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Section 1.1 - Systems of Linear Equations

A system of linear equations is a collection of one more linear
equations in the same variables. For example,

2X1—X2+%X3:8
X1 — 4X3 = —T7.
is a system of two equations in the three unknowns xi, x2, X3.
A solution to this system is given by (5,2, 3).
The set of all possible solutions is the solution set. Two systems are
equivalent if they have the same solution set.
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The special case of 2 x 2 systems corresponds to finding the points of
intersection of two lines. In this case we find that linear system has

@ no solution,
@ exactly one solution, or
@ infinitely many solutions.

In fact, this is true of all linear systems.

Definition

A linear system is consistent if it has a solution; it is inconsistent if it
has no solutions.
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Matrix Notation

We may rewrite linear systems in matrix form:

Example

The system

x1 —2xo +x3 =0,
2xp — 8x3 = 8,
5x1 —bx3 = 10

corresponds to the 3 x 4 augmented matrix

1 -2 1 0
0 2 -8 8
5 0 -5 10

Removing the final column gives the 3 x 3 coefficient matrix.
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Row Operations

We solve a linear system by performing row operations to replace it
with equivalent systems that are progressively easier to solve. The three
types of row operations are the following:

Definition (Elementary row operations)

1. (Replacement) Replace one row by the sum of itself and a multiple
of another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply the entries of a row by a nonzero constant.

If we can obtain a matrix B from a matrix A by a sequence of row
operations, we say that A and B are row equivalent.

Row equivalent matrices have the same solution set.
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Section 1.2 - Row Reduction and Echelon Forms

In this section we discuss the row reduction algorithm for solving linear
systems.

The key observation is that triangular linear systems are straightforward
to solve. So, given a linear system, we should perform row operations to
obtain a triangular matrix. This will be called echelon form.

In fact, once you have a matrix in echelon form, you can perform further
operations to make the system even simpler to solve. This will be called
reduced echelon form.
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Echelon and Reduced Echelon Forms

Definition (Echelon and Reduced Echelon Form)

A matrix is in echelon form if:
1. Nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading
entry of the row above it.

3. All entries in a column below a leading entry are zeros.
A matrix in echelon form is in reduced echelon form if additionally

4. The leading entry in each nonzero row is 1.

5. Each leading entry is the only nonzero entry in its column.

The Matlab command to compute the reduced echelon form of a matrix
A is rref(A).
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Examples: Echelon Form

@ Not in echelon form:

1 -2 1 0
0 2 -8 8
5 0 -5 10

@ Echelon form, but not reduced echelon form:

-3 2 1
—4 8
5
2

O ON
o =
o

@ Reduced echelon form:

o R
[ )
o o
o8
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Existence and Uniqueness

Theorem (Theorem 1)

Any nonzero matrix is row equivalent to a unique reduced echeleon form
matrix.

On the other hand, matrices can be reduced to many different matrices
in echelon form.
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Definition

A pivot position in a matrix A is a location in A that corresponds to a
leading 1 in the reduced echelon form of A. A pivot column is a column
of A that contains a pivot position.

Roughly speaking, the first several weeks of this class could be described
as ‘pivot counting’'.
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Row Reduction Algorithm

The following algorithm describes how to put a matrix in reduced echelon
form:

1.

Start with the leftmost nonzero column. The pivot position is at the
top.

Choose a nonzero entry in the pivot column to be the pivot (using
interchange to move this entry into the pivot position).

Use row replacement to create zeros in all positions below the pivot.

4. Repeat steps 1-3 on the sub-matrix that remains when you ignore

the row containing the pivot position (and any rows above it).
Repeat this until there are no more nonzero rows to modify.

Start with the rightmost pivot and work upward and to the left,
making zeros above each pivot. Make each pivot have the value 1.
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Example

Reduce the matrix

0 3 6 6 4 -5
-7 8 -5 9
3 -9 12 -9 6 15

w
oo

to echelon form _ _
3 -9 12 -9 6 15

0 2 —4 4 2 -6

0 0 O 0 1 4

and then to reduced echelon form

1 0 -2 3 0 —-24
01 -2 2 0 -7
0 0 001 4
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Solutions of Linear Systems

Variables corresponding to pivot columns are called basic variables,
while the remaining variables are called free variables.

Example

Suppose the matrix of a linear system has reduced echelon form

1 0
01
0 0

O = Ol

1
4
0
The associated system equations is

X]_—5X3:1, X2+X3:4.

Then x1, x» are basic and x3 is free. The solution set can be written

x1=14+5x3, xo=4—x3, x3is free.
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Another Example

Example

Find the solution set for a linear system whose augmented matrix has
been reduced to

1 6 2 -5 -2 —4
0 0 2 -8 -1 3
0 00 O 1 7

This is in echelon form. Let’s put it in reduced echelon form:

1 6 0 3 00
0 01 -4 0 5
000 017
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Another Example (continued)

Example

The associated system is
X1—|—6X2+3X4:O, X3—4-X4:57 X5:7.
The free variables are x> and x;. The solution set is:

x1=—-6x0—3x4, x3=5+4+4x4, x5=17,

with x» and x4 free variables.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Existence and uniqueness

Theorem (Theorem 2)

(i) A linear system is consistent if and only if the rightmost column of
the augmented matrix is not a pivot column.

(ii) If a linear system is consistent and has no free variables, then it has
a unique solution.

(i) If a linear system is consistent and has at least one free variable,
then it has infinitely many slutions.
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Row Reduction Method

To summarize, here is how to use row reduction to solve a linear system:

1. Write down the augmented matrix A for the system.

2. Use row reduction to reduce the matrix to echelon form. If the
system is inconsistent, stop.

3. If the system is consistent, put the matrix in reduced echelon form
U.

4. Write down the linear system corresponding to the reduced matrix U.

5. Express each basic variable in terms of free variables to describe the
solution set.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



A final example

Find the general solution of the linear system whose augmented matrix is

1 -3 -5 0
0 1 -1 -1 |°
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Section 1.3 - Vector Equations

A vector in R" is an ordered list of n real numbers, usually written as an
n x 1 column matrix. For example,

-2
1

is a vector in R*. A general vector in R” will be written

uy
uz
u= b
Un
where vy, up, -+, u, are the entries or components of the vector u.
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Algebraic Properties of Vectors

Algebraic Properties of R”

For all u, v, w in R” and all scalars ¢ and d:

(u+v=v-+u V) cu+Vv) =cu+cv
(i) @+v)+w=u+(v+w) (vi) (c+d)u=cu+du
(i) u+0=0+u=u (vii) ¢(du) = (cd)u

iv) u+(—u)=—-u+u=0, (viii) lu =u

where —u denotes (—1)u

o Addition/scalar multiplication are performed component-wise.

@ 0 denotes the zero vector (all entries equal to zero), while a scalar
refers to a real number.
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Points in the plane

We identify a point (a, b) in the plane with the vector

a
b
in R?. We can then add vectors according to the ‘parallelogram rule':

X
eu+V

Ue
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Linear Combinations

The linear combination of vectors vq,...,v, in R” with weights
Ci,...,Cp is the vector

y=cavy+- -+ cpVp.

Example

The linear combination of

o[3] e[

with weights c; =4 and c; =2 is
10
10 |-
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Example

Example

Determine whether b can be written as a linear combination of a; and

a», where
1 2 7
a, = —2 , d2= 5 5 b= 4
-5 6 -3

To solve this, we try to solve the system xja; + xpa, = b. This leads to
the augmented matrix

1 2 7 1 0 3
=2 =5 4 | ~[0 1 2
-5 6 -3 0 0O

Solution: Use weights x; = 3 and x; = 2.
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Fundamental fact

A vector equation
xia1+---+x,a,=>b

has the same solution set as the linear system with augmented matrix
[ay --- a, b].

In particular: b can be written as a linear combination of ay,--- , a, if
and only if the linear system above is consistent.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Definition
The span of vectors vy,..., v, is the set of all linear combinations of
Vi,...,Vp. This set (which is a subset of R") is denoted

Span{vi,...,v,}.

The following statements are equivalent:
@ The vector b belongs to Span{vy,...,v,}.
@ The vector equation x;v1 + - - - + x,v, = b has a solution.
@ The vector b can be written as a linear combination of vy,..., v,.

@ The linear system with augmented matrix [vy --- v, b] has a
solution.
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Span (Geometric Description)

If v is a nonzero vector in R3, then Span{v} is the set of points on the
line in R? passing through v and 0.

If {v,u} are nonzero vectors in R3, then Span{v, u} is the plane in R3
contaning 0, v, and wu.
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Section 1.4 - The Matrix Equation Ax = b

Definition

Let A be an m x n matrix with columns ay,...,a,. Let x € R".
The product of A and x, denoted Ax, is the linear combination of the
columns of A using the entries of x as the weights:

X1
Ax =[a; ax -+ a,) D =xa+ -+ xqan.

Xn

\
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Linear Systems as Matrix Equations

Linear systems can be rewritten in the form Ax = b.

Example

The system

X1+ 2xo — 3x3 = 4,
x4+ 3x3 = 1

can be written Ax = b, where

and x € R3.
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Theorem 3

Theorem (Theorem 3)

Let A be an m X n matrix with columns ay,...,a,. Let b€ R™.
The matrix equation Ax = b has the same solution set as the vector
equation

x1@1 + -+ Xxpa, = b,

which has the same solution set as the system of linear equations with
augmented matrix

[a1 --- an, b].

v

In particular, we see that Ax = b has a solution if and only if b is a linear
combination of the columns of A.
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Existence of Solutions

Let
1 3 4
A=| -4 2 -6
-3 -2 -7
Determine whether Ax = b is consistent for every choice of b.
Solution:
1 3 4 b 1 3 4 by
—4 2 —6 b |~ |0 14 10 by + 4b;
-3 -2 -7 b3 0 0 0 by —3iby+bs

The answer is no. The system is consistent if and only if
bl—%b2+b3=0.
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Theorem 4

Theorem (Theorem 4)

Let A be an m x n matrix. The following are equivalent:

. For every b € R™, the equation Ax = b has a solution.

. Every b € R™ is a linear combination of the columns of A.

a
b
c. The columns of A span R™.
d

. A has a pivot position in every row.
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Alternate view of the product Ax

We can view the j entry of Ax as the dot product between the jt row
of A and the vector x.

2 3 4 X1 2x1 + 3x0 + 4x3
-1 5 -3 X2 = —X1 + 5X2 — 3X3
6 -2 8 X3 6x1 — 2x> + 8x3
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Algebraic Properties

Theorem (Theorem 5)

Let A be an m X n matrix, u and v vectors in R", and c a scalar. Then

A(u+v)=Au+ Av, A(cu) = c(Au).
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Section 1.5 - Solution Sets of Linear Systems

A linear system is homogeneous if it is of the form Ax = 0, where A is
m x n, x € R", and 0 is the zero vector in R™.

Homogeneous systems always the solution x = 0 (the zero vector in R™).
This is called the trivial solution, whereas a nonzero solution would be
called a nontrivial solution.

The homogeneous equation Ax = 0 has a nontrivial solution if and only
if the equation has at least one free variable.
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An example

Describe the solution set for the following homogeneous system:

3x1 +5x20 —4x3 =0
—3x1 —2x2 +4x3 =0
6x1 + x2 — 8x3 = 0.

Does the system have a nontrivial solution?

Solution: We form the augmented matrix. We can omit the final column.

3 5 —4 3 5 —4
-3 =2 4 |~ 0 3 0
6 1 -8 0 0 0
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Example (Example, continued)

3x1 +5x2 —4x3 =0 3 5
—3x1 —2x2+4x3 =0 — 0 3 0
6x1 + xo — 8x3 = 0. 0 0

The solution set is

xx =0, xsfree, x1=3x35 ie x=x

= Owis

It has a non-trivial solution, e.g. (4,0, 3).
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Parametric Vector Form

The solution set of a homogeneous equation Ax = 0 can always be
expressed in the form
Span{vi,...,v,}

for some collection of vectors. Equivalently, we may write the general
solution as
X=cvi+--+cVp (1)

for arbitrary ¢p,...,c, € R.

We call (1) the parametric vector form of the solution.
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Solutions of Nonhomogeneous Systems

Theorem (Theorem 6)

The general solution to Ax = b is of the form
X = Xp + Xp,

where xy, is the general solution to the homogeneous equation Ax = 0
and x,, is any particular solution to Ax = b.

Describe all solutions to Ax = b, where

3 5 —4 7
A=| -3 -2 4|, b=]| -1
6 1 8 —4
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Example (continued)

4
3 5 —4 7 I 0 =5 = X1—%X3:—1
-3 =2 4 -1 |(~]0 1 0 —
6 1 8 —4 00 0 0 2=
So the general solution is
-1 %
X = 2 1 4+x3| 0|, x3€R.
0 1

v

Remark. The solution set is a line through the origin in R? translated by
a fixed vector.
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Practice Problem

Write the general solution of

10X1 - 3X2 — 2X3 =7

in parametric vector form.
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Section 1.6 - Applications of Linear Systems

Linear systems have many applications. For example, the book discusses
examples related to:

@ A homogeneous system in economics.
e Balancing chemical equations.

@ Network flow.
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Chemical equation example

Example

Propane (C3Hg) combines with oxygen (O,) to form carbon dioxide
(CO,) and water (H>0). We want to balance the equation

x1- GHg+x -0y = x3- CO, + x4 - HO.

We write three equations, one for C, H, and O respectively:

3 0 1 0
X1 8 + X0 0 = X3 0 + Xa 2
0 2 2 1
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Example (continued)

Example (Continued)

Equivalently, we need to solve the homogeneous system with matrix

3 0 -1 0
8 0 0 -2
02 -2 -1

The general solution is

1 _ 5 _ 3
X1 = 7X1, Xo = ZX4’ X3 = ZX4, X4 free.

4

The balanced equation is

GHg +50, — 3CO, + 4H, 0.
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Section 1.7 - Linear Independence

A set of vectors {v1,...,v,} is (linearly) independent if the vector
equation

X1V1+~-~+Xpr:0
has only the trivial solution x = 0.

The set is (linearly) dependent if there exist weights cy,. .., ¢, not all
zero such that

cvi+---+cv,=0.
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Example

Determine whether {vy, vy, v3} is independent, where

1 4 2
v = 2 B Vo = 5 9 V3 = 1
3 6 0

If not, find a dependence relation between vy, vy, vs.

Solution: We write

1 4 2 1 4 2
2 51|~]0 -3 -3
3 6 0 0 0 0

This shows that the set is dependent.
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Example (continued)

Example (continued)

To find a dependence relation, continue reducing:

1 4 2 1 4 2 1 0 -2
2 5 1|(~|]0 -3 3|~/(01 1
3 6 0 0 0 0 0 0 0
This has the solution set
X1 = 2X37 Xo = —X3, X3 free.

So we can write (choosing x3 = 1, say) the dependence relation

2vi — vo +v3 = 0.
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Matrix Columns

Applying the above definition to the columns of a matrix A, we find:

The columns of a matrix A are linearly independent if and only if the
equation Ax = 0 has only the trivial solution.
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Example

Are the columns of the matrix
0 1 4
A=1|1 2 -1
5 8 0
independent?
Solution: Yes:
1 2 -1
A~ 1| 0 1 4
0 0 13
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Some simple cases.

o A set {v} is independent if and only if v is not the zero vector.

o A set {vy1, vy} is independent if and only if neither vector is a
multiple of the other.

This generalizes to:

Theorem (Theorem 9)

If a set contains the zero vector, then it is linearly dependent.

Theorem (Theorem 7)

A set S is linearly dependent if and only if at least one of the vectors in S
is a linear combination of the others.
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A final theorem

Theorem (Theorem 8)

Any set {v1,...,vp} in R" is linearly dependent if p > n.

Let A be the matrix with vy,..., v, as its columns. Then the system
Ax = 0 has more variables than equations, and hence has a nontrivial
solution. O
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Section 1.8 - Introduction to Linear Transformations

Definition (Transformation)

A transformation T from R” to R™ is a rule that assigns to each vector
x € R" a vector T(x) € R™. We write

T:R" - R™

We call R" the domain of T and R™ the codomain.

We call T(x) the image of x. The set of all images is the range of T.

v
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Matrix Transformations

Given an m x n matrix A, we may define the transformation
T:R" > R™ T(x)=Ax.

The range of T is the span of the columns of A, i.e. the set of all linear
combinations of the columns of A.

Example

Consider the matrix transformation given by

1 -3
3 5.
-1 7

Set
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Example (continued)

Example (Continued)

5
a. Find T(u). Answer: 1
-9

b. Find x € R? such that T(x) = b. Answer: [ _i;g ] .

c. Is ¢ in the range of T? Answer: No.
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More examples

The matrix transformation with

A=

O O =
o = O
o O o

is a projection of R® onto the xy plane.

A matrix of the form

1 A 10
A:[o 1} or A_[/\ 1]

gives rise to a shear transformation of the plane R
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Linear Transformations

Definition

A transformation T is linear if
(i) T(u+v)= T(u)+ T(v) for all u, v in the domain of T, and
(i) T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

Every matrix transformation is linear.
Linear transformations satisfy 7(0) = 0.
(i) and (ii) can be combined to T(cu + dv) = cT(u) + dT(v).

More generally,

T(avi+ -+ cpvp)=caT(vi)+--+cT(vp).
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Example

Example

Describe the geometric effect of the linear transformation corresponding

to the matrix
0 -1
1 0|

Solution. The transformation is a counterclockwise rotation by 90
degrees.
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Section 1.9 - The Matrix of a Linear Transformation

In the case that a linear transformation T : R” — R" arises
geometrically, we would like to write down an explicit formula for the
matrix giving rise to T. Here's how to do it:

Theorem (Theorem 10)

Let T : R" — R™ be a linear transformation. Then

T(x) = Ax,
where A is the m x n matrix whose j* column is the vector T(e;):

A=[T(e1) - T(en)]

Here e; is the j® column of the identity matrix in R".
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Example

Suppose that T is a linear transformation from R? to R3 such that

(BEEIR(HINE

Then T(x) = Ax, where

5 -3
A=| -7 -8
2 0

We call A the standard matrix of T.
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Rotations of the Plane

Example

Let T : R?2 — R? be a counterclockwise rotation of the plane through the
origin by angle ¢. Since

1 cos ¢ 0 —sing
o]=me] - [3]-[E0]

the standard matrix of T is

[ cos¢p —sing }

sin ¢ Cos ¢
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nsformations of the Plane

TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix
Reflection through X 1 0
the x,-axis 0 —1

Reflection through
the x)-axis
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nsformations of the Plane

Reflection through
the line x, = x;

Reflection through
the line x, = —x,

Reflection through
the origin
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nsformations of the Plane

TABLE 2 Contractions and Expansions

‘Transformation Image of the Unit Square Standard Matrix
Horizontal % 23 )
contraction 01
and expansion N
1
] 1
[ \ i
0 0.
0<k<l1 k>1
Vertical % ) 1o
contraction 0k
“nd xpanion [
1Y
o
i |V
K g
| 1
[ )
[} Tl
0<k<1 k>1
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Transformations of the Plane

TABLE 3 Shears
Transformation Image of the Unit Square Standard Matrix
Horizontal shear X2 X2 1k
[‘] 0 1
K. L
10 !
| ~ /1 7
i i
R\ S\ . |/ iy .
i t i
k 1 k1
0 Y
k<0 k>0
Vertical shear X ) 10
ko1
i e
1
1
w-{]
n o y
—_— x ———y
4
(-l
k<0 k>0
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Transformations of the Plane

TABLE 4 Projections

Transformation Image of the Unit Square Standard Matrix
Projection onto vl 10
the x,-axis 0 0
|
U
—_——————x,
0 1
0
Projection onto X 0 0
the x,-axis 0 1
[
Ul
T
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More Definitions

Definition (Onto and one-to-one)

A mapping T : R” — R™ is onto if each b € R™ is the image of at least
one x € R".

