthogonality of Eigenvectors

Why might we expect the spectral theorem should be true?

Theorem (Theorem 1)

If A is a symmetric matrix, then any two eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Proof.

Let λ1, v 1 and λ2, v 2 be eigenvalue/eigenvector pairs with λ1 6= λ2. Then

v 1 · Av 2 = λ2 v 1 · v 2

while at the same time v 1 · Av 2 = AT v 1 · v 2 = λ1v 1 · v 2.

This also holds for normal matrices (using Theorem 2 below).

This does not solve the entire problem... it says nothing about
diagonalizability in the first place.
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Definitions

Recall the following:

A real matrix is symmetric if A = AT .

A complex matrix is hermitian or self-adjoint if A = A∗.

A real matrix is orthogonal if PTP = I .

A complex matrix is unitary if P∗P = I .

We introduce some new terminology, as well:

A complex matrix is normal if A∗A = AA∗.

Example

Symmetric, hermitian, orthogonal, and unitary matrices are all normal.
So are skew-adjoint matrices, which satisfy A∗ = −A.
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Main Result: Spectral Theorem

Our goal is the following:

Theorem (Spectral Theorem for Normal Matrices)

A matrix A is normal if and only if it is unitarily similar to a diagonal
matrix, i.e.

A = PDP∗

for some diagonal matrix D = diag{λ1, . . . , λn} and some unitary matrix
P = [v 1 · · · vn].

In particular, we may write A as a sum of rank one orthogonal projections:

A = λ1v 1v∗1 + · · ·+ λnvnv∗n.

The final expression is called a spectral decomposition of A.

This result will imply the spectral theorem for symmetric matrices.
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Main Ingredients

We need two main ingredients to prove the spectral theorem:

Theorem (Schur Factorization)

Any A ∈ Cn×n can be written in the form A = PUP∗ for some unitary
matrix P and some upper triangular matrix U.

Theorem (Theorem 2)

If A is normal and λ, v is an eigenvalue/eigenvector pair for A, then λ̄, v
is an eigenvector/eigenvalue pair for A∗.

In particular, after we apply the Schur factorization to a normal
matrix to write A = PUP∗, the second theorem will imply that U is
actually diagonal.
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Proof of Schur Factorization

Proof.

Suppose it holds for (n − 1)× (n − 1) matrices. Let A be n × n.

Let λ1, v 1 be an eigenvalue/eigenvector pair for A with ‖v 1‖ = 1.

Extend to an orthonormal basis {v 1, . . . , vn} and let P1 = [v 1 · · · vn].

Note P1 is unitary and we can write AP1 = P1

[
λ1 w
0 M

]
.

Now write M = QU0Q
∗ with Q unitary, U upper triangular.

Define

P2 =

[
1 0
0 Q

]
, P = P1P2.

Then P is unitary and

P∗AP = P∗2

[
λ1 w
0 M

]
P2 =

[
λ wQ
0 U0

]
.
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Proof of Theorem 2

Theorem

If A is normal and λ, v is an eigenvalue/eigenvector pair for A, then λ̄, v
is an eigenvector/eigenvalue pair for A∗.

Proof.

For any λ, v and a normal matrix A,

‖(A− λI )v‖2 = [(A− λI )v ]∗(A− λI )v
= v∗(A∗ − λ̄I )(A− λI )
= v∗(A− λI )(A∗ − λ̄I )v
= ‖(A∗ − λ̄I )v‖2.
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Proof of the Spectral Theorem

Proof of the Spectral Theorem.

We focus on showing normal implies unitarily diagonalizable.

Apply Schur factorization: A = PUP∗, P = [v 1, . . . vn].

Write U = [cij ] and observe Av 1 = c11v 1, and so A∗v 1 = c̄11v 1.

But A∗P = PU∗, so

c̄11v 1 = c̄11v 1 + · · ·+ c̄1nvn =⇒ c1j = 0, j = 2, . . . , n.

This shows

U =

[
c11 0

0 Ũ

]
.

Now repeat the argument with Av 2 = c22v 2...

