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Abstract. These notes accompanied Math 5001 (‘Mathematics of Medical

Imaging’) in Fall 2020 at Missouri University of Science & Technology. The
notes are based primarily off of the textbook of C. L. Epstein [1], with a number

of figures imported from that text.
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Overview: X-ray CT and the associated mathematical problems

X-ray computerized tomography (CT) for non-invasive medical imaging applica-
tions was pioneered by Hounsfield in the early 1970s, with the possibility of such an
application proposed several years earlier by Cormack. Since then, X-ray CT has
been developed extensively and has become one of the primary medical imaging
modalities in use today.

In ordinary X-ray imaging, one essentially obtains an image of a shadow of a
three-dimensional object, which we can view as the superposition of the shadow of
each two-dimensional slice of the object. In X-ray CT, we instead obtain precise
imaging of each individual slice by taking multiple measurements of the ‘shadows’
of individual lines/beams of X-rays. There are different options for precisely how
to configure the beams (e.g. parallel beams versus fan beams).

The goal in X-ray CT is to reconstruct the attenuation coefficient µ : R3 → [0,∞)
of some part of the body. This function quantifies the tendency of tissue to absorb
versus scatter X-rays. We work with one slice at a time, each of which is represented
by a function on R2, using a coordinate system determined by the X-ray machine.

What we actually measure in X-ray CT essentially determines the value of∫
L

µds,

where L is the line traversed by the X-ray beam. To derive this model of mea-
surement, we use some basic physics of X-rays and a few simplifying assumptions.
In particular, we ignore some effects like refraction/diffusion and assume infinitely
thin and monochromatic X-rays, and the main underlying physical principle is that
of Beer’s law. Some of the physical assumptions are more realistic than others.
The monochromatic assumption is not very realistic, but it plays a key role in what
follows because it leads to a linear model for measurements. More accurate models
would also take into account that the integrals above should really be taken over
strips, or even 3d objects.

The map µ 7→
∫
• µds is described mathematically by the Radon transform.

This is a linear transformation, but must be interpreted in the setting of infinite-
dimensional vector spaces. For the question of reconstructing µ from its Radon
transform, we are immediately led to questions such as invertibility and (if invert-
ibility holds) inversion formulas. In fact, we will show that the Radon transform is
invertible for suitable types of functions, with accompanying inversion formulas (in
particular, the filtered back-projection formula).

In any real application, there will be approximations made at many levels. It will
therefore be important to understand stability/continuity properties of the Radon
transform and its inverse. We will need to understand how to approximate inver-
sion formulas (e.g. with finite sums replacing integrals), how to perform inversion
with incomplete data, how to account for failures of uniqueness, and so on. This
mathematical understanding will inform the development of several approaches to
reconstruction.

For the problems of inverting the Radon transform and designing reconstruction
algorithms, we rely largely on Fourier-based approaches. In particular, we will need
to develop mathematics related to convolution and filtering, Fourier series, and the
Fourier transform. As we will see, the choice of scanner geometry (e.g. parallel
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beam versus fan beam geometry) plays an important role in the approach taken to
reconstruction.

To test reconstruction algorithms, one can study so-called mathematical phan-
toms (as introduced by Shepp). The idea is to simulate a body section by a math-
ematical function that can be described explicitly. In this way, we remove all
‘measurement error’ and can understand precisely what errors are introduced by
our reconstruction algorithms. An example of a phantom is given in the following
figure (from L. A. Shepp and J. B. Kruskal, Computerized Tomography: The New
Medical X-Ray Tomography, American Mathematical Monthly 85 (1978), no. 6,
420–439).

After developing the theory needed to describe several reconstruction algorithms
in detail, we will turn to several other important topics that may be studied math-
ematically. The first such topic concerns various imaging artifacts that arise in
X-ray CT. We will also study the effect of noise in measurements, which entails the
introduction of some topics from probability theory.

In the final few sections of these notes, we will cover some additional topics,
including an introduction to magnetic resonance imaging (MRI).
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Primer on finite- and infinite-dimensional linear algebra

We will work with many different vector spaces in this class, including the stan-
dard finite-dimensional spaces Rn and Cn, as well the infinite-dimensional Lebesgue
function spaces Lp(Rn) and sequence spaces `p(C) (with 1 ≤ p ≤ ∞). All of these
vector spaces admit standard norms (or lengths), which in turn define standard
metrics (or distances), which in turn define topologies that give rise to notions of
open sets, closed sets, convergence, continuous functions, and so on. Some of the
vector spaces we consider additionally admit inner products which may be used to
define the norm (and hence all of the things just mentioned), but which also give
us a notion of angle/orthogonality.

We will assume familiarity with the usual spaces Rn and Cn. We summarize
what we need in the following example (in the setting of Cn).

Example 1. An element of Cn may be denoted by z, which we view as a column
vector

z = (z1, z2, . . . , zn)T ,

where T denotes the transpose and each entry zj is a complex number (we write
zj ∈ C). This means zj = xj+iyj for some real numbers xj , yj (we write xj , yj ∈ R)
and i is the imaginary unit obeying i2 = −1. In general, we will not use bold text
for vectors or do any decorations with arrows. The inner product of z ∈ Cn and
w ∈ Cn is defined by

〈z, w〉 := z∗w =

n∑
j=1

z̄jwj = z̄1w1 + · · ·+ z̄nwn.

Here ¯ denotes complex conjugation, defined by x+ iy = x− iy, and ∗ denotes the
conjugate transpose (also called the adjoint). In the setting of Cn (or Rn) we may
use the more familiar ‘dot product’ notation and write 〈z, w〉 = z · w.

