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Chapter 1. Linear Equations in Linear Algebra

1.1 Systems of Linear Equations
1.2 Row Reduction and Echelon Forms.

Our first application of linear algebra is the use of matrices to
efficiently solve linear systems of equations.
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A linear system of m equations with n unknowns can be
represented by a matrix with m rows and n + 1 columns:

The system

a11x1 + · · ·+ a1nxn = b1

...
...

...

am1x1 + · · ·+ amnxn = bm

corresponds to the matrix

[A|b] =

 a11 · · · a1n
...

...
am1 · · · amn

∣∣∣∣ b1
...
bn

 .
Similarly, every such matrix corresponds to a linear system.
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I A is the m × n coefficient matrix:

A =

 a11 · · · a1n
...

...
am1 · · · amn


aij is the element in row i and column j .

I [A|b] is called the augmented matrix.
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Example. The 2x2 system

3x + 4y = 5

6x + 7y = 8

corresponds to the augmented matrix[
3 4
6 7

∣∣∣∣ 5
8

]
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To solve linear systems, we manipulate and combine the individual
equations (in such a way that the solution set of the system is
preserved) until we arrive at a simple enough form that we can
determine the solution set.
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Example. Let us solve

3x + 4y = 5

6x + 7y = 8.

Multiply the first equation by -2 and add it to the second:

3x + 4y = 5

0x − y = −2.

Multiply the second equation by 4 and add it to the first:

3x + 0y = −3

0x − y = −2.

Multiply the first equation by 1
3 and the second by −1:

x + 0y = −1

0x + y = 2.
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Example. (continued) We have transformed the linear system

3x + 4y = 5
6x + 7y = 8

into
x + 0y = −1
0x + y = 2

in such a way that the solution set is preserved.

The second system clearly has solution set {(−1, 2)}.

Remark. For linear systems, the solution set S satisfies one of the
following:

I S contains a single point (consistent system)

I S contains infinitely many points (consistent system),

I S is empty (inconsistent system).
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The manipulations used to solve the linear system above
correspond to elementary row operations on the augmented
matrix for the system.

Elementary row operations.

I Replacement: replace a row by the sum of itself and a
multiple of another row.

I Interchange: interchange two rows.

I Scaling: multiply all entries in a row by a nonzero constant.

Row operations do not change the solution set for the
associated linear system.
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Example. (revisited)[
3 4
6 7

∣∣∣∣ 5
8

]
R2 7→−2R1+R2−−−−−−−−−→

[
3 4
0 −1

∣∣∣∣ 5
−2

]

R1 7→4R2+R1−−−−−−−−→
[

3 0
0 −1

∣∣∣∣ −3
−2

]

R1 7→ 1
3
R1−−−−−→
[

1 0
0 −1

∣∣∣∣ −1
−2

]

R2 7→−R2−−−−−→
[

1 0
0 1

∣∣∣∣ −1
2

]
.

(i) it is simple to determine the solution set for the last matrix
(ii) row operations preserve the solution set.
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It is always possible to apply a series of row reductions to put an
augmented matrix into echelon form or reduced echelon form,
from which it is simple to discern the solution set.

Echelon form:

I Nonzero rows are above any row of zeros.

I The leading entry (first nonzero element) of each row is in a
column to the right of the leading entry of the row above it.

I All entries in a column below a leading entry are zeros.

Reduced echelon form: (two additional conditions)

I The leading entry of each nonzero row equals 1.

I Each leading 1 is the only nonzero entry in its column.
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Examples. 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

 not in echelon from

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

 echelon form, not reduced

 1 0 2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

 reduced echelon form
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Remark. Every matrix can be put into reduced echelon form in a
unique manner.

Definition.

A pivot position in a matrix is a location that corresponds to a
leading 1 in its reduced echelon form.

A pivot column is a column that contains a pivot position.

Remark. Pivot positions lie in columns corresponding to
dependent variables for the associated systems.
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Row Reduction Algorithm.

1. Begin with the leftmost column; if necessary, interchange rows
to put a nonzero entry in the first row.

2. Use row replacement to create zeros below the pivot.

3. Repeat steps 1. and 2. with the sub-matrix obtained by
removing the first column and first row. Repeat the process
until there are no more nonzero rows.

This puts the matrix into echelon form.

4. Beginning with the rightmost pivot, create zeros above each
pivot. Rescale each pivot to 1. Work upward and to the left.

This puts the matrix into reduced echelon form.
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Example.  3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5


R2 7→−R1+R2−−−−−−−−→

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5


R3 7→− 3

2
R2+R3−−−−−−−−−→

 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4



The matrix is now in echelon form.
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Example. (continued) 3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

 −→
 3 −9 12 −9 0 −9

0 2 −4 4 0 −14
0 0 0 0 1 4


−→

 3 −9 12 −9 0 −9
0 1 −2 2 0 −7
0 0 0 0 1 4


−→

 3 0 −6 9 0 −72
0 1 −2 2 0 −7
0 0 0 0 1 4


−→

 1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4

 .
The matrix is now in reduced echelon form.
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Solving systems.

I Find the augmented matrix [A|b] for the given linear system.

I Put the augmented matrix into reduced echelon form [A′|b′]
I Find solutions to the system associated to [A′|b′]. Express

dependent variables in terms of free variables if necessary.
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Example 1. The system

2x − 4y + 4z = 6

x − 2y + 2z = 3

x − y + 0z = 2

−→

 2 −4 4
1 −2 2
1 −1 0

∣∣∣∣ 6
3
2

 −→
 1 0 −2

0 1 −2
0 0 0

∣∣∣∣ 1
−1

0


−→

x − 2z = 1

y − 2z = −1.

The solution set is

S = {(1 + 2z ,−1 + 2z , z) : z ∈ R}.
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Example 2. The system

2x − 4y + 4z = 6

x − 2y + 2z = 4

x − y + 0z = 2

→

 2 −4 4
1 −2 2
1 −1 0

∣∣∣∣ 6
4
2

 −→
 1 0 −2

0 1 −2
0 0 0

∣∣∣∣ 1
−1

1



→
x − 2z = 1

y − 2z = −1,

0 = 1.

I The solution set is empty—the system is inconsistent.

I This is always the case when a pivot position lies in the last
column.
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Row equivalent matrices.

Two matrices are row equivalent if they are connected by a
sequence of elementary row operations.

Two matrices are row equivalent if and only if they have the same
reduced echelon form.

We write A ∼ B to denote that A and B are row equivalent.
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Chapter 1. Linear Equations in Linear Algebra

1.3 Vector Equations
1.4 The Matrix Equation Ax = b.
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A matrix with one column or one row is called a vector, for
example  1

2
3

 or
[

1 2 3
]
.

By using vector arithmetic, for example

α

 1
2
3

+ β

 4
5
6

 =

 α + 4β
2α + 5β
3α + 6β

 ,
we can write linear systems as vector equations.
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The linear system

x + 2y + 3z = 4

5x + 6y + 7z = 8

9x + 10y + 11z = 12

is equivalent to the vector equation

x

 1
5
9

+ y

 2
6

10

+ z

 3
7

11

 =

 4
8

12

 ,
in that they have the same solution sets, namely,

S = {(−2 + z , 3− 2z , z) : z ∈ R}.
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Geometric interpretation.

The solution set S may be interpreted in different ways:

I S consists of the points of intersection of the three planes

x + 2y + 3z = 4

5x + 6y + 7z = 8

9x + 10y + 11z = 12.

I S consists of the coefficients of the linear combinations of the
vectors  1

5
9

 ,
 2

6
10

 , and

 3
7

11


that yield the vector  4

8
12

 .
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Linear combinations and the span.

The set of linear combinations of the vectors v1, . . . vn is called the
span of these vectors:

span{v1, . . . , vn} = {α1v1 + · · ·+ αnvn : α1, . . . , αn ∈ R}.

A vector equation
x v1 + yv2 = v3

is consistent (that is, has solutions) if and only if

v3 ∈ span{v1, v2}.
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Example. Determine whether or not 1
1
1

 ∈ span


 1

2
3

 ,
 1

3
4

 ,
 1

4
5

 .

This is equivalent to the existence of a solution to:

x

 1
2
3

+ y

 1
3
4

+ z

 1
4
5

 =

 1
1
1

 .
The associated system is

x + y + z = 1

2x + 3y + 4z = 1

3x + 4y + 5z = 1.
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The augmented matrix is 1 1 1
2 3 4
3 4 5

∣∣∣∣ 1
1
1

 .
The reduced echelon form is 1 0 −1

0 1 2
0 0 0

∣∣∣∣ 0
0
1

 .
The system is inconsistent. Thus 1

1
1

 6∈ span


 1

2
3

 ,
 1

3
4

 ,
 1

4
5

 .
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Geometric description of span.

Let

S = span


 0

1
1

 , T = span


 0

1
1

 ,
 1

0
1

 .

Then

I S is the line through the points (0, 0, 0) and (0, 1, 1).

I T is the plane through the points (0, 0, 0), (0, 1, 1), and
(1, 0, 1).
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Geometric description of span. (continued)

Write

v1 =

 0
1
1

 , v2 =

 1
0
1

 .
The following are equivalent:

I Is v3 spanned by v1 and v2?

I Can v3 be written as a linear combination of v1 and v2?

I Is v3 in the plane containing the vectors v1 and v2?
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Cartesian equation for span.

Recall the definition of the plane T above.

A point (x , y , z) belongs to T when the following vector equation
is consistent:

α

 0
1
1

+ β

 1
0
1

 =

 x
y
z

 .
The augmented matrix and its reduced echelon form are as follows: 0 1

1 0
1 1

∣∣∣∣ xy
z

 ∼
 1 0

0 1
0 0

∣∣∣∣ y
x

z − x − y

 .
Thus the Cartesian equation for the plane is

0 = z − x − y .
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Matrix equations. Consider a matrix of the form

A =
[

a1 a2 a3

]
,

where the aj are column vectors. The product of A with a column
vector is defined by

A

 x
y
z

 := xa1 + ya2 + za3.

Thus all linear systems can be represented by matrix equations of
the form AX = b.
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Example. (Revisited) The system

x + y + z = 1

2x + 3y + 4z = 1

3x + 4y + 5z = 1

is equivalent to the matrix equation AX = b, where

A =

 1 1 1
2 3 4
3 4 5

 , X =

 x
y
z

 , b =

 1
1
1

 .
Remark. AX = b has a solution if and only if b is a linear
combination of the columns of A.
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Question. When does the vector equation AX = b have a solution
for every b ∈ Rm?

Answer. When the columns of A span Rm.

An equivalent condition is the following: the reduced echelon form
of A has a pivot position in every row.

To illustrate this, we study a non-example:
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Non-example. Let

A =

 1 1 1
2 3 4
3 4 5

 reduced echelon form−−−−−−−−−−−−→

 1 0 −1
0 1 2
0 0 0

 .
This means that for any b1, b2, b3 ∈ R, we will have

A =

 1 1 1
2 3 4
3 4 5

∣∣∣∣ b1

b2

b3

 ∼
 1 0 −1

0 1 2
0 0 0

∣∣∣∣ f1(b1, b2, b3)
f2(b1, b2, b3)
f3(b1, b2, b3)


for some linear functions f1, f2, f3. However, the formula

f3(b1, b2, b3) = 0

imposes a constraint on the choices of b1, b2, b3.

That is, we cannot solve AX = b for arbitrary choices of b.
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If instead the reduced echelon form of A had a pivot in any row,
then we could use the reduced echelon form for the augmented
system to find a solution to AX = b.
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Chapter 1. Linear Equations in Linear Algebra

1.5 Solution Sets of Linear Systems
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The system of equations AX = b is

I homogeneous if b = 0,

I inhomogeneous if b 6= 0.

For homogeneous systems:

I The augmented matrix for a homogeneous system has a
column of zeros.

I Elementary row operations will not change this column.

Thus, for homogeneous systems it is sufficient to work with the
coefficient matrix alone.
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Example.

2x − 4y + 4z = 6
x − 2y + 2z = 3

x − y = 2
→

 2 −4 4
1 −2 2
1 −1 0

∣∣∣∣ 6
3
2

 ∼
 1 0 −2

0 1 −2
0 0 0

∣∣∣∣ 1
−1
0

 .
The solution set is

x = 1 + 2z , y = −1 + 2z , z ∈ R.

On the other hand,

2x − 4y + 4z = 0
x − 2y + 2z = 0

x − y = 0
→ x = 2z , y = 2z , z ∈ R.
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The solution set for the previous inhomogeneous system AX = b
can be represented in parametric vector form:

2x − 4y + 4z = 6
x − 2y + 2z = 3

x − y = 2
→ x = 1 + 2z

y = −1 + 2z

→ X =

 x
y
z

 =

 1
−1
0

+ z

 2
2
1

 , z ∈ R.

The parametric form for the homogeneous system AX = 0 is given
by

x = 2z
y = 2z

→ X =

 x
y
z

 = z

 2
2
1

 , z ∈ R.

Both solution sets are parametrized by the free variable z ∈ R.
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Example. Express the solution set for AX = b in parametric
vector form, where

[A|b] =

 1 1 1 −1 −1
1 −1 0 2 0
0 0 2 −2 −2

∣∣∣∣ −1
2
2


Row reduction leads to 1 1 0 −2 0

0 0 1 1 −1
0 0 0 0 0

∣∣∣∣ −2
1
0

 ,
which means the solution set is

x1 = −2− x2 + 2x4, x3 = 1− x4 + x5, x2, x4, x5 ∈ R.
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Example. (continued) In parametric form, the solution set is given
by

X =

[ −2− x2 + 2x4
x2

1− x4 + x5
x4
x5

]
=

[ −2
0
1
0
0

]
+ x2

[ −1
1
0
0
0

]
+ x4

[
2
0
−1

1
0

]
+ x5

[
0
0
1
0
1

]
,

where x2, x4, x5 ∈ R.

To solve the corresponding homogeneous system, simply erase the
first vector.
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General form of solution sets. If Xp is any particular solution to
AX = b, then any other solutions to AX = b may be written in the
form

X = Xp + Xh,

where Xh is some solution to AX = 0.

Indeed, given any solution X,

A(X− Xp) = AX− AXp = b− b = 0,

which means that X− Xp solves the homogeneous system.

Thus, to find the general solution to the inhomogeneous problem,
it suffices to

1 Find the general solution to the homogeneous problem,

2 Find any particular solution to the inhomogeneous problem.

Remark. Something similar happens in linear ODE.
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Example. (Line example) Suppose the solution set of AX = b is a
line passing through the points

p = (1,−1, 2), q = (0, 3, 1).

Find the parametric form of the solution set.

First note that v = p− q is parallel to this line.

As q belongs to the solution set, the solution set is therefore

X = q + tv, t ∈ R.

Note that we may also write this as

X = (1− t)q + tp, t ∈ R.

Note also that the solution set to AX = 0 is simply tv, t ∈ R.
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Example. (Plane example) Suppose the solution set of AX = b is
a plane passing through

p = (1,−1, 2), q = (0, 3, 1), r = (2, 1, 0).

This time we form the vectors

v1 = p− q, v2 = p− r.

(Note that v1 and v2 are linearly independent, i.e. one is not a
multiple of the other.)

Then the plane is given by

X = p + t1v1 + t2v2, t1, t2 ∈ R.

(The solution set to AX = 0 is then the span of v1 and v2.)
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Chapter 1. Linear Equations in Linear Algebra

1.7 Linear Independence

46 / 323



Definition. A set of vectors

S = {v1, . . . , vn}

is (linearly) independent if

x1v1 + · · ·+ xnvn = 0 =⇒ x1 = · · · = xn = 0

for any x1, . . . , xn ∈ R.

Equivalently, S is independent if the only solution to AX = 0 is
X = 0, where A = [v1 · · · vn].

Otherwise, we call S (linearly) dependent.
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Example. Let

v1 =

[
1
2
3

]
, v2 =

[
4
5
6

]
, v3 =

[
7
8
9

]
, A :=

[
1 4 7
2 5 8
3 6 9

]
.

Then

A ∼

 1 0 −1
0 1 2
0 0 0


In particular, the equation AX = 0 has a nontrivial solution set,
namely

X = z

 1
−2

1

 , z ∈ R.

Thus the vectors are dependent.
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Dependence has another useful characterization:

The vectors {v1, . . . , vn} are dependent if and only if (at least) one
of the vectors can be written as a linear combination of the others.

Continuing from the previous example, we found that

AX = 0, where X =

 1
−2

1


(for example). This means

v1 − 2v2 + v3 = 0, i.e. v1 = 2v2 − v3.
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Some special cases.

I If S = {v1, v2}, then S is dependent if and only if v1 is a
scalar multiple of v2 (if and only if v1 and v2 are co-linear).

I If 0 ∈ S , then S is always dependent. Indeed, if

S = {0, v1, · · · , vn},

then a nontrivial solution to AX = 0 is

0 = 1 · 0 + 0v1 + · · ·+ 0vn.
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Pivot columns. Consider

A = [v1v2v3v4] =

[
1 2 3 4
−2 −4 −5 −6

3 6 7 8

]
∼

[
1 2 0 −2
0 0 1 2
0 0 0 0

]
.

In particular, the vector equation AX = 0 has solution set

X = x2

[ −2
1
0
0

]
+ x4

[
2
0
−2
1

]
, x2, x4 ∈ R.

Thus {v1, v2, v3, v4} are dependent.