A mapping T : R" — R™ is one-to-one if each b € R™ is the image of
at most one x € R".
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Example

Let T:R* — R3 be given by T(x) = Ax, where

1 -4 8 1
A=10 2 -1 3
0 0 0 5
Then (by considering the equation Ax = b):
o T is onto.

@ T is not one-to-one.
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Theorems

Theorem (Theorem 11)

Let T : R" — R™ be a linear transformation. Then T is one-to-one if
and only if the equation T(x) = 0 has only the trivial solution x = 0.

Theorem (Theorem 12)

Let T : R" — R™ be a linear transformation with standard matrix A.
Then

a. T is onto if and only if the columns of A span R™.

b. T is one-to-one if the columns of A are linearly independent.
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Example

Example
Let

T(Xl, X2) = (3X1 aF X2, 5X1 aF 7X2, X1 + 3X2).
Show that T is a one-to-one linear transformation that is not onto.

Solution. We write T : R? — R3 as T(x) = Ax, with

31
A=1|5 7
1 3

The columns are independent, but cannot span R3.
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Section 1.10 - Linear Models in Business, Science, and

Engineering

We focus on one example, namely, linear equations and electrical
networks.

Ohm's law models the passage of current through a resistor by
V =RI,

where
e V (voltage) is measured in volts,
@ R (resistance) is measured in ohms,

@ / (current flow) is measured in amps.
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Example

Determine the loop currents in the following circuit.
—_
30 volts
49 I 340
A B
30
1Q I, 1Q
c—if D
5 volts 1Q
e (n 1Q
R
20 volts
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Example (continued)

Example (continued)

We need to use Kirchhoff’s voltage law: the sum of the R/ voltage
drops in one direction around a loop equals the sum of the voltage
sources in the same direction around the loop.

@ For loop 1, we get
114 — 3hL = 30.

o For loop 2, we get
—3hL +6hL — K5 =5.

@ For loop 3, we get

—bh + 3k = —25.
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Example (continued)

Example (continued)

We get a linear system for Iy, I, I3, which we can solve for
h=3, hL=1 Ik=-8.

We can use this to determine the current in each branch.
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Section 2.1 - Matrix Operations

The entries of an m x n matrix A are denoted aj;.

The diagonal entries are a1, ax, . . ..

The n x n identity matrix (denoted /, or just /) is the diagonal
matrix with 1s along the diagonals.

The zero matrix (denoted by 0) has all a;; = 0.
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Sums and Scalar Multiples

Sums and scalar multiples of matrices are defined similarly to the case of
vectors.

Set
4 0 5 111 2 -3
A:{—1 3 2]’32[3 5 7}’C:{0 1]
Then
5 1 6
avs=]3 18],

while A+ C is not defined. We also have

2 2 2
28_[6 10 14]
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Matrix Algebra - Summary

THEOREM 1 Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A+B=B+4 d. r(A+ B) =rA +rB
b. A+B)+C =4+ (B+C) e. (r+s)A=rA+sA
c. A+0=4 f. r(sd) = (rs)A

@ In other words, there is nothing unexpected when dealing with
matrix addition and scalar multiplication.
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Matrix Multiplication

If A is an m x n matrix, and if B is an n X p matrix with columns by, ..., b,,
then the product AB is the m x p matrix whose columns are Aby, ..., Ab,. That
is,
AB = A[bl b, .- bp] = [Ab] Aby .- Abp]
o Here Ab;, ..., Ab, denote the matrix-vector multiplication we

studied in Chapter 1.

@ If A is the standard matrix of a transformation T and B is the
standard matrix of a transformation S, then AB is the standard
matrix of the composition T o S. This follows from the fact that

A(Bx) = (AB)x.
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Examples

With
I P ]
we have 1 o0 a1
AB—[—1 13 —9}'

Note that each column of AB is a linear combination of the columns of A.)

Example

If Ais 3 x5 and B is 5 x 2, what are the sizes of AB and BA (if they are
defined)?

Solution: AB is 3 x 2; BA is not defined.
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Another Method to Compute AB

The ijth entry of AB (if it is defined) is the ‘dot product’ between the it
row of A and the j* column of B:

(AB)jj = aibij + - + ainby

when A has n columns and B has n rows.
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Properties of Matrix Multiplication

THEOREM 2 Let A be an m x n matrix, and let B and C have sizes for which the indicated
sums and products are defined.
. A(BC) = (AB)C (associative law of multiplication)
. A(BB+C)=A4B + AC (left distributive law)
.(B+C)A=BA+CA (right distributive law)
. r(AB) = (rA)B = A(rB)
for any scalar r

a0 oo

e. I,A=A=AIl, (identity for matrix multiplication)
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Matrix Multipication is Not Commutative

o We say A and B commute if AB = BA.

@ In general, matrix multiplication is not commutative.
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Other Differences

@ In general AB # BA.
o If AB = AC, we cannot conclude B = C.
e If AB =0, we cannot conclude that A=0 or B = 0.
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Other operations

o If Ais an n x n matrix and k a positive integer, then A¥ denotes
A--- A (k times).

o If Ais an m x n matrix, then the transpose of A is the n x m
matrix AT obtained by interchanging the rows and columns of A.

@ A convenient way to write a column vector is in the form
x =[1,2,3]T.
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Theorem about Transposes

THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a (AT =4

b. (A+ B)T = AT + BT

c. For any scalar r, (rA)” = rA”
d. (AB)T = BTAT

Pay special attention to the order of multiplication in part d.
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Practice Problems

e Compute xx" and x" x, where

~[3]

@ Let A be a 4 x 4 matrix and x € R*. What is the fastest way to
compute A%x?
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Section 2.1 - The Inverse of a Matrix

Definition (Inverse)

An n x n matrix A is invertible if there is an n x n matrix C such that
CA=AC =,

In this case, C is an inverse of A.

Inverses are necessarily unique, and so we call C the inverse of A and
write C = A=, Thus,

AATL = ATA= .

A non-invertible matrix is called singular. An invertible matrix is called
nonsingular.
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Example

If

then A is invertible and

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



The 2 x 2 case

Theorem (Theorem 4)
Let

a b
A= [ b ] |
If ad — bc # 0, then A is invertible and

e

ad—bc —c a

If ad — bc = 0, then A is not invertible.

@ The quantity ad — bc is called the determinant of A.
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Usefulness of Matrix Inverses

Theorem (Theorem 5)

If A is an invertible n x n matrix, then for each b € R" the equation
Ax = b has the unique solution x = A~'b.

e To verify this, note AA~'b = I,b = b.
e For uniqueness: if Au = b, then we apply A~! to get u = A~1b.
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Example

Example

Solve the system

3x1 +4x =3
5x1 +6x0 = 7.

Solution: The system is equivalent to Ax = b, where

(3] o [2)

5

(o)

The solution is given by
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Properties of Matrix Inverses

THEOREM 6 a. If A is an invertible matrix, then A~ is invertible and
4 hH'=4

b. If A and B are n x n invertible matrices, then so is AB, and the inverse of AB
is the product of the inverses of A and B in the reverse order. That is,

(AB)™! = B7'47!

c. If Aisaninvertible matrix, then sois A’ , and the inverse of A” is the transpose
of A~!. That is,
(A7) = (AT

In general, the product of invertible matrices is invertible, with

[A; - -~Ak]*1 — A;l .. ‘Al_l-
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Elementary Matrices

An elementary matrix is a matrix obtained by performing a single
elementary row operation on the identity matrix.

v

Example

Let E correspond to a row replacement, e.g.

1 0 0
E = 01 0
-4 0 1
Then
a b a b
E| ¢c d|= c d
e f e—4a f—4b
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Elementary Matrices (Continued)

@ Elementary matrices correspond to row replacement, row
interchange, or scaling.

e If E is an elementary matrix corresponding to a row operation, then
the product EA equals the matrix obtained by performing the same
row operation on A.

@ Every elementary matrix is invertible. To compute the inverse, just
‘undo’ the corresponding row operation.
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Inverting Elementary Matrices

Find the inverse of

100
E=| 01 0
—4 0 1

We transform E back into /3 by the row operation

R3; — R3 + 4-R17
which corresponds to
1 00
E'=]0 10
4 0 1
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Computing Matrix Inverses

Our method to compute matrix inverses is based off of the following
theorem:

Theorem (Theorem 7)

An n x n matrix A is invertible if and only if A is row equivalent to .

In this case, if the row operations Eq, ..., E, reduce A to |, then the
same row operations transform I, into A1l In particular,

Al=F - E.

@ Ainvertible = Ax = b has a solution for every b.
@ n pivots <= invertible.
e £, FKHA=I, = AilIEk‘“El.
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Computing A~}

@ Row reduce [A /].
o If A~ 1 then[A I]~[I A7Y].
o Otherwise, A is not invertible.

Determine whether

is invertible. If so, compute its inverse.

Solution:
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Another Viewpoint

@ When we row reduce [A /], we are simultaneously solving Ax = e;
foreachj=1,...,n

@ The columns of A~ are then the solutions to each of these
equations.
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Section 2.3 - Characterizations of Invertible Matrices

THEOREM 8 The Invertible Matrix Theorem
Let A be a square n x n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

. A is an invertible matrix.

. A is row equivalent to the n x n identity matrix.

. A has n pivot positions.

The equation Ax = 0 has only the trivial solution.

The columns of 4 form a linearly independent set.

The linear transformation X — AX is one-to-one.

. The equation Ax = b has at least one solution for each b in R”.

508 - 0 A0 O

. The columns of A4 span R”.
The linear transformation x — Ax maps R” onto R”".

—-

. There is an n x n matrix C such that CA = I.
. There is an n X n matrix D such that AD = I.

— A e

. A" is an invertible matrix.
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Strategy of Proof

2NN
(® )
A\ U

(© <= (@@
FIGURE 1

(k)
7 N\
(@ <= ()
(8) <= () = )
(d) <= (@) <= ()

(@) <= (D)
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A Useful Fact

o Let A, B be square matrices. If AB =/, then A and B are both
invertible, with A= B~ and B= AL

This uses items j. and k. from the invertible matrix theorem, along with
the uniqueness of inverses.
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Application of Invertible Matrix Theorem

Determine whether the matrix A invertible, where

1 0 -2
A= 3 1 -2
-5 -1 9

Solution: Perform row reduction to get

1 0 -2
A~ | 0 1 4
0 0 3

As A has three pivots, it is invertible.
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Invertible Linear Transformations

A linear transformation T : R” — R" is invertible if there exists a
transformation S : R” — R” so that

S(T(x))=T(S5(x))=x forall xeR"

Theorem (Theorem 9)

A linear transformation T is invertible if and only if its standard matrix A
is invertible. In this case, S(x) := A~1x is the inverse of T in particular,
S is also a linear transformation.
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Sample Problems

@ Show that if T : R" — R" is a one-to-one linear transformation,
then T is invertible.

@ Determine whether or not

NN N
w w w
L

is invertible.
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Section 2.5 - Matrix Factorizations

@ A factorization of a matrix A is an equation that expresses A as a
product of two or more matrices.

@ Matrix factorizations play an important role in applications, e.g. the
singular value decomposition in machine learning (to be discussed
later).

@ In this section we focus on the LU factorization, which is used to
efficiently solve sequences of equations all with the same coefficient
matrix.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



LU Factorization

@ Suppose A is an m X n matrix that can be reduced to echelon form
without row interchanges.

@ This means A can be written in the form A = LU, where

o Lis an m X m unit lower triangular matrix.
o Uis an m x n echelon form of A, which is upper triangular.

@ To solve Ax = b, we can equivalently solve the pair of equations
Ly=b, Ux=y.

Each equation can be solved quickly because L and U are triangular.
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Example

Use the LU factorization

3 -7 =2 2 1 000][3 -7 —2 2

-3 5 1 0| | -1 100/[|0 —2 -1 2

6 -4 0 5| | 2 5100 0 -1 1

—9 5 -5 12 3 83 1|l0o 0o 0 -1
A L U

to solve Ax = b, where

b=[-95711]".
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Example (continued)

Example (Continued)

o First solve Ly = b:

-9
Lbl~[1yl y=]| ¢
1

@ Then solve Ux = y:
3
WUyl ~lx, x=| &
-1
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Computational Efficiency

@ In the previous example, once we have determined L and U, it takes
12 arithmetic operations to find y, followed by 28 arithmetic
operations to find x.

@ By contrast, direct row reduction of [A b] to [/ x] requires 62
operations.

@ Thus, LU decomposition can increase computational efficiency in
cases in which one needs to solve Ax = b for a fixed A but many
different choices of b.
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LU Algorithm

@ Suppose A can be reduced to an echelon form U using only
replacements that add a multiple of one row to another row below it.

@ Then there exist unit lower triangular elementary matrices £y, ... E,
so that
E,---EEA=U.

This gives us a choice of U, and we may take
L=[E--E] "

[Remark: Why is L unit lower triangular?]

@ These same row operations reduce L to /.
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Example

Find an LU factorization of

2 4 -1 5 -2
-4 -5 3 -8 1
2 5 —4 1 8
—6 0 7 -3 -1

Solution:
2 4 -1 5
-4 -5 3 -8

2 -5 —4 1
—6 0 7 =3

4 -1 5 -2
3 1 2 -3
-9 -3 —4 10
12 4 12 -5

— = N
2
coomN
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Example (Continued)

Example (Continued)

2 4 -1 5 -2 2 4 -1 5 -2
03 1 2 -3 03 1 2 -3
“loo0o 02 1 00 02 1
00 04 7 00 00 5
U
We take

1 000

2 100

L= 1 -3 10

3 4 21

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



General Case

@ In general, one needs to use row interchange when performing row
reduction.

@ In this case, the ‘L’ that one produces is a permutation of a lower
triangular matrix.
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Sample Problem

Find an LU factorization of

2 —4 2 3

6 -9 -5 8

A= 2 -7 -3 9
4 -2 -2 -1

—6 3 3 4

Note: A has only three pivots; the final two columns of L will come from
Is.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Section 2.6 - The Leontief Input-Output Model

@ Suppose nation’s economy has n sectors.
@ x € R": production vector

o d € R": final demand vector

°

C: n x n consumption matrix. [For each sector, how many units of each

other sector are consumed per unit of output?]
Cx € R": intermediate demand vector
Leontief Input-Output Model:

x=Cx+d
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A relevant theorem

Theorem (Theorem 11)

If C and d have nonnegative entries and each column sum of C is less
than 1, then

x=(-C"'d

has nonnegative entries and is the unique solution to x = Cx + d.

e To approximate (/ — C)~1, use a Taylor series expansion:
(I-C)t=1+C+C?+C+...

@ The entries in (I — C)™! can be used to predict how the production
x must change in response to a change in the final demand d.
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Example

An economy has three sectors: manufacturing, agriculture, and services,
with consumption matrix

bS5 4 2
c=].2 3 1
1 1 3

Suppose the final demand is d = [50 30 20]". Find the production level
x that satisfies this demand.

Solution: We solve (I — C)x = d by row reduction to deduce

x = [226 119 78]".
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Section 2.7 - Applications to Computer Graphics

@ In this section we describe some basic applications of linear algebra
to 2D computer graphics.
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Basic Example

Example

We can represent a letter (say N) by using eight points in the plane. We
store this in a data matrix D, say

p_[0 5 566 55 550
|0 064 08 8 158 8|

Each column corresponds to a vertex in the 2D plane.

By applying the shear transformation

1 A
A=[o 3]

we can shear the N.
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Matlab Code

1 % Plot the letter N with successive shear transformations applied to it.
2

3 ps Data Matrices

4- D= [0, .5, .5, 6, 6, 5.5, 5.5, ; @, @, 6.42, @, 8, 8, 1.58, 8];

5 DD = [D(:,8),D(:,1)];

6

7 % Shear transformation of the plane

ll= A= [1,.1;0,1];

9

10 - figure

11

117|= for m=1:75

15 |= clf sclear the figure
14 - D = AxD; supdate the data matrix
15 - DD = [D(:,8),D(:,1)];

16 — plot(D(1,:),D(2,:))

107/ = hold on

18 — plot(DD(1,:),DD(2,:))

19 - axis([-2 70 -2 101)

20 - drawnow

210 end

22
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Homogeneous Coordinates

@ Translation is not a linear transformation of the plane — indeed, it
does not send 0 to 0.

@ However, we can model translation of the 2D plane using a 3D
linear transformation together with homogeneous coordinates.

e In particular, we associate a point (x,y) € R? with the point
(x,y,1) € R3,

@ Then translation by the vector [h, k] is represented by the matrix
1 0 h
01 k|,
0 0 1
which sends
X x4+ h

to y+k
1

— <

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



2D Transformations in Homogeneous Coordinates

@ We can still model a 2D linear transformation using homogeneous
coordinates. In particular, if the transformation has the 2 x 2
standard matrix A, then we apply the matrix

57

to the homogeneous coordinates, sending

HENN

@ Composition of transformations corresponds to matrix multiplication
(even in the setting of homogeneous coordinates).
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Example: rotation about a point

Find the matrix that performs rotation by angle ¢ about a p in R2.

Solution. We use homogeneous coordinates [x y 1]7.
o We first translate by —p via

1 0 —p
T-=]10 1 —p
0 0 1
@ Now perform a rotation by angle ¢ about the origin:

cos¢p —sing O
R = sin ¢ cosp O
0 0 1

@ Translate back to p via T.