For a complex number z = x + iy, we have z̄z = x2 + y2, which corresponds to
the euclidean length of the vector (x, y)T as an element of R2 and is denoted in this
context by |z|2.

The norm of a vector z ∈ Cn is defined by

‖z‖ :=
√
〈z, z〉 =

√√√√ n∑
j=1

|zj |2 =
√
|z1|2 + · · ·+ |zn|2.

In the setting of Cn and Rn, we commonly write |z| instead of ‖z‖, leaving the ‖ · ‖
notation primarily for norms defined on function spaces. However, we will continue
to use the notation ‖ · ‖ for the remainder of this example.

We have the Cauchy–Schwarz and triangle inequalities, given respectively by

|〈z, w〉| ≤ ‖z‖ ‖w‖ and ‖z + w‖ ≤ ‖z‖+ ‖w‖.

The distance between two vectors z, w ∈ Cn is defined by

d(z, w) = ‖z − w‖.

Any norm gives rise to a distance (or metric) in this way.
We then consider the topology on Cn generated by the basis of open balls in Cn.

In particular, given z0 ∈ Cn and r > 0, we define the open ball B(z0, r) by

B(z0, r) = {z ∈ Cn : ‖z − z0‖ < r},
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and we call a set S ⊂ Cn open if for every z0 ∈ S, there exists r > 0 such that
B(z0, r) ⊂ S. A set is closed if its complement is open. A set S ⊂ Cn is called
bounded if there exists R > 0 such that S ⊂ B(0, R).

A sequence (zk) in Cn is Cauchy if for any ε > 0, there exists N > 0 such that

j, k ≥ N =⇒ ‖zj − zk‖ < ε,

and the sequence converges to z if for any ε > 0, there exists N > 0 such that

j ≥ N =⇒ ‖zj − z‖ < ε.

In the latter case, we write zj → z as j →∞ or limj→∞ zj = z. The metric space
Cn is complete, which means that any Cauchy sequence converges to some element
of Cn. When we need to refer to the components of a collection of vectors, we may
use notation such as zj = (zj,1, . . . , zj,n)T .

Finally, a mapping T : Cn → Cm is called continuous if for all z ∈ Cn, we have
that

zn → z =⇒ T (zn)→ T (z).

The spaces Rn and Cn are examples of Banach spaces: normed vector spaces
that are complete with respect to the metric induced by the norm. In fact, they
are Hilbert spaces: inner product spaces that are (i) complete with respect to the
induced metric and (ii) separable. (A metric space (V, d) is separable if there exists
a countable set {φj} ⊂ V such that for any v ∈ V and any ε > 0, there exists j
such that d(v, ϕj) < ε.)

The vector spaces Rn and Cn are n-dimensional. Indeed, one has the standard
basis {ej}nj=1, where

ej,k =

{
1 k = j

0 k 6= j.

We may ‘send n → ∞’ to obtain the vector space of sequences of real or complex
numbers, which may be denoted by Rω or Cω, respectively. That is, an element of
Cω is a sequence (zj)

∞
j=1 of complex numbers. We can define a family of subspaces

of Cω (or Rω) by introducing the standard `p-norms.

Example 2. Let 1 ≤ p ≤ ∞. We define `p(C) to be the subspace of Cω consisting
of sequences z = (zj)

∞
j=1 such that

‖z‖`p <∞,
where the `p-norm ‖ · ‖`p is defined by

‖z‖`p =


(∑∞

j=1 |zj |p
) 1
p

1 ≤ p <∞,
sup1≤j≤∞ |zj | p =∞.

The space `p is a Banach space for every 1 ≤ p ≤ ∞. Moreover, `2 is a Hilbert
space with the inner product

〈z, w〉 =

∞∑
j=1

z̄jwj .

We will also make frequent use of the Lebesgue spaces on Rn. To define these
carefully requires the introduction of Lebesgue measure. Let us briefly recall the
definitions and some of the key properties.
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Lebesgue measure can be constructed by first defining a notion of an ‘outer
measure’ on subsets of Rn. In particular, this is defined so that it returns the
correct volume for any set defined by the cartesian product of intervals. A set in
Rn is then called measurable if it satisfies a certain regularity condition, namely,
that it is well-approximated from without (in the sense of this outer measure) by an
open set. The measure of a measurable set is simply its outer measure. Essentially
any set you will encounter in ‘everyday life’ will be measurable, but nonmeasurable
sets certainly do exist. Lebesgue measure agrees with our intuitive notion of ‘n-
dimensional volume’. We do not really need to go through all the definitions, but
it is worth describing one special case in detail. A set E ⊂ Rn has measure zero,
written |E| = 0, if for any ε > 0, there exists a countable collection of balls Bk in
Rn such that

E ⊂
⋃
k

Bk and
∑
k

|Bk| < ε.

Lebesgue measure is used to define a theory of integration. In particular, given
a measurable set E of finite measure, one first defines the characteristic function
of E to be

χE(x) =

{
1 x ∈ E
0 x /∈ E

and defines the integral to be
∫
χE dx = |E|. One then extends this definition to

act linearly on finite linear combinations of characteristic functions of disjoint sets
(called ‘simple functions’), and subsequently uses approximation by simple func-
tions to define the integral of more general functions. While this sounds more
complicated than Riemann integration, it turns out that when a function is inte-
grable in both the Lebesgue and Riemann senses, the two integrals return the same
value. What is gained by Lebesgue integration is the ability to ignore the behavior
of functions on sets of measure zero. The classical example is the Dirichlet func-
tion, defined by the characteristic function of the rational numbers. This function
is not Riemann integrable (it is ‘too discontinuous’), but it is easily integrated in
the Lebesgue sense. Indeed, because the rational numbers have measure zero (this
is true of any countable set), the integral of this function is zero.