It follows that U is diagonal.
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Spectral Theorem for Symmetric Matrices

If A is a hermitian matrix (i.e. A = A∗), then it is normal and hence
we can write A = PDP∗ with D diagonal and P unitary. But then

PDP∗ = A = A∗ = PD∗P∗ =⇒ D = D∗ =⇒ D is real,

so that hermitian matrices have real eigenvalues.

Similarly, if A is real and symmetric (i.e. A = AT ), then we can write

A = PDPT

where D is a real diagonal matrix and P is a real orthogonal matrix.
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Spectral Theorem for Hermitian/Symmetric Matrices

Theorem (Spectral Theorem for Hermitian Matrices)

A matrix A is hermitian if and only if it can be factored as A = PDP∗ for
a unitary matrix P and a real diagonal matrix D.

Theorem (Spectral Theorem for Symmetric Matrices)

A matrix A is symmetric if and only if it can be factored as A = PDPT

for an orthogonal matrix P and a real diagonal matrix D.
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Example

Example

Orthogonally diagonalize the matrix

A =

 3 −2 4
−2 6 2

4 2 3

 ,
which has characteristic polynomial −(λ− 7)2(λ+ 2).

Solution. Using the techniques of Chapter 5, we compute bases for the
eigenspaces:

λ = 7 =⇒ v 1 =

 1
0
1

 , v 2 =

 −1/2
1
0


and

λ = −2 =⇒ v 3 =

 −1
−1/2

1

 .
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Example (Continued)

Example (Continued)

Now apply Gram-Schmidt to find an orthogonal basis for Span{v 1, v 2}:
this yields

u1 =

 1
0
1

 , u2 =

 −1/4
1

1/4

 .
Finally, normalize each matrix to form an orthogonal matrix:

P =
[ u1

‖u1‖
u2

‖u2‖
v 3

‖v 3‖
]
.

Then A = PDPT , with D = diag{7, 7,−2}.
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Section 7.4 - The Singular Value Decomposition

Many matrices that occur in applications are not square. For such
matrices, there is an important notion related to eigenvalues and
diagonalization, namely the singular value decomposition.

Definition (Singular Values)

Let A be an n × p matrix. The singular values of A are given by

σj :=
√
λj , j = 1, . . . , p,

where λ1 ≥ · · · ≥ λp ≥ 0 are the eigenvalues of the p × p matrix A∗A.

As A∗A is hermitian, it has real eigenvalues. If λ, v is an
eigenvalue/eigenvector pair,

λ = 1
‖v‖2 v∗(A∗A)v = ‖Av‖2

‖v‖2 ≥ 0.
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Singular Values, Singular Vectors

In the following, we fix an n × p matrix A. Then A∗A has an
orthonormal basis of eigenvectors {v 1, . . . , vp} corresponding to
eigenvalues λ1 ≥ · · · ≥ λp ≥ 0.

The singular values are given by σj =
√
λj .

If Rank(A) = r , then σr+1 = · · · = σp = 0.

{v r+1, . . . , vp} is an orthonormal basis for Nul(A∗A) = Nul(A).

{v 1, . . . , v r} is an orthonormal basis for Col(A∗) = [Nul(A)]⊥.
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Singular Values, Singular Vectors

Lemma

The vectors
u j = 1

σj
Av j , j = 1, . . . , r

form an orthonormal basis for Col(A).

Proof.

By the basis theorem, it is sufficient to check orthonormality:

u i · u j = 1
σiσj

v∗i (A∗Av j) =
λj

σiσj
v∗i v j =

{
1 i = j

0 i 6= j .
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Singular Value Decomposition

Now let {ur+1, . . . ,un} be any orthonormal basis for [Col(A)]⊥.

Define U = [u1, . . . ,un] (the left singular vectors) and
V = [v 1, . . . , vp] (the right singular vectors), both of which are
unitary.

By construction:

AV = UΣ, Σ =

[
D 0
0 0

]
, D = diag{σ1, . . . , σr}.

For the first r columns we use Av j = σju j .