@ The transformation is given by the product T RT_.
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Matlab Code

©ONOU A WN PR

PR RE R R R
N UBRWNRS

18

%each column gives the position of an object in homogeneous coordinates
D=[0,-5;0,0;1,1];

%object one will translate along the line y=x
%object two will orbit object one

%stranslation by (.1,.1)
T=11,09, .1; 0, 1, .1; 0, 0, 1];

%rotation by angle .1
R=[cos(.1),-sin(.1),0;sin(.1),cos(.1),0;0,0,1];

figure

for m=1:250
clf
D(:,1)=T*D(:,1); %update object one
%object two should be translated, then
%rotated about object one's current position
Tminus = [1,0,-D(1,1);0,1,-D(2,1);0,0,1];
Tplus = [1,0,D(1,1);0,1,D(2,1);0,0,1];
D(:,2)=Tplus*RkTminusxT*D(:,2); S%update object two
scatter(D(1,1:2),D(2,1:2),50) %when plotting, omit final row of 1s
axis([-50 50 -50 50])

drawnow

end
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Further Topics

See the textbook for further discussion of 3D graphics, homogeneous
coordinates in 3D, and perspective projections.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Section 2.8 - Subspaces of R”

Definition (Subspace)

A subspace of R" is a set H in R” satisfying the following three
properties:

a. H contains the zero vector 0.
b. If uand v are in H, then u+ v is in H. [Closed under addition.]

c. If uisin H and c is a scalar, then cu is in H. [Closed under scalar
multiplication.]
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A Key Example

Example (Span)

If vi and v» are vectors in R” and
H = Span{vi, va},

then H is a subspace of R”.

The same is true for any finite collection of vectors in R".

Later we will see that every subspace is of this form!

@ In the previous example, H is either a line (if {v1,vo} are
dependent) or a plane (if {vy, v2} are independent).

@ A line or a plane that does not pass through the origin is not a
subspace.
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Column Space and Null Space

Definition (Column Space)

The column space of a matrix A, denoted Col (A), is the set of all linear
combinations of the columns of A.

o If Ais m x n, then the column space of A is the span of the columns
of A and hence is a subspace of R".

Definition (Null Space)

The null space of a matrix A, denoted Nul (A), is the set of all solutions
x to the homogeneous equation Ax = 0.

Theorem (Theorem 12)

If A is an m x n matrix then Nul (A) is a subspace of R".
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Example

Determine whether b is in Col (A), where

1 -3 —4 3
A=| -4 6 -2, b=| 3
3 7 6 4

Solution: We must determine whether Ax = b is consistent. As
1 -3 -4 -3

[Abj~| 0 —6 —18 15 |,
0 0 0 0

we see that b € Col (A).
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Bases

A basis for a subspace H of R” is a linearly independent set in H that
spans H.

v

Example
The standard basis for R"” consists of the vectors

1 0
0 :
e = . , ... €ep= :
: 0
0 1

The columns of any invertible n x n matrix form a basis for R".
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Basis for the Null Space

Find a basis for the null space of

-3 6 -1 1 -7
A=| 1 —2 2 3 -1
2 -4 5 8 —4

Solution: Write the solution to Ax = 0 in parametric vector form:

1 -2 0 -1 3
A~ | 0 0 1 2 =2 |,
0 0 0 0 0
SO X», Xa, X5 are free, with
X1 = 2X2 + XxXq — :'.))X57 X3 = —2X4 aF 2X5.
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Basis for the Null Space (Continued)

Example (Continued)

The general solution is

from which we can deduce {u, v, w} is a basis for Nul (A).
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Basis for the Column Space

Find a basis for the column space of

1 3 3 2 -9
=2 =2 2 -8 2
2 3 0 7 1
3 4 -1 11 -8

A=

Solution. The columns of A span Col (A), but they are not independent.

10 -3 5 0
01 2 -1 0
Ao 0 0 0 1
00 0 00
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Basis for the Column Space (continued)

Example (Continued)
Keeping the pivot columns of A, we obtain the basis

1 3 —9
-2 —2 2
2|7 3 |’ 1
3 4 —8

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Pivot Columns; Practice Problems

Theorem (Theorem 13)

The pivot columns of a matrix A form a basis for the column space of A.

o Given

find a vector in Nul (A) and a vector in Col (A).

@ Suppose an n x n matrix A is invertible. What can you say about
Col (A)? What can you say about Nul (A)?
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Section 2.9 - Dimension and rank

Definition (Coordinates)

If B={bq,...,by} is a basis for a subspace H in R”, then any x in H
may be written uniquely in the form

x=c1bi+ -+ c,b,

for some weights ¢, ..., c,. We define the coordinates of x relative to
the basis B by
(&]
[x]s =
Cp

@ Uniqueness is due to linear independence.
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Example

Let
3 =1 3
vi=| 6|, wvy= 0], x=| 12
2 1 7

Then B = {v1, vu} is a basis for H = Span{vy, vo}.

(i) Show that x belongs to H.

(i) Find [x]g (the coordinates of x relative to B).
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Example (continued)

Solution: We solve

3 -1 3 1 0 2
6 0 12 | ~|0 1 3],
2 1 7 0 0 0

which shows that x € Span{vy, vo} with

[X]B—[§]~
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Dimension

@ If a subspace of H has a basis consisting of p vectors, then every
basis of H must have exactly p vectors.

Definition (Dimension)

The dimension of a nonzero subspace H, denoted by dim H, is the
number of vectors in any basis for H. The dimension of the subspace {0}
is defined to be zero.

v

Definition (Rank)

The rank of a matrix A, denoted rank A, is the dimension of the column
space of A.

The dimension of the null space of a matrix A is the number of free
variables in the equation Ax = 0.
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Rank Theorem; Basis Theorem

Theorem (The Rank Theorem)

If a matrix A has n columns, then

rank A + dim Nul A = n.

Proof: Every column is either a pivot column or leads to a free variable in
the equation Ax = 0.

Theorem (The Basis Theorem)

Let H be a p-dimensional subspace of R". Any linearly independent set
of p elements of H is a basis for H; any set of p elements of H that
spans H is a basis for H.
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Continuation of Invertible Matrix Theorem

Theorem (The Invertible Matrix Theorem (continued))

Let A be an n x n matrix. The following are equivalent to the statement
that A is invertible:

m. The columns of A form a basis for R".
n. ColA=R".
o. dim ColA = n.
p. rankA = n.
q. NulA={0}.
r. dim NulA = 0.
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Practice Problems

o Is R3 a subspace of R*?

o What is the basis of the subspace of R3 spanned by

2 3 1
8|, | -7, 6
6 -1 7

o Let B be the basis for R? with elements [1 2]7 and [2 1]7. If
[x]e =[3 2]", then what is x?
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Chapter 3

Math 3108 - Fall 2019
Chapter 3: Determinants

@ Section 3.1 - Introduction to Determinants
@ Section 3.2 - Properties of Determinants
@ Section 3.3 - Cramer's Rule, Volume, and Linear Transformations
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Section 3.1 - Introduction to Determinants

We encountered the determinant of a 2 x 2 matrix when discussing
invertibility. We now extend this notion to higher order matrices.

@ The determinant of a 1 X 1 matrix A = [a11] is simply
det A = aj;.
@ The determinant of a 2 x 2 matrix A = [a;] is
det A = aj1ax — arpan:.

@ To describe the determinant of higher order (square) matrices, we
need to introduce the notion of a submatrix.
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Higher Order Determinants

e Given an n x n matrix, the submatrix A; is the (n —1) x (n—1)
matrix obtained by removing row i and column j from A.

@ The determinant of a 3 x 3 matrix A is

det A = a;; det Aj; — ajpdet App + ajz det Ags.
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Determinants - General Definition

The general definition of the determinant is ‘inductive’:

Definition (Determinant)

For n > 2, the determinant of an n x n matrix A = [a;j] is given by the
alternating sum

det A = Z(—l)”jalj det Alj
=1
= ajpdet Ay — appdet App + -+ - + (—1)1+n31n det Ay,.

Here Aj denotes the (n — 1) x (n — 1) submatrix of A obtained by
removing row i and column j.

e We may also write |A| for det A.
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Cofactor Expansions

@ There are more ways to compute the determinant.
@ The (i,j) cofactor of A is defined by

C,'j = (—1)i+j det AU

@ The definition of determinant uses a ‘cofactor expansion across the
first row’.

Theorem (Theorem 1)

The determinant of an n X n matrix A can be computed using the
cofactor expansion across any row or column. That is:

det A= a;1Ci1 + apCio +---+ ajnCi, for any i
=a;;Gj+ ayCj+ -+ ayCyj  forany j.
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Compute det A, where

3 -7 8 9 -6
o 2 -5 7 3
A=10 O 1 5 0
o 0 2 4 -1
0o 0 0 -2 0

>
1 5 o0
detA—3det| O 1 % 0| _gdet| 2 a2 -1
0 2 4 -1 2

0 0 -2 0

—6~(—1)-(—2)-det{ 1 _0]_12.
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Special Case: Triangular Matrices

Theorem (Theorem 2)
If A is a triangular matrix, then det A is the product of the entries along
the diagonal of A.

@ In general, cofactor expansion of an n x n matrix requires more than
n! multiplications.

@ This means that even for a 25 x 25 matrix (say), with a calculator
performing one trillion multiplications per second, computing the
determinant would take several hundred thousand years...
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Practice Problem

o Compute
5 -7 2 2
0 3 0 —4
det| 5 g0 3
0 5 0 —6
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Section 3.2 - Properties of Determinants

o If two matrices are connected by row operations, their determinants
are related as well.

Theorem (Theorem 3 - Row Operations and Determinants)

Let A be a square matrix.
o If B is obtained from A by a row replacement, then det A = det B.
e If B is obtained from A by a row interchange, then det B = — det A.
o If B is obtained by scaling a row of A by k, then det B = k - det A.

@ This means we can use row reduction to efficiently compute
determinants!
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Example

Compute det A, where

1 -4 2
A= =2 8 -9
-1 7 0

Solution: Using two replacements and one interchange,

1 -4 2 1 -4 2

A~ 0 0 5|~ -1 7 0
-1 7 0 | 0 0 -5

(1 —4 2

~l0 3 0

|0 0 -5

Thus det A = 15.
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Another Example

Compute
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Generalizations

@ In general, we deduce that det A either equals

e 0, if Ais not invertible (not equivalent to /,), or
o = the product of the pivots in any echelon form of A.

Theorem (Theorem 4)

A square matrix A is invertible if and only if det A # 0.
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Example

Compute det A, where

3
0
—6
-5

A=

Solution: Adding 2 times row 1 to row 3 yields the matrix

3
0
0
-5

Thus det A = 0.

-1
5
7
—8

=1
5
5
—8

-3
—7

2
-3
-3

0

2 -5
—6

4

0 9

-5
—6
—6

9
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Cofactor Expansion and Row Reduction

o Computer programs use this ‘row reduction’ method to compute
det A. This requires about 2n3/3 operations. Thus only 10,000
operations are required for a 25x25 matrix, which takes a fraction of
a second.

o Cofactor expansion can be used together with row reduction.

Example

Compute the determinant of

N O N O
1w o1
A~ O N D
NN W
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Example (continued)

Compute the determinant of

NODNO
c1 W o1 =
O NN
NN W=

Answer: -30.
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Column Operations

Theorem (Theorem 5)

If A is an n x n matrix, then det AT = det A.

(Recall that AT is the transpose of A, obtained by interchanging the rows
and columns of A.)

@ The proof is by induction and cofactor expansion.

@ This theorem shows that ‘column operations’ have the same effect
on determinants as row operations.

@ We focus on row operations.
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Determinants and Matrix Products

Theorem (Theorem 6)

If A and B are n X n matrices, then

det AB = (det A) - (det B).

@ We won't prove this, but at least let's see it in action!

First, compute
6 1 4 3| |25 20
3 2 1 2| |14 13 |°

9.5 =45 =325 — 280.

Next, observe
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Practice Problems

@ Use a determinant to determine if the following three vectors are

independent:
5 -3 2
-7 1, 31, -7
9 -5 5

@ Suppose Ais n x n and A2 = /. Show that det A equals 1 or —1.
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Section 3.3 - Cramer’s Rule, Volume, and Linear

Transformations

@ In this section we will briefly mention some further applications of
determinants.

Theorem (Theorem 7 - Cramer's Rule)

Let A be an n X n invertible matrix and b € R". Then unique solution of
Ax = b has entries given by

det A,(b)

X detA ’

where A;(b) is the matrix obtained from A by replacing column i with
the vector b.

e Application: In engineering, systems of differential equations are
converted to systems of algebraic equations by the Laplace
transform. These systems may then be solved by Cramer's rule.
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A Formula for Matrix Inverses

e Since the j* column of A1 is the solution to Ax = e;, Cramer's
rule implies
-1 _ det A,-(ej)
y detA
where the notation A;(-) is as in Cramer’s theorem.

@ By cofactor expansion, we have
det A,-(ej) = Cj,',
where Cj is the cofactor introduced above. So we can also write

-1 _ _1 .
Aij - detAC/"
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Geometric Interpretation of Determinant

Theorem (Theorem 9)

@ If Ais a2 x 2 matrix, then the area of the parallelogram determined
by the columns of A is equal to | det A|.

e If A is a 3 x 3 matrix, then the volume of the parallelepiped
determined by the columns of A is | det A|.

@ Proof (sketch): It is true for diagonal matrices, and so you need to
check what happens under row operations.
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Linear Transformations

Theorem

Let T : R2 — R? be a linear transformation with standard matrix A. If S
is a parallelogram in R?, then

Area{T(S)} = | det A| - Area(S).

If instead T : R® — R3? has standard matrix A and S is a parallelepiped
in R3, then

Volume{T(S)} = |det A| - Volume(S).

e This generalizes to any region S in R? or R3.
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Chapter 4

Math 3108 - Fall 2019
Chapter 4: Vector Spaces

@ Section 4.1 - Vector Spaces and Subspaces

@ Section 4.2 - Null Spaces, Column Spaces, and Linear
Transformations

@ Section 4.3 - Linearly Independent Sets; Bases
@ Section 4.4 - Coordinate Systems

@ Section 4.5 - The Dimension of a Vector Space
@ Section 4.6 - Rank

@ Section 4.7 - Change of Basis

@ Section 4.9 - Applications to Markov Chains
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Section 4.1 - Vector Spaces and Subspaces

A vector space is a nonempty set V' of objects, called vectors, on which are de-
fined two operations, called addition and multiplication by scalars (real numbers),
subject to the ten axioms (or rules) listed below.! The axioms must hold for all
vectors u, v, and w in V' and for all scalars ¢ and d .

1. The sum of u and v, denoted by u + v,isin V.
2.ut+v=v+u
3. +v)+w=u+(v+w).
4. There is a zero vector 0 in V' such thatu + 0 = u.
5. Foreach uin V, there is a vector —u in V' such that u + (—u) = 0.
6. The scalar multiple of u by ¢, denoted by cu, isin V.
7. c(u+v)=cu-+cv.
8. (c+d)u=cu+du.
9. ¢(du) = (cd)u.
10. lu =u.

@ We may also use complex vectors and complex scalars.
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The fundamental example in this class is V = R".

@ Let S be the space of all doubly infinite sequences of numbers
{yk} = ( ey Y—2,¥Y—-1,Y0, Y1, Y2, - - )
@ For n >0, let P, be the set of all polynomials of the form

p(t) = ao + art + axt? + -+ - + apt”.

Let F(R) be the set of all functions f : R — R.
Let C(R) be the set of all continuous functions f : R — R.
And so on...
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An Important Question

What is a vector?
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A subspace of a vector space V is a subset H of V' that has three properties:
a. The zero vector of V' isin H 2

b. H is closed under vector addition. That is, for each u and v in H, the sum
u+visin H.

c. H is closed under multiplication by scalars. That is, for each u in A and each
scalar ¢, the vector cu is in H .

@ Note that any subspace is itself a vector space.
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@ The zero subspace is the subspace {0}.

e For any n, P, is a subspace of the vector space PP of all polynomials,
which is in turn a subspace of C(R), which is a subspace of F(R).

@ R? is not a subspace of R3, but the set

s
H= t |:s,teR
0

is a subspace of R3.

e A plane in R3 is a subspace of R? if and only if it contains the zero
vector.
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Subspaces Spanned by a Set

In the setting of a general vector space, we still have the notions of
linear combination and span.

Theorem (Theorem 1)

If vi,..., v, are vectors in a vector space V, then Span{vy,...,v,} is a
subspace of V.

@ To prove this, you must check the definition of subspace.

Example

The set of all vectors of the form (a — 3b, b — a, a, b) is a subspace, since
it is equal to the span of

and

<
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Practice Problems

@ The set of points of the form (3s,2 4 5s) is not a vector space.

@ Show that the set of symmetric n x n matrices is a subspace of the
vector space of all n x n matrices.
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MyLab Problems

Determine if the given set is a subspace of P;. Justify your answer.

The set of all polynomials of the form p(t) = a17. where ais in R.

Choose the correct answer below.

(O A. The setis not a subspace of P’;. The set is not closed under multiplication by scalars when the scalar is not an integer.

() B. The setis a subspace of [P7. The set contains the zero vector of P, the set is closed under vector addition, and the set is closed under multiplication by
scalars.

() C. The setis not a subspace of [P;. The set does not contain the zero vector of P7.

o

. The set is a subspace of P;. The set contains the zero vector of P7, the set is closed under vector addition, and the set is closed under multiplication on the
left by mx 7 matrices where m is any positive integer.
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MyLab Problems

Let W be the set of all vectors of the form shown on the right, where a and b represent arbitrary real numbers. Find a set —a+8

S of vectors that spans W, or give an example or an explanation showing why W is not a vector space. 5
a-

2b+a

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

D A. The set W is a vector space and a spanning set is S = { }
(Use a comma to separate vectors as needed.)

) B. The set W is not a vector space because not all vectors u in W have the property 1u=u.
(O €. The set W is not a vector space because not all vectors u, v, and w in W have the property that u+v=v+uand (u+v)+wW=u+(vV+w).
(O D. The set W is not a vector space because the zero vector is not in W.
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Section 4.2 - Null Spaces, Column Spaces, and Linear

Transformations

@ Recall that we studied null spaces and column spaces of matrices in
Chapter 2.

Definition
The null space of an m X n matrix A is

NulA={x e R": Ax = 0}.

Theorem (Theorem 2)

The null space of an m X n matrix A is a subspace of R".
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Column Space

Definition

The column space of an m X n matrix
A=la; --- a,]

is defined by
Col A= Span{ay,...,a,}.

Theorem (Theorem 3)

The column space of an m X n matrix is a subspace of R™.

Note that

ColA={bcR™: Ax=b forsome xecR"}.
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Show that the set of vectors in R* whose coordinates a, b, ¢, d satisfy

a—2b+5c=d and c—a=b is a subspace.