The inability of the Lebesgue integral to ‘see’ sets of measure zero also means
that when we later define Lebesgue spaces, we must implicitly identify any function
f with the equivalence class of all functions that equal f ‘almost everywhere’ (that
is, the set of functions g such that the set {x ∈ Rn : f(x) 6= g(x)} has measure
zero).

We can now define the Lebesgue spaces on Rn.

Example 3. For 1 ≤ p < ∞, we define Lp(Rn) to be the set of all functions
f : Rn → C such that

‖f‖Lp :=

(∫
Rn
|f(x)|p dx

) 1
p

<∞.

We define L∞(Rn) to be the set of all functions f : Rn → C such that

‖f‖L∞ := inf{α > 0 : |{x ∈ Rn : |f(x)| > α}| = 0} <∞.

In particular, ‖f‖L∞ is the infimal M such that |f(x)| ≤M almost everywhere.
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The spaces Lp(Rn) are Banach spaces for all 1 ≤ p ≤ ∞. In addition, L2(Rn)
is a Hilbert space with the inner product

〈f, g〉 =

∫
Rn
f(x)g(x) dx.

As mentioned above, we must view elements of Lp(Rn) as equivalence classes of
functions that are equal almost everywhere.

To verify the claims above, one needs to check that the quantities ‖ · ‖Lp do in
fact define norms (e.g. they obey the triangle inequality). In addition, one must
prove completeness (i.e. that Cauchy sequences converge). These are well-known
facts in analysis and we will take them for granted here.

The Lebesgue spaces above were defined for complex-valued functions, although
one can restrict to real-valued functions as well. If necessary, the codomain of the
functions may be indicated by using notation such as Lp(Rn;C) or Lp(Rn;R).

One of the main tools from Lebesgue integration that we will need is the following
theorem, called the dominated convergence theorem.

Theorem 1 (Dominated Convergence Theorem). Suppose fk : Rn → C is a se-
quence of measurable functions that converge to some function f : Rn → C almost
everywhere. If there exists a function g ∈ L1(Rn) such that |fk(x)| ≤ |g(x)| almost
everywhere, then

lim
k→∞

∫
Rn
fk(x) dx =

∫
Rn
f(x) dx.

It is also useful to work with function spaces that are defined in terms of the
regularity of the functions in the space.

Example 4. We define C(Rn) to be the vector space of continuous functions f :
Rn → C. This is a Banach space under the supremum norm (which agrees with the
L∞-norm for continuous functions).

For k = 1, 2, 3, . . . , we define Ck(Rn) to be the vector space of functions f :
Rn → C that are k-times continuously differentiable. The space C∞(Rn) consists
of functions that are k-times differentiable for all k ∈ N.

At times, it will be useful to restrict to functions with ‘bounded support’, i.e.
functions such that {x ∈ Rn : f(x) 6= 0} is a bounded set. We can indicate this
with the subscript b, e.g. Cb(Rn) denotes the vector space of continuous functions
of bounded support. We may also write C0(Rn) for the vector space of continuous
functions f such that lim|x|→∞ f(x) = 0.

We next discuss linear transformations on vector spaces. Given two vector spaces
V and W over C, we call a mapping T : V →W a linear transformation if

T (αv + βw) = αT (v) + βT (w)

for all α, β ∈ C and v, w ∈ V . For finite-dimensional vector spaces, all linear trans-
formations are represented by matrices and so the situation is somewhat familiar.
In the infinite-dimensional setting, the situation can change quite a bit. In what
follows, let us work through a few examples that are representative of what we will
encounter later on.
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Example 5. Let V = L1(Rn), W = L∞(Rn) and let K ∈ L∞(Rn × Rn). Define
the mapping T : V →W via

Tf(x) =

∫
Rn
K(x, y)f(y) dy.

The fact that T maps V into W follows from the inequalities

|Tf(x)| ≤
∫
|K(x, y)| |f(y)| dy ≤ ‖K‖L∞(Rn×Rn)‖f‖L1

uniformly over x ∈ Rn. We call T an integral transform and we call K the (inte-
gral) kernel of T . The inequalities above also show that T is a bounded operator
from L1 to L∞; in particular,

‖T‖L1→L∞ := sup
{
‖Tf‖L∞ : ‖f‖L1 = 1

}
≤ ‖K‖L∞(Rn×Rn).

For linear transformations, boundedness is equivalent to continuity.
In the special case that K(x, y) = ψ(x − y) for some function ψ : Rn → C, we

call T a convolution operator and ψ the (convolution) kernel of T .

Example 6. Suppose V is a vector space over C with an inner product 〈·, ·〉 and
that W is a closed subspace of V . Then for each v ∈ V , there exists a unique
element P (v) ∈W such that

‖v − P (v)‖ = inf
w∈W

‖v − w‖.

The mapping P : V →W defined by v 7→ P (v) is a linear transformation, called the
orthogonal projection of V onto W . The transformation P is bounded/continuous,
with norm equal to 1. For any v ∈ V , we have that P (v) is orthogonal to v−P (v),
that is,

〈P (v), v − P (v)〉 = 0 for all v ∈ V.
Next suppose that we have an orthonormal basis {φj} for W . This means that

the span of the φj is dense in W and that

〈φj , φk〉 =

{
1 j = k

0 j 6= k.