The pivot columns of A are relevant: By considering

(x2, x4) ∈ {(1, 0), (0, 1)},

we find that v1 and v3 can be combined to produce v2 or v4:

I v2 = 2v1

I v4 = −2v1 + 2v3.
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Let A be an m × n matrix. We write A ∈ Rm×n.

I The number of pivots is bounded above by min{m, n}.
I If m < n (‘short’ matrix), the columns of A are necessarily

dependent.

I If m > n (‘tall’ matrix), the rows of A are necessarily
dependent.

Example.

A = [v1v2v3v4] =
[

1 1 1 1
1 2 3 5
2 3 4 5

]
∼
[

1 0 −1 0
0 1 2 0
0 0 0 1

]
.

The columns of A are necessarily dependent; indeed, setting the
free variable x3 = 1 yields the nontrivial combination

v1 − 2v2 + v3 = 0.
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Example. (continued)

A =
[

1 1 1 1
1 2 3 5
2 3 4 5

]
Are the rows of A dependent or independent?

The rows of A are the columns of the transpose of A, denoted

A′ =

[
1 1 2
1 2 3
1 3 4
1 5 5

]
∼
[

1 0 0
0 1 0
0 0 1
0 0 0

]
.

Now note that:

I Each column of A′ is a pivot column.

I =⇒ the solution set of A′X = 0 is X = 0.

I =⇒ the columns of A′ are independent.

I =⇒ the rows of A are independent.
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Chapter 1. Linear Equations in Linear Algebra

1.8 Introduction to Linear Transformations
1.9 The Matrix of a Linear Transformation
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Definition. A linear transformation from Rn to Rm is a function
T : Rn → Rm such that

I T (u + v) = T (u) + T (v) for all u, v ∈ Rn,

I T (αv) = αT (v) for all v ∈ Rn and α ∈ R.

Note that for any linear transformation, we necessarily have

T (0) = T (0 + 0) = T (0) + T (0) =⇒ T (0) = 0.

Example. Let A ∈ Rm×n. Define T (X) = AX for X ∈ Rn.

I T : Rn → Rm

I T (X + Y) = A(X + Y) = AX + AY = T (X) + T (Y)

I T (αX) = A(αX) = αAX = αT (X)

We call T a matrix transformation.

55 / 323



Definition. Let T : Rn → Rm be a linear transformation. The
range of T is the set

R(T ) := {T (X) : X ∈ Rn}.

Note that R(T ) ⊂ Rm and 0 ∈ R(T ).

We call T onto (or surjective) if R(T ) = Rm.
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Example. Determine if b is in the range of T (X) = AX, where

A =

[
0 1 2
3 0 4
5 6 0

]
, b =

[
3
7

11

]
.

This is equivalent to asking if AX = b is consistent. By row
reduction:

[A|b] =

[
0 1 2
3 0 4
5 6 0

∣∣∣∣ 3
7

11

]
∼

[
1 0 0
0 1 0
0 0 1

∣∣∣∣ 1
1
1

]
.

Thus b ∈ R(T ), indeed

T (X) = b, where X =

[
1
1
1

]
.
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Example. Determine if T (X) = AX is onto, where

A =

[
0 1 2
2 3 4
3 2 1

]
.

Equivalently, determine if AX = b is consistent for every b ∈ Rm.

Equivalently, determine if the reduced form of A has a pivot in
every row:

A ∼

[
1 0 −1
0 1 2
0 0 0

]
.

Thus T is not onto.
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Example. (Continued) In fact, by performing row reduction on
[A|b] we can describe R(T ) explicitly:[

0 1 2
2 3 4
3 2 1

∣∣∣∣ b1

b2

b3

]
∼

[
1 0 −1
0 1 2
0 0 0

∣∣∣∣ − 3
2b1 + 1

2b2

b1
5
2b1 − 3

2b2 + b3

]

Thus
R(T ) = {b ∈ R3 : 5

2b1 − 3
2b2 + b3 = 0}.
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Definition. A linear transformation T : Rm → Rn is one-to-one
(or injective) if

T (X) = 0 =⇒ X = 0.

More generally, a function f is one-to-one if

f (x) = f (y) =⇒ x = y .

For linear transformations, the two definitions are equivalent. In
particular, T is one-to-one if:

for each b, the solution set for T (X) = b has at most one element.

For matrix transformations T (X) = AX, injectivity is equivalent to:

I the columns of A are independent

I the reduced form of A has a pivot in every column
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Example. Let T (X) = AX, where

A =

[
1 2 3 4
4 3 2 1
1 3 2 4

]
∼

[
1 0 0 −1
0 1 0 1
0 0 1 1

]

I T is not one-to-one, as every column does not have a pivot.

I T is onto, as every row has a pivot.
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Summary.

For a matrix transformation T (X) = AX.

I Let B denote the reduced echelon form of A.

I T is onto if and only if B has a pivot in every row.

I T is one-to-one if and only if B has a pivot in every column.
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Matrix representations.

I Not all linear transformations are matrix transformations.

I However, each linear transformation T : Rn → Rm has a
matrix representation.

Let T : Rn → Rm. Let {e1, . . . , en} denote the standard basis
vectors in Rn, e.g.

e1 =

 1
0

.

.

.
0

 ∈ Rn.

Define the matrix [T ] ∈ Rm×n by

[T ] = [T (e1) · · ·T (en)].

I We call [T ] the matrix representation of T .

I Knowing [T ] is equiavalent to knowing T (see below).
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Matrix representations. Suppose T : Rn → Rm is linear,

[T ] = [T (e1) · · ·T (en)], X =

[
x1

.

.

.
xn

]
= x1e1 + · · ·+ xnen.

By linearity,

T (X) = x1T (e1) + · · ·+ xnT (en) = [T ]X.

Example. Suppose T : R3 → R4, with

T (e1) =

[
1
2
3
4

]
, T (e2) =

[
2
2
3
4

]
, T (e3) =

[
3
2
3
4

]
.

Then

[T ] =

[
1 2 3
2 2 2
3 3 3
4 4 4

]
.
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Matrix representations.

If T : Rn → Rm is linear, then [T ] ∈ Rm×n, and so:

I [T ] ∈ Rm×n has m rows and n columns.

I T onto ⇐⇒ [T ] has pivot in every row.

I T one-to-one ⇐⇒ [T ] has pivot in every column.

I If m > n, then T cannot be onto.

I If m < n, then T cannot be one-to-one.
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Linear transformations of the plane R2.

Suppose T : R2 → R2 is linear. Then

T (X) = [T ]X = [T (e1)T (e2)]X = xT (e1) + yT (e2).

We consider several types of linear transformations with clear
geometric meanings, including:

I shears,

I reflections,

I rotations,

I compositions of the above.
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Example. (Shear) Let λ ∈ R and consider

[T ] =

[
1 λ
0 1

]
, T

[
x
y

]
=
[

x + λy
y

]
.

Then

[T ]
[

1
0

]
=
[

1
0

]
,

[T ]
[

0
1

]
=
[

λ
1

]
,

[T ]
[

0
−1

]
=
[ −λ
−1

]
.
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Example. (Reflection across the line y = x)

Let

T (X) =

[
0 1
1 0

] [
x
y

]
=

[
y
x

]
.

Note

[T ]
[

1
0

]
=
[

0
1

]
, [T ]

[
0
1

]
=
[

1
0

]
,

[T ]
[

2
1

]
=
[

1
2

]
, [T ]

[ −2
−1

]
=
[ −1
−2

]
.
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Example. (Rotation by angle θ) Let

T (X) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

Then

[T ]
[

1
0

]
=
[

cos θ
sin θ

]
,

[T ]
[

0
1

]
=
[ − sin θ

cos θ

]
.
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Example. (Composition) Let us now construct T that
(i) reflects about the y-axis (x = 0) and then
(ii) reflects about y = x .

(i) [T1] =

[
−1 0

0 1

]
(ii) [T2] =

[
0 1
1 0

]
.

We should then take

T (X) = T2 ◦ T1(X) = T2(T1(X)),

that is,

T (X) =
[

0 1
1 0

] ([ −1 0
0 1

] [
x
y

])
=
[

0 1
1 0

] [ −x
y

]
=
[

y
−x

]
Note that T = T2 ◦ T1 is a linear transformation, with

[T ] =

[
0 1
−1 0

]
.
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Chapter 2. Matrix Algebra

2.1 Matrix Operations
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Addition and scalar multiplication of matrices.

Let A,B ∈ Rm×n with entries Aij ,Bij and let α ∈ R.

We define A± B and αA by specifying the ij th entry:

(A± B)ij := Aij ± Bij , (αA)ij = αAij .

Example. [
1 2
3 4

]
+ 5

[
6 7
8 9

]
=

[
31 37
43 49

]
Matrix addition and scalar multiplication obey the usual rules of
arithmetic.
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Matrix multiplication. Let A ∈ Rm×r and B ∈ Rr×n have entries
aij , bij .

The matrix product AB ∈ Rm×n is defined via its ij th entry:

(AB)ij =
r∑

k=1

aikbkj .

If a ∈ Rr is a (row) vector and b ∈ Rr is a (column) vector, then
we write

ab = a · b =
r∑

k=1

akbk (dot product).
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Matrix multiplication. (Continued) If we view

A =

 a1

...
am

 ∈ Rm×r , B = [b1 · · ·bn] ∈ Rr×n,

then
(AB)ij = ai · bj .

We may also write

AB = A[b1 · · ·bn] = [Ab1 · · ·Abn],

where the product of a matrix and column vector is as before.
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Example. Let

A =

[
1 2 3
4 5 6

]
∈ R2×3, B =

 1 2
3 4
5 6

 ∈ R3×2.

Then

AB =

[
22 28
49 64

]
, BA =

 9 12 15
19 26 33
29 40 51

 .
Remark. You should not expect AB = BA in general.

Can you think of any examples for which AB = BA does hold?
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Definition. The identity matrix In ∈ Rn×n is given by

(In)ij =

{
1 i = j

0 i 6= j
.

Properties of matrix multiplication. Let A ∈ Rm×n and α ∈ R.
For B and C of appropriate dimensions:

I A(BC ) = (AB)C

I A(B + C ) = AB + AC

I (A + B)C = AC + BC

I α(AB) = (αA)B = A(αB)

I ImA = AIn = A.
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Definition. If A ∈ Rm×n has ij th entry aij , then the matrix
transpose (or transposition) of A is the matrix AT ∈ Rn×m with
ij th entry aji .

One also writes AT = A′.

Example.

A =

[
1 2 3
4 5 6

]
=⇒ AT =

[
1 4
2 5
3 6

]
.

Thus the columns and rows are interchanged.

Properties.

I (AT )T = A

I (A + B)T = AT + BT

I (αA)T = αAT for α ∈ R
I (AB)T = BTAT
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Proof of the last property.

(AB)Tij = (AB)ji =
∑
k

ajkbki .

(BTAT )ij =
∑
k

(BT )ik(AT )kj

=
∑
k

bkiajk .

Thus (AB)T = BTAT . �
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Example. The transpose of a row vector is a column vector.

Let

a =

[
1
−2

]
, b =

[
3
−4

]
.

Then a,b ∈ R2×1 (column vectors), aT ,bT ∈ R1×2 (row vectors):

aTb = 11, abT =

[
3 −4
−6 8

]
.
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Key fact. If T1 : Rm → Rn and T2 : Rn → Rk are linear
transformations, then the matrix representation of the composition
is given by

[T2 ◦ T1] = [T2][T1].

Remark. The dimensions are correct:

I T2 ◦ T1 : Rm → Rk .

I [T2 ◦ T1] ∈ Rk×m

I [T1] ∈ Rn×m

I [T2] ∈ Rk×n

I [T2][T1] ∈ Rk×m.

For matrix transformations, this is clear: if T1(x) = Ax and
T2(x) = Bx, then

T2 ◦ T1(x) = T2(T1(x)) = T2(Ax) = BAx.
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Example. Recall that rotation by θ in R2 is given by

[Tθ] =

[
cos θ − sin θ
sin θ cos θ

]
.

Thus rotation by 2θ is

[T2θ] =

[
cos 2θ − sin 2θ
sin 2θ cos 2θ

]
.

One can check that

[T2θ] = [Tθ]2 = [Tθ][Tθ].
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Proof of the key fact. Recall that for T : Rn → Rm:

[T ] = [T (e1) · · ·T (en)], T (x) = [T ]x.

So

[T2 ◦ T1] = [T2(T1(e1)) · · ·T2(T1(en))]

= [[T2]T1(e1) · · · [T2]T1(en)]

= [T2][T1(e1) · · ·T1(en)] (∗)
= [T2][T1].

In (*), we have used the column-wise definition of matrix
multiplication. �
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Chapter 2. Matrix Algebra

2.2 The Inverse of a Matrix
2.3 Characterizations of Invertible Matrices
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Definition. Let A ∈ Rn×n (square matrix). We call B ∈ Rn×n an
inverse of A if

AB = BA = In.

Remark. If A has an inverse, then it is unique. Proof. Suppose

AB = BA = In and AC = CA = In.

Then
B = BIn = BAC = InC = C . �

If A has an inverse, then we denote it by A−1. Note (A−1)−1 = A.

Remark. If A,B ∈ Rn×n are invertible, then AB is invertible.
Indeed,

(AB)−1 = B−1A−1.
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Example. If

A =

[
1 2
3 4

]
, then A−1 =

[
−2 1

3
2 −1

2

]
.

Note that to solve AX = b, we may set X = A−1b.

For example, the solution to

AX =

[
1
0

]
is X = A−1

[
1
0

]
=

[
−2

3
2

]
.
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Questions.

1. When does A ∈ Rn×n have an inverse?

2. If A has an inverse, how do we compute it?

Note that if A is invertible (has an inverse), then:

I Ax = b has a solution for every b (namely, x = A−1b).
Equivalently, A has a pivot in every row.

I If Ax = 0, then x = A−10 = 0. Thus the columns of A are
independent.
Equivalently, A has a pivot in every column.

Conversely, we will show that if A has a pivot in every column or
row, then A is invertible.

Thus all of the above conditions are equivalent.
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Goal. If A has a pivot in every column, then A is invertible.

Since A is square, this is equivalent to saying that if the reduced
echelon form of A is In, then A is invertible.

Key observation. Elementary row operations correspond to
multiplication by an invertible matrix. (See below.)

With this observation, our hypothesis means that

Ek · · ·E1A = In

for some invertible matrices Ej . Thus

A = (Ek · · ·E1)−1 = E−1
1 · · ·E−1

k .

In particular, A is invertible.

Furthermore, this computes the inverse of A. Indeed,

A−1 = Ek · · ·E1.
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It remains to show that elementary row operations correspond to
multiplication by a invertible matrix (known as elementary
matrices).

In fact, to write down the corresponding elementary matrix, one
simply applies the row operation to In.

Remark. A does not need to be square; the following works for
any A ∈ Rn×m.

For concreteness, consider the 3x3 case.
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I “Multiply row one by non-zero α ∈ R” corresponds to
multiplication by

E =

[
α 0 0
0 1 0
0 0 1

]
.

Indeed, [
α 0 0
0 1 0
0 0 1

][
1 2 3
4 5 6
7 8 9

]
=

[
α 2α 3α
4 5 6
7 8 9

]

Note that E is invertible:

E−1 =

[ 1
α 0 0
0 1 0
0 0 1

]
.
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I “Interchange rows one and two” corresponds to multiplication
by

E =

[
0 1 0
1 0 0
0 0 1

]
.

Indeed, [
0 1 0
1 0 0
0 0 1

][
1 2 3
4 5 6
7 8 9

]
=

[
4 5 6
1 2 3
7 8 9

]
.

Note that E is invertible. In fact, E = E−1.

90 / 323



I “Multiply row three by α and add it to row two” corresponds
to multiplication by

E =

[
1 0 0
0 1 α
0 0 1

]
.

Indeed,[
1 0 0
0 1 α
0 0 1

][
1 2 3
4 5 6
7 8 9

]
=

[
1 2 3

4 + 7α 5 + 8α 6 + 9α
7 8 9

]

Note that E is invertible:

E−1 =

[
1 0 0
0 1 −α
0 0 1

]
.
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Summary. A is invertible if and only if there exist a sequence of
elementary matrices Ej so that

Ek · · ·E1A = In.

Note that

Ek · · ·E1[A|In] = [Ek · · ·E1A|Ek · · ·E1In]

= [In|Ek · · ·E1]

= [In|A−1].

Thus A is invertible if and only if

[A|In] ∼ [In|A−1].
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Example 1.

[A|I2] =

[
1 2
3 4

∣∣∣∣ 1 0
0 1

]
∼
[

1 0
0 1

∣∣∣∣ −2 1
3
2 − 1

2

]
= [I2|A−1]

Thus A is invertible, with A−1 as above.

Example 2.

[A|I3] =

[
3 3 3
−1 0 1

1 3 5

∣∣∣∣ 1 0 0
0 1 0
0 0 1

]
∼
[

1 0 −1
0 1 2
0 0 0

∣∣∣∣ 0 −1 0

0 1
3

1
3

1 2 −1

]
=: [U|B]

Thus A is not invertible. Note BA = U.
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Some additional properties.

I If A is invertible, then (AT )−1 = (A−1)T .

Indeed,
AT (A−1)T = (A−1A)T = ITn = In,

and similarly (A−1)TAT = In.

I Suppose AB is invertible. Then

A[B(AB)−1] = (AB)(AB)−1 = In.

Thus
A[B(AB)−1b] = b for any b ∈ Rn,

so that Ax = b has a solution for every b. Thus A has a pivot
in every row, so that A is invertible. Similarly, B is invertible.