Solution. The set is the same as the null space of
1 -2 5 -1
-1 -1 1 0|

Write the set

6a— b
a+b |, abéeR asthe column space of a matrix.
—7a
6 —1
Solution. A= 1 1
-7 0
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Null Space Versus Column Space

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A

Col 4

. Nul 4 is a subspace of R".
. Nul 4 is implicitly defined; that is, you are

given only a condition (Ax = 0) that vec-
tors in Nul A must satisfy.

. It takes time to find vectors in Nul A. Row

operations on [ A 0] are required.

. There is no obvious relation between Nul A

and the entries in 4.

. A typical vector v in Nul A has the property

that Av = 0.

. Given a specific vector v, it is easy to tell if

v is in Nul A. Just compute Av.

. Nul 4 = {0} if and only if the equation

Ax = 0 has only the trivial solution.

. Nul A = {0} if and only if the linear trans-

formation x > AXx is one-to-one.

. Col A is a subspace of R”.
. Col A is explicitly defined; that is, you are

told how to build vectors in Col A.

. It is easy to find vectors in Col A. The

columns of A are displayed; others are
formed from them.

. There is an obvious relation between Col A

and the entries in A4, since each column of
Aisin Col A.

. A typical vector v in Col A has the property

that the equation Ax = v is consistent.

. Given a specific vector v, it may take time

to tell if v is in Col A. Row operations on
[A V] are required.

. Col A = R™ if and only if the equation

Ax = b has a solution for every b in R”.

. Col A = R" if and only if the linear trans-

formation x > Ax maps R” onto R".
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Linear Transformations (General Case)

Definition

A linear transformation T from a vector space V to a vector space W
is a function T : V — W such that

(i) T(u+v)=T(u)+ T(v) forall vectors u,veV,
(i) T(cu)=cT(u) forall vectors u € V and scalars c.

Here are some examples:

o If Ais an m x n matrix, then T(x) = Ax is a linear transformation
from R" to R™.

o If V is the vector space of differentiable functions, then Tf = %f is
a linear transformation from V to F(R).
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Kernel, Range

Definition
Let T : V — W be a linear transformation.

The kernel (also called null space) of a linear transformation T is the
set of all vectors u such that T(u) = 0.

The range of T is the set of all vectors of the form T(x) for x € V.

@ Note that if T : V — W is a linear transformation, then the kernel
of T is a subspace of V and the range of T is a subspace of W.
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Example

Example

Let w € R and let T be the linear transformation
T = j—; + w2,

Then the kernel of T is the set of solutions to the differential equation
y" +w?y =0.

In particular, the set of solutions forms a vector space.

(In fact, this is a two-dimensional vector space, and a basis is given by
the functions {cos(wt),sin(wt)}.)

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Practice Problems

@ Let A be an n x n matrix. Suppose Col A = Nul A. Show that
Nul A% = R".

Solution. For any x € R", Ax belongs to the column space, and hence
the null space of A. Thus

A’x = A(Ax) = 0.

This means A2 is the zero matrix, so Nul A2 = R".

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



MyLab Problems

Consider the following two systems of equations.

5xq +2x; -3x3 =0 5xy  +2xp -3x3 =0
-9xq +5x; +7x3 =-4 -9xq  +5x; +7x3 =-12
4x, +2x; -8x3 =14 4xq  +2xy —8xz =42

It can be shown that the first system has a solution. Use this fact and the theory of null spaces and column spaces of
matrices to explain why the second system must also have a solution. (Make no row operations.)
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MyLab Problems

0
Define a linear transformation T : IP2—>|R2 by T(p)= { PO . Find polynomials p, and p, in P, that span the kernel of T,
p(0)
and describe the range of T.

Find polynomials p; and p, in P*, that span the kernel of T. Choose the correct answer below.

OA pi)=tand pyt)=£ -1
p(t)=tand py(t)=t>
O C. p,(ty=tand py(t) =t

Ob. p4(t)=1and pz(t)=t2

p(t)=3t% +5t and py(t) = 32 - 5t+7

p4(t)=t+1and py(t) =2

- py)=f and py(t)= -
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Section 4.3 - Linearly Independent Sets; Bases

The definition of linear independence in a general vector space is identical
to the definition in R":

Definition (Linearly Independent)

A set of vectors {v1,...,v,} in a vector space V is linearly
independent if the equation

avi+---+cv,=0

has only the trivial solution ¢; = --- = ¢, = 0.
Otherwise, we call the set linearly dependent.

Theorem (Theorem 4)

A set {v1,...,vp} of two or more vectors with vy # 0 is linearly
dependent if and only if some v; (with j > 1) can be written as a linear
combination of the preceding vectors vi,...,V;_j.
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@ In a general vector space, the equation
avi+---+cv,=0

cannot generally be written as a matrix vector equation.

The polynomials p;(t) = 1, p,(t) = t, and p3(t) = 4 — t are linearly
dependent in IP since p; = 4p; — p,.

The set {sint,cost} is linearly independent in F(R). The set
{sin t cos t,sin 2t} is linearly dependent.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Bases

The definition of a basis in a general vector space is also the same as in
the setting of R":

Definition (Basis)

Let H be a subspace of a vector space V. A set B ={b;,...,b,} in V
is a basis for H if:

(i) B is a linearly independent set, and
(i) H =Span{by,...,b,}.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



All of the old examples from R” are pertinent.

The set S = {1,¢t,t2,...,t"} is a basis for P,. This is the standard
basis for P,.

Example (Fourier Series)

The set containing {sin(nt), cos(nt)}, where n=0,1,2,... is a basis for
square-integrable periodic functions on [, 7] (written L2(T)).
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A More Familiar Example

Let
0 2 6
v = 2 9 Vo = 2 5 V3 = 16
=il 0 =5

and set H = Span{vy, vy, v3}.

Since v3 = 5v; + 3v;, we may actually write
H = Span{vy, v}

In particular, {v1, vo} is a basis for H.
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Spanning Set Theorem

Theorem (Theorem 5)

Let S = {vi,...,v,} be a set in a vector space V and let
H = Span{vi,...,vp}.
a. If a vector vy in S is a linear combination of the other vectors in S,
then the set obtained by removing vy from S still spans H.

b. If H # {0}, then some subset of S is a basis for H.
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Bases for Nul A and Col A.

@ Recall that to find a basis for the null space of a matrix A, we write
the general solution to Ax = 0 in parametric vector form. This
writes the general solution as a linear combination of the basis
vectors.

@ To find a basis for the column space of a matrix A, we put the
matrix in echelon form to identify the pivot columns. We then keep
the pivot columns in the original matrix.
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Practice Problems

Example

Let V and W be vector spaces.
Suppose T : V. — W and U : V — W are linear transformations.
Let {v1,...,vp} be a basis for V.

Show that if T(v;) = U(v;) for every j =1,...,p, then T(x) = U(x)
for every vector x in V.
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MyLab Problems

1 0 -3 2
Find a basis for the null space of the matrix | o 1 -2 4

3 -5 1 -14

Suppose that {v1, . vp} is a subset of V and T is a one-to-one linear transformation, so that an equation
T(u) = T(v) always implies u =v. Show that if the set of images {T (v1) s T (vp)} is linearly dependent,
then {v.], ,vp} is linearly dependent.
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Section 4.4 - Coordinate Systems
Theorem (Unique Representation)

Let B={by,...,b,} be a basis for a vector space V. Then for each
x € V, there exist unique scalars ci, ..., c, such that

x=acaby + -+ cyb,.

We define the coordinates of x relative to B to be the vector

a
[x]s =
Ch
The mapping
x — [x]s

is called the coordinate mapping.
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Examples (R" Case)

@ All of the old examples from R" are relevant here:

o Finding the coordinates of x with respect to a basis B is equivalent
to solving Ac = x, where the columns of A are given by the vectors
in B.

o If [x]g = c, then x = Ac, where the columns of A are given by the
vectors in B.

@ Given a basis B = {by,...,b,} for R", we set
Ps =[b1 by --- b,].

We call this the change-of-coordinates matrix from B to the
standard basis. We have

X = PB[X]B.
@ The inverse of Pg is precisely the coordinate mapping:

Pglx = [x]s.
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Example

Example

It can be shown that
B =11 by 6k i)

is a basis for P,. Find the coordinates of p(t) = 6 + 3t — t2 relative to B.

5
Solution: [p]g = 1
—2
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The Coordinate Mapping

Theorem (Theorem 8)

Suppose B is a basis for a vector space V. Then the coordinate map
x — [x]g is a one-to-one linear transformation from V onto R".

@ We say that the coordinate map is an isomorphism between V and
R" (i.e. one-to-one and onto).

@ This tells us that any vector space with a basis consisting of n
elements is essentially ‘the same’ as R".

Useful Fact: If V is isomorphic to R" and has a basis {b;,...b,}, then a
set {v1,...,Vv,} in V is independent if and only {[v1]s,...,[v,]g} is
independent.
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Example: Polynomials

Example

The basis B = {1,t,...,t"} shows that P, is isomorphic to R"*1. In
particular, we naturally identify a polynomial

p(t) =c+at+---+cyt"
with its coordinates
Co
(4]
[pls =

Cn

However, we can use a different basis for IP,; then the coordinates would
change...
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Section 4.5 - The Dimension of a Vector Space

Theorem (Theorem 10)

If a basis V' has a basis with n vectors, then every basis of V' has exactly
n vectors.

Suppose B is a basis with n elements and C is a basis with m elements.
Passing through the coordinate map, we can construct an isomorphism
between R” and R”. Thus n = m. O

If V is spanned by a finite set, we call V finite-dimensional. Then (by
the Spanning Set Theorem), V has a basis. We define dim V to be the
number of elements in this (and any) basis.

The dimension of the vector space {0} is zero by definition.

If V is not spanned by a finite set then V is infinite dimensional.

<
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The dimension of R" is n.

Subspaces of R3 have dimension 0,1,2, or 3.
The dimension of P, is n+ 1.

The dimension of P is infinite.

The dimension of S (the sequence space) is infinite.

e 6 6 6 o ¢

The dimension of the kernel of
T = j’—; + w?

is two.

@ The dimension of the range of % is infinite.
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Another example

Find the dimension of the subspace

a—3b+ 6¢
- 5a+ 4d _
H_{ b—2c_d .a,b,c,dER}.
5d

We write this as the span of

1 -3 6 0
5 0 0 4
0|’ 1]’ -2 |’ -1
0 0 0 5

Using this, we may deduce dim H = 3.
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Subspaces and the Basis Theorem

Theorem (Theorem 11)

Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be extended (if necessary) to a basis of H.
Furthermore, H is finite-dimensional and

dimH <dim V.

Theorem (Theorem 12 - The Basis Theorem)

Suppose V is a p-dimensional vector space with p > 1. Any linearly
independent set of exactly p elements in V is automatically a basis for V.
Any set of exactly p elements that spans V is automatically a basis for V.
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Dimensions of Familiar Subspaces

For the null space and column space of a matrix A we have the following:

@ The dimension of Nul A is the number of free variables in the
equation Ax = 0.

@ The dimension of Col A is the number of pivot columns in A.

We discussed this in Chapter 2. You will work out numerical examples
in the MyLab homework.
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MyLab Problems

Alinearly independent set {v1, . Vk} in R" can be expanded to a basis for R". One way to do this is to create

A= [ Vi ese Vg €1 oo € }with ey, ..., e, the columns of the identity matrix; the pivot columns of A form a basis for R".
Complete parts (a) and (b) below.

a. Use the method described to extend

-6 5 8

the following vectors to a basis for R5. _7 5 7
Choose the correct answer below.

vi=| 6|vy=| 2|vs=| -6

-5 6 5

7 -3 -7

{vq,v2, v3, @1, €3}
{vq, vz, v3, €, €3}
{e4, vz, v3, €4, €5}
vy, v2, V3, e, €3}
b. Explain why the method works in general. Why are the original vectors vy, ... , Vi included in the basis found for Col A?

The original vectors are the first k columns of A. Since the set of original vectors is assumedto  be linearly independent, these
columns of A will be pivot

columns and the original set of vectors will be included in the basis.

Why is Col A=R"?

Since all of the columns of the n x n identity matrix are columns of A, every vectorin  R" isin Col A. Since every

column of Ais in R", every vectorin Col A isin R". This shows that Col A and R" are equivalent.
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MyLab Problems

The first four Hermite polynomials are 1, 2t, -2 +412, and - 12t+8t°. These polynomials arise naturally in the study of certain
important differential equations in mathematical physics. Show that the first four Hermite polynomials form a basis of 5.

To show that the first four Hermite polynomials form a basis of P3, what theorem should be used?

() A. Ifavector space V has a basis B = {b1 . bn}, then any set in V containing more than n vectors must be linearly
dependent.

(0 B. LetH be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary,
to a basis for H.

(O C. Ifavector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

D. LetV be a p-dimensional vector space, p 2 1. Any linearly independent set of exactly p elements in V is automatically a basis
for V.
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Section 4.6 - Rank

@ For an m x n matrix A, we define the column space Col A to be the
span of the columns of A. It is a subspace of R™.

@ We define the row space Row A to be the span of the rows of A. It
is a subspace of R".

@ The null space Nul A is the set of solutions to Ax = 0. Itis a
subspace of R".

Definition (Rank)

The rank of A is the dimension of the column space of A.

Theorem (Theorem 14 - The Rank Theorem)

Let A be m x n. We have

rank A = dim Col A = dim Row A = # of pivot positions in A.

Furthermore,
rank A + dim Nul A = n.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019




@ The only new part in the Rank Theorem is the part about the row
space. We need the following:

Theorem (Theorem 13)

If A and B are row equivalent, then RowA = Row B.

If B is in echelon form, then the nonzero rows of B form a basis for
Row A.

o Key Observation: if B is obtained from A by row operations, then
the rows of B are linear combinations of the rows of A.

@ With this theorem in place, we can see that the column and row
spaces have the same dimension.
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Example

Find bases for the row space, column space, and null space of

-2 -5 8 0 -17

Aol & 3 =B 1 &
|l 3 11 -19 7 1
1 7 -13 5 -3

Solution. Reduce A to an echelon form:

1 3 -5 1 5
A~ 01 -2 2 -7
0 0 0 —4 20
0 0 0 0 0
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Example (Continued)

@ Basis for Row A:
{(1,3,-5,1,5),(0,1,—-2,2,-7),(0,0,0, —4,20) }.

@ Basis for Col A:

-2 -5 0
1 3 1
{ 3 || | |7 |S
1 7 5

@ Basis for Nul A: We should put the matrix in reduced echelon form.

v
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Example (Continued)

10 10 1
01 20 3
A~vB~1060 0 01 s
00 00 O

Thus a basis for Nul A is

—N
OO NKH
|
1o W
——
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More Examples; MyLab Problem

o If Ais 7 x 9 and dim Nul A = 2, what is the rank of A?

@ Can a 6 x 9 matrix have a two-dimensional null space?

Is it possible that all solutions of a homogeneous system of thirteen linear equations in seventeen variables are multiples of one fixed nonzero solution? Discuss.

Consider the system as Ax =0, where Ais a 13 x 17 matrix. Choose the correct answer below.

(O A. Yes. Since A has at most 13 pivot positions, rank A < 13. By the Rank Theorem, dim Nul A= 17 -rank A 24. Since there is at least one free variable in the
system, all solutions are multiples of one fixed nonzero solution.

_) B. Yes. Since A has 13 pivot positions, rank A= 13. By the Rank Theorem, dim Nul A= 13 - rank A=0. Thus, all solutions are multiples of one fixed nonzero
solution.

) C. No. Since A has at most 13 pivot positions, rank A < 13. By the Rank Theorem, dim Nul A=17 - rank A2 4. Thus, it is impossible to find a single vector in Nul
Athat spans Nul A.

) D. No. Since A has 13 pivot positions, rank A= 13. By the Rank Theorem, dim Nul A=13 —rank A=0. Since Nul A=0, it is impossible to find a single vector in
Nul A that spans Nul A.

Dr. Jason Murphy

Math 3108 - Fall 2019



MyLab Problem

Let Abe an mx n matrix. Explain why the equation Ax = b has a solution for all b in R™ if and only if the equation ATx=0 has only the trivial solution.

Choose the correct answer below.

DA The system Ax = b has a solution for all b in R if and only if the columns of A span R™, or dim Col A=m. The equation ATx=0has only the trivial solution
if and only if dim Nul A= 0. By the Rank Theorem, dim Col A =rank A=m - dim Nul A. Thus, dim Col A=m if and only if dim Nul A=0.

OB The system Ax = b has a solution for all b in R™ if and only if the columns of A span R™, or dim Row A = m. The equation ATx=0has only the trivial solution
if and only if dim Nul AT =0. Since Row A= Col AT, dim Row A =dim Col AT =m - dim Nul AT by the Rank Theorem. Thus, dim Row A=m if and only if dim
Nul AT =0.
D C.

- The system Ax =b has a solution for all b in R™ if and only if the columns of A span R™, or dim Col A=m. The equation ATx=0has only the trivial solution
if and only if dim Nul AT =0. Since Col A=Row AT, dim Col A=dim Row A" =rank AT =m - dim Nul A" by the Rank Theorem. Thus, dim Col A=m if and
only if dim Nul AT =0.
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Section 4.7 - Change of Basis

Theorem (Theorem 15)

Let B={by,...,b,} and C ={c,...,c,} be bases for a vector space
V. There exists a unique n x n matrix Pc.pg (the
change-of-coordinates matrix) such that

[x]c = Pceslx]s
for every x in V.

The columns of Pc. g are given by

Pceg = [ [bi]c [b2]c -+ [bnlc |-

Writing ey for the standard basis vectors, we have e, = [by]s.
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Visualizing Pc. g

1%
WX
[ [y
multiplication .
x* < [x]
¢ by cfzs B
R* R”

FIGURE 2 Two coordinate systems for V.
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Example

Let

-] me[ 3]s =[] o[ 2]

To compute Pc. g we solve

1 0 6 4
[C1C2b1b2]~|:0 1 -5 _3:|u

yielding

6 4
PC(—B:[_5 _3}
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@ The previous example generalizes: in the case of V = R", we may
compute Pc. g by

[cic -+ €y | by by --- by] ~ [l | Pcegl.

o (Pces)™ =Psec
@ If V =R" and E denotes the standard basis, then Pg,_ g is the same
as the change of coordinates matrix Pg from Section 4.4.

@ Using the previous observation, we deduce

Pcep = P¢'Pe.
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Practice Problems

Example (MyLab Problem)
If B={by,by} and C = {cy, c,} are bases for V and

by = —4c1 +2¢c, and by =8c; — 6¢y,

—4 8

If x = 7b; — 6b,, then to find [x]c we apply the matrix above to [ 72 ] :

then

v
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MyLab Problem

In P,, find the change-of-coordinates matrix from the basis B= {1 —2t+ t2.4 -Tt+ 5(2,2 —2t+ 5t2} to the standard basis C= {1 .t,tz}. Then find the B-coordinate
vector for -4 +7t- 42,

In Py, find the change-of-coordinates matrix from the basis B= {1 - 2t+ 1,4 - 7t+ 52,2 - 2t+ 5%} to the standard basis C= {1,t4°}.