Then the orthogonal projection of v onto W is computed via

P (v) =
∑
j

〈φj , v〉φj .

Given a linear transformation T : V → W , we define the kernel (or null-space)
of T by

N(T ) = {x ∈ V : T (x) = 0}
and the image (or range) of T by

R(T ) = {T (x) : x ∈ V }.
We call T injective if N(T ) = {0} and surjective of R(T ) = W .

In finite-dimensional linear algebra, one is often faced with linear systems of the
form Ax = b that may or may not have solutions. Viewing x 7→ Ax as a linear
transformation (which we still denote by A), one can instead solve the associated
normal system ATAx = AT b, which is always consistent. In fact, solving the normal
system is equivalent to solving

Ax = projR(A)(b), (1)
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where projR(A) denotes the orthogonal projection onto R(A). This system is evi-
dently consistent, and solutions to this equation are minimizers of the problem

minimize ‖Ax− b‖2

over all choices of x. For this reason, we call solutions to (1) least-squares solutions
to the original system. If A has full rank, the least-squares solution is unique.
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The physics of X-ray CT

The goal of X-ray tomography is to reconstruct a three-dimensional object from
its two-dimensional slices. The object is described by its attenuation coefficient,
which is a function µ : R3 → [0,∞) that quantifies the tendency of the object to
absorb or scatter X-rays. We assume that air is transparent to X-rays, so that
µ ≡ 0 outside of the patient.

Remark 1. We will work directly with the attenuation coefficient. In radiology
one instead works with a dimensionless quantity called a Hounsfield unit, which
compares the attenuation coefficient to that of water (and takes on both negative
and positive values). From the following table (imported from [1]), we can see that
the range encountered in a CT measurement may be around 2000 units, while one
needs to be able to reconstruct the attenuation coefficient accurately to within around
10 units to distinguish between the different types of tissues.

Let us now describe a simplified classical model for the interaction of X-rays with
matter. With the interpretation of X-rays as high-energy electromagnetic radiation,
we assume:

(i) No refraction/diffraction: X-ray beams travel along straight lines and are
not bent by the objects they pass through.

(ii) The X-rays are monochromatic (i.e. all of a single frequency).
(iii) Beer’s law: Each material encountered has a characteristic attenuation co-

efficient µ for X-rays of a given energy/frequency. The intensity I of the
X-ray beam satisfies

dI
ds = −µI,

where s is the arc-length along the straight-line trajectory of the X-ray
beam.

Assumption (i) is reasonable for high energy X-rays, while assumption (ii) is not.
However, it is necessary if we wish to work with a linear model for measurement
(more on this later).

Beer’s law is essentially a probabilistic one. Under the monochromatic assump-
tion, the intensity is proportional to the number of photons per second, and Beer’s
law posits that µ(s)∆s is the probability that a photon incident on the material at
coordinate s is absorbed over a length ∆s.

Using Beer’s law, we may deduce that the intensity of an X-ray beam is attenu-
ated on the line segment joining points x0 + av and x0 + bv by

exp

{
−
∫ b

a

µ(x0 + sv) ds

}
.
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When we use Beer’s law, we implicitly assume that attenuation is isotropic (that
is, independent of the direction of travel).

Example 1 (Beam Spreading). Suppose we have a point source of X-rays of inten-
sity I0 (measured in electron-volts/second) placed at the origin in the plane, with
the same outgoing flux in all directions. Writing I(r) for the intensity at distance
r from the origin, we may derive that I(r) = 1

2πr I0 through an argument using
conservation of energy.

This effect can also be modeled by Beer’s law. We introduce the function µs = 1/r
to account for the attenuation due to the spreading of the beam. Then Beer’s law
implies rI(r) = r0I(r0) for any r, r0 > 0, which agrees with the identity above.

We say that we have a non-diverging source of X-rays whenever the attenuation
due to beam spreading is very small compared to the attenuation due to the object.

To make measurements, we turn on an X-ray source for some fixed period of
time. We therefore know the total energy, denoted Ii, incident on the object along
a line `. We measure the total energy, denoted Io, emerging from the object along
` using an X-ray detector.

If we integrate Beer’s law along this line, then we obtain

log
[
I0
Ii

]
= −

∫
`

µds.

We model the measurements we make via these line integrals.
If we send X-rays along many parallel lines, we obtain a projection (or shadow)

of the object. If we place the X-ray source at many different angles, we can better
distinguish between various arrangements of objects. This is the basic idea under-
lying X-ray CT, with the goal of reconstructing each two-dimensional slice of the
object under consideration.

Example 2. Suppose we have a point source of X-rays, a photographic plate, and
an attenuating body in between (as in the figure, imported from [1]). We may use
polar coordinates (r, φ) based at the source.

The attenuation coefficient is the sum of µa (attenuation to due absorption) and
µs = r−1 (attenuation due to beam spreading). The attenuation of the x-ray beam
along a line through the source at angle φ is given by Beer’s law:

d
dr I = −[µa(r, φ) + 1

r ]I.

We expose the film by turning on the source for some known period of time. Let us
also use I to denote the energy per unit length resulting from this exposure.

Proposition 1. Let aφ and bφ denote the first and last points of intersection of the
X-ray line with the absorbing body, and let L+h be the distance from the source to
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the film. Let δ(φ) denote the density of the film at the point where the line meets
the film. Then

−
∫ bφ

aφ

µa(s, φ) ds = γ−1δ(φ)− log
[
I0 cos2 φ
2π(L+h)

]
for some (physical) constant γ > 0.