Conclusion. AB is invertible if and only if A,B are invertible.
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Some review. Let A ∈ Rm×n and x,b ∈ Rm.

Row pivots. The following are equivalent:

I A has a pivot in every row

I Ax = b is consistent for every b ∈ Rm

I the columns of A span Rm

I the transformation T (x) = Ax maps Rn onto Rm

I the rows of A are independent (see below)

Column pivots. The following are equivalent:

I A has a pivot in every column

I Ax = 0 =⇒ x = 0

I the columns of A are independent

I the transformation T (x) = Ax is one-to-one
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Claim. If A has m pivots, then the rows of A ∈ Rm×n are
independent. (The converse is also true — why?)

Proof. By hypothesis,

BA = U, or equivalently A = B−1U

where B ∈ Rm×m is a product of elementary matrices and U has a
pivot in each row.

Suppose ATx = 0. Then (since UT has a pivot in each column),

UT [(B−1)Tx] = 0 =⇒ (B−1)Tx = 0 =⇒ x = 0

by invertibility. Thus the columns of AT (i.e. rows of A) are
independent. �
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When A is square, all of the above equivalences hold, in addition
to the following:

I There exists C ∈ Rn×n so that CA = In .
(This gives Ax = 0 =⇒ x = 0.)

I There exists D ∈ Rn×n so that AD = In.
(This gives Ax = b is consistent for every b.)

I A is invertible.

I AT is invertible.
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Definition. Let T : Rn → Rn be a linear transformation. We say
T is invertible if there exists S : Rn → Rn such that

T ◦ S(x) = S ◦ T (x) = x for all x ∈ Rn.

If T (x) = Ax, this is equivalent to A being invertible, with
S(x) = A−1x.

If T has an inverse, it is unique and denoted T−1.

The following are equivalent for a linear transformation
T : Rn → Rn :

I T is invertible

I T is ‘left-invertible’ (there exists S so that S ◦ T (x) = x)

I T is ‘right-invertible’ (there exists S so that T ◦ S(x) = x).
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Chapter 2. Matrix Algebra

2.5 Matrix Factorization

99 / 323



Definition. A matrix A = [aij ] ∈ Rm×n is lower triangular if

aij = 0 for all i < j .

We call A unit lower triangular if additionally

aii = 1 for all i = 1, . . . ,min{m, n}.

Example. The elementary matrix E corresponding to the row
replacement

Rj 7→ αRi + Rj , i < j

is unit lower triangular, as is its inverse. E.g. (in 3× 3 case):

R2 7→ αR1 + R2 =⇒ E =

[
1 0 0
α 1 0
0 0 1

]
, E−1 =

[
1 0 0
−α 1 0

0 0 1

]
.

100 / 323



We can similarly define upper triangular and unit upper
triangular matrices.

Note that the product of (unit) lower triangular matrices is (unit)
lower triangular:

(AB)ij =
∑
k

aikbkj =
∑

j≤k≤i
aikbkj = 0 for i < j .

The same is true for upper triangular matrices.

Definition. We call P ∈ Rm×m a permutation matrix if it is a
product of elementary row-exchange matrices.
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LU Factorization. For any A ∈ Rm×n, there exists a permutation
matrix P ∈ Rm×m and an upper triangular matrix U ∈ Rm×n (in
echelon form) such that

PA ∼ U.

Moreover, the elementary matrices used to reduce PA to U may all
be taken to be lower triangular and of the type

Rj 7→ αRi + Rj for some i < j .

Thus
Ek · · ·E1PA = U

for some unit lower triangular (elementary) matrices Ej , and so

PA = (E−1
1 · · ·E−1

k )U = LU

for some unit lower triangular L.
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The LU factorization is also used to solve systems of linear
equations.

Example. Solve Ax = b, where

A = LU =

[
1 0
1 1

] [
−2 2

0 2

]
, b =

[
3
3

]
.

1. Solve Ly = b:[
1 0
1 1

] [
y1

y2

]
=

[
3
3

]
=⇒

{
y1 = 3,

y1 + y2 = 3
=⇒

{
y1 = 3

y2 = 0

2. Solve Ux = y.[
−2 2

0 2

] [
x1

x2

]
=

[
3
0

]
=⇒

{
−2x1 + 2x2 = 3

x2 = 0

=⇒

{
x1 = −3

2

x2 = 0
.
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This process is computationally efficient when A is very large and
solutions are required for systems in which A stays fixed but b
varies.

See the ‘Numerical notes’ section in the book for more details.

We next compute some examples of LU factorization, beginning
with the case that P is the identity matrix.
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Example 1. Let

A =

[
2 3 4 1
1 3 2 4
1 2 3 4

]
.

We put A into upper triangular form form via row replacements:

A
R2 7→− 1

2
R1+R2−−−−−−−−−→

R3 7→− 1
2
R1+R3

[
2 3 4 1
0 3

2 0 7
2

0 1
2 1 7

2

]
R3 7→− 1

3
R2+R3−−−−−−−−−→

[
2 3 4 1
0 3

2 0 7
2

0 0 1 7
3

]
= U.

We have three unit lower triangular elementary matrices E1,E2,E3

so that
E3E2E1A = U, i.e. A = E−1

1 E−1
2 E−1

3 U.

That is, we construct L via row reduction:

L = E−1
1 E−1

2 E−1
3 , A = LU.
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Example 1. (continued) Note that

E1 =

[
1 0 0

− 1
2

1 0
0 0 1

]
, (R2 7→ −1

2R1 + R2)

E2 =

[
1 0 0
0 1 0

− 1
2

0 1

]
, (R3 7→ −1

2R1 + R3)

E3 =

[
1 0 0
0 1 0

0 − 1
3

1

]
, (R3 7→ −1

3R2 + R3),

E3E2E1 =

[
1 0 0

− 1
2

1 0

− 1
2
− 1

3
1

]
, L = (E3E2E1)−1 =

[
1 0 0
1
2

1 0
1
2

1
3

1

]
,

In particular, E3E2E1L = I3.
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Example 1. (continued)

Altogether, we have the LU factorization:[
2 3 4 1
1 3 2 4
1 2 3 4

]
=

[
1 0 0
1
2 1 0
1
2

1
3 1

][
2 3 4 1
0 3

2 0 7
2

0 0 1 7
3

]
. �

Let us next consider an example where we will not have P equal to
the identity.
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Example 2. Let

A =

[
2 1 1 −1
−2 −1 −1 1

4 2 1 0

]
.

We try to put A into echelon by using the row replacements

R2 7→ R1 + R2, R3 7→ −2R1 + R3.

This corresponds to

EA :=

[
1 0 0
1 1 0
−2 0 1

]
A =

[
2 1 1 −1
0 0 0 0
0 0 −1 2

]

However, we now need a row interchange (R2 ↔ R3). This
corresponds to multiplication by

P =

[
1 0 0
0 0 1
0 1 0

]
. Not lower triangular!
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Example 2. (continued)

So far, we have written PEA = U with E unit lower triangular and
U in echelon form. Thus (since P = P−1),

A = E−1PU.

However, E−1P is not lower triangular:

E−1P =

[
1 0 0
−1 1 0

2 0 1

][
1 0 0
0 0 1
0 1 0

]
=

[
1 0 0
−1 0 1

2 1 0

]

But if we multiply by P again, we get the desired factorization:

PA = LU, L = PE−1P =

[
1 0 0
2 1 0
−1 0 1

]
.
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Chapter 2. Matrix Algebra

2.7 Applications to Computer Graphics
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Definition. We call (y, h) ∈ Rn+1 (with h 6= 0) homogeneous
coordinates for x ∈ Rn if

x = 1
hy, that is, xj = 1

hyj for 1 ≤ j ≤ n.

In particular, (x, 1) are homogeneous coordinates for x.

Homogeneous coordinates can be used to describe more general
transformations of Rn than merely linear transformations.

111 / 323



Example. Let x0 ∈ Rn and define

T ((x, 1)) =

[
In x0

0 1

] [
x
1

]
=

[
x + x0

1

]
.

This is a linear transformation on homogeneous coordinates that
corresponds to the translation

x 7→ x + x0.

Note that translation in Rn is not a linear transformation if
x0 6= 0. (Why not?)

112 / 323



To represent a linear transformation on Rn, say T (x) = Ax, in
homogeneous coordinates, we use

T ((x, 1)) =

[
A 0
0 1

] [
x
1

]
=

[
Ax
1

]
.

We can then compose translations and linear transformations to
produce either

x 7→ Ax + x0

or
x 7→ A(x + x0).
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Graphics in three dimensions. Applying successive linear
transformations and translation to the homogeneous coordinates of
the points that define an outline of an object in R3 will produce
the homogeneous coordinates of the translated/deformed outline
of the object.

See the Practice Problem in the textbook.

This also works in the plane.
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Example 1. Find the transformation that translates by (0, 8) in
the plane and then reflects across the line y = −x .
Solution:[

0 −1 0
−1 0 0

0 0 1

][
1 0 0
0 1 8
0 0 1

][
x
y
1

]
=

[
0 −1 −8
−1 0 0

0 0 1

][
x
y
1

]

Example 2. Find the transformation that rotates points an angle
θ about the point (3, 1):
Solution:[

1 0 3
0 1 1
0 0 1

][
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

][
1 0 −3
0 1 −1
0 0 1

][
x
y
1

]

Note the order of operations in each example.
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Example 1. (Continued) What is the effect of the transformation
in Example 1 on the following vertices:

(0, 0), (3, 0), (3, 4).

Solution: 0 −1 −8
−1 0 0

0 0 1

 0 3 3
0 0 4

1 1 1

 =

 −8 −8 −12
0 −3 −3

1 1 1


Thus

(0, 0) 7→ (−8, 0), (3, 0) 7→ (−8,−3), (4, 5) 7→ (−12,−3).
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Perspective projection. Consider a light source at the point
(0, 0, d) ∈ R3, where d > 0.

A ray of light passing through a point (x , y , z) ∈ R3 with
0 ≤ z < d will intersect the xy -plane at a point (x∗, y∗, 0).

Understanding the map (x , y , z) 7→ (x∗, y∗) allows us to represent
‘shadows’. (One could also imagine projection onto other 2d
surfaces.)

By some basic geometry (similar triangles, for example), one can
deduce

x∗ =
x

1− z
d

, y∗ =
y

1− z
d

.

In particular, we find that

(x , y , 0, 1− z
d ) are homogeneous coordinates for (x∗, y∗, 0).
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Perspective projection. (Continued) Note that the mapping
1 0 0 0
0 1 0 0
0 0 0 0
0 0 − 1

d 1




x
y
z
1

 =


x
y
0

1− z
d


takes homogeneous coordinates of (x , y , z) to the homogeneous
coordinates of (x∗, y∗, 0).

Using this, one can understand how the shadows of objects in R3

would move under translations/deformations.
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Chapter 3. Determinants

3.1 Introduction to determinants
3.2 Properties of determinants
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Definition. The determinant of a matrix A ∈ Rn×n, denoted
detA, is defined inductively. Writing A = (aij), we have the
following:

I If n = 1, then detA = a11.

I If n ≥ 2, then

detA =
n∑

j=1

(−1)j+1a1j detA1j ,

where Aij is the (n − 1)× (n − 1) submatrix obtained by
removing the i th row and j th column from A.
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Example. Consider the 2× 2 case:

A =

[
a b
c d

]
.

The 1× 1 submatrices A11 and A12 are given by

A11 = d , A12 = c .

Thus

detA =
2∑

j=1

(−1)1+ja1j detA1j

= a11 detA11 − a12A12

= ad − bc.

Conclusion. det

[
a b
c d

]
= ad − bc.
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Examples.

det

[
1 2
3 4

]
= 1 · 4− 2 · 3 = −2.

det

[
λ 0
0 µ

]
= λµ

det

[
1 2
3 6

]
= 1 · 6− 2 · 3 = 0.
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Example. Consider

A =

 1 2 3
1 3 4
1 3 6


Then

A11 =

[
3 4
3 6

]
, A12 =

[
1 4
1 6

]
, A13 =

[
1 3
1 3

]
,

and

detA =
3∑

j=1

(−1)1+ja1j detA1j

= 1 · detA11 − 2 · detA12 + 3 · A13

= 6− 4 + 0 = 2.

Note. Note the alternating ±1 pattern.
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Definition. Given an n × n matrix A, the terms

Cij := (−1)i+j detAij

are called the cofactors of A. Recall Aij is the the (n− 1)× (n− 1)
matrix obtained by removing the i th row and j th column from A.

Note

detA =
n∑

j=1

(−1)1+ja1jA1j =
n∑

j=1

a1jC1j .

We call this the cofactor expansion of detA using row 1.
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Claim. The determinant can be computed using the cofactor
expansion of detA with any row or any column. That is,

detA =
n∑

j=1

aijCij for any i

=
n∑

i=1

aijCij for any j .

The first expression is the cofactor expansion using row i .

The second expression is the cofactor expansion using column j .
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Example. Consider again

A =

[
1 2 3
1 3 4
1 3 6

]
, detA = 2.

Let’s compute the determinant using column 1: Using

A11 =

[
3 4
3 6

]
, A21 =

[
2 3
3 6

]
, A31 =

[
2 3
3 4

]
,

detA =
3∑

i=1

ai1Ci1

= a11 detA11 − a21 detA21 + a31 detA31

= 1 · 6− 1 · 3 + 1 · (−1) = 2.

Remark. Don’t forget the factor (−1)i+j in Cij .
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• Use the flexibility afforded by cofactor expansion to simplify your
computations: use the row or columns with the most zeros.

Example. Consider

A =

[
1 2 3
4 0 5
0 6 0

]
.

Using row 3,

detA = −6 detA32 = −6 · −7 = 42.
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Properties of the determinant.

I det In = 1

I detAB = detA detB

I detAT = detA

I Note that if A ∈ Rn×n is invertible, then

1 = det In = detAA−1 = detA det(A−1).

In particular, detA 6= 0 and det(A−1) = [detA]−1.
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Determinants of elementary matrices.

I If E corresponds to Ri 7→ αRi (for α 6= 0), then

detE = α.

I If E corresponds to a row interchange, then

detE = −1.

I If E corresponds to Rj 7→ Ri + αRj , then

detE = 1.

In particular, in each case detE 6= 0.

Let’s check these in the simple 2× 2 case.
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Determinants of elementary matrices. Recall that the
elementary matrix corresponding to a row operation is obtained by
applying this operation to the identity matrix.

I Scaling:

E =

[
α 0
0 1

]
=⇒ detE = α.

I Interchange:

E =

[
0 1
1 0

]
=⇒ detE = −1.

I Replacement (R2 7→ αR1 + R2)

E =

[
1 0
α 1

]
=⇒ detE = 1.
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Row reduction and determinants. Suppose A ∼ U, with

U = Ek · · ·E1A.

Then
detA = 1

detE1··· detEk
detU.

Suppose that U is in upper echelon form. Then

detU = u11 · · · unn.

Indeed, this is true for any upper trianglular matrix (use the right
cofactor expansion).

Thus, row reduction provides another means of computing
determinants!
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Example 1.

A =

[
1 2 3
2 4 10
3 8 9

]
R2 7→−2R1+R2−−−−−−−−−→
R3 7→−3R1+R3

[
1 2 3
0 0 4
0 2 0

]

R2↔R3−−−−→

[
1 2 3
0 2 0
0 0 4

]
= U.

Then
detA = 1 · (−1) · detU = −1 · 2 · 4 = −8.
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Example 2.

A =

[
1 2 3
0 4 5
6 12 18

]
−→

[
1 2 3
0 4 5
0 0 0

]
.

Thus detA = 0.
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Invertibility.
We saw above that if U = (uij) is an upper echelon form for A,
then

detA = c · u11 · · · unn for some c 6= 0.

We also saw that if A is invertible, then detA 6= 0. Equivalently,

detA = 0 =⇒ A is not invertible.

On the other hand, if A is not invertible then it has fewer than n
pivot columns, and hence some uii = 0. Thus

A not invertible =⇒ detA = cu11 · · · unn = 0.

So in fact the two conditions are equivalent.
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Invertibility Theorem. The following are equivalent:

I A is invertible.

I The reduced row echelon form of A is In.

I A has n pivot columns (and n pivot rows).

I detA 6= 0.
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Examples.

I Recall

A =

[
1 2 3
4 0 5
0 6 0

]
=⇒ detA = 42.

Thus A is invertible and detA−1 = 1
42 .

I If detAB = detA detB 6= 0, then A,B,AB are invertible.

I Consider the matrix

M(λ) =

[
2− λ 1

1 2− λ

]
, λ ∈ R.

For which λ is M(λ) not invertible?
Answer: Compute

detM(λ) = (2− λ)2 − 1 = (λ− 1)(λ− 3) =⇒ λ = 1, 3.
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Chapter 4. Vector Spaces

4.1 Vector Spaces and Subspaces
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Definition. A vector space V over a field of scalars F is a
non-empty set together with two operations, namely addition and
scalar multiplication, which obey the following rules: for
u, v,w ∈ V and α, β ∈ F :

I u + v ∈ V
I u + v = v + u
I (u + v) + w = u + (v + w)
I there exists 0 ∈ V such

that 0 + u = u
I there exists −u ∈ V such

that −u + u = 0

I αv ∈ V

I α(u + v) = αu + αv

I (α + β)u = αu + βu

I α(βu) = (αβ)u

I 1u = u
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Remark 1. A field is another mathematical object with its own
long list of defining axioms, but in this class we will always just
take F = R or F = C.