For the remaining columns, use {v r+1, . . . , vp} belong to Nul(A).
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Singular Value Decomposition

Theorem (Singular Value Decomposition)

For any n × p matrix A with rank r , there exists a decomposition

A = UΣV ∗,

where

U is an n × n unitary matrix,

V is a p × p unitary matrix,

Σ is an n × p with the form

Σ =

[
D 0
0 0

]
, D = diag{σ1, . . . , σr},

where D is an r × r block diagonal matrix in the upper left corner
containing the nonzero singular values σ1 ≥ · · · ≥ σr > 0 of A.
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Example

Example

Let us describe the process of finding a singular value decomposition of a
real matrix A ∈ Rn×p.

Diagonalize ATA with an orthonormal basis of eigenvectors.

Build the matrices V and Σ.

Construct the first r columns of U (where r = Rank(A)).

If r < p, build the remaining columns of U by finding an
orthonormal basis for [Col(A)]⊥ = Nul(AT ).

This requires finding a basis for the null space of AT and then
possibly applying the Gram–Schmidt algorithm and normalization.
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A few applications...

If A is an invertible n × n matrix, the ratio σ1/σn is called the
condition number of A, which is related to the sensitivity of the
solution to Ax = b to changes/errors in the entries of A.

Since orthogonal matrices in R2×2 represent rotations/reflections of
the plane, applying the singular value decomposition to a matrix
transformation of the plane reveals that every such transformation is
the composition of three transformations: rotation/reflection,
scaling, and rotation/reflection.

In terms of numerical analysis, singular value decomposition is
generally faster and more accurate than eigenvalue decomposition.
In particular, SVD is prevalent in many modern applications.
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Section 7.5 - Applications to Image Processing and
Statistics

Suppose we have a p × n matrix of data, say A = [X 1 · · ·X n].

The sample mean is defined to be 1
N (X 1 + · · ·+ X n), and for

simplicity we assume we have normalized the data to have mean
zero.

The covariance matrix of A is defined by the p × p matrix

S = 1
n−1AA

T .

The diagonal entries of S represent the variance of the coordinates
xi of data vectors X ; the total variance is the sum of the diagonal
entries (called the trace of S).

The off-diagonal entries sij of S represent the covariance of xi and
xj . We call xi and xj uncorrelated if sij = 0.
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Principal Component Analysis

Goal. Find an orthogonal p × p matrix P that determines a change
of variables X = PY such that the variables yj are uncorrelated and
arranged in order of decreasing variance.

Our data matrix is transformed to B = PTA, which has covariance
matrix

1
n−1BB

T = 1
n−1 (PTA)(PTA)T = 1

n−1P
TAATP.

In particular, our problem is equivalent to orthogonal diagonalization
of AAT (which is connected to the singular value decomposition of
the transpose AT of the data matrix).

Arranging the eigenvalues in decreasing order, the corresponding
unit eigenvectors are called the principal components of the data.

The new variables represent the directions of maximal variance
(after projecting away from the previous directions).
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Dimensionality Reduction

Orthogonal changes of variables do not change the total variance of
the data.

In many cases, one finds that nearly all of the variance is captured in
eigenvalues corresponding to the first few principal components.

This allows us to find low-dimensional approximations to
high-dimensional data! Extremely useful for data analysis, data
interpretation, data compression... and on and on.
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Example

Example

Download n = 5000 images of handwritten digits from the MNIST
database.

Each image is represented by a vector in Rp, where
p = 28× 28 = 784.

This gives the p × n data matrix A.

Perform SVD on AT , giving

AT = UΣV T .

The singular values drop off very quickly.
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Dropoff of Singular Values

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Example (Continued)

Example (Continued)

Let’s make a 5-dimensional approximation to this data.

Given a vector X in our data set, we have the new representation
X = VY , i.e. Y = V TX .

We keep only the first 5 entries of Y and set the rest to zero; call
this Y app.

Then we apply V to get the approximation X ∼ VY app.
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Examples

True Image:

Approximation using first 5 principal components:
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Examples
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Examples

True Image:
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Examples

The third image looked pretty bad...

True Image:

Approximation using first 20 principal components:

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Some Final Remarks

We used 5000 samples of all different digits. This would have been
much more accurate if they had all been the same digit.

This provides a very crude method for image compression.

This type of analysis forms the basis for many modern techniques in
machine learning, data analysis, compression, etc.
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Thanks!

Thanks for a great semester!
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