The quantities on the right-hand side are determined by measurement. In par-
ticular, the measurement is a linear function of the attenuation coefficient.

Proof. Integrating Beer’s law from some small r = r0 > 0 to r = rφ (the distance
to the film along the line) yields

log
I(rφ,φ)
I(r0,φ) = log r0

rφ
−
∫ bφ

aφ

µa(s, φ) ds.

With ` the distance to the front of the body, and L the distance to the back of the
body, we have

aφ = `
cosφ , bφ = L

cosφ , and rφ = L+h
cosφ .

Thus (recalling that r0I(r0, φ) = 1
2π I0 due to beam spreading)

I(rφ, φ) = I0 ·
cosφ

2π(L+ h)
exp

{
−
∫ bφ

aφ

µa(s, φ) ds

}
.

The density of the developed film at a point is proportional to the logarithm of
the total energy incident at the point (we take this for granted). We next compute
this energy:

We need to determine the flux across the part of the film subtended by a small
angle ∆φ. This is given by

∆F =

∫ φ+∆φ

φ

I(rφ, φ)r̂ · n̂ dσ,

where r̂ = −(sinφ, cosφ), n̂ = (0,−1) is the outward unit normal to the film plane,
and dσ is the arc-length element along the film, given in polar coordinates by

dσ = L+h
cos2 φdφ

(here we are using r = (L+ h)[cosφ]−1 and dσ =
√
r2 + ( drdφ )2dφ).

Now, for ∆φ small, we get

∆F ≈
∫ φ+∆φ

φ

I(rφ, φ)r̂ · n̂ L+h
cos2 φdφ

≈ I0
cos2 φ

2π(L+ h)
exp

{
−
∫ bφ

aφ

µa(s, φ) ds

}
L+ h

cos2 φ
∆φ.

Using that the length of film subtended by angle ∆φ is approximately ∆σ =
L+h
cos2 φ∆φ, we deduce that the energy density at the point Pφ (where the line meets

the film) is

dF

dσ
=

I0 cos2 φ

2π(L+ h)
exp

{
−
∫ bφ

aφ

µa(s, φ) ds

}
.
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and so the density of the film is

δ(φ) = γ log dF
dσ = γ

[
log I0 cos2 φ

2π(L+h) −
∫ bφ

aφ

µa(s, φ) ds

]
for some γ. Rearranging, we get

−
∫ bφ

aφ

µa(s, φ) ds = γ−1δ(φ)− log
[
I0 cos2 φ
2π(L+h)

]
,

as desired. �

By moving the source and film around a circle enclosing the absorbing body, we
can measure the line integrals of the attenuation coefficient for every line intercept-
ing the body. The fact that this allows us to recover the function itself is what makes
X-ray CT work.

Before we turn to the mathematical formulation that describes the measurements
above, let us conclude this discussion by revisiting some of our physical assumptions
above.

The assumption that our X-rays are monochromatic is not realistic. Rather, our
X-ray source will be described by some spectral distribution function S(λ). The
attenuation coefficient of a material is frequency-dependent and typically decreases
as the energy increases. This fact leads to the phenomenon of beam hardening,
which means that the distribution of output energies is skewed towards higher
energies. Integrating Beer’s law and taking into account the dependence on the
spectral parameter, one can derive that the measured output (for an X-ray beam
along a line `) is given by

Ψo =

∫ ∞
0

S(λ) exp

{
−
∫
`

µ(x, λ) ds

}
dλ.

In particular, the measurements are now modeled by nonlinear functions of µ and
hence the reconstruction problem becomes much more difficult. We will return to
this issue later.

Another issue related to our model arises from the fact that an X-ray beam is not
continuous, but rather it is comprised of discrete particles (photons). The physical
effect of this is the presence of random noise in the measurements. While this issue
could essentially be solved by simply increasing the number of photons, doing so
can become dangerous to the patient! We will discuss this tradeoff between patient
safety and contrast/resolution in a later section.
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Introduction to the Radon transform

In X-ray CT, measurements are modeled by line integrals of a two-dimensional
slice of the attenuation coefficient of the object being imaged. The collection of
all such line integrals is described mathematically by using an integral transform
known as the Radon transform.

To define this transform, we begin by introducing a convenient parametrization
of lines in the plane. In what follows, we denote the unit circle in R2 by S1. That
is,

S1 =

{[
ω1

ω2

]
∈ R2 : ω2

1 + ω2
2 = 1

}
.

Given t ∈ R and ω ∈ S1, the set

{(x, y) ∈ R2 : 〈(x, y), ω〉 = t}

is a line in the plane, where we recall the notation 〈·, ·〉 denotes the usual inner
product. In particular, the vector ω is perpendicular to this line, and the value |t|
is the distance from the line to the origin.

We obtain the same set if we use (−t,−ω) instead of (t, ω). However, if we
impose an orientation (i.e. a positive direction along the line), then (t, ω) defines
a unique line, which we denote `t,ω. To impose an orientation, we observe that
ω̂ := (−ω2, ω1)T is perpendicular to ω and therefore parallel to the line—we use ω̂
to define the positive direction along the line.

The set of points on `t,ω may be parametrized as follows:

{tω + sω̂ : s ∈ R}.

In fact, given (x, y) on the line `t,ω, one obtains the corresponding s ∈ R by solving[
ω1 −ω2

ω2 ω1

] [
t
s

]
=

[
x
y

]
.