1 4 2
P =| -2 -7 -2 |(Simplify your answers.)
(]
1 5 5

Find the B-coordinate vector for -4 + 7t - 4t%.

6
[xlg=| -3 | (Simplify your answers.)

1
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Section 4.9 - Applications to Markov Chains

@ A vector with nonnegative entries that add up to 1 is called a
probability vector.

@ A stochastic matrix is a square matrix whose columns are
probability vectors.

@ A Markov chain is a sequence of probability vectors xg, x1, X2,
together with a stochastic matrix P such that

Xyr1 = Pxy for k=0,1,2,...

@ We call each x| a state vector.
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EXAMPLE 1 Section 1.10 examined a model for population movement between a
city and its suburbs. See Figure 1. The annual migration between these two parts of the
metropolitan region was governed by the migration matrix M :

From:
City Suburbs To:
95 .03 City
M= [.05 .97:| Suburbs

That is, each year 5% of the city population moves to the suburbs, and 3% of the
suburban population moves to the city. The columns of M are probability vectors, so
M is a stochastic matrix. Suppose the 2014 population of the region is 600,000 in the
city and 400,000 in the suburbs. Then the initial distribution of the population in the
region is given by X in (1) above. What is the distribution of the population in 2015?
In 2016?
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Steady-State Vectors

A steady-state vector for a stochastic matrix P is a probability vector g
so that

Pqg=gq.

Theorem (Theorem 18)

If P is a ‘regular’ stochastic matrix, then P has a unique steady-state
vector q. Furthermore, if xq is any initial state and xx,1 := Pxy for
k > 0, then the Markov chain x converges to q as k — oco.

@ To find a steady state vector, we should find a basis for the null
space of P — [/, which is evidently one-dimensional. Then ‘normalize’
to produce a probability vector.
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Chapter 5

Math 3108 - Fall 2019
Chapter 5: Eigenvalues and Eigenvectors

@ Section 5.1 - Eigenvectors and Eigenvalues

@ Section 5.2 - The Characteristic Equation

@ Section 5.3 - Diagonalization

@ Section 5.4 - Eigenvectors and Linear Transformations
@ Section 5.5 - Complex Eigenvalues

@ Section 5.7 - Applications to Differential Equations

@ Section 5.8 - Iterative Estimates for Eigenvalues
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Section 5.1 - Eigenvectors and Eigenvalues

Definition

An eigenvalue of an n x n matrix A is a scalar A such that the equation
Ax = Ax has a nontrivial solution.

A nonzero solution to Ax = Ax is called an eigenvector of A
(corresponding to \).

@ Warning! Although we primarily consider matrices with real-valued
entries, the eigenvalues of A may be complex-valued, and the
entries of the eigenvectors may also be complex-valued!

@ By definition, eigenvectors must be nonzero. Why is this
reasonable?
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Examples

Let A:[;g]7 u:[_ﬁ}’ ":{‘g}

Are u and v eigenvectors of A?

Au = [ s ] = —4u,

so u is an eigenvector, but

Solution. Compute

-9
Av—{ 11]7&/\v for any .
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Examples

Show that 7 is an eigenvalue of
1 6
A= [ 5 2 } ’

Solution. We need to find a nontrivial solution to

Ax =T7x, ie. (A-Tx=0.

6 6 1 -1
A”[ 5 —5]”{0 0]’

we find that 7 is an eigenvalue. Any multiple of [1 1]7 is an eigenvector.

Since

v
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e If X is an eigenvalue of A, then the eigenspace E) of A is defined to
be the null space of A — Al.

@ In particular, E) consists of all eigenvectors of A corresponding to
eigenvalue ), together with the zero vector.

@ In the preceding example, we saw that E7 is the line through the
origin in R? spanned by [1 1]7.
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Example

Let
4 -1 6
A= 2 1 6
2 -1 8

Given that A = 2 is an eigenvalue, find a basis for the eigenspace E,.

Solution. Note that

2 -1 6 2 -1 6
A-2/=(2 -1 6 |~ 0 0 O
2 -1 6 |0 00
Thus a basis is given by
1 -3 ]
2 |, 0
0 1 |

<
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Special Cases

Theorem (Theorem 1)

The eigenvalues of a triangular matrix are given by its diagonal entries.

If A equals one of the diagonal entries, then A — A/ will not have a pivot
in every column. O

@ A matrix A has eigenvalue A = 0 if and only if A is not invertible.

@ Indeed, both are equivalent to the fact that Ax = 0 has a non-trivial
solution.
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Independence of Eigenvectors

Theorem (Theorem 2)

Suppose v, ..., v, are eigenvectors corresponding to distinct
eigenvalues \1,...,\, of a matrix A. Then the set {vy,...,v,} is
linearly independent.

Proof.

| \

Suppose {vi,..., vk} is independent. Now suppose
avi+ -+ cpvirr = 0. (1)

Apply A to get
Arcivi + -+ A1V = 0.(2)
Multiply (1) by A«+1 and subtract from (2) to get

(M = Mgr)avi + -+ + (A — Agr)erve = 0.

Thus... O
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Practice Problems

@ If x is an eigenvector of A corresponding to eigenvalue A, what is
Adx?

o If X\ is an eigenvector of an invertible matrix A, then A™1 is an
eigenvalue of A7

@ Show that X is an eigenvalue of A if and only if A is an eigenvalue of
AT,
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MyLab Problems

1 -24
ForA=| 1 -2 4 |, find one eigenvalue, with no calculation. Justify your answer.
1 -24

Choose the correct answer below.

. One eigenvalue of Ais A= - 2. This is because each column of A is equal to the product of -2 and the column to the left of it.
. One eigenvalue of Ais A = 1. This is because 1 is one of the entries on the main diagonal of A, which are the eigenvalues of A.

. One eigenvalue of Ais A = 1. This is because each row of A is equal to the product of 1 and the row above it.

o o0 w >

. One eigenvalue of Ais A = 0. This is because the columns of A are linearly dependent, so the matrix is not invertible.
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MyLab Problems

Ais an nxn matrix. Mark each statement below True or False. Justify each answer.

a. If Ax =2x for some scalar A, then x is an eigenvector of A. Choose the correct answer below.
(O A. True. If Ax = Ax for some scalar A, then x is an eigenvector of A because the only solution to this equation is the trivial solution.
B. True. If Ax =x for some scalar A, then x is an eigenvector of A because X is an inverse of A.

C. False. The condition that Ax = Ax for some scalar X is not sufficient to determine if x is an eigenvector of A. The vector x must be nonzero.
D.

False. The equation Ax = Ax is not used to determine eigenvectors. If AAx = 0 for some scalar A, then x is an eigenvector of A.

Dr. Jason Murph
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Section 5.2 - The Characteristic Equation

@ We need a systematic way of determining the eigenvalues A of a
matrix A. (Once we have done so, we can find eigenvectors by
solving the homogeneous equation (A — Al)x =0.)

@ Finding A such that A — Al is not invertible is equivalent to finding
A such that
det[A—A]=0. (%)

The equation (x) is called the characteristic equation.
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Example

Find the characteristic equation of

S 01 00 O
=B~ O =

—2
3
0
0

O O O o

Solution. As the matrix is triangular we deduce
det[A — M] = (5 — A)?(3 = \)(1 — ).

In particular, the eigenvalues are A = 5,3, 1. We say that A =5 has
multiplicity 2.
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The Characteristic Polynomial

@ Given an n x n matrix A, we may define p: C — C by
p(A) = det[A — M.

Then the characteristic equation becomes p(A\) = 0.

@ In fact, it turns out that p(\) is a degree n polynomial in ), called
the characteristic polynomial of A.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Example

Example

If the characteristic polynomial of a 6 x 6 matrix is \® — 4\> — 12)\* find
the eigenvalues and multiplicities.

Solution. Factor the polynomial as

M2 —4x—12) = X (A= 6)(\ +2).

The eigenvalues are A = 0 (with multiplicity 4), A =6, and A = —2.
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Similarity of Matrices

Definition

Two n x n matrices A and B are similar if there exists an invertible
matrix P such that A= PBP~1.

@ Similarity of matrices is an equivalence relation.

@ Similarity is not related to row equivalence.

Theorem (Theorem 4)

If A and B are similar, then they have the same characteristic polynomial
and hence the same eigenvalues (including multiplicities).

@ Matrices can have the same eigenvalues without being similar.
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Dynamical Systems

A dynamical system is given by an initial state vector xo € R” and an
n x n matrix A through the recursion relation

Xpy1 = AXk.

For example, Markov chains are examples of dynamical systems; steady
state vectors are eigenvectors with eigenvalue A = 1.

The eigenvalues/eigenvectors of A may allow us to determine the
‘long-time behavior' of the dynamical system.

For example, if {vy,...,v,} were a basis of eigenvectors for A with
eigenvalues A\1,..., A\, and

Xo=CVi+ -+ CpVp,
then we would have

k k
Xk =CMVi+ -+ A vp.
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Section 5.3 - Diagonalization

@ In applications, it is desirable to construct a basis of eigenvectors for
a given matrix A.
@ Finding a basis of eigenvectors is equivalent to diagonalizing the

matrix A.
Definition
A square matrix A is diagonalizable if it is similar to a diagonal matrix,
that is, if
A= PDP!

for some invertible matrix P and diagonal matrix D.
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The Diagonalization Theorem

Theorem (Theorem 5 - The Diagonalization Theorem)

@ An n x n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.

e In fact, A= PDP~1 if and only if the columns of P are n linearly
independent eigenvectors of A. In this case, the entries of D are the
corresponding eigenvalues.

@ Proof Sketch: Observe that A= PDP~! is equivalent to AP = PD,
which in turn is equivalent to

Av; = Av;,

where v; is the i column of P and )\; is the i*" entry of D along
the diagonal.
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Example 1

If possible, diagonalize the following matrix:

1 3 3
A=| -3 -5 -3
3 3 1

The steps are as follows:
o Find the eigenvalues of A.
@ Find three linearly independent eigenvectors of A.
e Construct P and D so that A= PDP~1.
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Example 1 (Continued)

Example (Continued)

To find the eigenvalues of A, we solve the characteristic equation:
O=det(A—A)=-X -3 +4=-(A-1)(\+2)>2

The eigenvalues are A = 1 and A = —2 (multiplicity 2).
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Example 1 (Continued)

Example (Continued)

We next find a basis for each eigenspace Ej, i.e. the null space of
A— M.
1
@ Basis for A\ =1 is given by vi = | —1
1
-1 -1
@ Basis for A = —2 is given by v, = 1 | and v3 = 0
0 1
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Example 1 (Continued)

Example (Continued)

Now we form the matrices P and D:

1 -1 -1 1 0 0
pP=|-1 1 0|, D=0 -2 0
1 0 1 0 0 -2

We can then verify that A= PDP~!.
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Example 2

Diagonalize the following matrix, if possible:

2 4 3
A=| -4 -6 -3
3 3 1

@ The characteristic equation is the same as in Example 1, and so the
eigenvalues are

A=1 and X=-2 (with multiplicity 2).
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Example 2 (Continued)

Example (Continued)

We next find bases for the eigenspaces Ej:

1
@ Basis for A\=1is given by vi = | —1
1
-1
@ Basis for A = —2 is given by v, = 1
0
Conclusion: The matrix A is not diagonalizable.
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Diagonalizability

Theorem (Theorem 6)

An n x n matrix with n distinct eigenvalues is diagonalizable.

Eigenvectors corresponding to distinct eigenvalues are independent. O \

e This gives a sufficient condition for diagonalizability, although it is
not necessary (cf. Example 1 above).
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Example

Example
Determine whether or not the following matrix is diagonalizable:

5 -8 1
A=|(0 0 7
0 0 -2

Solution. The matrix is triangular and has eigenvalues A = 5,0, —2.
Thus A is diagonalizable.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Powers of a Diagonalizable Matrix

o Diagonalizing a matrix A is useful if you need to compute powers of
A, since
A= PDP™! = A= pDkP,

and computing powers of a diagonal matrix is straightforward, cf.

k

a 0 o0 a 0 O
0 b O = 0 b 0
0 0 ¢ 0 0 c¥

e Application: Computing matrix exponentials to solve linear systems
of differential equations.
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Repeated Eigenvalues

THEOREM 7 Let A be ann x n matrix whose distinct eigenvalues are A, ..., 4,.

a. For1 < k < p, the dimension of the eigenspace for Ay, is less than or equal to
the multiplicity of the eigenvalue A.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals #, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (i) the dimension of the
eigenspace for each A; equals the multiplicity of A;.

c. If Aisdiagonalizable and By is a basis for the eigenspace corresponding to Ax
for each k, then the total collection of vectors in the sets By, ..., B, forms an
eigenvector basis for R”.
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Example

Diagonalize the following matrix if possible:

= = O Ol
N B> 01O

O W o o
w o O o

Solution: The matrix is triangular and has eigenvalues A = 5, —3, each
with multiplicity 2.

We look for bases for each eigenspace.
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Example (Continued)

-8 —16
. 4 4
@ Basis for A\ =5: v; = e vy = 0
0 | 1
0 0
. 0 0
@ Basis for A = —3: v3 = 11 vy = 0
0 | 1
The matrix is diagonalizable, with
P =][vi va v3 v4] and D = diag{5,5,—3,—-3}.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Practice Problems

@ Suppose A is 4 x 4 and has eigenvalues 5,3, —2. Suppose Ej is
two-dimensional. Is A diagonalizable?

e How would you compute A% if A= [ ; :‘I’ }?
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MyLab Problems

Matrix A is factored in the form POP ™ ' Use the Diagonalization Theorem to find the eigenvalues of A and a basis for each eigenspace.

20 -1 -10 -1 300 001
A=l33 3 [=]| 0 1 3 030 31 3
00 3 100 002 -10 -1

Let A, P, and D be nxn matrices. Mark each statement true or false. Justify each answer. Complete parts {a) through (d) below.
a.Ais diagonalizable if A=PDP "~ T for some matrix D and some Invertible matrix P. Choose the correct answer below.

b. If R" has a basis of eigenvectors of A, then A is diagenalizable. Choose the correct answer below.

c. Ais diagonalizable if and only if A has n eigenvalues, counting multiplicities. Choose the correct answer below.

d. If Ais diagonalizable, then A is invertible. Choose the correct answer below.
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MyLab Problems

Identify a nonzero 2 x 2 matrix that is invertible but not diagonalizable.

Choose the correct answer below.

_1 -
A,
01
_1 1_
) B.
11
. [1 0]
O c.
10
_10_
O D.
00
_1 -
) E.
oo
_10_
(U F
0
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Section 5.4 - Eigenvectors and Linear Transformations

@ Recall that any linear transformation T : R” — R™ may be
represented by an m x n matrix A (the standard matrix of T), i.e.

T(x)=Ax forall xeR".

@ More generally, suppose T : V — W is a linear transformation with
dimV = nand dim W = m. Let B, C be bases for V, W,
respectively. Now define the m x n matrix M by

M= [[T(b1)lc -~ [T(bn)]c .
It follows that
[T(x)]c = M[x]g forall xc V.

We call M the matrix for T relative to the bases B and C.
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Matrix of a Linear Transformation

[T(X)]C

— _|/
R

FIGURE 1 A linear transformation from V to W.
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Example

If B={by, by} and C ={¢€y, c3,c3} are bases for V, W, and
T : V — W is a linear transformation such that

T(by) =3c1 —2c;+5¢c3 and T(by) =4c;+7cr — c3,

then
3 4
M= | -2 7
5 -1
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Linear Transformations on V

o Often, we take V = W and C = B, in which case the matrix M is
called the matrix for T relative to B, or the B-matrix for T,
denoted by [T]g. In particular,

[T(x)]s =[T]s[x]g forall xec V.
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Example

Example
Let T : P, — P, be given by T(p) = p’.

(i) Find the B matrix for T, where B = {1, t,t?}. (ii) Check that
[T(p)lz = [T]slpls-

Solution. (i) Since

we get
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Example (Continued)

Example (Continued)

(i) Note that
T(ao + art + axt?) = a; + 2aot,
so
al
[T(p)lg = [a1 +2ast]g = | 2a2 |,
0
while
0 1 0 EN ai
[T]B[p]B: 0 0 2 a1 = 232
0 0O a 0
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Linear Transformations on R”

Theorem (Theorem 8 - Diagonal Matrix Representation)

Suppose A= PDP~1, where D is a diagonal n x n matrix. If B is the
basis of R" formed from the columns of P, then D is the B-matrix for
the transformation x — Ax.

The essential facts are

Plx]g =x and [x]g = P 'x.
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Example

Let 7 : R? — RR? be given by T(x) = Ax, with
7 2
A= [ e } |
Find a basis B for R? such that the B-matrix for T is diagonal.
Solution. Diagonalize A as A = PDP~1, where

1 1 5 0
P—[_l _2] and D_{O 3}.

Let B = {by, by} be the basis consisting of the columns of P.
Then D is the B-matrix of T.
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Similarity of Matrix Representations

e More generally, if A and C are similar n x n matrices, then they
represent the same linear transformation.

Indeed: if T(x) = Ax and A= PCP~!, then C = [T]g, where B is the
basis consisting of the columns of P.

o In fact, if B is any basis for R”, then [T]g is similar to A.

To see this, define P to have columns given by the vectors in B. Then

A= P[T]sP .

o As before, the essential facts are P[x]g = x and [x]g = P~ 1x.
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MyLab Problems

Define T:P,—~R* as shown tc the right.

a. Find the image under T of p(f) =1 -2t
b. Show that T is a linear transformation.

¢. Find the matrix for T relative to the basis B= {"r by, ba} = {1, t, Ez} for P and the standard basis E= {91, e, e3} for R¥

Find the B-matrix for the transformation x—=Ax, where B={b,, b;}.

-5 -1 1 2
. b, = . s 1

4 1 -1
-2 -5

The B-matrix of the given transformation is
-1 -2
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Section 5.5 - Complex Eigenvalues

@ The characteristic polynomial of a (real-valued) n x n matrix A is a
degree n polynomial, and hence it has n roots ( “fundamental
theorem of algebra”).

@ Roots may be repeated (as we have seen), but they may also be
complex.

@ A complex number has the form
z=x+1Iy

where x, y are real numbers and i satisfies i> = —1. We write z € C.

e The magnitude of z is |z| = \/x2 + y2.
@ A complex vector is a vector with complex entries. We write
x e C".
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Complex Eigenvalues and Eigenvectors

@ A complex eigenvalue/eigenvector pair for a matrix A is a
complex number A and a non-zero complex vector x satisfying

Ax = A\x.