Remark 2. One typically just refers to the vector space V without
explicit reference to the underlying field.

Remark 3. The following are consequences of the axioms:

0u = 0, α0 = 0, −u = (−1)u.
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Examples.

I V = Rn and F = R
I V = Cn and F = R or C
I V = Pn (polynomials of degree n or less), and F = R
I V = S, the set of all doubly-infinite sequences

(. . . , x−2, x−1, x0, x1, . . . ) and F = R
I V = F(D), the set of all functions defined on a domain D and

F = R.
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Definition. Let V be a vector space and W a subset of V . If W is
also a vector space under vector addition and scalar multipliation,
then W is a subspace of V . Equivalently, W ⊂ V is a subspace if

u + v ∈W and αv ∈W

for any u, v ∈W and any scalar α.

Example 1. If 0 /∈W , then W is not a subspace of V . Thus

W = {x ∈ R2 : x1 + x2 = 2} is not a subspace of R2.

Example 2. The set

W = {x ∈ R2 : x1x2 ≥ 0} is not a subspace of R2.

Indeed, [1, 0]T + [0,−1]T /∈W .
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Further examples and non-examples.

I W = Rn is a subspace of V = Cn with F = R
I W = Rn is not a subspace of V = Cn with F = C
I W = Pn is a subspace of V = F(D)

I W = S+, the set of doubly-infinite sequences such that
x−k = 0 for k > 0 is a subspace of S

I W = {(x , y) ∈ R2 : x , y ∈ Z} is not a subspace of R2
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Span as subspace. Let v1, . . . , vk be a collection of vectors in Rn.
Then

W := span{v1, . . . , vk} = {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ F}

is a subspace of Rn.

Indeed, if u, v ∈W and α ∈ F then u + v ∈W and αu ∈W .
(Why?)
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Subspaces associated with A ∈ Rm×n.

I The column space of A, denoted col(A) is the span of the
columns of A.

I The row space of A, denoted row(A) is the span of the rows
of A.

I The null space of A, denoted nul(A), is

nul(A) = {x ∈ Rn : Ax = 0} ⊂ Rn.

Note that nul(A) is a subspace of Rn; however,

{x ∈ Rn : Ax = b}

is not a subspace if b 6= 0. (Why not?)
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Example. Let

A =

[
1 2 0 3
−1 −2 1 1

]
∼
[

1 2 0 3
0 0 1 4

]
.

The solution set to Ax = 0 is written in parametric vector form as

x3


2
1
0
0

+ x4


−1

0
1
1

 .
That is,

nul(A) = span




2
1
0
0

 ,

−1

0
1
1


 .
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Example. Let

W =


 s + 3t

8t
s − t

 : s, t ∈ R

 .

This is a subspace of R3, since s + 3t
8t

s − t

 = s

 1
0
1

+ t

 3
8
−1

 ,
and hence

W = span


 1

0
1

 ,
 3

8
−1

 .
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Chapter 4. Vector Spaces

4.2 Null Spaces, Column Spaces, and Linear Transformations
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Null space.

Recall that the null space of A ∈ Rm×n is the solution set to
Ax = 0, denoted nul(A).

Note nul(A) is a subspace of Rn: for x, y ∈ nul(A) and α ∈ R,

A(x + y) = Ax + Ay = 0 + 0 = 0 (closed under addition)

A(αx) = αAx = α0 = 0 (closed under scalar ultiplication).

In fact, by writing the solution set to Ax = 0 in parametric vector
form, we can identify nul(A) as the span of a set of vectors.

(We saw such an example last time.)
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Column space.

Recall that the column space of A ∈ Rm×n is the span of the
columns of A, denoted col(A).

Recall that col(A) is a subspace of Rm.

Note that b ∈ col(A) precisely when Ax = b is consistent.

Note that col(A) = Rm when A has a pivot in every row.

Using row reduction, we can describe col(A) as the span of a set of
vectors.
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Example.

[A|b] =

 1 1 1 1
−1 −1 0 0

1 1 3 3

∣∣∣∣ b1

b2

b3

 ∼
 1 1 1 1

0 0 1 1
0 0 0 0

∣∣∣∣ b1

b1 + b2

b3 − 2b2 − 3b1


Thus b ∈ col(A) if and only if

b3−2b2−3b1 = 0, i.e. b =

 b1

b2

3b1 + 2b2

 = b1

 1
0
3

+b2

 0
1
2

 .
In particular,

col(A) = span


 1

0
3

 ,
 0

1
2

 .
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Definition. Let V and W be vector spaces. A linear
transformation T : V →W is a function such that for all
u, v ∈ V and α ∈ F ,

T (u + v) = T (u) + T (v) and T (αu) = αT (u).

Recall that linear transformations from Rn to Rm are represented
by matrices:

T (x) = Ax, A = [T ] = [T (e1) · · ·T (en)] ∈ Rm×n.

In this case, col(A) = R(T ) (the range of T ).

For linear transformations, one defines the kernel of T by

N(T ) = {u ∈ V : T (u) = 0}.

For matrix transformations, N(T ) = nul(A).
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Review. We can add some new items to our list of equivalent
conditions:

Row pivots. A matrix A ∈ Rm×n has a pivot in every row if and
only if

col(A) = Rm.

Column pivots. A matrix A ∈ Rm×n has a pivot in every column
if and only if

nul(A) = {0}.

Furthermore, if A is a square matrix, these two conditions are
equivalent.
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Chapter 4. Vector Spaces

4.3 Linearly Independent Sets; Bases
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Definition. A set of vectors {v1, . . . , vn} in a vector space V is
linearly independent if

c1v1 + · · ·+ cnvn = 0 =⇒ c1 = · · · = cn = 0.

Otherwise, the set is linearly dependent.
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Example 1. The set {cos t, sin t} is linearly independent in F(R);
indeed, if

c1 cos t + c2 sin t ≡ 0,

then c1 = 0 (set t = 0) and c2 = 0 (set t = π
2 ).

Example 2. The set {1, cos2 t, sin2 t} is linearly dependent in
F(R); indeed,

cos2 t + sin2 t − 1 ≡ 0.

For a linearly dependent set of two or more vectors, at least one of
the vectors can be written as a linear combination of the others.
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Example. Show that

p1(t) = 2t + 1, p2(t) = t, p3(t) = 4t + 3

are dependent vectors in P1.

We need to find a non-trivial solution to

x1p1(t) + x2p2(t) + x3p3(t) = 0.

Expanding the left-hand side, this is equivalent to

t(2x1 + x2 + 4x3) + (x1 + 3x3) = 0 for all t.

This can only happen if x1, x2, x3 satisfy

2x1 + x2 + 4x3 = 0

x1 + 3x3 = 0.
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Example. (Continued) To solve this linear system, we use the
augmented matrix:[

2 1 4
1 0 3

]
∼
[

1 0 3
0 1 −2

]
.

The solution set is therefore

(x1, x2, x3) = (−3z , 2z , z) for any z ∈ R.

In particular, (−3, 2, 1) is a solution, and hence

−3p1(t) + 2p2(t) + p3(t) = 0,

showing that {p1,p2,p3} are linearly dependent.
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Definition. Let W be a subspace of V . A set of vectors
B = {b1, . . . ,bn} is a basis for W if

(i) B is linearly independent, and

(ii) W = span(B).

The plural of basis is bases.

Examples.

I B = {e1, . . . , en} is the standard basis for Rn.

I B = {1, t, . . . , tn} is the standard basis for Pn.

I B = {v1, . . . , vn} ⊂ Rn is a basis for Rn if and only if

A = [v1 · · · vn] ∼ In.

Pivot in every column ⇐⇒ columns of A are independent,
Pivot in every row ⇐⇒ col(A) = Rn.
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Bases for the null space. Recall that for A ∈ Rm×n we have the
subspace

nul(A) = {x ∈ Rn : Ax = 0} ⊂ Rn.

Suppose

A =
[

1 2 3 4
2 4 6 8
1 1 1 1

]
∼
[

1 0 −1 −2
0 1 2 3
0 0 0 0

]
.

Thus nul(A) consists of vectors of the form

x3

[
1
−2

1
0

]
+ x4

[
2
−3

0
1

]
= x3u + x4v, x3, x4 ∈ R.

In particular, u and v are independent and nul(A) = span{u, v}.

Thus B = {u, v} is a basis for nul(A).
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Bases for the column space. Consider

A = [a1 a2 a3 a4] =

[
1 1 0 0
1 2 2 1
0 1 2 2
0 0 0 1

]
∼
[

1 0 −2 0
0 1 2 0
0 0 0 1
0 0 0 0

]
.

By definition, col(A) = span{a1, a2, a3, a4}.

However, {a1, a2, a3, a4} is not a basis for col(A). (Why not?)

We see that a1, a2, a4 are independent, while a3 = −2a1 + 2a2:

[a1 a2 a4] ∼
[

1 0 0
0 1 0
0 0 1
0 0 0

]
, [a1 a2 | a3] ∼

[
1 0
0 1
0 0
0 0

∣∣∣∣ −2
2
0
0

]
Thus {a1, a2, a4} are independent and

span{a1, a2, a4} = span{a1, a2, a3, a4} = col(A),

i.e. B = {a1, a2, a4} is a basis for col(A).
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Bases for the row space. Recall that row(A) is the span of the
rows of A.

A basis for row(A) is obtained by taking the non-zero rows in the
reduced echelon form of A.

This is based on the fact that A ∼ B =⇒ row(A) = row(B).

Example. Consider

A =

[
1 1 0 0
1 2 2 1
0 1 2 2
0 0 0 1

]
∼
[

1 0 −2 0
0 1 2 0
0 0 0 1
0 0 0 0

]
=

[
b1
b2
b3
b4

]
.

In particular, B = {b1,b2,b3} is a basis for row(A).
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Two methods. We now have two methods for finding a basis for
a subspace spanned by a set of vectors.

1. Let W = span{a1, a2, a3, a4} = row(A), where

A =

[
a1
a2
a3
a4

]
=

[
1 1 0 0
1 2 2 1
0 1 2 2
0 0 0 1

]
∼
[

1 0 −2 0
0 1 2 0
0 0 0 1
0 0 0 0

]
=

[
b1
b2
b3
b4

]
.

Then B = {b1,b2,b3} is a basis for W .

2. Let W = span{aT
1 , a

T
2 , a

T
3 , a

T
4 } = col(AT ), where

AT = [aT
1 aT

2 aT
3 aT

4 ] =

[
1 1 0 0
1 2 1 0
0 2 2 0
0 1 2 1

]
∼
[

1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

]
Then B = {aT

1 , a
T
2 , a

T
3 } is a basis for W .
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Chapter 4. Vector Spaces

4.4 Coordinate Systems
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Unique representations. Suppose B = {v1, . . . , vn} is a basis for
some subspace W ⊂ V . Then every v ∈W can be written as a
unique linear combination of the elements in B.

Indeed, B spans W by definition. For uniqueness suppose

v = c1v1 + · · ·+ cnvn = d1v1 + · · · dnvn.

Then
(c1 − d1)v1 + · · ·+ (cn − dn)vn = 0,

and hence linear independence of B (also by definition) implies

c1 − d1 = · · · = cn − dn = 0.
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Definition. Given a basis B = {v1, . . . , vn} for a subspace W ,
there is a unique pairing of vectors v ∈W and vectors in Rn, i.e.

v ∈W 7→ (c1, . . . , cn) ∈ Rn

where v = c1v1 + · · ·+ cnvn. We call (c1, · · · , cn) the coordinates
of v relative to B, or the B-coordinates of v. We write

[v]B = (c1, · · · , cn).

Example. If B = {e1, . . . , en} then [v ]B = v.
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Example. Let B = {v1, v2, v3} and v be given as follows:

v1 =

[
1
0
0

]
, v2 =

[
1
1
0

]
, v3 =

[
0
0
1

]
, v =

[
3
1
8

]
.

To find [v ]B , we need to solve A[v ]B = v where A = [v1 v2 v3].

For this, we set up the augmented matrix:

[A|v] =

 1 1 0
0 1 0
0 0 1

∣∣∣∣∣∣
3
1
8

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
2
1
8

 .
Thus [v ]B = (2, 1, 8), i.e. v = 2v1 + v2 + 8v3.
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Example. Let B ′ = {p1,p2,p3} ⊂ P2 and p ∈ P2 be given by

p1(t) = 1, p2(t) = 1 + t, p3(t) = t2, p(t) = 3 + t + 8t2.

To find [p]B′ , we need to write

3 + t + 8t2 = x1 + x2(1 + t) + x3t
2 = (x1 + x2) + x2t + x3t

2.

This leads to the system

x1 + x2 + 0x3 = 3

0x1 + x2 + 0x3 = 1

0x1 + 0x2 + x3 = 8

This is the same system as in the last example — the solution is
[p]B′ = (2, 1, 8).
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Isomorphism property. Suppose B = {v1, . . . , vn} is a basis for
W . Define the function T : W → Rn by

T (v) = [v]B .

Using the unique representation property, one can check:

T (v + w) = [v + w]B = [v]B + [w]B = T (v) + T (w),

T (αv) = [αv]B = α[v]B = αT (v).

Thus T is a linear transformation. Furthermore,

T (v) = [v]B = 0 =⇒ v = 0, i.e. T is one-to-one .

We call T an isomorphism of W onto Rn.
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Example. (again) Let E = {1, t, t2}. This is a basis for P2, and

[p1]E = v1, [p2]E = v2, [p3]E = v3, [p]E = v,

using the notation from the previous two examples.

In particular, finding [p]B′ is equivalent to finding [v]B .

Indeed, recalling the isomorphism property of T (p) = [p]E ,

p = x1p1 + x2p2 + x3p3

⇐⇒ T (p) = x1T (p1) + x2T (p2) + x3T (p3)

⇐⇒ [p]E = x1[p1]E + x2[p2]E + x3[p3]E

⇐⇒ v = x1v1 + x2v2 + x3v3.

That is, [p]B′ = [v]B
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Chapter 4. Vector Spaces

4.5 The Dimension of a Vector Space
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Question. Given a vector space V , does there exist a finite
spanning set?

Note that every vector space V has a spanning set, namely V itself.

Also note that every vector space (except for the space containing
only 0) has infinitely many vectors.

Suppose W = span{v1, . . . , vk}.
I If {v1, . . . , vk} are independent, then it is a basis for W .

I Otherwise, at least one of the vectors (say vk) is a linear
combination of the others. Then W = span{v1, · · · , vk−1}.

Continuing in this way, one can obtain a finite, independent
spanning set for W (i.e. a basis).
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Claim. If V has a basis B = {v1, . . . , vn}, then every basis for V
has n elements.

To see this, consider the isomorphism T : V → Rn given by
T (v) = [v]B .

First, we find that a set S ⊂ V is independent if and only if
T (S) = {T (u) : u ∈ S} ⊂ Rn is independent. This implies that
any basis in V can have at most n elements. (Why?)

Similarly, S ⊂ V spans V if and only if T (S) spans Rn. This
implies that any basis V must have at least n elements. (Why?)

In fact, using this we can deduce that isomorphic vector spaces
must have the same number of vectors in a basis.
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Definition.
If V has a finite spanning set, then we call V finite dimensional.

The dimension of V , denoted dim(V ), is the number of vectors in
a basis for V .

The dimension of {0} is zero by definition.

If V is not finite dimensional, it is infinite dimensional.

Examples.

I dim(Rn) = n

I dimPn = n + 1

I If P is the vector space of all polynomials, P is
infinite-dimensional.

I F(R) is infinite-dimensional
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Bases and subspaces. Suppose dim(V ) = n. and
B = {v1, . . . , vn} ⊂ V .

If B is independent, then B is a basis for V .

(If not, there is an independent set B = {v1, . . . , vn, vn+1} ⊂ V .
However, this yields an independent set in Rn with n + 1 elements,
a contradiction).

Similarly, if span(B) = V , then B is a basis for V .

(If not, then there is a smaller spanning set that is independent and
hence a basis. This contradicts that all bases have n elements.)

The following also hold:

I Any independent set with less than n elements may be
extended to a basis for V .

I If W ⊂ V is a subspace, then dim(W ) ≤ dim(V ).
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Note that for V = Rn, we have the following:

I Subspaces can have any dimension 0, 1, . . . , n.

I For R3, subspaces of dimension 1 and 2 are either lines or
planes through the origin.
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Example 1. Find a basis for and the dimension of the subspace W
spanned by

v1 =

 3
1
8

 , v2 =

 1
2
3

 , v3 =

 5
0

13

 , v4 =

 4
3

11

 ,
Then

A = [v1 v2 v3 v4] ∼

 1 0 2 1
0 1 −1 1
0 0 0 0

 .
It follows that dimW = 2 and {v1, v2} is a basis.

In particular, W is a plane through the origin. We also see

v3 = 2v1 − v2, v4 = v1 + v2.
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Example 2. Find a basis for and the dimension of the subspace

W =


 a + 3c

2b − 4c
−a− 3c
a + b + c

 : a, b, c ∈ R

 .

Writing a + 3c
2b − 4c
−a− 3c
a + b + c

 = au + bv + cw = a

 1
0
−1

1

+ b

 0
2
0
1

+ c

 3
−4
−3

1


shows W = span{u, v,w}. However,

[u v w] ∼
[

1 0 3
0 1 −2
0 0 0
0 0 0

]
implies dim(W ) = 2, with {u, v} a basis.
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Example. (Null space, column space, row space) Let

A = [a1 a2 a3 a4 a5] =

[
1 −2 −1 −2 −1
−1 2 2 5 2

0 0 2 6 2

]

∼

[
b1

b2

b3

]
=

[
1 −2 0 1 0
0 0 1 3 1
0 0 0 0 0

]
.