In practice, the CT machine determines a coordinate system (x1, x2, x3) for R3.
Writing µ for the attenuation coefficient, we fix a height c and measure line integrals
of the slice µ(·, ·, c). In particular, for the oriented line `t,ω, the measurement is
described in terms of the integral∫ ∞

−∞
µ(tω + sω̂, c) ds.

In fact, this is the Radon transform of the function µ(·, ·, c) evaluated at (t, ω).

Definition 1 (Radon transform). Let f ∈ Cb(R2). The Radon transform of f is
the function

Rf : R× S1 → R
defined by

Rf(t, ω) =

∫ ∞
−∞

f(sω̂ + tω) ds,

where

ω = (ω1, ω2)T and ω̂ = (−ω2, ω1)T .

Remark 1. To define the Radon transform of f , it is not necessary for f to be
continuous, nor is it necessary for f to have bounded support. What is needed
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is enough regularity to restrict the function to a line, as well as enough decay to
guarantee that the improper integrals above converge. That is, we need to have∫ ∞

−∞
|f(tω + sω̂)| ds <∞ for all (t, ω) ∈ R× S1.

We call the set of functions satisfying this property the natural domain of R.

Our interest in this section will not be to develop the theory of the Radon trans-
form, but rather to discuss a few relevant properties related to the reconstruction
question, and to work towards a formal inversion formula.

First, observe that the Radon transform is a linear transformation. It also pre-
serves nonnegativity. Finally, as `t,ω and `−t,−ω yield the same line, the Radon
transform of a function is always even:

Rf(t, ω) = Rf(−t,−ω) for all t, ω.

We next compute a simple example.

Example 1. Let B = B(0, 1) be the unit ball in R2 and let χB denote its charac-
teristic function, that is,

χB(x) =

{
1 x ∈ B
0 x /∈ B.

Then for each (t, ω), we have that

RχB(t, ω) = length of intersection of `t,ω ∩ χB .
Thus

RχB(t, ω) =

{
2
√

1− t2 |t| ≤ 1

0 |t| > 1.

The next example shows that the Radon transform cannot distinguish between
two functions that agree almost everywhere (in the sense of Lebesgue measure.)

Example 2. Define

f(x, y) =

{
1 x ∈ [−1, 1] and y = 0,

0 otherwise.

Then

Rf(t, ω) =

{
2 if t = 0 and ω = (0,±1)T

0 otherwise.

In fact, if we replace f by any other function that equals 1 on a subset of R×{0} of
total length 2, then we will obtain the same result for the calculation of the Radon
transform.

Combining the previous example with linearity, we see that the Radon transform
may map a nonzero function the identically zero function. This non-uniqueness, or
failure of injectivity, seems like it could be an issue, given that we would eventually
like to invert the Radon transform!

The resolution to this issue comes from observing that that the non-uniqueness
above stems from the fact that the functions in question differ only on sets of
Lebesgue measure zero. When we discuss the formal inversion of the Radon trans-
form, we will do so in the setting of function spaces in which such functions are
regarded as the same element in the space. In particular, there is a straightforward
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mathematical resolution to this issue. At the same time, no physical measurement
will be able to detect behavior on sets of measure zero. Thus any practical re-
construction algorithm will necessarily need to be insensitive to this type of issue,
anyway.

In practice, we will be imaging objects of finite size; correspondingly, the atten-
uation coefficient will be modeled by a function of bounded support. This support
property is reflected in the Radon transform:

Lemma 1. Suppose f : R2 → R has bounded support, i.e. there exists R > 0 such
that f(x) = 0 for |x| > R. Then

Rf(t, ω) = 0 whenever |t| > R.

Proof. If `t,ω is a line with |t| > R, then `t,ω lies outside the support of f . Thus,
by definition of the Radon transform, Rf(t, ω) = 0 for any ω. �

The converse is false:

Example 3. Define the function f : R2 → R in polar coordinates via

f(r, θ) =

{
1
r cos(θ) r > 1

0 r ≤ 1.

Any line `t,ω with |t| > 1 lies entirely outside the unit disk, in which case a direct
computation (using contour integration, for example) shows that

Rf(t, ω) ≡ 0.

In particular, the Radon transform can vanish for |t| > R without the function being
zero outside the disk of radius R.

Recall that our main goal is to reconstruct functions from their Radon trans-
forms. Mathematically, this should be equivalent to finding an inversion formula
for the Radon transform. However, early reconstruction algorithms did not take
this approach. Instead, they relied on direct algebraic techniques. We will discuss
this approach in the next section.

Modern reconstruction algorithms are indeed based on inverting the Radon
transform. For the rest of this section, we will give a brief and informal intro-
duction into this topic, saving a rigorous treatment for later sections.

One natural approach to inverting the Radon transform is to try back-projection,
which refers to the following: given a function f and a point x ∈ R2, take the average
of the values of Rf over all lines that pass through x. Now, for a given direction
ω, the value of t ∈ R such that `t,ω passes through x is given by t = 〈x, ω〉. Thus,
parametrizing the set of directions ω by

ω = ω(θ) = (cos θ, sin θ)T , θ ∈ [0, 2π],

we arrive at the following.

Definition 2 (Back-projection). Given the Radon transform Rf of some function

f : R2 → R, the back-projection of Rf is the function f̃ : R2 → R defined by

f̃(x) = 1
2π

∫ 2π

0

Rf(〈x, ω〉, ω) dθ. (1)
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The back-projection of Rf does not recover f , but rather a blurred version
thereof. (In fact, it is not the inverse of R but rather a type of transpose operation.)
An example is provided in the following figure (imported from [1]).