@ The method for finding complex eigenvalues/eigenvectors is the
same as the real case; however, now we have to work with complex
numbers.

@ Real matrices may have complex eigenvalues/eigenvectors.
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Example

Example
Let

0 -1
A= [ o } .
This is counterclockwise rotation by 90°. There are no real
eigenvalues/eigenvectors.
The characteristic equation is A2 + 1 = 0, which has roots A = =i.

Eigenvectors corresponding to A = £/ are given by

2] (1)
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Example

Find the eigenvalues and eigenvectors of

b5 —6
A=l il

Solution. The characteristic equation is

- —.6

5
Ozdet[ 75 11—

]:)\2—1.6/\+1.

By the quadratic formula, the eigenvalues are

A=.8=£ .6/
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Example (Continued)

Example (Continued)

Let A = .8 — .6i. We look for the eigenspace Ej:

[ -3+6i -6
A(Sﬁﬂ’[ 75.3+6i}

We use either row. We need to solve
5% + (34 .6/)x =0,

which we may solve with
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Example (Continued)

Example (Continued)

Similarly, we can find an eigenvector for A\ = .8 + .6/ is given by

{—2+M}
Xy = 5 o
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Real and Imaginary Parts of Vectors

o If z= x4 iy is a complex number, then we write x = Re z and
y = Im z for the real and imaginary parts of z.

o Similarly, a complex vector can be written as v = [Re v] + i[Im v],
where we take the real and imaginary part of each entry.

@ The complex conjugate of z = x + iy is given by Z = x — iy.
@ Similarly, the complex conjugate of a complex vector v is given by

v=Rev—ilmv.
o Example:
3—1i 3 -1
i =10 |+ 1
245 2 5
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Some Algebraic Properties

@ Let r be a scalar, x a vector, and B, C matrices. Then
7Xx =Fx, Bx=Bx, BC=BC, rB=FB.
@ Suppose A is a real matrix. Then
Ax = Ax = Ax.
If X is an eigenvalue with eigenvector x € C", then
Ax = Ax = Ax = \X.

Thus X is an eigenvalue, with X an eigenvector.

@ Conclusion: When A is real, complex eigenvalues and eigenvectors
occur in conjugate pairs.
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Example

Example
Let
C—[" _H abeR, ab#0.

The eigenvalues of C are A\ = a+ bi.
Define r = |A| = v/a? 4 b?. Then, writing 2 = cos ¢, we can factor

[r O} {cosw —sin<p]
C = . .
0 r sin Cos

Then C consists of a rotation by ¢ and a scaling by |A|.
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General Case - Complex Eigenvalues

Theorem (Theorem 9)

Let A be a real 2 x 2 matrix with complex eigenvalue A\ = a — bi (with
b # 0) and associated eigenvector v.€ C2. Then

A= PCP !,
where

b a

P =[Re(v) Im(v)] and C:[a _b]

@ In higher dimensions, a complex conjugate eigenvalue pair for A
corresponds to a plane on which A acts as a rotation combined with
a scaling.
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Example

Example

Return to the matrix

b5 —6 . . —2—4
A:['75 1.1], with A =-8—-6/ and vlz[ ]

-2 —4 8 —.6
P[ 5 0] and C[.6 .8}

Then A= PCP~!. Note that C is a pure rotation.

Set
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MyLab Problems

List the eigenvalues of A. The transformation x—Ax is the -6 B
composition of a rotation and a scaling. Give the angle ¢ of A=
the rotation, where -n <@ <, and give the scale factorr. -6 -6

The eigenvalues of Aare b= -B6-6i,-6+81.
(Use a comma to separate answers as needed. Type an exact answer, using radicals and { as needed.)

3r
= -7

(Type an exact answer, using m as needed.)

r= 692

(Type an exact answer, using radicals as needed.)
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Section 5.7 - Applications to Differential Equations

@ Remark. My presentation deviates from the book significantly.

@ A system of linear differential equations takes the form
x'(t) = Ax(t),

where x(t) is a function of t taking values in R", Aisan nx n
matrix, and x’(t) is the component-wise derivative of x(t).

A second order ODE of the form

y'+by +cy=0

may be rewritten as
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The Matrix Exponential

@ When n = 1, solutions to x' = Ax are of the form x(t) = e”tc.

@ The same will be true for n > 1.

Definition (Matrix Exponential)

For an n x n matrix A, we define

A_E 1 pk
e = FA o
k=0
y

Solutions to x' = Ax are of the form x(t) = e”tc, where c is a fixed
vector in R".

(In fact, ¢ = x(0), called the initial condition.)

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



If A=diag(A1,...,A,), then

e? = diag(e™, ..., eM).

Example
If A= PDP~1, then

e’ = pePp1,

Combining these two examples, we find that if A is diagonalizable, then
we can compute its matrix exponential.
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Examples

We have 0 = /.

More generally, if A is ‘nilpotent’ (meaning AP = 0 for some p), then

—1

il

Ak

(0}
I
==
I
o
[~

Example
If AB = BA, then

A+B A_B B_A

@ =€ e =€ €.

In particular, e” is always invertible, with

(eA)—l _ e—A'
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Numerical Example

Example

Consider
) , , 01
y' =4y +3y=0 = x' =Ax, A= 3 4|

To solve to ODE x’ = Ax, we diagonalize A:

1 1

_ -1 _
A= PDP}, P{13

}, D = diag(1, 3).

Then

e = P[diag(ef, &¥)]PL.
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Numerical Example (continued)

Example (Continued)

Computing e p; for p; equal to the columns of P, we get the solutions
g j j

tA . t 3t e’ et
€ p;= Pdlag(e ) € )ej ~ X(t) = et | 3e3t |-
In terms of the original ODE, this gives the solutions y(t) = e’ and
y(t) = €.
In fact, any solution is a linear combination of the two (independent)
solutions above, because the set of solutions is a vector space with
dimension two.
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Complex Eigenvalues

o If A is diagonalizable with complex eigenvalues, then the method
above will yield complex-valued solutions to a real-valued ODE. ®

@ Instead, recall that if A is a real-valued 2 x 2 matrix with complex
eigenvalues A = a £ b/, then we can write

A= PCP, c_[a _b},
b a

where the columns of P are given by Re(v) and Im(v) for an
eigenvector v corresponding to A = a — bi.
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Complex Eigenvalues (continued)

o To compute e, write
0 -1
C = al + bo, 0—{1 0]

and note that lo = ol = 0.

@ Now compute

o>=—1, o>=—0, o*=1I,
from which we deduce
bto | cos(bt) —sin(bt)
€= sin(bt)  cos(bt)
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Complex Eigenvalues (Continued)

e Finally (recalling A= PCP™1),
At _atp btop—1 _ _at cos(bt) —sin(bt) -1
e —etheTTP T =€ P{ sin(bt) cos(bt) | T

@ As before, to solve the ODE we would use the vectors comprising
the columns of P. This leads to the following solutions:

x1(t) = e**P [ Cs?igzg } = e”[cos(bt) Re(v) + sin(bt) Im(v)],

x5(t) = e™P [ _(:S(I)Zgzg } = e¥[—sin(bt) Re(v) + cos(bt) Im(v)].
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Complex Eigenvalues (conclusion)

Theorem

Consider the real-valued 2 x 2 ODE system
x' = Ax.

Suppose A has eigenvalues A = a £ ib and that v is an eigenvector
corresponding to eigenvalue A = a — ib. A basis of solutions is given by

x1(t) = e*[cos(bt) Re(v) + sin(bt) Im(v)],
x2(t) = e®*[—sin(bt) Re(v) + cos(bt) Im(v)].
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Phenomenology in Planar Systems

In the case of diagonalizable, invertible 2 x 2 matrices, we can find the
following behaviors of solutions to the corresponding ODE systems
(characterized by the eigenvalues):

@ Source: ++

e Sink: ——

o Saddle point: +—

o Center: complex, a=0

@ Spiral source: complex, a > 0

@ Spiral sink: complex, a < 0
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ODE Trajectories

FIGURE 2 The origin as an attractor.
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ODE Trajectories

FIGURE 3 The origin as a saddle point.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



ODE Trajectories

FIGURE 5
The origin as a spiral point.
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Non-diagonalizable Matrices

@ While not every matrix is diagonalizable, every matrix can be put in
Jordan canonical form (which is closely related).

@ This form can be used to compute the matrix exponential.

@ We will not pursue the general theory, but let us consider one
example.
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Example

Consider

Y'=2%+y=0 = x'=Ax, A= { —(1) ;]

The eigenvalues of A are A =1 (multiplicity 2); however,
-1 1
e =

has one-dimensional null space, spanned by [

_ =

|

So A is not diagonalizable!

Observe, however, that (A — /)2 = 0.
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Example (Continued)

Example (Continued)

So, we may write

M=t Nt =t |+ (A- )t} = ¢ [ 1 :; 1+§ } :

To find solutions, we first use the eigenvector, yielding the solution

xl(t)—eAt[}}—et{i}.

We next choose a vector independent of the eigenvector, e.g.

xz(t):eAf{H:ef[H;].

In terms of the original ODE, we get the solutions

yi(t) = e, yo(t) = te'.
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MyLab Problems

A particle moving in a planar force field has a position vector x that satisfies x' = Ax. The 2x2 matrix A has eigenvalues 3 and 2, with corresponding eigenvector:
-6 6 -30
v, = :| and vy = { } Find the position of the particle at time t assuming that x(0) =
1 1 -2

Select the correct choice below and fill in the answer boxes to complete your choice.

(Type integers or simplified fractions.)

x(t)=( )[ ’:’}Zu[ )ﬁ]gat
oo )] (2]
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MyLab Problems

Solve the initial value problem x'(t) = Ax(t) for t20, with x(0) = (5,2). Classify the nature of the origin as an attractor, repsller, or saddle point of the dynamical system
described by x’ = Ax. Find the directions of greatest attraction and/or repulsion

A= -7 -1
3 -1

Salve the initial value problem.

] I T S I %
x(t)= 72{3} +t3 s e

Classify the nature of the origin as an attractor, repeller, or saddle point. Choose the correct answer below.

* Attractor
Saddle Point

Repeller
Choose the correct graph below that represents the direction(s) of greatest attraction and/cr repulsion

*
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MyLab Problems

For matrix A below, make a change of variables that decouples the equation x” = Ax. Write the equation x(t) = Py(t) that leads to the uncoupled system y’ = Dy
specifying P and D.

-7 5
A=
2 -4
Choose the correct values of P and D below that result in the decoupled system y’ = Dy when x(t) = Py(1).
-51 -9 0 -51
*, P= D= p= D
21 0 -2 21
p=| % |p=| 72 © R T
21 0 -9 1 -5 0 -2

Write the equation x() = Py(t) using the matrix P found above.

x(9)= [ -s 1}«0

1

—
|
o N
|

© o

—

21
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Section 5.8 - Iterative Estimates for Eigenvalues

The power method applies to an n X n matrix with a strictly dominant
eigenvalue A1, i.e. an eigenvalue larger in absolute value than all others.
The power method produces a sequence of scalars approximating A\; and
a sequence of vectors approximating a corresponding eigenvector.
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The Power Method

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE
1. Select an initial vector X, whose largest entry is 1.
2. Fork =0,1,...,

a. Compute AXy.

b. Let ux be an entry in Ax; whose absolute value is as large as possible.

c. Compute X441 = (1/py) Axy.

3. For almost all choices of X, the sequence {i;} approaches the dominant
eigenvalue, and the sequence {X; } approaches a corresponding eigenvector.
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The Inverse Power Method

The inverse power method approximates the value of an arbitrary
eigenvalue, provided one has a good initial estimate a of the true
eigenvalue ). It works by applying the power method to B = (A —al)™ 1,
relying on the fact that if the eigenvalues of A are Aq1,...,A,, then the

eigenvalues of B are
1 1
Ail—a’ " Ap—«

with the same eigenvectors.
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Inverse Power Method

THE INVERSE POWER METHOD FOR ESTIMATING AN EIGENVALUE A OF A
1. Select an initial estimate « sufficiently close to A.
2. Select an initial vector Xy whose largest entry is 1.
3. Fork =0,1,...,
a. Solve (A —al)y, = x¢ fory,.
b. Let u; be an entry in y, whose absolute value is as large as possible.
c. Compute vy = o + (1/ ).
d. Compute xx41 = (1/1x)yy-

4. For almost all choices of X, the sequence {vx} approaches the eigenvalue A
of A, and the sequence {x } approaches a corresponding eigenvector.
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Chapter 6

Math 3108 - Fall 2019
Chapter 6: Orthogonality and Least Squares

@ Section 6.1 - Inner Product, Length, and Orthogonality
@ Section 6.2 - Orthogonal Sets

@ Section 6.3 - Orthogonal Projections

@ Section 6.4 - The Gram-Schmidt Process

@ Section 6.5 - Least-Squares Problems

@ Section 6.6 - Applications to Linear Models

@ Section 6.7 - Inner Product Spaces

@ Section 6.8 - Applications of Inner Product Spaces
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The Real Inner Product

@ We previously encountered the dot product (also called the inner
product) between two vectors in R”, e.g.

u-v=uvy+- -+ UpVvy.

@ We may express this in terms of matrix multiplication by making use
of the transpose operation:

U'V:UTV.

3
[2 -5 11| 2 |=-1,
-3
2
32 —3]| =5 | =—1
1

<
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Algebraic Properties of the Real Inner Product

THEOREM 1 Let u, v, and w be vectors in R”, and let ¢ be a scalar. Then
a. u-v=v-u
b. (u+v)w=uw+vw
c. (cu)-v=c(u-v) =u-(cv)

d. u'u>0, andu-u=0Oifandonlyifu=0

@ Here c refers to a real scalar.
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Conjugate Transpose

@ From this point forward, we will regularly consider the case of
complex vectors u € C".

o For a complex matrix A € C™*", we define the conjugate
transpose or adjoint of A by

A* — (A)T c (Cnxm.
@ For example,
1 14+i]" 12
2 3i Tl 1—i =3

@ We have the following algebraic properties:

(aA+ BB)* = aA* + BB*, (AC)* = C*A*.
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Complex Inner Product

@ When u and v are vectors in C", we define the inner product of u
and v
u-v=u'v.

@ This means

ai b1
=aib+---+a,b, € C.

an an
o For A=[uy---uy] € C™¥ and B = [vy---v ] € C"™¥, we have

(A*B)U =u;-v;.
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Algebraic Properties of the Complex Inner Product

Foru,v,w € C" and a € C:

QuUu-v=v-u

ou-(v+w)=u-v+u-w
o afu-v)=(au) -v=u-(av)
o Ifu=[a; --- a,|", then

u-u=|a +-- +a.* >0,

and u-u =0 if and only if u = 0.

@ Warning! Some algebraic properties are different in the real and
complex cases!
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Length, Norm, Distance

Definition

The length or norm of a vector v is the nonnegative real number ||v||

defined by
vl = vvv.

@ Why take the square root?
@ The definition is the same whether v € R" or v € C".

@ This notion of length agrees with the standard geometric notion.

Example. The length of v =[1 —220]" is ||v|| = 3.

@ A vector u is a unit vector if ||u|| = 1.

@ We use the norm to measure distances between vectors:

distance between wand v. = |ju—v].
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Properties of Length

For vectors u, v and a scalar a:

o |laul = [af[ull
o |lu-v|| <|u||v] (Cauchy—Schwarz inequality)
o |[u+v| <|ul+|lv|| (triangle inequality)

@ This theorem holds in both the real and complex cases.
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Proofs of Inequalities (real-valued case)

Proof of Cauchy—Schwarz.

Define f(\) = (u + Av,u+ Av) > 0. Now note that

F(A) = N[|v]|* + 2X(u, v) + [|ul|* > 0

is a quadratic polynomial in . So its discriminant is < 0. OJ

v

Triangle Inequality.

lu+v]® = (u+v) - (u+v) = [lul* +2u - v + |[v]?
< lull® +2flull vl + Iv]* = (lull + [Iv])*.
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Examples

Example
Let u=[71]" and v=1[32]".

(i) Find a unit vector that gives a basis for Span{u}. (Equivalently:
find a unit vector in the same direction as u.)

(i) Compute the distance between u and v.

(i): Compute
u _ 1 _ 7/\/%
Tell = V& = [ 1/v50 ] ‘
(ii): Compute

Ju = vl = VPFIP = VT,
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Orthogonality

o By the Cauchy-Schwarz inequality, we always have

1< ———<1 (for w,v eR").
[l vl

@ Thus there exists 8 such that
u-v = |ul|v]| cosé.

We call 6 the angle between u and v.

Definition

Two vectors u and v are orthogonal (or perpendicular) if u- v = 0.

[Note: The definition is the same whether the vectors are in R" or C".]

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Orthogonality

Definition

@ Two vectors u and v are orthogonal if u-v =0

@ A set S is orthogonal if u and v are orthogonal for every distinct
u,ves.

@ A set S is orthonormal if it is orthogonal and every element of S is
a unit vector.

Note: The zero vector is orthogonal to every other vector.

Notation. If u and v are orthogonal, we write u L v.
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The Pythagorean Theorem

Theorem (Theorem 2)

Two vectors u and v are orthogonal if and only if

lu+ v = flull* + [[v].

Proof (real-valued case).

=+ v? = [lul® + [[v]* +2u - v.
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Orthogonal Complements

Definition

Let W be a set of vectors. The orthogonal complement of W is the set

W+ := {all vectors v such that v-w =0 for every w € W}.

The definition is the same for R” and C".

For any set W, the set W+ is a subspace.

The only vector belonging to both W and W+ is 0.
What is (W=+)+?

The orthogonal complement of the xy-plane in R3 is the z-axis. \
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Orthogonal Complements - Key Theorem

Theorem (Theorem 3 - Real Case)

Let A be a real-valued matrix. Then

[Col A]* = Nul (AT).

This follows from the more general complex-valued case:

Theorem (Theorem 3 - Complex Case)

Let A be a matrix. Then

[Col A]* = Nul(A*).
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Orthogonal Complements - Key Theorem

Write A= [vy---v,]. Then
vy vix vi-X
0=A"x= ol x= L=
v; Vix Vp - X
ifandonly vi - x=---=v,-x=0.
O]

@ In the real case, this implies Nul (A) = [Row (A)]*
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Example

Find a basis for the orthogonal complement of W = span{vy, v,}, where

1
!

1 b
!

Vi = Vo) =

[ G T G W

Solution. Let A = [vy v2]. Then

W+ = [Col A]* = Nul(AT).
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Example (Continued)

Example (Continued)

Since

N
T _
A_[l 11

-1
1

we find W+t = span{vs, v4}, where

O = O

1 0

0 1

0

=1

V4 = 0
1

o =

= O
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MyLab Problem

a.u*v-veu=0

Choose the correct answer below.

() A. The given statement is false. When u and v are orthogonal, u+v =0, so in that case,
usv-veu#0.