Then A = {a1, a3} and B = {b1,b2} are bases of col(A) and
row(A), respectively. Now nul(A) is given in parametric form by

x2u+x4v+x5w = x2

[
2
1
0
0
0

]
+ x4

[ −1
0
−3

1
0

]
+ x5

[
0
0
−1

0
1

]
, x2, x4, x5 ∈ R.

Thus a basis of nul(A) is given by C = {u, v,w}.
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Example. (continued) For the previous example:

I dim(nul(A)) = 3. This is the number of free variables in the
solution set of Ax = 0.

I dim(col(A)) = 2. This is the number of pivot columns.

I dim(row(A)) = 2. This is the number of pivot rows.

I The total number of columns equals the number of pivot
columns plus the number of free variables.
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Chapter 4. Vector Spaces

4.6 Rank
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Last time, we finished with the example

A = [a1 a2 a3 a4 a5] =

[
1 −2 −1 −2 −1
−1 2 2 5 2

0 0 2 6 2

]

and found

dim(nul(A)) = 3, dim(col(A)) = dim(row(A)) = 2.

Note that

AT = [v1 v2 v3] =

[
1 −1 0
−2 2 0
−1 2 2
−2 5 6
−1 2 2

]
∼

[
1 0 2
0 1 2
0 0 0
0 0 0
0 0 0

]

Thus {v1, v2} is a basis for col(AT ), and hence {vT1 , vT2 } is a basis
for row(A).
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Thus we have seen that dim(col(A)) = dim(row(A)), and that this
number is equal to the number of (column or row) pivots of A.
Furthermore, these are all equal to the corresponding quantities for
AT .

This is true in general.

Definition. The rank of A ∈ Rm×n is the number of pivots of A.
We denote it rank(A).
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Rank. Fix A ∈ Rm×n. Note that rank(A) = rank(AT ) and

n = rank(A) + dim(nul(A)), m = rank(AT ) + dim(nul(AT )).

In particular

n −m = dim(nul(A))− dim(nul(AT ))

and if m = n then dim(nul(A)) = dim(nul(AT )).

183 / 323



Row equivalence and rank. Let A,B ∈ Rm×n. Note that

A ∼ B =⇒ rank(A) = rank(B);

indeed they have the same reduced echelon form. Furthermore,

A ∼ B ⇐⇒ A = PB for some invertible P ∈ Rm×m.

The =⇒ direction is clear; for the reverse, note P ∼ Im.

Example. Suppose A = PBQ where P ∈ Rm×m and Q ∈ Rn×n are
invertible. Then

rankA = rankPBQ = rankBQ

= rank(BQ)T = rankQTBT = rankBT = rankB.

As a special case, if A = PDP−1 for some diagonal matrix D, then
rank(A) is equal to the number of non-zero diagonal elements of D.
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Examples.

I Suppose A ∈ R3×8 and rankA = 3. Then:

dim(nul(A)) = 5, rank(AT ) = 3.

I Suppose A ∈ R5×6 has dim(nul(A)) = 4. Then

dim(col(A)) = 2.

I If A ∈ R4×6, what is the smallest possible dimension of the
null space? Answer: 2

I Suppose A ∈ R10×12 and the solution set of Ax = b has 3 free
variables. If we change b, are we guaranteed to get a
consistent system?

No. We find that dim(nul(A)) = 3, so that rank(A) = 9.
Thus A does not have a pivot in every row.
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Note that if u ∈ Rm×1 and v ∈ R1×n are nonzero, then uv ∈ Rm×n

and rank(uv) = 1; indeed, if v = [β1 · · ·βn] then

uv = [β1u · · ·βnu]

If A ∈ Rm×n is written A = LU where L ∈ Rm×m is lower
triangular and U ∈ Rm×n is upper triangular, then we can write

A = [u1 · · ·um]

 v1
...

vm

 = u1v1 + · · ·+ umvm.

If rank(A) = k ≥ 1 then v1, . . . , vk 6= 0 and vk+1, . . . , vm = 0.
Thus we have written

A = u1v1 + · · ·+ ukvk

as the sum of k rank one matrices.
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Chapter 4. Vector Spaces

4.7 Change of Basis
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Let A = {a1, . . . , an} and B = {b1, . . . ,bn} be bases for a vector
space V . Let us describe the ‘coordinate change’ transformation

T : Rn → Rn, T ([v]A) = [v]B .

Recall T (x) = [T ]x, where [T ] = [T (e1) · · ·T (en)]. Now,

ek = [ak ]A, so that [T ] =
[
[a1]B · · · [an]B

]
.

In conclusion,

[v]B = PA7→B [v]A, where PA 7→B =
[
[a1]B · · · [an]B

]
.

We call PA 7→B the change of coordinate matrix from A to B.

The columns of P are independent, so that P is invertible. In fact:

P−1
A7→B = PB 7→A.
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Let the columns of A,B be bases for Rn and denote
E = {e1, . . . , en}. Then in fact

A = PA 7→E and B = PB 7→E .

Note also that
PA 7→B = PE 7→BPA7→E

(just check [v]B = PE 7→BPA 7→E [v]A). But this means

PA 7→B = P−1
B 7→EPA 7→E = B−1A.

Thus we can use row reduction to calculate PA7→B , since

[B|A] ∼ [In|B−1A] = [In|PA 7→B ].
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Example. Let A = {a1, a2} and B = {b1,b2}, where

a1 =

[
3
8

]
a2 =

[
4
9

]
b1 =

[
1
1

]
b2 =

[
2
1

]
Then

[B|A] ∼
[

1 0
0 1

∣∣∣∣ 5 5
−2 −1

]
∼ [I2|PA 7→B ].

Suppose [v]A = [2,−3]T . Then

v = [v]E = PA7→E [v]A =

[
3 4
8 9

] [
2
−3

]
=

[
−6
−11

]
,

and

[v]B = PA 7→B [v]A =

[
5 5
−2 −1

] [
2
−3

]
=

[
−5
−1

]
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Chapter 5. Eigenvalues and Eigenvectors

5.1 Eigenvectors and Eigenvalues
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Definition. Let A ∈ Cn×n. Suppose v ∈ Rn and λ ∈ C satisfy

Av = λv and v 6= 0.

Then v is an eigenvector of A corresponding to eigenvalue λ.

Equivalently, if nul(A− λIn) is non-trivial (i.e. does not equal
{0}), then the non-zero vectors in this space are eigenvectors.

Note: by definition, 0 is not a eigenvector. However, the scalar 0
may be an eigenvalue. Indeed, this is the case whenever nul(A) is
non-trivial!
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Examples.

I Is v an eigenvector of A, where

v =
[

1
−2

1

]
, A =

[
3 6 7
3 3 7
5 6 5

]
?

Check:

Av =
[

3 6 7
3 3 7
5 6 5

] [
1
−2

1

]
=
[ −2

4
−2

]
= −2v,

so v is an eigenvector with eigenvalue λ = −2.

I Is λ = 2 an eigenvalue of A =

[
3 2
3 8

]
? We check

A− 2I2 =
[

1 2
3 6

]
∼
[

1 2
0 0

]
.

This shows λ = 2 is an eigenvalue, and non-zero multiples of
[−2, 1]T are eigenvectors.
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Definition. If λ is an eigenvalue of A ∈ Rn×n, the eigenspace
associated with λ is

Eλ = nul(A− λIn).

That is, Eλ contains all of the eigenvectors corresponding to
eigenvalue λ, along with the zero vector.

Because it is a null space, the eigenspace is a subspace. However,
you can also check the definitions directly.
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Example. Let

A =

 5 2 −1 −1
1 4 −1 1
7 8 −2 1
7 4 −2 −1

, which has eigenvalue 2.

Note

A− 2I4 =

 3 2 −1 −1
1 2 −1 1
7 8 −4 1
7 4 −2 −3

 ∼
 1 0 0 −1

0 1 − 1
2 1

0 0 0 0
0 0 0 0


Thus

E2 = nul(A− 2I4) = span{v1, v2},

where v1 = [1,−1, 0, 1]T and v2 = [0, 1
2 , 1, 0]T are two particular

eigenvectors that form a basis for E2.
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Theorem. (Independence) Let S be a set of eigenvectors of a
matrix A corresponding to distinct eigenvalues. Then S is
independent.

Proof. Suppose {v1, . . . , vp−1} are independent but {v1, . . . , vp} are
dependent. Then there exists a non-trivial combination so that

c1v1 + · · ·+ cpvp = 0. (∗)

Applying A to both sides,

c1λ1v1 + · · ·+ cpλpvp = 0.

Multiply (∗) by λp and subtract it from the above equation:

c1(λ1 − λp)v1 + · · ·+ cp−1(λp−1 − λp)vp−1 = 0.

By independence, we find c1 = · · · = cp−1 = 0. Combining with (∗) then
gives cp = 0. This is a contradiction.
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Example. Let

A =

 −1 −2 1
2 3 0
−2 −2 4

 .
Eigenvalue and eigenvector pairs are given by

λ1 = 1, v1 =

[
1
−1

0

]
,

λ2 = 2, v2 =

[ −1
2
1

]
,

λ3 = 3, v3 =

[
0
1
2

]
.

Row reduction confirms [v1v2v3] ∼ I3, so that these vectors are
independent.
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Triangular matrices.

Theorem. The eigenvalues of a triangular matrix are the entries
along the diagonal.

To see this, recall that

dim(nul(A− λIn)) = n − rank(A− λIn).

This is positive precisely when A− λIn fails to have n pivots, which
occurs when λ equals one of the diagonal terms of A.
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Example. Consider

A =

[
1 2 3
0 2 4
0 0 3

]
.

Then

A− 2I3 =

 −1 2 3
0 0 4
0 0 1

 ∼
 1 −2 0

0 0 1
0 0 0

 .
In particular rank(A− 2I3) = 2, and so dim(nul(A− 2I3)) = 1. In
particular, 2 is an eigenvalue.
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Invertibility.

Theorem. A is invertible if and only if λ = 0 is not an eigenvalue
of A.

Indeed, A is invertible if and only if rankA = n, which means

dim nul(A) = dim(nul(A− 0In)) = 0.

In particular λ ∈ C being an eigenvalue is equivalent to:

I dim nul(A− λIn) > 0

I rank(A− λIn) < n

I A− λIn is not invertible

I det(A− λIn) = (−1)n det(λIn − A) = 0.
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Chapter 5. Eigenvalues and Eigenvectors

5.2 The Characteristic Equation
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Definition. Given A ∈ Rn×n, det(λIn − A) is a polynomial of
degree n in λ. It is known as the characteristic polynomial of A.
Its roots are the eigenvalues of A.

Example. Consider

A =

[
1 2
2 1

]
=⇒ det(λI2 − A) = (1− λ)2 − 4 =⇒ λ = −1, 3.

One finds E−1 = span{[−1, 1]T ]} and E3 = span{[1, 1]T}.
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Repeated eigenvalues.

Example 1.

A =

[ −4 −3 1
4 3 0
−1 −1 2

]
=⇒ det(λI3 − A) = λ3 − λ2 − λ+ 1.

The eigenvalues are −1, 1, 1, and one finds

E−1 = span{[−1, 1, 0]T}, E1 = span{[−1, 2, 1]T}.

Example 2.

B =

[ −5 −4 2
6 5 −2
0 0 1

]
=⇒ det(λI3 − B) = λ3 − λ2 − λ+ 1.

The eigenvalues are −1, 1, 1, and one finds

E−1 = span{[−1, 1, 0]T}, E1 = span{[−2
3 , 1, 0]T , [ 1

3 , 0, 1]T}.

203 / 323



Complex eigenvalues.

Example. A =

[
1 2
−2 1

]
=⇒ det(λI2 − A) = (λ− 1)2 + 4.

The eigenvalues are 1± 2i . To find the eigenspaces, we proceed
exactly as before (row reduction):

A− (1 + 2i)I2 =

[
−2i 2
−2 −2i

]
∼
[

1 i
0 0

]
.

Thus eigenvectors are of the form x = −iy , i.e
E1+2i = span{[−i , 1]T}. Similarly, E1−2i = span{[i , 1]T}.

Remark. In this case, we need to consider A ∈ C2×2 and view the
eigenspaces as subspaces of C2.
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Similar matrices.

Definition. A matrix B ∈ Rn×n is similar to A ∈ Rn×n if there
exists an invertible matrix P ∈ Rn×n such that B = P−1AP. We
write A ≈ B.

Similarity is an equivalence relation.

Note that if B = P−1AP,

det(λI − B) = det(λI − P−1AP) = det(P−1[λI − A]P)

= detP−1 det(λI − A) detP

= det(λI − A).

As a result, similar matrices have the same eigenvalues.

[This also shows similar matrices have equal determinants.]
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Similarity and row equivalence.

Neither implies the other.

Indeed, [
1 0
−1 0

]
=

[
−1 1

1 1

]−1 [
1 −1
0 0

] [
−1 1

1 1

]
which shows that similar does not imply row requivalent.

On the other hand, [
1 0
0 2

]
∼ I2,

which shows that row equivalent does not imply similar.
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Chapter 5. Eigenvalues and Eigenvectors

5.3. Diagonalization
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Definition. A matrix A ∈ Rn×n is called diagonalizable if it is
similar to a diagonal matrix.

Remark. If we can diagonalize A, then we can compute its powers
easily. Indeed,

A = P−1DP =⇒ Ak = P−1DkP,

and computing powers of a diagonal matrix is straightforward.
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Characterization of diagonalizability.

Theorem. A matrix A ∈ Cn×n is diagonalizable precisely when
there exists a basis for Cn consisting of eigenvectors of A. In this
case, writing (vk , λk) for an eigenvector/eigenvalue pair,

D = diag(λ1, . . . , λn) = P−1AP, P = [v1, . . . , vn].

Indeed, if P = [v1, . . . , vn] then

D = P−1AP ⇐⇒ AP = PD ⇐⇒ [Av1 · · ·Avn] = [λ1v1 · · ·λnvn]
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Distinct eigenvalues. If A ∈ Cn×n has n distinct eigenvalues,
then A has n linearly independent eigenvectors and hence A is
diagonalizable.

Example. Consider

A =

[ −1 −2 1
2 3 0
−2 −2 4

]
=⇒ det(λI3 − A) = (λ− 1)(λ− 2)(λ− 3).

The eigenvalues are λ = 1, 2, 3, with eigenvectors

v1 =
[ −1

1
0

]
, v2 =

[ −1
2
1

]
, v3 =

[
0
1
2

]
.

Thus, [
1 0 0
0 2 0
0 0 3

]
= P−1AP, P = [v1 v2 v3].
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If an n × n matrix does not have n distinct eigenvalues, it may or
may not be diagonalizable.

Example. (from before)

B =

[ −5 −4 2
6 5 −2
0 0 1

]
=⇒ det(λI3 − B) = λ3 − λ2 − λ+ 1.

The eigenvalues are −1, 1, 1, and one finds

E−1 = span{[−1, 1, 0]T}, E1 = span{[−2
3 , 1, 0]T , [ 1

3 , 0, 1]T}.

Thus, while 1 is a repeated eigenvalue, the matrix is diagonalizable:

diag(−1, 1, 1) = P−1BP, P = [v1 v2 v3].
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Example. (from before)

A =

[ −4 −3 1
4 3 0
−1 −1 2

]
=⇒ det(λI3 − A) = λ3 − λ2 − λ+ 1.

The eigenvalues are −1, 1, 1, and one finds

E−1 = span{[−1, 1, 0]T}, E1 = span{[−1, 2, 1]T}.

In particular, one cannot form a basis of eigenvectors. The matrix
is not diagonalizable.

(Question. Why can’t some other basis diagonalize A?)
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Example. We previously saw the matrix

A =

[
1 2
−2 1

]
has eigenvalues 1± 2i , with eigenspaces spanned by

v1 = [−i , 1]T , v2 = [i , 1]T .

Thus {v1, v2} are a basis for C2 and

diag(1 + 2i , 1− 2i) = P−1AP, P = [v1 v2].
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Similarity, diagonalization, linear transformations. Suppose

A ∈ Cn×n, A′ = P−1AP, P = [v1 · · · vn],

where B = {v1, . . . , vn} forms a basis for Cn. Let

T (x) = Ax, T ′(x) = A′x.

Noting that P = PB 7→E and P−1 = PE 7→B , we have

T ′([v]B) = P−1AP[v]B = P−1A[v]E = P−1T (v) = [T (v)]B .

I We call A′ the (standard) matrix for T relative to the basis B.
We may also say A′ is the B−matrix for T . We write
[T ]B = P−1AP and note [T (v)]B = [T ]B [v]B .

I If B is a basis of eigenvectors, then we see that relative to the
basis B the transformation simply scales along the lines
containing the eigenvectors.
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Chapter 5. Eigenvalues and Eigenvectors

5.4. Eigenvectors and Linear Transformations
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Transformation matrix. Let B = {v1, · · · , vn} be a basis for the
vector space V , and C = {w1, . . . ,wm} a basis for the vector
space W . Given a linear transformation T : V →W , we define

T̂ : Cn → Cm by T̂ ([v]B) = [T (v)]C .

This is a linear transformation (check!).