The actual inversion formula for the Radon transform can instead be described
as a ‘filtered’ back-projection of the Radon transform. To describe what this means,
let us briefly introduce two main ingredients, which will be discussed in detail in
later sections.

The first ingredient is the central slice theorem, which provides a connection
between the Radon transform and the Fourier transform (defined and discussed
later). This refers to the formula

R̃f(r, ω) :=

∫ ∞
−∞
Rf(t, ω)e−itr dt = f̂(rω) (2)

for r ∈ R and ω ∈ S1, expressing the one-dimensional Fourier transform of Rf (in
the affine parameter t) in terms of the Fourier transform of f .

The second ingredient is the Fourier inversion formula, which expresses a func-
tion in terms of its Fourier transform as follows:

f(x) = 1
4π2

∫
R2

e−ix·ξ f̂(ξ) dξ. (3)

Changing to polar coordinates in (3) and using (2) and evenness of the Radon
transform, one can derive the following filtered back-projection formula:

f(x) = 1
2π

∫ π

0

|∇|Rf(〈x, ω〉, ω) dθ, (4)

where ω(θ) = (cos θ, sin θ)T and

|∇|Rf(t, ω) = 1
2π

∫ ∞
−∞
R̃f(r, ω)eirt|r| dr.

This final integral has the form of a filter applied to the Radon transform. The
formula (4) then resembles the back-projection formula (1), applied to the filtered
Radon transform rather than the Radon transform itself.

The filtered back-projection formula and Fourier inversion formula form the ba-
sis for the reconstruction algorithms that we will discuss in later sections. To get
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there, we will first need to undertake a rigorous treatment of the Fourier trans-
form and related topics. We will turn to this after our brief detour into algebraic
reconstruction techniques in the next section.
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Algebraic reconstruction techniques

In this section we will discuss some algebraic reconstruction techniques, which
seek to produce approximations to a two-dimensional slice of an attenuation co-
efficient without any explicit reference to inverting the Radon transform. These
techniques were used in some of the earliest reconstruction algorithms. While it
is possible to obtain very good images with algebraic reconstruction techniques,
this approach is typically much slower (in terms of computation techniques) than
modern approaches based on exact reconstruction formulas.

The figure above (from [1]) is an example of an early X-ray CT image using
the EMI scanner and an algebraic reconstruction technique. The dark edge around
the skull is an artifact of the reconstruction algorithm called the false subarachnoid
space.

Let f : R2 → R be the function that we wish to reconstruct. For simplicity, let
us assume that f is supported in the square [−1, 1]2 ⊂ R2. As before, we model
the X-ray measurements we take as samples of the Radon transform Rf of f . We
suppose that we have samples of Rf at the points {(ti, ωi)}Ii=1, which we denote
by

pi = Rf(ti, ωi), i = 1, . . . , I.

We will produce an approximation of f of the form

f ≈
J∑
j=1

xjbj (1)

for some collection of basis functions {bj}Jj=1 supported on [−1, 1]2. Using linearity
(and continuity) of the Radon transform, we should have

Rf ≈
J∑
j=1

xjRbj .

Evaluating this at the points (ti, ωi) and denoting

rij = Rbj(ti, ωi),

we can therefore obtain the following linear system for the coefficients xj :

pi =

J∑
j=1

xjrij for i = 1, . . . , I.
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In vector/matrix notation, we may express this as p = rx. We call r the measure-
ment matrix. It has dimensions I ×J , where I is the number of measurements and
J is the number of basis elements.

The problem now boils down to two main parts:

• The first part concerns finding a good choice of basis functions. For this,
one should first of all choose a large enough set of functions that are suf-
ficiently localized that we can faithfully reconstruct the functions f under
consideration. In addition, we must be able to compute (or approximate)
the measurement matrix r, whose entries consist of the Radon transforms
of the basis functions evaluated at the sample points.
• The second main component involves solving the linear system p = rx.

The challenges here lie in the fact that the system will be large in size and
cannot be expected to be consistent in general.

In what follows, we will consider the specific case of the pixel basis, defined
as follows. Given a positive integer K, we subdivide [−1, 1]2 into a K × K grid.
We label the sub-squares (called pixels) SKj for j = 1, . . .K2, and let bKj be the
characteristic function of Sj .

To reconstruct a function f with the pixel basis as in (1), one could take xj to
equal the average of f on SKj . Indeed, if f is continuous and supported in [−1, 1]2,
then

fK :=

K2∑
j=1

[
1
|SKj |

∫
SKj

f

]
bKj → f

uniformly as K →∞. whenever f is a continuous function supported in [−1, 1]2.
To construct the exact measurement matrix with a one-dimensional X-ray beam,

we should take rij to be the length of the intersection of the ith ray with the jth

pixel. If the X-ray has a one-dimensional cross section, one should take the area of
the corresponding strip.

For an even simpler model, one can take rij = 1 if the center of the jth pixel
is contained in the ith strip and 0 otherwise. In fact, this was used in early ap-
plications. This approach is computationally simpler (in the sense that you can
compute rij ‘as you go’), but it does not give a particularly accurate model for
measurements.