() B. The given statement is false. When u and v are orthogonal, u*v =1, so in that case,
usv-veu#0.

(O €. The given statement is true. Since the inner product is commutative, u * v = v « u. Subtracting
v+ u from each side of this equation gives u*v-v-.u=0.

() D. The given statement is true. Since the inner product is commutative, usv=1-veu.
Subtracting v « u from each side of this equation gives u*sv-veu=0.
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Section 6.2 - Orthogonal Sets

@ Recall that a set S of vectors is orthogonal if every pair of distinct
vectors in S is orthogonal.

e If S is orthogonal/orthonormal and linearly independent, then we
call S an orthogonal/orthonormal basis for Span(S).

Let
1 0 -1
V1 = 0 9 Vy = 1 9 V3 = 0
1 0 1

e S ={vy,vy,0} - orthogonal, not a basis for R3

o S = {vy,vy,v3} - orthogonal basis for R3

e S= {%vl, vy, %V3} - orthonormal basis for R3.
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A Test for Orthogonality

o Question. Given {vy,...,v,} in C™, how can we determine whether
these vectors are orthogonal /orthonormal?

o Answer. Form the matrix A = [vy---v,] € C™*", and observe that

Vl . Vl e V]_ . Vn

Vp Vq e VvV,
@ Thus {vy,...,v,} is orthogonal if and only if A*A is diagonal.
o Moreover, {vy,...,v,} is orthonormal if and only if A*A = /,.

In the real-valued case, we replace A* with AT,
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Unitary Matrices

The previous discussion leads us to the following definition:

Definition

A matrix A € C"*" is unitary if A*A=1,.

In particular, the columns of A are orthonormal if and only if A is unitary.
For the real-valued case, we have the following:
Definition

A matrix A € R™" is orthogonal if ATA = |,.

Unitary/orthogonal matrices preserve angles and lengths, cf.

(Ax) : (A_V) = (AX)*Ay =x"A*Ay =x*y=x-y.
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The matrix

N
U—%L —i]

is unitary. The columns form an orthonormal set.
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Orthogonality and Independence

Theorem (Theorem 4)

If S ={vi,...,vp} is an orthogonal set of non-zero vectors, then S is
independent and hence is a basis for span(S).

Suppose cjvy + -+ - + v, = 0. Now take an inner product with v; to
deduce

C1||V1||2 =0 = = 0.

And so on... 0 )

This result holds in both the real and complex settings.
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Why do we care?

@ Given a subspace W with a basis B, finding the B-coordinates of a
vector v involves solving a system of linear equations.

o If B is an orthogonal/orthonormal basis, then finding the
coordinates relative to B becomes very simple.

Theorem (Theorem 5)
If B={uy,...,u,} is an orthogonal basis for W and y € W, then

= ul.yu1+...+ up.y
]2

up,.
lup ][>

@ To prove it, suppose y = aju; + - - - + a,U, and compute u; - y for
each j.
e Warning: The order u;-y (versus y - u;) matters for complex vectors.
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Example

The set {u1, uo, u3} is an orthogonal basis for R3, where
3 -1 —1/2
u; = 1 9 u; = 2 , uz = —2
1 1 7/2
Write the vector
6
y=| 1
-8
as a linear combination of uq, us, us.
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Example (Continued)

Example (Continued)

Recall
3 -1 —1/2 6
u; = 1 9 u; = 2 9 usz = —2 , Y= 1
1 1 7/2 —8

Thus

__ uivy u-y uz-y
= u u

y ||u1\|2 1+ Huzw 2 Jusl
= U2 + =22uy + = 33/2 us

=u; — 2U2 — 2U3.
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Remark about MylLab Homework

Homework from Section 6.2 will involve questions about orthogonal
projection and distance minimization. We discuss these topics in the
slides for Section 6.3.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



MyLab Problems

Determine whether the set of vectors is orthogonal.

1 0 -5
=2 [{1].] -2
1 2 1
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MyLab Problems

Assume all vectors are in R". Mark each statement True or False. Justify each answer.

a. Not every orthogonal set in R” is linearly independent.

() A. False. Every orthogonal set of nonzero vectors is linearly independent and zero vectors
cannot exist in orthogonal sets.

O B. Tre. Orthogonal sets with fewer than n vectors in R"are not linearly independent.

False. Orthogonal sets must be linearly independent in order to be orthogonal.

True. Every orthogonal set of nonzero vectors is linearly independent, but not every
orthogonal set is linearly independent.
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Section 6.3 - Orthogonal Projections

Our first main goal in this section is to prove the following theorem:

Theorem (Orthogonal Decomposition Theorem - Theorem 8)

Let W be a subspace of C". For every x in C", there exist unique y € W
and z € W+ such that x = y + z.

@ Assuming the theorem, we define the orthogonal projection of x
onto W by

projy(x) =y, where x=y+2z, yeW, ze W*.

@ Note: Orthogonal projection is a linear transformation.
e Note: If x € W, then projy,(x) = x.

o Later we will need to figure out how to actually compute these
things!
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Preliminary Lemmas

If S is an independent set in W and T is an independent set in W=,
then the union of S and T is an independent set.

Essential fact: W and W+ share only the zero vector. O

If W C C" has dimension p, then W~ has dimension n — p.

Essential facts: Rank-Nullity Theorem and [Col A]- = Nul (A*).
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Orthogonal Decomposition

Proof of Orthogonal Decomposition.

Let B be a basis for W and C be a basis for W=. By the lemmas above,
the union of B and C is a basis for C". Then every x € C" has a unique
representation as x = y + z, where y € Span(B) and z € Span(C). [

As mentioned above, given this decomposition we define

projyy (x) = y.

@ Observe that proj,,(x) always belongs to W.

@ Observe also that

x — projyy(x) = proju . (x).
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Simple Example

If W is the xy-plane in R3, then the orthogonal projection of a vector
v=[vi vo» »3]7 is simply [v; v» 0]".

In general, it is not so obvious how to compute the orthogonal projection
onto a subspace...
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The Plan

@ The orthogonal projection proj,, defines a linear transformation
from C" to C" (or R" to R"), but at this moment it is only
abstractly defined.

e Goal 1. Find a formula for the matrix representation of proj,,.

e Goal 2. Show that if we have an orthogonal/orthonormal basis
for W, the formula is very simple.

e Goal 3. Compute some numerical examples!

@ Goal 4. Relate orthogonal projection to the problem of distance
minimization.
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Goal 1. Matrix Representation

o Setup. B ={wi,...,w,} is a basis for W C C".
o We seek a matrix M such that proj,(x) = Mx.
o Let us first find the B-coordinates of proj,, (x): write

X=aiwi+- - +apw,+2z, ze W

where
(631

= [projw (x)]s= a.
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Goal 1 (continued)

@ Take the inner product of
X=awi+---+apw,+2z
with wq, ..., w,. This yields

* _ * *
WiX =wiwy+ -+ apWwiWwp,

* f— * DY
WoX = iw,wy + + apw

*

pWop-
@ This may be written compactly as
A"Aa = A"x, A=[wy---w,] e C™P.

@ This is called the normal system. The matrix A*A € CP*P is called
the Gram matrix.
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Goal 1 (continued)

We will show:

*If A=[wy---wp] with B={wy,...,wp} a basis for W, then the
Gram matrix A*A is invertible, and so the normal system has
solution

o = [projyy (x)]s = (A"A) " Ax.
Thus (using y = Aly]s) we get:

Theorem (Goal 1. Matrix Representation)

We have
projuy(x) = A(A"A) 1 A'x,

where B = {w1,...,w,} is any basis for W and A = [wy - -- wp).
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Invertibility of the Gram Matrix

If A€ C"™P then A*A € CP*P satisfies

Nul(A*A) = Nul(A) and Rank(A*A) = Rank(A).

In particular, since rank(A) = p in our setting, the Gram matrix is
invertible.

Proof of Lemma.

Key Fact: Nul(A*) = [Col(A)]*, so if Ax € nul(A*) then Ax = 0. O
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Goal 2. Orthogonal Basis Case

@ Setup. Suppose B = {w1,...,w,} is an orthogonal basis for
W cCn

o Writing A = [wy --- w,], we seek a simple formula for the matrix
representation for projy,(x), namely,

A(A*A)TLA*.
@ Since B is an orthogonal basis,
T 1 1
(A"A) = d'ag{w7“' ’W}’
and so
A(A*A)_IA* =

1 *
T EWiwi + - 4 o Ewewp.
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Goal 2. Summary.

Theorem (Goal 2. Orthogonal Basis Case)

Suppose B = {w1,...,w,} is an orthogonal basis for W. Then proj,,
has the matrix representation

* 1 * 1 &3
Q™ = [pwiwi + - + [ EWeW),

where Q = [wy - -- wp]. That is,

Proju(x) = T Xy 4 2
.IW _ 1 000 P .
[[w1? w2 P

@ The projection is written as the sum of p ‘rank-one’ projections onto
the lines spanned by each w;.

@ Remark: We saw this formula already when computing coordinates
of a vector relative to an orthogonal basis!
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Goal 3. Numerical Examples!

Let W = Span{vy, v2} C R3, where

1 0
vV = 2 9 Vo = 1
0 2

Find the matrix representation for proj,, and compute proj,,(e1).

Solution. Write A = [v; v,]. Compute

AA_[2 5]:>(AA) == = |

Then
5 8 —4 5
AATA)TIAT =11 8 17 2| = projy(e))=%| 8 |.
-4 2 20 —4

v
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Goal 3. Numerical Examples!

Example

For the subspace in the previous example, we may also write
W = Span{wy, wy} C R3, where

1 —2/5
w; = 2 9 wo = 1/5
0 2

Find the matrix representation for proj,, and compute proj,,(e1).

Solution. This is an orthogonal basis, so we get

TanT? W1W1 + [ Waw; =

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Example (Continued)

Example (Continued)

120 4/25 —2/25 —4/5
=312 4 0|+2]| —2/25 1/25 2/5
0 00

—4/5  2/5 4
5 8 —4
1
-4 2 20

This the same answer as before, since after all it is the same subspace.
To compute proj,(e1), we can write

5
; _ wie wy-€1 — 1
projy (1) = farE Wi + [ EW2 = 3 i
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Interlude — why do we care?

@ Given any basis for a subspace, we have found an explicit formula for
the matrix representation of projy,.

@ This formula is much simpler if we can find an orthogonal basis for
w.

@ We will return to the problem of constructing orthogonal bases in
the next section (‘the Gram—Schmidt algorithm’).

o Before that, we once again ask ourselves... why do we care (about
orthogonal projections)?
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Goal 4. Distance Minimization
Theorem (Theorem 9 - Best Approximation Theorem)

Let W be a subspace. Then proj,,(y) is the closest point in W to y, i.e.

ly = projw (W)l < lly — vl forall veW,

with equality if and only if v = proj,,(y).

v

By the Pythagorean theorem, for any v in W,

ly — vI? = llprojw (y) — vII* + [lprojw (¥)[I> > llprojw« (¥)II,

with equality if and only if v = projy,(y). O

@ Remark. This also shows that the distance from y to W equals

[projw . (¥)Il = lly — projw ()
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Example

Find the distance from y to W = Span{u, uy}, where

! 5 1
y = _5 5 u; = —2 9 u, = 2
10 1 -1

Solution. We first compute proj, (y). Since u; L uy, we can use

-1
pI’OJW(y) HU1||2 u; + ||"52|’"2 u, =..= [ -8 ‘|
4

So the distance from y to W is given by

ly — projw(y)l = v45.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Section 6.4 - The Gram—-Schmidt Process

@ The Gram—-Schmidt algorithm takes as input a set of vectors
Sin = {w1,...w,} and returns an orthogonal set of vectors
Sout = {V1,...,Vvp} such that Span(S;,) = Span(Sout).

@ The idea is straightforward: at each stage, one performs an
orthogonal projection of w; away from the span of the preceding
vectors.

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Gram—Schmidt Algorithm

Theorem (Theorem 11)
Let Sy = {w1,...,w,}.
o Let vi = w; and Q; = Span{vi}.

o Letvy, = prOJQL wy and Q, = Span{vi,v,}.
° ...
o Let vji1 = projor(wjt1) and set Qjiq = Span{v,...,vj1}.
J
The process ends when j+ 1 = p. It produces the orthogonal set
Sout - {Vla seay VP}

with Span(Sout) = Span(Sin). Finally, observe that

Vit1 = 0 = [ JESS Qj,

so that if S;, is independent then S,,; contains nonzero vectors.
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Example

Find an orthogonal basis for the span of the following vectors:

1 1 1 0
w; = O wo = L w3 = L Wy = 0
1|’ 1|’ 1|’ 1
0 1 —1 1

Solution. Apply Gram-Schmidt. Set vi = wi. Then

T = (T — o L8,
S A

= O+~ O
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Example (Continued)

Example (Continued)

Next,

V3 = w3 — V2:~-~:0.

Vi —
[[va]l? [[va|]?

(This reflects the fact that ws € Span{wy, wy}.) Finally,

-1
V_W_V]_'W4_V2‘W4_l -1
T valr 2| 1

Then {v1, v, v4} is an orthogonal basis for Span{wy, wy, ws, wy}.

Remark. To make an orthonormal basis, divide each basis vector by its
length.
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QR Factorization of Matrices

o Performing the Gram—Schmidt algorithm for vectors {w,..., w,}
in C" is equivalent to performing a QR factorization for the matrix
A=[wy---w,] e CN*P,

@ QR factorization refers to the following:

Theorem (Theorem 12 - The QR Factorization)

Any matrix A € C"*P can be written as A = QR, where the columns of
Q € C"*P are orthogonal and R € CP*P js an invertible upper triangular
matrix.

To prove this, we need to rewrite the w's in terms of the v's in the
Gram—Schmidt algorithm.
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QR Factorization (continued)

Since the {v;} are orthogonal, we can write
. Vi-Wji1 Vi-Wj1
projg,(wjt1) = Iz |’ﬁ Vit 4 ﬁ.,\jﬁ vj,

where we only include nonzero v's in the sum above. So, defining

Mudooy if vie #0
Feji1 = llvll
’ any number you want! if v, =0,
we get
Vif1 = Wil — projo (Wji1) = Wjp1 — njpava — -0 = v,

or equivalently: Wil =njtiVi+ -+ v+ Vi
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QR Factorization (conclusion)

Rewrite wj1 = rjjivi + -+ rjjr1vj + vjq1 in vector form:
rn,j+1
Wit = Vi vj] 1,
fj.j+1
1

So A= QR, where A=[w;---wp], Q=[vi,...,vp] and

1 I‘1,2 e rl,p
. " . Vi Wjt1 i
R = ' ' : Meivg = 4 vl if v #0
) J+1 . .
. anything if v, =0.
Ip—1,p
1
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Example

Example

Return to the previous example. Then the QR factorization for
A= [w; .- wy]is given by A= QR, with Q = [v1 v2 0 v4] and

11 1 1/)2
o1 -1 o1
R=1o0 o ¢

00 0 1

where c is arbitrary. The coefficients are determined by

Vi Wjt1

Vel for vy #0.

Mk j+1 =
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Practice Problem

Let

[ R

Extend {w3, w,} to an orthogonal basis for R*.

Solution Sketch:
o Write A= [w; w5] and W = Col(A).
(i) Find a basis for W+ = Nul(AT) (row reduction).
(ii) Apply Gram-Schmidt to the basis obtained in (i).

@ wi, wy, and the basis obtained in (ii) give you an orthogonal basis
for R*.
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Section 6.5 - Least-Squares Problems

@ One of the first topics we discussed was to determine consistency
and find solutions to systems of the form Ax = b.

@ When Ax = b is not consistent, we would like to find an x that
comes ‘as close as possible’ to solving the system.

Definition
If Ais an m x n matrix and b € C™, a least squares solution of Ax = b
is an x € C" such that

b — AR|| < [[b— Ax]|

for all x € C".

Note: If Ax = b is consistent, then any solution is automatically a least
squares solution.
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Least Squares Solutions; Projections; Normal System

@ The system Ax = b is inconsistent if b does not belong to Col(A).
@ To remedy this, we instead consider the system

Ax = b, b := projcqa(b),

which always has a solution (and is equivalent to Ax = b if
b € Col(A)).

o Furthermore, these are guaranteed to be least squares solutions by
the best approximation theorem, cf.

|b—b||<|b—v| forany v e Col(A).

@ To compute the matrix representation for the projection of b onto
Col(A), we need to solve the normal system A*Aa = A*b. The
projection is then given by Ac.
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Least Squares Solutions

Theorem (Theorem 13)

The normal system A*Ax = A*b is always consistent. Solutions to this
system are precisely the least squares solutions to Ax = b.

Proof.
We showed rank(A*A) = rank(A*), which implies col(A*A) = col(A*).
Next, if A*Ax = A*b, then

| \

b — Ax € Nul(A*) = [Col(A)]*.

~

Since Ax € Col(A), it follows that AX = b = projc,a)(b).
Similarly, if AXx = b then A*A% = A*b = A*b, since

b — b € [Col(A)]* = Nul(A*).

O

<
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Example

Example

Show that Ax = b is inconsistent, where

1 0 1 1
A=|1 -1 0|, b=]| 0
0 11 ~1

Then find the least squares solution(s) to Ax = b.

Solution. First, the system is inconsistent since

[A] b] ~

O = =
= o o

O O
o~ O
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Example (Continued)

Example (Continued)

Now compute ATA and A" b and perform row reduction to find
1 0 1 1/3
[ATA|ATb]~ | 0 1 1|-1/3 |,
0 0 0 0
giving the least squares solutions
1/3 -1
x=| -1/3 [ +z| -1
0 1

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Uniqueness/Nonuniqueness

@ In the previous example, the free variable appeared due to the fact
that A has a nontrivial null space.

@ The least square solution is unique if and only if the columns of A
are independent, which holds if and only if A*A is invertible. In this
case, the unique solution is

% = (A*A)"1A*b.
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Example

Example

Find the least squares solution(s) for the inconsistent system Ax = b,

where
2

4 0
A=|0 2|, b=]| 0
11 11

Solution. We find
. |17 1
A'A = [ 1 5

is invertible. So the unique solution is

x=(ATA)'AThb="-.. = [ ;]

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Least Squares Error

@ The least squares error for the system Ax = b is defined by the
smallest possible value of

b — Ax||

over all choices of x. It is achieved by choosing any least squares
solution X (cf. the best approximation theorem).

@ The least squares error computes the distance between b and Col(A).
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Examples

@ In the first example, the least squares error is
| A% — b|| = 2V/3.
@ In the second example, the least squares error is

|A% — b|| = 2v/21.
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Other Approaches...

o If the columns of A are orthogonal, then we can compute b simply
and then solve Ax = b.