I T̂ expresses T using coordinates relative to the bases B,C

I We may write T̂ (x) = Mx, where

M = [T̂ (e1) · · · T̂ (en)] =
[
[T (v1)]C · · · [T (vn)]C

]
.

I Note [T (v)]C = T̂ ([v]B) = M[v]B . That is, M is the matrix
for T relative to the bases B and C .
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Example. Let B = {v1, v2, v3} be a basis for V and
C = {w1,w2} be a basis for W . Suppose T : V →W , with

T (v1) = w1 + w2, T (v2) = w1 − 3w2, T (v3) = 9w1.

The matrix for T relative to B and C is

M =
[
[T (v1)]C [T (v2)]C [T (v3)]C

]
=

[
1 1 9
1 −3 0

]
If v = v1 + 2v2 − 3v3, then

[T (v)]C = M[v]B = M

 1
2
−3

 =

[
−24
−5

]
,

and so T (v) = −24w1 − 5w2.
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Example. Let T : P2 → P3 be given by

T (p(t)) = (t + 5)p(t).

Then T is a linear transformation. (Check!)

Let us find the matrix of T relative to

B = {1, t, t2} and C = {1, t, t2, t3}.

Since

T (1) = 5 + t, T (t) = 5t + t2, T (t2) = 5t2 + t3,

we find

M =
[
[T (1)]C [T (t)]C [T (t2)]C

]
=


5 0 0
1 5 0
0 1 5
0 0 1

 .
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Matrix transformations. If B = {v1, . . . , vn} is a basis for Cn

and C = {w1, . . . ,wm} is a basis for Cm and T (x) = Ax for some
A ∈ Cm×n, then the matrix for T relative to B and C is

M = PE 7→CAPB 7→E , with M[v]B = [Av]C .

For example:

I If B and C are the elementary bases, then M = A (the
standard matrix for T ).

I If B = C , then M = P−1AP = [T ]B , where

P = [v1, . . . , vn] = PB 7→E .
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Example. Let B = {v1, v2, v3} and C = {w1,w2} be bases for
R3,R2 given by

v1 =
[

1
−2

1

]
, v2 =

[
0
1
−2

]
, v3 = e3, w1 =

[
1
2

]
, w2 =

[
2
3

]
and

T (x) = Ax, A =

[
1 0 −2
3 4 0

]
Note

PB 7→E = [v1 v2 v3], PC 7→E = [PE 7→C ]−1 =

[
−3 2

2 −1

]
.

Then the matrix for T relative to B and C is

M = PE 7→CAPB 7→E =

[
15 −22 10
−8 13 −6

]
.

We use this via [T (v)]C = M[v]B .
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Example. Let

A =

[
2 3 −3
3 −2 3
3 −3 4

]
.

Find a basis B for R3 so that the matrix for T (x) = Ax is diagonal.

The eigenvalues of A are λ = −2, 1, 1, with E−2 = span{v1} and
E1 = span{v2, v3}, where

v1 =

[ −1
1
1

]
, v2 =

[
1
1
0

]
, v3 =

[ −1
0
1

]
.

Let B = {v1, v2, v3} and P = PB 7→E = [v1v2v3]. Then the matrix
for T relative to B is

M = P−1AP = PE 7→BAPB 7→E = diag(−2, 1, 1).
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Chapter 5. Eigenvalues and Eigenvectors

5.5 Complex Eigenvalues
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Vectors in Cn. Recall that for z = α + iβ ∈ C (where α, β ∈ R),
we have

z̄ = α− iβ, Re z = α = 1
2 (z + z̄), Im z = β = 1

2i (z − z̄).

If v = (c1, . . . , cn) ∈ Cn, then we write

v̄ = (c̄1, . . . , c̄n).

Or, writing v = x + iy, we can write

v̄ = x− iy, Re v = x = 1
2 (v + v̄), Im v = 1

2i (v − v̄).

Note that v and v̄ are independent if and only if Re v and Im v are
independent. Similarly,

span{v, v̄} = span{Re v, Im v}.
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Conjugate pairs. Suppose λ = α + iβ ∈ C is an eigenvalue for
A ∈ Rn×n with eigenvector v = x + iy. Note that

Av = λv =⇒ Av̄ = λ̄v̄, i.e. A[v v̄] = [v v̄]

[
λ 0
0 λ̄

]
.

Note that

A(x + iy) = (α+ iβ)(x + iy) =⇒ Ax = αx−βy, Ay = βx +αy.

In particular,

A[x y] = [x y]

[
α β
−β α

]
= r [x y]Rθ,

where r =
√
α2 + β2 and Rθ is the 2×2 rotation matrix by

θ ∈ [0, 2π), defined by cos θ = α
r and sin θ = −β

r .
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Example. The matrix

A =

[
1 5
−2 3

]
has eigenvalues λ = α± iβ, where (α, β) = (2, 3) and eigenvectors
v, v̄ = x± iy, where x = [1, 2]T and y = [3, 0]T .

We can diagonalize A via

A = [v v̄]diag(λ, λ̄)[v v̄]−1.

Alternatively, we can write

A = [x y]
√

13Rθ[x y]−1,

where θ ∼ .9828 radians. Writing T (x) = Ax, with respect to the
basis B = [x y] , T n performs rotation by nθ and a dilation by 13

n
2 .
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Example. Let

A =

[
2 2 1
2 4 3
−2 −4 −2

]
.

We have the following eigenvalues and eigenvector pairs:

(u, λ1) = (
[

2
1
−2

]
, 2), (v, v̄, α± iβ) = (

[
0
−1
−1

]
± i
[

1
0
−1

]
, 1± i).

Thus A = PDP−1, where P = [u v v̄] and D = diag(2, 1− i , 1 + i).

Or, we can write A = PQP−1, where P = [u x y] and

Q =

[
2 0 0
0 1 1
0 −1 1

]
.
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Example. (cont.) We can write A = PQP−1, where P = [u x y]
and

Q =

[
2 0 0
0 1 1
0 −1 1

]
.

Thus, writing T (x) = Ax and B = {u, x, y}, we can describe the
effect of T in the B-coordinate system as follows: T scales by a
factor of 2 along the x-axis; in the yz-plane, T rotates by 3π/4
and scales by

√
2.
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Chapter 5. Eigenvalues and Eigenvectors

5.7 Applications to Differential Equations
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Scalar linear homogeneous ODE. Consider a second order ODE
of the form

x ′′ + bx ′ + cx = 0.

Defining
x1 = x , x2 = x ′, x = (x1, x2)T ,

we can rewrite the ODE as a 1st order 2x2 system:

x′ = Ax, A =

[
0 1
−c −b

]
.

Similarly, an nth order linear homogeneous ODE can be written as
a 1st order n × n system.
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Matrix Exponential. How do we solve

x′ = Ax, x(0) = x0, (∗)

when A is a matrix and x is a vector? Answer. Same as in the
scalar case! I.e. the solution to (∗) is

x(t) = eAtx0.

The only question is... what does eAt mean? Answer. Same as in
the scalar case!

Definition. For an n × n matrix A,

eA =
∞∑
k=0

Ak

k! .

Theorem. The solution to (∗) is given by x(t) = etAx0. We call
etA the fundamental matrix for x′ = Ax.
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Computing matrix exponentials. The matrix exponential is a
powerful tool for solving linear systems. But how do we actually
compute it?

Example 1. If A = diag(λ1, . . . , λn), then

eA = diag(eλ1 , . . . , eλn).

Example 2. If A = PDP−1, then

eA = PeDP−1.

Combining with Example 1, we see that if A is diagonalizable, we
can compute its exponential.
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Example 3. e0 = I .

Example 4. If A is nilpotent (that is, Ak0 = 0 for some k0), then

eA =

k0−1∑
k=0

Ak

k! (a finite sum).

Example 5. If AB = BA, then

eA+B = eAeB = eBeA.

In particular, eA is invertible for any A, with

(eA)−1 = e−A.
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Numerical example. Consider

x ′′ − 4x ′ + 3x = 0 =⇒ x′ = Ax, A =

[
0 1
−3 4

]
Then

A = PDP−1, P =

[
1 1
1 3

]
, D = diag(1, 3)

Thus the fundamental matrix is

etA = P[diag(et , e3t)]P−1.

Using the columns of P as initial conditions, one gets the two
solutions

Pdiag(et , e3t)ej , j = 1, 2.
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Numerical example. (cont.) This gives two linearly independent
solutions, namely

x(t) =

[
et

et

]
and x(t) =

[
e3t

3e3t

]
.

This corresponds to the two solutions x(t) = et and x(t) = e3t .
Any other solution is a linear combination of these (as determined
by the initial conditions).

Complex eigenvalues. Note that an ODE with all real
coefficients could lead to complex eigenvalues. In this case, you
should diagonalize (and hence solve the ODE) via sines and cosines
as in the previous section.
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Chapter 6. Orthogonality and Least Squares

6.1 Inner Product, Length, and Orthogonality
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Conjugate transpose. If A ∈ Cm×n, then we define

A∗ = (Ā)T ∈ Cn×m.

We call A∗ the conjugate transpose or the adjoint of A. If
A ∈ Rm×n, then A∗ = AT .
Note that

I (αA + βB)∗ = ᾱA∗ + β̄B∗

I (AC )∗ = C ∗A∗.

Definition. A ∈ Cn×n is hermitian if A∗ = A.

Note that A ∈ Rn×n is hermitian if and only if it is symmetric, i.e.
A = AT .
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Definition. If u = (a1, . . . , an) ∈ Cn and v = (b1, . . . , bn) ∈ Cn,
then we define the inner product of u and v by

u · v = ā1b1 + · · ·+ ānbn ∈ C.

Note that if we regard u, v as n × 1 matrices, then u · v = u∗v.

Note also that for A = [u1 . . .uk ] ∈ Cn×k and
B = [v1 . . . v`] ∈ Cn×`, then A∗B ∈ Ck×`,

A∗B = [ui · vj ] i = 1, . . . , k , j = 1, . . . , `.
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Properties of the inner product. For u, v,w ∈ Cn and α ∈ C:

I u · v = v · u
I u · (v + w) = u · v + u ·w
I α(u · v) = (αu) · v = u · (αv)

I If u = (a1, · · · , an) ∈ Cn, then

u · u = |a1|2 + · · ·+ |an|2 ≥ 0,

and u · u = 0 only if u = 0.
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Definition. If u = (a1, . . . , an) ∈ Cn, then the norm of u is given
by

‖u‖ =
√

u · u =
√
|a1|2 + · · ·+ |an|2.

Properties. For u, v ∈ Cn and α ∈ C,

I ‖αu‖ = |α| ‖u‖
I |u · v| ≤ ‖u‖‖v‖ (Cauchy–Schwarz inequality)

I ‖u + v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality)

The norm measures length; ‖u− v‖ measures the distance between
u and v.

A vector u ∈ Cn is a unit vector if ‖u‖ = 1.

239 / 323



Example. Let A = [v1 v2] =

[
1 i

3 + 8i 2i

]
.

Then A∗ =

[
1 3− 8i
−i −2i

]
. So A is not hermitian.

We have v1 · v2 = 1 · i + (3− 8i) · 2i = 16 + 7i .

Note ‖v1‖2 = 1 · 1 + (3− 8i)(3 + 8i) = 74.

Consequently, 1√
74

v1 is a unit vector.
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Definition. Two vectors u, v ∈ Cn are orthogonal if u · v = 0. We
write u ⊥ v.

A set {v1, . . . , vk} ⊂ Cn is an orthogonal set if vi · vj = 0 for each
i , j = 1, . . . , k (with i 6= j).

A set {v1, . . . , vk} ⊂ Cn is an orthonormal set if it is orthogonal
and each vi is a unit vector.

Remark. In general, we have

‖u + v‖ ≤ ‖u‖+ ‖v‖.

However, we have

u ⊥ v =⇒ ‖u + v‖2 = ‖u‖2 + ‖v‖2.

This is the Pythagorean theorem.
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Definition. Let W ⊂ Cn. The orthogonal complement of W ,
denoted W⊥, is defined by

W⊥ = {v ∈ Cn : v ·w = 0 for every w ∈W }.

Subspace property. W⊥ is a subspace of Cn satisfying
W ∩W⊥ = {0}.

Indeed, W⊥ is closed under addition and scalar multiplication, and
w ·w = 0 =⇒ w = 0.
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Suppose A = [v1 · · · vk ] ∈ Cn×k . Then

[col(A)]⊥ = nul(A∗).

Indeed

0 = A∗x =

 v∗1
...

v∗k

 x =

 v∗1x
...

v∗kx

 =

 v1 · x
...

vk · x


if and only if

v1 · x = · · · = vk · x = 0.
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Example 1. Let v1 = [1,−1, 2]T and v2 = [0, 2, 1]T . Note that
v1 ⊥ v2.

Let W = span{v1, v2} and A = [v1v2]. Note that

W⊥ = [col(A)]⊥ = nul(A∗) = nul(AT ).

We have

AT =

[
1 −1 2
0 2 1

]
∼
[

1 0 5
2

0 1 1
2

]
,

and thus nul(AT ) = span{v3} = span{[−5
2 ,−

1
2 , 1]T}.

Note {v1, v2, v3} is an orthogonal set, and W⊥ is a line
perpendicular to the plane W .
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Example 2. Let v1 = [1,−1, 1,−1]T and v2 = [1, 1, 1, 1]T . Again,
v1 · v2 = 0.

Let W = span{v1, v2} and A = [v1 v2] as before. Then
W⊥ = nul(AT ), with

AT =

[
1 −1 1 −1
1 1 1 1

]
∼
[

1 0 1 0
0 1 0 1

]
.

In particular, W⊥ = span{v3, v4}, with

v3 = [−1, 0, 1, 0]T v4 = [0,−1, 0, 1]T .

Again, {v1, . . . , v4} is an orthogonal set. This time W and W⊥

are planes in R4, with W ∩W⊥ = {0}.
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Chapter 6. Orthogonality and Least Squares

6.2 Orthogonal Sets
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Definition. If S is an orthogonal set that is linearly independent,
then we call S an orthogonal basis for span(S).

Similarly, a linearly independent orthonormal set S is a
orthonormal basis for span(S).

Example. Let

v1 =

[
1
0
1

]
, v2 =

[
0
1
0

]
, v3 =

[ −1
0
1

]
.

I S = {v1, v2, 0} is an orthogonal set, but not a basis for C3

I S = {v1, v3, v3} is an orthogonal basis for C3

I S = { 1√
2
v1, v2,

1√
2
v3} is an orthonormal basis for C3

247 / 323



Test for orthogonality. Let A = [v1 · · · vp] ∈ Cn×p. Note that

A∗A =

 v1 · v1 · · · v1 · vp
...

. . .
...

vp · v1 · · · vp · vp

 ∈ Cp×p.

Thus A∗A is diagonal precisely when {v1, . . . , vp} is orthogonal.

Furthermore, {v1, . . . , vp} is orthonormal precisely when A∗A = Ip.
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Definition. A matrix A ∈ Cn×n is unitary if A∗A = In.

The following conditions are equivalent:

I A ∈ Cn×n is unitary

I A ∈ Cn×n satisfies A−1 = A∗

I the columns of A are an orthonormal basis for Cn

I A ∈ Cn×n satisfies AA∗ = In
I the rows of A are an orthonormal basis for Cn
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Theorem. (Independence) If S = {v1, . . . , vp} is an orthogonal set
of non-zero vectors, then S is independent and S is a basis for
span(S).

Indeed, suppose
c1v1 + · · ·+ cpvp = 0.

Now take an inner product with vj :

0 = c1v1 · vj + · · ·+ cjvj · vj + · · ·+ cpvp · vj
= 0 + · · ·+ cj‖vj‖2 + · · ·+ 0.

Thus cj = 0 for any j = 1, . . . , p.

Theorem. If S = {w1, . . . ,wp} ⊂W are independent and
T = {v1, . . . , vq} ⊂W⊥ are independent, then S ∪ T is
independent.
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Theorem. Suppose W ⊂ Cn has dimension p. Then
dim(W⊥) = n − p.

Let A = [w1 · · ·wp], where {w1, . . . ,wp} is a basis for W . Note

W⊥ = [col(A)]⊥ = nul(A∗) ⊂ Cn.

Thus

dim(W⊥) = dim(nul(A∗)) = n − rank(A∗) = n − rank(A) = n − p.

In particular, we find

dim(W ) + dim(W⊥) = dim(Cn) = n.

Remark. If B = {w1, . . . ,wp} is a basis for W and
C = {v1, . . . , vn−p} is a basis for W⊥, then B ∪C is a basis for Cn.
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Theorem. (Orthogonal decomposition) Let W be a subspace of
Cn. For every x ∈ Cn there exist unique y ∈W and z ∈W⊥ such
that x = y + z.

Indeed, let B = {w1, . . . ,wp} be a basis for W and
C = {v1, . . . , vn−p} a basis for W⊥. Then B ∪ C is a basis for Cn,
and so every x has a unique representation x = y + z, where
y ∈ span(B) and z ∈ span(C ).

Uniqueness can also be deduced from the fact that
W ∩W⊥ = {0}.

Remark. Suppose B is an orthogonal basis or W . Then

x = α1w1 + · · ·+ αpwp + z, z ∈W⊥.

One can compute αj via

wj · x = αjwj ·wj =⇒ αj =
wj ·x
‖wj‖2 .
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Projection. Let W be a subspace of Cn. As above, for each
x ∈ Cn there exists a unique y ∈W and z ∈W⊥ so that
x = y + z. We define

projW : Cn →W ⊂ Cn by projW x = y.

We call projW the (orthogonal) projection of Cn onto W .

Example. Suppose W = span{w1}. Then

projW x = w1·x
‖w1‖2 w1.

Note that projW is a linear transformation, with matrix
representation given by

[projW ]E = 1
‖w1‖2 w1w∗1 ∈ Cn×n.
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Example. Let w1 = [1, 0, 1]T and v = [−1, 2, 2]T , with
W = span{w1}. Then

projW (v) = w1·v
‖w1‖2 w1 = 1

2w1.

In fact,

[projW ]E = 1
‖w1‖2 w1w∗1 = 1

2

 1 0 1
0 0 0
1 0 1

 .
Thus

projW (x) = 1
2

 x1 + x3

0
x1 + x3

 .
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Chapter 6. Orthogonality and Least Squares

6.3 Orthogonal Projections
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Orthogonal projections. Let W be a subspace of Cn. Recall that

projW x = y, where x = y + z, y ∈W , z ∈W⊥.

Let B = {w1, . . . ,wp} be a basis for W ⊂ Cn. We wish to find the
B-coordinates of projW x, i.e. to write

x = α1w1 + · · ·+ αpwp + z, z ∈W⊥.

This yields a system of p equations and p unknowns:

w1 · x = α1w1 ·w1 · · ·+ αpw1 ·wp

...
...

...

wp · x = α1wp ·w1 + · · ·+ αpwp ·wp.
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Normal system. Write A = [w1 · · ·wp] ∈ Cn×p. The system

w∗1x = α1w∗1w1 · · ·+ αpw∗1wp

...
...

...

w∗px = α1w∗pw1 + · · ·+ αpw∗pwp

may be written as the normal system A∗Ax̂ = A∗x, where

x̂ = [projW (x)]B =

 α1
...
αp

 .
One calls A∗A ∈ Cp×p the Gram matrix.

I The normal system has at least one solution, namely
[projW (x)]B .

I If the normal system has a unique solution, it is [projW (x)]B .
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Theorem. (Null space and rank of A∗A) If A ∈ Cn×p, then
A∗A ∈ Cp×p satisfies

nul(A∗A) = nul(A) and rank(A∗A) = rank(A).

I First note nul(A) ⊂ nul(A∗A).

I If instead Ax ∈ nul(A∗) = [col(A)]⊥, then
Ax ∈ col(A) ∩ col(A)⊥ and hence Ax = 0.
Thus nul(A∗A) ⊂ nul(A).

I Thus

rank(A∗A) = p − dim(nul(A∗A)) = p − dim(nulA) = rank(A).

Solving the normal system. If the columns of A are independent,
then A∗A ∈ Cp×p and rank(A∗A) = rank(A) = p and hence A∗A is
invertible.
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Solving the normal system. Suppose B = {w1, . . . ,wp} is a
basis for a subspace W ⊂ Cn. Writing A = [w1, . . . ,wp], we have
that A∗A is invertible and the normal system

A∗Ax̂ = A∗x

has a unique solution

x̂ = [projW (x)]B = (A∗A)−1A∗x.

We can then obtain projW (x) via

projW (x) = A[projW (x)]B = Ax̂ = A(A∗A)−1A∗x.
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Example 1. If p = 1 (so W is a line), then

A∗Ax̂ = A∗x =⇒ [w1 ·w1]x̂ = w1 · x,

leading again to
projW (x) = w1·x

‖w1‖2 w1.

Example 2. If p > 1 and B = {w1, . . . ,wp} is an orthogonal
basis then

A∗A = diag{‖w1‖2, . . . , ‖wp‖2}.

Recalling that x̂ = (A∗A)−1A∗x , we find

[projW (x)]B =


w1·x
‖w1‖2

...
wp ·x
‖wp‖2

 ,
Thus

projW (x) = w1·x
‖w1‖2 w1 + · · ·+ wp ·x

‖wp‖2 wp.
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Example. Let

w1 =

 1
2
1
1

 , w2 =

 −2
1
−1

1

 , x =

 4
5
−3

3

 .
Set B = {w1,w2} and A = [w1w2]. Then A∗A = diag{7, 7}. Thus

x̂ = [projW (x)]B = (A∗A)−1A∗x =

[
2
3
7

]
,

projW (x) = 2w1 + 3
7w2.

The projection of x onto W⊥ is simply

projW⊥(x) = x− projW (x).
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Example 2. If A∗A is not diagonal, then the columns of A are not
an orthogonal basis for col(A).

One can still compute the projection via

projW (x) = A(A∗A)−1A∗x.
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Distance minimization. Orthogonal projection is related to
minimizing a distance. To see this, supose w ∈W and x ∈ Cn. By
the Pythagorean theorem,

‖x−w‖2 = ‖projW⊥(x)‖2 + ‖projW (x)−w‖2,

and thus

min
w∈W

‖x−w‖ = ‖x− projW (x)‖ = ‖projW⊥(x)‖.

Example. Let W = span{w1,w2} ⊂ R3. Then ‖projW⊥(x)‖ is the
distance from x to the plane spanned by w1 and w2.
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Conclusion. Let B = {w1, . . . ,wp} be a basis for W ⊂ Cn,
A = [w1 · · ·wp], and x ∈ Cn.

I nul(A∗A) = nul(A), rank(A∗A) = rank(A) = p, and so A∗A is
invertible

I The solution to A∗Ax̂ = A∗x is x̂ = (A∗A)−1A∗x

I x̂ = (A∗A)−1A∗x = [projW (x)]B
I projW : Cn →W is given by projW (x) = A(A∗A)−1A∗x

I projW⊥(x) = x− projW (x)

I x = projW (x) + projW⊥(x)

I if B is orthogonal, projW (x) = w1·x
‖w1‖2 w1 + · · ·+ wp ·x

‖wp‖2 wp

I minw∈W ‖x−w‖ = ‖x− projW (x)‖
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Chapter 6. Orthogonality and Least Squares

6.4 The Gram–Schmidt Process
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Orthogonal projections. Recall that if B = {w1, · · · ,wp} is an
independent set and A = [w1 · · ·wp], then

projW (x) = A(A∗A)−1A∗x, W = span(B)

If B is orthogonal, then

projW (x) = w1·x
‖w1‖2 w1 + · · ·+ wp ·x

‖wp‖2 wp.

This may be written

projW (x) = projW1
(x) + · · ·+ projWp

(x), Wj = span{wj}.

If B is not orthogonal, then we may apply an algorithm to B to
obtain an orthogonal basis for W .
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Gram-Schmidt algorithm. Let A = {w1, · · · ,wp}.

Let v1 := w1 and Ω1 := span{v1}.

Let v2 = projΩ⊥1
(w2) = w2 − projΩ1

(w2), Ω2 := span{v1, v2}

. . .

Let vj+1 = projΩ⊥j
(wj+1), Ωj+1 := span{v1, · · · , vj+1}

Here j = 1, . . . , p − 1. This generates a pairwise orthogonal set
B = {v1, . . . , vp} with span(B) = span(A). Note that

vj+1 = 0 ⇐⇒ wj+1 ∈ Ωj .
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Matrix representation. Write Vi = span{vi}. Since {vi} are
orthogonal, we can write

projΩj
(wj+1) =

j∑
k=1

projVk
(wj+1) =

j∑
k=1

rk,j+1vk ,

where rk,j+1 =
vk ·wj+1

‖vk‖2 if vk 6= 0 and

rk,j+1 can be anything if vk = 0.

Thus, using vj+1 = wj+1 −
∑j

k=1 rk,j+1vk , we find

wj+1 = [v1 · · · vj+1]


r1,j+1

...
rj,j+1

1

 , j = 1, . . . , p − 1.
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Matrix representation (continued). The Gram-Schmidt
algorithm therefore has the matrix representation

[w1 · · ·wp] = [v1 · · · vp]R,

where

R =


1 r1,2 · · · r1,p

. . .
. . .

...
. . . rp−1,p

1


I This shows that any matrix A = [w1 · · ·wp] ∈ Cn×p may be

factored as A = QR, where the columns of Q are orthogonal
and R ∈ Cp×p is an invertible upper triangular matrix.

I The non-zero vectors in {v1, . . . , vj} form an orthogonal basis
for Ωj .

I R is unique when each vj is non-zero.
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Example 1. Let

w1 = [1, 0, 1, 0]T , w2 = [1, 1, 1, 1]T ,

w3 = [1,−1, 1,−1]T , w4 = [0, 0, 1, 1]T .

We apply Gram–Schmidt:

I v1 = w1, Ω1 = span{v1}
I v2 = w2 − v1·w2

‖v1‖2 v1 = [0, 1, 0, 1]T , Ω2 = span{v1, v2}
I v3 = w3 − v1·w3

‖v1‖2 v1 − v2·w3
‖v2‖2 v2 = 0, Ω3 = span{v1, v2}

I v4 = w4 − v1·w4
‖v1‖2 v1 − v2·w4

‖v2‖2 v2 = 1
2 [−1,−1, 1, 1]T

Ω4 = span{v1, v2, v4}.
In particular, {v1, v2, v4} is an orthogonal basis for
span{w1,w2,w3,w4}.
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Example 1. (cont.) Let A = [w1w2w3w4] and Q = [v1v2 0 v4].
Then we can write A = QR, where

R =


1 1 1 1

2
0 1 −1 1

2
0 0 1 c
0 0 0 1


for any c. These coefficients are determined by evaluating the inner
products above, cf.

rk,j+1 =
vk ·wj+1

‖vk‖2 if vk 6= 0.
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Example 2. Let

w1 = [1, 1, 1, 0]T , w2 = [0, 1,−1, 1]T .

Note w1 ⊥ w2. Extend {w1,w2} to an orthogonal basis for C4.

Write A = [w1w2] and W = col(A).

First want a basis for W⊥ = nul(A∗). Since

A∗ = AT =

[
1 1 1 0
0 1 −1 1

]
∼
[

1 0 2 −1
0 1 −1 1

]
,

we get nul(A∗) = span{x1, x2}, where

x1 = [−2, 1, 1, 0]T , x2 = [1,−1, 0, 1]T .

Now {w1,w2, x1, x2} is a basis for C4, but not orthogonal.
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Example 2. (Cont.) We now apply Gram–Schmidt to {x1, x2}.
I v1 = x1 = [−2, 1, 1, 0]T

I v2 = x2 − v1·x2
‖v1‖2 v1 = [0,−1

2 ,
1
2 , 1]T

Thus B = {w1,w2} is an orthogonal basis for W = col(A),
C = {v1, v2} is an orthogonal basis for W⊥, and B ∪ C is an
orthogonal basis for C4.
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Chapter 6. Orthogonality and Least Squares

6.5 Least-Squares Problems
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The normal system. For A ∈ Cn×p and b ∈ Cn, the equation

A∗Ax = A∗b

is called the normal system for Ax = b.

I The normal system arose when computing the orthogonal
projection onto a subspace, where the columns of A were
assumed to be a basis B = {w1, . . . ,wp} for W = col(A).

I The system was A∗Ax̂ = A∗x, with solution

x̂ = [projW (x)]B = (A∗A)−1A∗x, Ax̂ = projW (x).

I Invertibility of A∗A ∈ Cp×p followed from
rank(A∗A) = rank(A) = p.

In general, we need not assume that rank(A) = p...
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Claim. A∗Ax = A∗b is consistent for every b ∈ Cn.

To see this we first show col(A∗A) = col(A∗).

I Indeed, if y ∈ col(A∗A), then we may write y = A∗[Ax], so
that y ∈ col(A∗).

I On the other hand, we have previously shown that
rank(A∗A) = rank(A∗). Thus col(A∗A) = col(A∗).

Since A∗b ∈ col(A∗), the claim follows.

If x̂ is a solution to the normal system, then

A∗(b− Ax̂) = 0 =⇒ b− Ax̂ ∈ [col(A)]⊥.

On the other hand, Ax̂ ∈ col(A), which shows

Ax̂ = projW (b), where W := col(A).

I.e. solutions to the normal system give combinations of the
columns of A equal to projW (b).

276 / 323



Least squares solutions of Ax = b. We have just seen that
A∗Ax = A∗b is always consistent, even if Ax = b is not!

We saw that the solution set of A∗Ax = A∗b is equivalent to the
solution set of

Ax = projW (b), where W = col(A). (∗)

Indeed, we just saw that any solution to the normal system
satisfies (∗), while applying A∗ to (∗) gives

A∗Ax = A∗projW (b) = A∗b (cf. col(A)⊥ = nulA∗)

Note that Ax = b is consistent precisely when b ∈ col(A), i.e.
when b = projW (b).

Thus the normal system is equivalent to the original system
precisely when the original system is consistent.
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Least squares solutions of Ax = b There is a clear geometric
interpretation of the solution set to the normal system: let x̂ be a
solution to the normal system A∗Ax = A∗b. Then, with
W = col(A),

‖b− Ax̂‖ = ‖b− projW (b)‖ = min
w∈W

‖b−w‖ = min
x∈Cn
‖b− Ax‖.

Thus x̂ minimizes ‖b− Ax‖ over all x ∈ Cn.

The solution to the normal system for Ax = b is called the least
squares solution of Ax = b.
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Example. Let

A = [w1w2w3] =

[
1 0 1
1 −1 0
0 1 1

]
, b =

[
1
0
−1

]
.

The system Ax = b is inconsistent, since

[A|b] ∼

[
1 0 1
0 1 1
0 0 0

∣∣∣∣ 0
0
1

]
.

The normal system A∗Ax = A∗b is consistent, since

[A∗A|A∗b] ∼

[
1 0 1
0 1 1
0 0 0

∣∣∣∣ 1/3
−1/3

0

]
.

The least squares solutions to Ax = b are therefore

x̂ =

[
1/3
−1/3

0

]
+ z

[ −1
−1

1

]
, z ∈ C.
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Example. (cont.) We can also compute that

projW b = Ax̂ = 1
3w1 − 1

3w2 + 0 = 1
3

 1
2
−1

 ,
where W = col(A).

The least squares error for Ax = b is defined by

min
x∈Cn
‖b− Ax‖ = ‖b− Ax̂‖.

In this case, one can check that ‖b− Ax̂‖ = 2
3

√
3.

I This is a measurement of the smallest error possible when
approximating b by a vector in col(A).
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Chapter 6. Orthogonality and Least Squares

6.6 Applications to Linear Models
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Linear models. Suppose you have a collection of data from an
experiment, given by

{(xj , yj) : j = 1, . . . , n}.

You believe there is an underlying relationship describing this data
of the form

β1f (x) + β2g(x) + β3 = h(y),

where f , g , h are known but β = (β1, β2, β3)T is not.

Assuming a relation of this form and accounting for experimental
error, we have

β1f (xj) + β2g(xj) + β3 = h(yj) + εj

for j = 1, . . . , n and some small ε = (ε1, . . . , εn)T .
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Linear models. (Cont.) In matrix form, we have

Xβ − y = ε, X =

 f (x1) g(x1) 1
...

...
...

f (xn) g(xn) 1

, y =

 h(y1)
...

h(yn)

 .
Terminology:

I X is the design matrix,

I β is the parameter vector,

I y is the observation vector,

I ε is the residual vector.

The goal is to find β to minimize ‖Xβ − y‖2.

To this end, we solve the normal system X ∗Xβ = X ∗y. This
solution gives the least squares best fit.
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Example 1. (Fitting to a quadratic polynomial). Find a least
squares best fit to the data

(−1, 0), (0, 1), (1, 2), (2, 4)

for the model given by y = β1x
2 + β2x + β3. The associated linear

model is

Xβ =


1 −1 1
0 0 1
1 1 1
4 2 1

β =


0
1
2
4

+ ε = y + ε.
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Example 1. (cont.) The normal system X ∗Xβ = X ∗y has
solution β̂ = [.25, 1.05, .85]T , which implies the least squares best
fit to the data is

y = .25x2 + 1.05x + .85.

The least squares error is ‖X β̂ − y‖ = .0224.
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Example 2. Kepler’s first law asserts that the orbit of a comet
(parametrized by (r , θ)) is described by r = β + e(r cos θ), where
β, e are to be determined.

The orbit is elliptical when 0 < e < 1, parabolic when e = 1, and
hyperbolic when e > 1.
Given observational data

(θ, r) = {(.88, 3), (1.1, 2.3), (1.42, 1.65), (1.77, 1.25), (2.14, 1.01)},

what is the nature of the orbit?
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Example 2. (cont.) The associated linear model is 1 r1 cos θ1
...

...
1 r5 cos θ5

[ β
e

]
=

 r1
...
r5

+ ε.

We can rewrite this as Xβ = y + ε. The solution to the normal
system X ∗Xβ = X ∗y is given by [β̂, ê] = [1.45, .81].

We conclude that the orbit is most likely elliptical.
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Chapter 7. Symmetric Matrices and Quadratic Forms

7.1 Diagonalization of Symmetric Matrices
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Schur Triangular Form.

Definition. A matrix P ∈ Cn×n is unitary if P∗P = In.

Schur Factorization. Any A ∈ Cn×n can be written in the form
A = PUP∗ where P ∈ Cn×n is unitary and U ∈ Cn×n is upper
triangular.

This can be proven by induction. The case n = 1 is clear.

Now suppose the result holds for (n− 1)× (n− 1) matrices and let
A ∈ Cn×n.

Let {λ1, v1} be an eigenvalue/eigenvector pair for A with ‖v1‖ = 1.