@ If A has linearly independent columns and A = QR is the QR
factorization of A, then the least squares solution is given by

% =R7'Q"b,

since then

Ax = QQ"b,

and QQ* is the orthogonal projection onto Col(A).
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MyLab Probems

6 1 31
8 3
LetA=| -4 -2 |,b=| -18 ,u=|: :|,andv=|: :| Compute Au and Av, and compare them
-2 -2
4 9 4

with b. Is it possible that at least one of u or v could be a least-squares solution of Ax=b?
(Answer this without computing a least-squares solution.)

46
Au= | -28 [ (Simplify your answer.)
14

16
Av= | -g | (Simplify your answer.)
-6
Compare Au and Av with b. Is it possible that at least one of u or v could be a least-squares solution of
Ax=b?
Au is closer to b than Av is. Thus, v cannot be a least-squares solution of Ax = b, but u can be.
Av is closer to b than Au is. Thus, u cannot be a least-squares solution of Ax =b, but v can be.
Au and Av are equally close to b. Thus, both can be the least-squares solution of Ax =b.

* Au and Av are equally close to b. Thus, neither can be the least-squares solution of Ax =b.

Math 3108 - Fall 2019




MyLab Probems

True or False Questions:

a. The general least-squares problem is to find an x that makes Ax as close as possible to b.
b. A least-squares solution of Ax=b is a vector X that satisfies AX = t; where b is the orthogonal projection of b onto Col A
c. A least-squares solution of Ax = b is a vector X such that b - Ax| < |b- Ax]| for all x in R".

d. Any solution of ATAx=ATbisa least-squares solution of Ax =b.

e. If the columns of A are linearly independent, then the equation Ax = b has exactly one least-squares solution.
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Section 6.6 - Applications to Linear Models

@ This section covers several applications, including (i) least squares
lines and linear models, (ii) more general least squares curves, (iii)
multiple regression.

@ We focus on the case of least squares lines.
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Least-Squares Lines

Suppose we want to fit data points (x1,¥1), ..., (Xn, ¥n) to a line
y = Bo + B1x. This corresponds to trying to solve the linear system

]. X1 )/1

XB=y, X=|: & 1], ﬁ:{g‘)}, y=
1
1 x, Yn

Typically this system will not be consistent, so instead we find the
least squares solution 5.

(]

This yields the least-squares line for the data.

This is equivalent to minimizing the length of the residual vector
e =y — X3 over all choices of 3.

@ This extends naturally to higher order polynomial approximations.
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Multiple Regression

@ This technique also extends to the case when the data depends on
multiple variables. For example, if one assumes a relationship of the
form y = g + B1u + Bav (a plane instead of a line), then we should
find the least squares solution to X3 =y, where

1 m v Bo y1
1w vy Po Yn
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Section 6.7 - Inner Product Spaces

The following is the definition of a (real) inner product space:

An inner product on a vector space V' is a function that, to each pair of vectors
u and v in V, associates a real number (u, v) and satisfies the following axioms,
for all u, v, and w in V and all scalars c:

1. (w.v) = (v,u)

2. (u+v,w) = (u,w) + (v,w)

3. (eu,v) =c{(u,v)

4. (wu) >0 and (u,u)=0ifandonlyifu=0

A vector space with an inner product is called an inner product space.
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General Properties

Whenever we have an inner product on a vector space, we get the
following:

Length, distance, angle
Cauchy-Schwarz inequality
Triangle inequality

Orthogonality, Pythagorean theorem

Orthogonal bases
@ Orthogonal projections

@ Gram—Schmidt algorithm...
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o Let V =R" and A € R"™ " be a positive definite real symmetric
matrix (A= AT). Then
(x,y) =xT Ay

is a real inner product.
@ Let V=C" and A € C"*" be a positive definite hermitian matrix
(A= A*). Then
(x,y) = x*Ay
is a (complex) inner product.
o Let V = C([0,27]). Then

(F.g) = / " F(t)g(e) dt

is a real inner product on V.
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Section 6.8 - Applications of Inner Product Spaces

@ In the book, several applications are discussed, including weighted
least squares, trend analysis, and Fourier series.

@ We will focus on a short discussion of Fourier series.
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Fourier Series

@ The aim of Fourier series is to represent an arbitrary continuous
function f on [0, 27] as a linear combination of waves of fixed
frequencies.

@ In particular, for each n=1,2,..., we want to find the best
approximation to f using the functions from

S, ={1,cost,cos2t,...,cosnt,sint,sin2t,...,sinnt}.

@ We already know what to do: we should use the orthogonal
projection
fn = pro.jSpan(S,,)f'
@ Note: This notion of orthogonality and projection is given in terms
of the inner product on C([0, 27])!
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Orthogonality

@ The orthogonal projection onto Span(S,) is straightforward to
compute because S, is an orthogonal set!

For m # n,

27
(cos mt, cos nt) = / cos mt cos nt dt
0

%/o 7T[Cos((m—i- n)t) 4+ cos((m — n)t) dt = --- = 0.

v
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Orthogonal Projection

@ Since S, is orthogonal, we may write

f,,:%ao+a1cost+-~~+a,,cosnt+blsint+---+b,,sinnt,

where

2
(coskt, f) _ %/ f(t) cos kt dt,

= cos kt |2
(sinkt,f) /27r .
_ SBT3 [ () sin ke dt
k= sinkep 7, f(o)sin

for k>1,and ag = 1 027r f(t) dt.
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Example

EXAMPLE 4 Find the nth-order Fourier approximation to the function (1) = r on
the interval [0, 27].

SOLUTION Compute

o 1 lfz"l i — 1|1
T2 0 4 T |2

2 =
and for k > 0, using integration by parts,
)
| f2 171 r 2
ag = — tcosktdt = —| -5 coskt + ~sinkr| =0
T Jo n |Lk? k o
Lo rt ‘ 2
by = = tsinktdt = — | =sinkt — —coskt| =-——
 Jo k2 k o k
Thus the nth-order Fourier approximation of f(¢) =t is
. . 2. 2.
7 —2sint —sin2t — —sin3t — .- — —sinnt
3 n
Figure 3 shows the third- and fourth-order Fourier approximations of f. u
y y
2 y=t 2 y=t
m T
t t
I ™ 2 I ™ 2
() Third order (b) Fourth order
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Fourier Series

e For f € C([0,27]), the Fourier series expansion of f is given by

f(t) = 3a0 + Z(am cos mt + by, sin mt),

m=1

where ap,, b, are defined as above.

@ This series converges to f in the sense of norm convergence, namely,

nll>n<10 ||f - prOjSpan(Sn)fH =0.
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Chapter 7

Math 3108 - Fall 2019
Chapter 7: Symmetric Matrices and Quadratic Forms

@ Section 7.1 - Diagonalization of Symmetric Matrices
@ Section 7.4 - The Singular Value Decomposition

@ Section 7.5 - Applications to Image Processing and Statistics
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Section 7.1 - Diagonalization of Symmetric Matrices

@ A real matrix is symmetric if A= AT,

@ In this section, we will show:

Theorem (Spectral Theorem for Symmetric Matrices)

Every symmetric matrix is diagonalizable. In fact, we can find an
orthonogonal basis of eigenvectors. This means

A= PDPT

for a real diagonal matrix D and an orthogonal matrix P.

@ In fact, we will prove a spectral theorem for normal matrices,
which means AA* = A*A. This includes symmetric matrices as a
special case.
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Motivation: Orthogonality of Eigenvectors

@ Why might we expect the spectral theorem should be true?

Theorem (Theorem 1)

If A is a symmetric matrix, then any two eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Proof.

| A

Let A1, vi and Az, v» be eigenvalue/eigenvector pairs with A1 # A,. Then

vi-Ava = Ay - v

while at the same time vi - Avo = AT vy - vo = vy - va. O

@ This also holds for normal matrices (using Theorem 2 below).

@ This does not solve the entire problem... it says nothing about
diagonalizability in the first place.
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Recall the following:
@ A real matrix is symmetric if A= AT,
@ A complex matrix is hermitian or self-adjoint if A = A*.
@ A real matrix is orthogonal if PTP = |.
@ A complex matrix is unitary if P*P = |[.
We introduce some new terminology, as well:

@ A complex matrix is normal if A*A = AA*.

Symmetric, hermitian, orthogonal, and unitary matrices are all normal.
So are skew-adjoint matrices, which satisfy A* = —A.
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Main Result: Spectral Theorem

Our goal is the following:

Theorem (Spectral Theorem for Normal Matrices)

A matrix A is normal if and only if it is unitarily similar to a diagonal

matrix, i.e.

A = PDP*
for some diagonal matrix D = diag{\1, ..., \,} and some unitary matrix
P=1vy v,

In particular, we may write A as a sum of rank one orthogonal projections:

A=\vivi+ -+ Avpv.

@ The final expression is called a spectral decomposition of A.

@ This result will imply the spectral theorem for symmetric matrices.
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Main Ingredients

@ We need two main ingredients to prove the spectral theorem:

Theorem (Schur Factorization)

Any A € C"™" can be written in the form A = PUP* for some unitary
matrix P and some upper triangular matrix U.

Theorem (Theorem 2)

If A is normal and A, v is an eigenvalue/eigenvector pair for A, then v
is an eigenvector/eigenvalue pair for A*.

@ In particular, after we apply the Schur factorization to a normal
matrix to write A = PUP~*, the second theorem will imply that U is
actually diagonal.
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Proof of Schur Factorization

Proof.
Suppose it holds for (n — 1) x (n — 1) matrices. Let A be n x n.

Let A1, vy be an eigenvalue/eigenvector pair for A with ||vq|| = 1.

Extend to an orthonormal basis {v1,...,v,} and let P, = [vy---v,].

)\1 W:l

Note P; is unitary and we can write AP; = P; [ 0 M

Now write M = QUy @* with Q unitary, U upper triangular.
Define
0

(1
P2=| o Q}, P = P.P;.

Then P is unitary and

w53 "2

O

v
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Proof of Theorem 2

If A is normal and \, v is an eigenvalue/eigenvector pair for A, then \, v
is an eigenvector/eigenvalue pair for A*.

Proof.

For any A, v and a normal matrix A,

[(A=AV|[? = [(A =X )v]* (A= X)v
= v (A" = X)(A—=))
= V(A= A)(A* = X)v
= [[(A* = A)v|.
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Proof of the Spectral Theorem

Proof of the Spectral Theorem.

We focus on showing normal implies unitarily diagonalizable.
Apply Schur factorization: A = PUP*, P = [vy,...v,].

Write U = [cjj] and observe Avy = ci1v1, and so A*vy = G1vs.
But A*P = PU*, so

511V12511V1+~'~+61,,V,,:>Clj:O, Jj=2,...,n.

o C11 0
U‘[ 0 0}'

Now repeat the argument with Avy = cxovs...

This shows

It follows that U is diagonal. O

Dr. Jason Murphy - Missouri S&T Math 3108 - Fall 2019



Spectral Theorem for Symmetric Matrices

o If Ais a hermitian matrix (i.e. A= A*), then it is normal and hence
we can write A = PDP* with D diagonal and P unitary. But then

PDP* = A= A* = PD*P* —> D = D* = D is real,

so that hermitian matrices have real eigenvalues.
e Similarly, if A is real and symmetric (i.e. A= AT), then we can write

A= PDPT

where D is a real diagonal matrix and P is a real orthogonal matrix.
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Spectral Theorem for Hermitian/Symmetric Matrices

Theorem (Spectral Theorem for Hermitian Matrices)

A matrix A is hermitian if and only if it can be factored as A = PDP* for
a unitary matrix P and a real diagonal matrix D.

v

Theorem (Spectral Theorem for Symmetric Matrices)

A matrix A is symmetric if and only if it can be factored as A= PDPT
for an orthogonal matrix P and a real diagonal matrix D.
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Example

Orthogonally diagonalize the matrix

3 -2 4
A=| -2 6 2|,
4 2 3

which has characteristic polynomial —(\ — 7)2(\ + 2).

Solution. Using the techniques of Chapter 5, we compute bases for the

eigenspaces:
1 —-1/2
A=7 — vi = 0 9 V) = 1
1 0

-1
A=-2 — V3=[1/2].
1

<
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Example (Continued)

Example (Continued)
Now apply Gram-Schmidt to find an orthogonal basis for Span{vy, v, }:

this yields
1 —1/4
u; = 0 9 u; = 1
1 1/4

Finally, normalize each matrix to form an orthogonal matrix:

:[ ux ur V3 ]
[l fluz]| [lvs]]

Then A= PDPT, with D = diag{7,7, —2}.
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Section 7.4 - The Singular Value Decomposition

@ Many matrices that occur in applications are not square. For such
matrices, there is an important notion related to eigenvalues and
diagonalization, namely the singular value decomposition.

Definition (Singular Values)

Let A be an n x p matrix. The singular values of A are given by

O'j::\/xjﬁ j:]-)"'apv

where A\; > --- > X\, > 0 are the eigenvalues of the p x p matrix A*A.

@ As A*A is hermitian, it has real eigenvalues. If A\, v is an
eigenvalue/eigenvector pair,

A= lovi(A*A) = 1A

lIvil?

I
=
N
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Singular Values, Singular Vectors

@ In the following, we fix an n x p matrix A. Then A*A has an
orthonormal basis of eigenvectors {vi,...,v,} corresponding to
eigenvalues Ay > --- > A, > 0.

e The singular values are given by o; = \/A;.

o If Rank(A) =r, theno, 41 =--- =0, =0.

@ {V,41,...,Vp} is an orthonormal basis for Nul(A*A) = Nul(A).
e {vi,...,v,} is an orthonormal basis for Col(A*) = [Nul(A)]*.
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Singular Values, Singular Vectors

The vectors

_ 1 ) ?
uj_U—jAvJ, j=1...,r

form an orthonormal basis for Col(A).

Proof.
By the basis theorem, it is sufficient to check orthonormality:

Ui uj = SV (AAY) = LV = {o i#J
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Singular Value Decomposition

o Now let {u,,1,...,u,} be any orthonormal basis for [Col(A)]*.
o Define U = [uy, ..., u,] (the left singular vectors) and
V =[vi,...,vp] (the right singular vectors), both of which are
unitary.

@ By construction:

AV = UT, z—{% g], D = diag{o1,...,0.}.

For the first r columns we use Av; = oju;.

@ For the remaining columns, use {v,1,..., v,} belong to Nul(A).
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Singular Value Decomposition

Theorem (Singular Value Decomposition)

For any n x p matrix A with rank r, there exists a decomposition
A=UxV",

where
e U is an n X n unitary matrix,
@ V is a p X p unitary matrix,

@ X isan n X p with the form

D 0 .
Z—[ 0 0}, D = diag{o1,...,0,},

where D is an r X r block diagonal matrix in the upper left corner
containing the nonzero singular values o1 > --- > o, > 0 of A.
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Example

Let us describe the process of finding a singular value decomposition of a
real matrix A € R"*P,
o Diagonalize AT A with an orthonormal basis of eigenvectors.

@ Build the matrices V' and ¥.
@ Construct the first r columns of U (where r = Rank(A)).

@ If r < p, build the remaining columns of U by finding an
orthonormal basis for [Col(A)]+ = Nul(AT).
o This requires finding a basis for the null space of AT and then
possibly applying the Gram—Schmidt algorithm and normalization.

<
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A few applications...

o If Ais an invertible n X n matrix, the ratio o1/0, is called the
condition number of A, which is related to the sensitivity of the
solution to Ax = b to changes/errors in the entries of A.

@ Since orthogonal matrices in R?*2 represent rotations/reflections of
the plane, applying the singular value decomposition to a matrix
transformation of the plane reveals that every such transformation is
the composition of three transformations: rotation/reflection,
scaling, and rotation/reflection.

@ In terms of numerical analysis, singular value decomposition is
generally faster and more accurate than eigenvalue decomposition.
In particular, SVD is prevalent in many modern applications.
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Section 7.5 - Applications to Image Processing and

Statistics

Suppose we have a p x n matrix of data, say A= [X1--- X,].

o The sample mean is defined to be 1 (X1 + -+ + X,,), and for
simplicity we assume we have normalized the data to have mean
zero.

@ The covariance matrix of A is defined by the p x p matrix
1 T

@ The diagonal entries of S represent the variance of the coordinates
x; of data vectors X; the total variance is the sum of the diagonal
entries (called the trace of 5).

@ The off-diagonal entries s;; of S represent the covariance of x; and
xj. We call x; and x; uncorrelated if s; = 0.
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Principal Component Analysis

@ Goal. Find an orthogonal p x p matrix P that determines a change
of variables X = PY such that the variables y; are uncorrelated and
arranged in order of decreasing variance.

o Our data matrix is transformed to B = PT A, which has covariance
matrix

LBBT = L (PTA(PTA)T = L PTAATP.

n—1 n—1

@ In particular, our problem is equivalent to orthogonal diagonalization
of AAT (which is connected to the singular value decomposition of
the transpose AT of the data matrix).

@ Arranging the eigenvalues in decreasing order, the corresponding
unit eigenvectors are called the principal components of the data.

@ The new variables represent the directions of maximal variance
(after projecting away from the previous directions).
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Dimensionality Reduction

@ Orthogonal changes of variables do not change the total variance of
the data.

@ In many cases, one finds that nearly all of the variance is captured in
eigenvalues corresponding to the first few principal components.

@ This allows us to find low-dimensional approximations to
high-dimensional data! Extremely useful for data analysis, data
interpretation, data compression... and on and on.
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Example

@ Download n = 5000 images of handwritten digits from the MNIST
database.

Each image is represented by a vector in RP, where
p =28 x 28 = 784.

This gives the p x n data matrix A.

@ Perform SVD on AT, giving

AT =Uuzv’.

The singular values drop off very quickly.
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opoff of Singular Values

450 T T T T

403—| i
350-| g
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2m—| 4

e b
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Example (Continued)

Example (Continued)
@ Let's make a 5-dimensional approximation to this data.
@ Given a vector X in our data set, we have the new representation
X=VY,ie Y=VTX.
@ We keep only the first 5 entries of Y and set the rest to zero; call
this Y ,pp.
@ Then we apply V to get the approximation X ~ V'Y ..
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Examples

True Image:

Approximation using first 5 principal components:
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Examples

True Image:

Approximation using first 5 principal components:
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-
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Examples

True Image:

Approximation using first 5 principal components:
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Examples

True Image:

Approximation using first 5 principal components:

!
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Examples

True Image:

Approximation using first 5 principal components:

9
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Examples

The third image looked pretty bad...

True Image:

Approximation using first 20 principal components:
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Some Final Remarks

@ We used 5000 samples of all different digits. This would have been
much more accurate if they had all been the same digit.

@ This provides a very crude method for image compression.

@ This type of analysis forms the basis for many modern techniques in
machine learning, data analysis, compression, etc.
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Thanks for a great semester!
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