Extend v1 to an orthonormal basis {v1 . . . , vn} for Cn and set
P1 = [v1, · · · vn].
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Schur Factorization. (cont.) Note P∗1 = P−1
1 . We may write

AP1 = P1

[
λ1 w
0 M

]
, M ∈ C(n−1)×(n−1), w ∈ C1×(n−1).

By assumption, we can write M = QU0Q
∗, Q unitary and U is

upper triangular.

Now set

P2 =

[
1 0
0 Q

]
, P = P1P2.

Then P is unitary (check!) and

P∗AP = P∗2

[
λ1 w
0 M

]
P2 =

[
λ wQ
0 U0

]
,

which completes the proof.
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Schur Triangular Form.

This result shows that every A ∈ Cn×n is similar to an upper
triangular matrix U ∈ Cn×n via a change of coordinate matrix
P ∈ Cn×n that is unitary.

That is: every matrix A is unitarily similar to an upper triangular
matrix.
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Definition. (Normal matrices) A matrix A ∈ Cn×n is normal if

A∗A = AA∗.

Examples of normal matrices.

I If A∗ = A (i.e. A is hermitian), then A is normal.

I If A ∈ Rn×n is symmetric (A = AT ), then A is normal.

I If A∗ = −A (skew-adjoint), then A is normal.

I If A is unitary (A∗A = In), then A is normal.
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Theorem. If A ∈ Cn×n is normal and (λ, v) is an
eigenvalue/eigenvector pair, then {λ̄, v} is an
eigenvalue/eigenvector pair for A∗.

Indeed,

‖(A− λI )v‖2 = [(A− λI )v]∗(A− λI )v

= v∗(A∗ − λ̄I )(A− λI )v

= v∗(A− λI )(A∗ − λ̄I )v

= ‖(A∗ − λ̄I )v‖2.
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Theorem. (Spectral theorem for normal matrices)

• A matrix A ∈ Cn×n is normal if and only if it is unitarily similar
to a diagonal matrix. That is, A is normal if and only if

A = PDP∗

for some diagonal D ∈ Cn×n and unitary P ∈ Cn×n. •

One direction is easy: if A = PDP∗ for P unitary and D diagonal,
then

A∗A = AA∗. (Check!)

Therefore we focus on the reverse direction.
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Spectral Theorem. (cont.)

Now suppose A ∈ Cn×n is normal, i.e. AA∗ = A∗A. We begin by
writing the Schur factorization of A, i.e.

A = PUP∗, P = [v1 · · · vn],

where P is unitary and U = [cij ] is upper triangular.

First note that AP = PU implies Av1 = c11v1, and hence (since A
is normal) A∗v1 = c̄11v1.

However, A∗P = PU∗, so that

c̄11v1 = A∗v1 = c̄11v1 + · · ·+ c̄1nvn

By independence of v2, . . . , vn, we deduce c1j = 0 for j = 2, . . . , n.
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Spectral Theorem. (cont.)

We have shown

U =

[
c11 0

0 Ũ

]
,

where Ũ ∈ C(n−1)×(n−1) is upper triangular.

But now AP = PU gives Av2 = c22v2, and arguing as above we
deduce c2j = 0 for j = 3, . . . , n.

Continuing in this way, we deduce that U is diagonal. �
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Spectral Theorem. (cont.)

To summarize, A ∈ Cn×n is normal (AA∗ = A∗A) if and only if it
can be written as A = PDP∗ where P = [v1 · · · vn] is unitary and
D = diag(λ1, · · · , λn). Note

I P unitary means P−1 = P∗

I A is unitarily similar to a diagonal matrix

I {λj , vj} are eigenvalue-eigenvector pairs for A
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Theorem. (Spectral Theorem for Self-Adjoint Matrices)

• A matrix A ∈ Cn×n is self-adjoint (A = A∗) if and only if it is
unitarily similar to a real diagonal matrix, i.e. A = PDP∗ for some
unitary P ∈ Cn×n and some diagonal D ∈ Rn×n. •

Indeed, this follows from the spectral theorem for normal matrices.
In particular,

PDP∗ = A = A∗ = PD∗P =⇒ D = D∗,

which implies that D ∈ Rn×n.

Note this implies that self-adjoint matrices have real eigenvalues.
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Eigenvectors and eigenvalues for normal matrices. Suppose A
is a normal matrix.

I Eigenvectors associated to different eigenvalues are
orthogonal:

v1 · Av2 = λ2v1 · v2,

v1 · Av2 = A∗v1 · v2 = λ1v1 · v2.

I If the eigenvalues are all real, then A is self-adjoint. (This
follows from the spectral theorem.)
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Spectral decomposition. If A ∈ Cn×n is a normal matrix, then
we may write A = PDP∗ as above. In particular,

A = λ1v1v∗1 + · · ·+ λnvnv∗n

Recall that
1
‖vk‖2 vkv∗k = vkv∗k

is the projection matrix for the subspace Vk = span{vk}.

Thus, a normal matrix can be written as the sum of scalar
multiples of projections on to the eigenspaces.
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Chapter 7. Symmetric Matrices and Quadratic Forms

7.2 Quadratic Forms
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Definition. Let A ∈ Cn×n be a self-adjoint matrix. The function

Q(x) = x∗Ax, x ∈ Cn

is called a quadratic form. Using self-adjointness of A, one finds

Q : Cn → R.

I If Q(x) > 0 for all x 6= 0, we call Q positive definite.

I If Q(x) ≥ 0 for all x 6= 0, we call Q positive semidefinite.

I We define negative definite, negative semidefinite similarly.

I We call Q indefinite if it attains both positive and negative
values.
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Characteristic forms. Expanding the inner product, we find that

x∗Ax =
n∑

j=1

ajj |xj |2 + 2
∑
i<j

Re(aijxixj).

For A ∈ Rn×n and x ∈ Rn, this reduces to

xTAx =
n∑

j=1

ajjx
2
j + 2

∑
i<j

aijxixj .

Example.

xT

 1 −2 3
−2 4 −5

3 −5 −6

 x = x2
1 + 4x2

2 −6x2
3 −4x1x2 + 6x1x3−10x2x3.
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Characterization of definiteness. Let A ∈ Cn×n, Q(x) = x∗Ax.

I There exists an orthonormal basis B = {v1, . . . , vn} s.t.
A = PDP∗, where P = [v1 · · · vn] and
D = diag(λ1, · · · , λn) ∈ Rn×n.

Then, with y = P−1x

Q(x) = x∗PDP∗x = (P−1x)∗DP−1x = y∗Dy

= λ1|y1|2 + · · ·+ λn|yn|2.

We conclude:

Theorem. If A ∈ Cn×n is self-adjoint, then Q(x) = x∗Ax is
positive definite if and only if the eigenvalues of A are all positive.

(Similarly for negative definite, or semidefinite...)
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Quadratic forms and conic sections. The equation

ax2
1 + 2bx1x2 + cx2

2 + dx1 + ex2 = f

can be written as

xTAx + [d e]x = f , A = AT =

[
a b
b c

]
.

By the spectral theorem, there is a basis of eigenvectors {v1, v2}
that diagonalizes A. That is,

A = PDPT , P = [v1 v2], D = diag(λ1, λ2).

Writing y = PTx, the equation becomes

yTDy + [d ′ e ′]y = f , [d ′ e ′] = [d e]P,

i.e. λ1y
2
1 + λ2y

2
2 + d ′y1 + e ′y2 = f .
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Principle axis theorem. The change of variables y = PTx gives

xTAx + [d e]x = f ⇐⇒ yTDy + [d ′ e ′]y = f .

The nature of the conic section can be understood through the
quadratic form yTDy.

Note that this transforms x∗Ax into a quadratic form y∗Dy with
no cross-product term.
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Example. Consider x2
1 − 6x1x2 + 9x2

2 . This corresponds to

A =

[
1 −3
−3 9

]
.

The eigenvalues are λ = 10, 0 (the quadratic form is positive
semidefinite), with eigenspaces

E0 = span([3, 1]T ), E10 = span([1,−3]T ).

Consequently A = PDPT , with

P = 1√
10

[
1 3
−3 1

]
.

Writing y = PTx leads to the quadratic form

10y2
1 + 0y2

2 = 10y2
1 .
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Example. (cont.) Consider the conic section described by

x2
1 − 6x1x2 + 9x2

2 + 3x1 + x2 = 1.

This can be written xTAx + [3 1]x = 1. Continuing from above,
this is equivalent to

10y2
1 + [3 1]Py = 10y2

1 +
√

10y2 = 1,

i.e. y2 =
√

10
10 −

√
10y2

1 .

In the y1y2 plane, the conic section is a parabola. To go from x
coordinates to y coordinates, we apply P, which is a rotation.
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Chapter 7. Symmetric Matrices and Quadratic Forms

7.3 Constrained Optimization
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Recall: A self-adjoint matrix A ∈ Cn×n is unitarily similar to a real
diagonal matrix. Consequently, we can write

A = λ1u1u∗1 + · · ·+ λnunu∗n,

where λn ≤ · · · ≤ λ1 ∈ R and {u1, · · · ,un} is an orthonormal
basis.
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Quadratic forms and boundedness. Let A be self-adjoint.
Continuing from above,

x∗Ax = λ1x∗u1(u∗1x) + · · ·+ λnx∗un(u∗nx)

= λ1|u∗1x|2 + · · ·+ λn|u∗nx|2.

Since {u1, · · · ,un} is an orthonormal basis,

x = (u∗1x)u1 + · · ·+ (u∗nx)un =⇒ ‖x‖2 = |u∗1x|2 + · · ·+ |u∗nx|2.

We deduce
λn‖x‖2 ≤ x∗Ax ≤ λ1‖x‖2.

311 / 323



Rayleigh principle. We continue with A as above and set

Ω0 = {0}, Ωk := span{u1, . . . ,uk}.

Then for x ∈ Ω⊥k−1 we have

‖x‖2 = |u∗kx|2 + · · ·+ |u∗nx|2,
x∗Ax = λk |u∗kx|2 + · · ·+ λn|u∗nx|2.

Thus (using λn ≤ · · · ≤ λ1) λn‖x‖2 ≤ x∗Ax ≤ λk‖x‖2.

=⇒ λn ≤ x∗Ax ≤ λk for all x ∈ Ω⊥k−1 with ‖x‖ = 1.

But since u∗nAun = λn and u∗kAuk = λk , we deduce the Rayleigh
principle: for k = 1, . . . , n,

min
‖x‖=1

x∗Ax = min
‖x‖=1, x∈Ω⊥k−1

x∗Ax = λn,

max
‖x‖=1, x∈Ω⊥k−1

x∗Ax = λk .
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Example. Let Q(x1, x2) = 3x2
1 + 9x2

2 + 8x1x2, which corresponds
to

A =

[
3 4
4 9

]
.

The eigenvalues are λ1 = 11 and λ2 = 2, with

Ω1 = nul(A− 11I2) = span{[1, 2]T},
Ω⊥1 = nul(A− I2) = span{[−2, 1]T}.

Note
min
‖x‖=1

x∗Ax = λ2 = 1, max
‖x‖=1

x∗Ax = λ1 = 11,

By the Rayleigh principle, the minimum is obtained on Ω⊥1 , while
the maximum restricted to this set is also equal to λ2 = 1.
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Example. (cont.)

The contour curves Q(x1, x2) = const are ellipses in the x1x2 plane.

Using the change of variables y = P∗x, where

P = 1√
5

[
1 −2
2 1

]
is a rotation by θ ∼ 63.44◦, one finds Q(x) = 11y2

1 + y2
2 .

Thus the contour curves Q(x1, x2) = const are obtained by
rotating the contour curves of 11x2

1 + x2
2 = const by θ.
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Chapter 7. Symmetric Matrices and Quadratic Forms

7.4 The Singular Value Decomposition
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Singular values. For a matrix A ∈ Cn×p, the matrix A∗A ∈ Cp×p

is self-adjoint. By the spectral theorem, there exists an
orthonormal basis B = {v1, . . . , vp} for Cp consisting of
eigenvectors for A∗A with real eigenvalues λ1 ≥ · · · ≥ λp.

Noting that x∗(A∗A)x = (Ax)∗Ax = ‖Ax‖2 ≥ 0 for all x, we
deduce

λj = λj‖vj‖2 = v∗j (A∗A)vj ≥ 0 for all j .

Definition. With the notation above, we call σj :=
√
λj the

singular values of A.

I If rankA = r , then σr+1 = · · · = σp = 0.

I In this case {v1, . . . , vr} is an orthonormal basis for col(A∗),
while {vr+1, . . . , vp} is an orthonormal basis for nul(A).
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Singular Value Decomposition. Let A ∈ Cn×p with rankA = r
as above. The vectors

uj = 1
σj
Avj , j = 1, . . . , r

form an orthonormal basis for col(A). Indeed,

ui · uj =
v∗i (A∗Avj )

σiσj
=

λj
σiσj

v∗i vj =

{
0 i 6= j

1 i = j .

Next let {ur+1, · · · ,un} be an orthonormal basis for col(A)⊥.
Defining the unitary matrices V = [v1 · · · vp] and U = [u1 · · ·un],

AV = UΣ, Σ =

[
D 0
0 0

]
∈ Cn×p, D = diag{σ1, · · · , σr}.

We call A = UΣV ∗ the singular value decomposition of
A ∈ Cn×p.
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SVD and linear transformations. Let T (x) = Ax be a linear
transformation T : Cp → Cn.

Writing A = UΣV ∗ as above, we have B = {v1, . . . , vp} and
C = {u1, . . . ,un} are orthonormal bases for Cp and Cn. Then

U∗(Ax) = Σ(V ∗x) =⇒ [T (x)]C = Σ[x]B ,

i.e. there are orthonormal bases for Cp and Cn s.t. T can be
represented in terms of the matrix Σ.
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Transformations of R2. If T : R2 → R2 is given by T (x) = Ax,
then there exist unitary matrices U,V so that A = UDV T for
D = diag(σ1, σ2).

Unitary matrices in R2×2 represent rotations/reflections of the
plane.

Every linear transformation of the plane is the composition of three
transformations: a rotation/reflection, a scaling transformation,
and a rotation/refection.
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Moore–Penrose inverse of A ∈ Cn×p. Write
Vr = [v1 · · · vr ] ∈ Cp×r and Ur = [u1 · · ·ur ] ∈ Cn×r . Then

A = UΣV ∗ = UrDV
∗
r

represents a reduced SVD for A.

Definition. The Moore–Penrose pseudo inverse of A ∈ Cn×p is
defined by

A+ = VrD
−1U∗r ∈ Cp×n.

I AA+ = UrU
∗
r = projcol(A) ∈ Cn×n

I A+A = VrV
∗
r = projcol(A∗) ∈ Cp×p

I AA+A = A, A+AA+ = A+,

I A+ = A−1 whenever r = p = n.
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Least squares solutions for A ∈ Cn×p. Recall that the least
squares solutions of Ax = b are the solutions to the normal system
A∗Ax = A∗b. Equivalently, they are solutions to Ax = projcolAb.

When rankA∗A = r < p, there are infinitely many least squares
solutions.

Note that since AA+ = projcolA, we have

AA+b = projcolA(b) =⇒ A+b is a least squares solution.

On the other hand, using A+b ∈ col(A∗), we have for any other
least squares solution x̂ ,

Ax̂ − AA+b = 0 =⇒ x̂ − A+b ∈ nul(A) = col(A∗)⊥,

so A+b ⊥ x̂ − A+b. Consequently,

‖x̂‖2 = ‖A+b‖2 + ‖x̂ − A+b‖2.

Thus A+b is the least squares solution of smallest length.
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Four fundamental subspaces. Let A ∈ Cn×p. Consider

I colA, colA⊥ = nulA∗

I colA∗ = row(Ā), col(A∗)⊥ = nulA

Recall the SVD of A ∈ Cn×p with rank(A) = r yields an
orthonormal basis {v1, . . . , vp} consisting of eigenvectors of A∗A,
and an orthonormal basis {u1, · · · ,un} obtained by completing

{u1, . . . ,ur}, where uj = 1
σj
Avj .

Since A∗Avj = λjvj , Avj = σjuj :

I {v1, . . . , vr} is an orthonormal basis for
col(A∗A) = col(A∗) = row(Ā)

I {vr+1, . . . , vp} is an orthonormal basis for col(A∗)⊥ = nul(A)

I {u1, . . . ,ur} is an orthonormal basis for col(A)

I {ur+1, . . . ,un} is an orthonormal basis for col(A)⊥ = nul(A∗)
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Review: Matrix Factorizations Let A ∈ Cn×p.

I Permuted LU factorization: PA = LU, where P ∈ Cn×n is an
invertible permutation matrix, L ∈ Cn×n is invertible and
lower triangular, and U ∈ Cn×p is upper triangular.

I QR factorization: A = QR, where the columns of Q ∈ Cn×p

are generated from the columns of A by Gram-Schmidt and
R ∈ Cp×p is upper triangular.

I SVD: A = UΣV ∗, where U ∈ Cn×n, V ∈ Cp×p are unitary,

D =

[
D 0
0 0

]
∈ Cn×p, D = diag(σ1, . . . , σr ).

For A ∈ Cn×n:

I Schur factorization: A = PUP∗ where P is unitary and U is
upper triangular.

I Spectral theorems: A = PDP∗, where P is unitary and D is
diagonal. This holds if and only if A is normal. The matrix D
is real if and only if A is self-adjoint.

323 / 323