Suppose now that we divide the square into 128×128 pixels and take 150 samples
of the Radon transform at 128 equally spaced angles. Then the measurement matrix
has dimensions ≈ 19000 × 16000. This is problematic for several reasons. First,
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this matrix is too large to deal with numerically. This is ameliorated somewhat by
observing that at least the matrix is sparse, in the sense that for each i, there are
only about 128 values of j such that rij 6= 0. The second issue is that since the
system p = rx has more equations (≈ 19000) than unknowns (≈ 16000), we cannot
expect the system to be consistent in general. In this case it is natural to look for
the least squares solution to p = rx, which entails solving the normal system

rT p = rT rx, (2)

which is guaranteed to be consistent. As discussed in the linear algebra primer,
solutions to (2) minimize ‖p− rx‖ over all choices of x, and if r has full rank, then
(2) has a unique solution. Unfortunately, rT r still has dimensions ≈ 16000×16000,
and this matrix is no longer guaranteed to be sparse. Thus it is not reasonable to
try to solve (2) directly.

Our problem is therefore to find a computationally reasonable way to construct
an approximate solution to p = rx. The method used in algebraic reconstruction
techniques is related to the Kaczmarz method, or the method of projections, which
we now describe.

We write the linear system p = rx in the form

pi = ri · x, i = 1, . . . , I,

where ri is the ith row of r. Solving the system is therefore equivalent to simul-
taneous membership the I hyperplanes determined by the equations above. The
Kaczmarz method is an iterative algorithm, described as follows.

1. Choose an initial vector x0.
2. Project x0 orthogonally onto the hyperplane r1 · x = p1, yielding x1.

Project x1 onto the hyperplane r2 · x = p2, yielding x2.
. . .
Project xI−1 onto the hyperplane rI · x = pI , yielding xI .

3. Repeat Step 2 with xI instead of x0.

For the sake of completeness, we recall that the formula for the projection of a
vector y onto the hyperplane ri · x = pi is given by

y − y · ri − pi
ri · ri

ri. (3)

This algorithm is pictured in the figures below (from [1]), depicting some different
scenarios that could arise in the case I = 2. In the figures, the notation x(j,k)

corresponds to our xjI+k.

13.2. Kaczmarz's Method 499

simple. Figure 13.3(a) shows that the algorithm does not converge for two parallel lines-
this corresponds to an inconsistent system that has no solution. Figure 13.3(b) depicts an
over-determined, inconsistent 3 x 2 system; the projections are trapped inside the triangle
but do not converge as j -+ 00.

X(i,l)

Xi, )

(a) Two pamllcltincs. (b) O\'crdclcrminoo

Figure 13.3, Examples where the projection algorithm does not converge.

The equations that arise imaging applications can be rewrillen in the form

ri,x=pi, ;=1, ... ,1,

where r; is the ith-row of the measurement matrix, r. Each pair (ri' PI) defines a hyper-
plane in [IIJ:

{x: ri,x=Pi}.

Following exactly the same process used previously gives the basic Kaczmarz iteration:

I, Choose an initial vector x{O).

2. Orthogonally project xlO) into rl . x = PI --+ x CO• I );
orthogonally project X{O,I) into r2' x = P2 -+ x(O,2);

orthogonally project X{O.l-I) into r, . x = PI -+ X(D)) 11: x{l).
3. Go back to (2), replacing XCD) with x(I), and so on,

To do these computations requires a formula for the orthogonal projection of a vector
into a hyperplane. The vector rj is orthogonal to the hyperplane Ti' x = Pi. The orthogonal
projection of a vector y onto Ti . X = Pi is found by subtracting a lllultiple of Ti from y.
Let y(l) = y - o.Ti. Then 0. must satisfy

Pi = y(l). Ti = y. T; - o.T; . rio

We have the following result concerning this method.

Theorem 1. If the system p = rx is consistent, Kaczmarz iteration converges to
a solution.
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Proof. Suppose p = rz. By construction and the Pythagorean theorem,

‖xk+1 − z‖2 + ‖xk − xk+1‖2 = ‖xk − z‖2. (4)

Indeed, xk+1 is the projection of xk onto some hyperplane ri · x = pi, of which z
is also a member. Thus xk+1 − xk is orthogonal to this hyperplane, and hence to
xk+1 − z.

The equality above implies

‖xk+1 − z‖ ≤ ‖xk − z‖,
which implies that the sequence

{
‖xk − z‖

}
⊂ [0,∞) converges as k → ∞. In

particular, {xk} is a bounded sequence and hence converges along a subsequence
(denoted xkj ) to some limit x∗. By construction and the pigeonhole principle,
infinitely many terms of the subsequence xkj must belong to one of the hyperplanes,
say r` ·x = p`. As this further subsequence still converges to x∗ and the hyperplane
is closed, we deduce r` · x∗ = p`.

On the other hand, by (4) and convergence of
{
‖xk−z‖

}
, we have ‖xk−xk+1‖ →

0, and so
‖xkj+1 − x∗‖ ≤ ‖xkj+1 − xkj‖+ ‖xkj − x∗‖ → 0.

Applying the argument in the preceding paragraph, we then deduce r`+1 ·x∗ = p`+1.
Repeating this argument I times implies ri · x∗ = pi for each i = 1, . . . , I, so that
x∗ is a solution to rx = p.

It remains to show that the full sequence xk converges to x∗. For this, observe
that since

{
‖xk − z‖

}
converges for any solution z, we have in particular that{

‖xk−x∗‖
}

converges to some limit. However, since the limit along the subsequence

xkj is zero, that limit must be zero. �

In imaging applications, the system is generally not consistent. Moreover, be-
cause the system is so large (I ∼ 19000), we cannot practically compute more than
a few complete iterations in a reasonable time. In fact, one observes that the qual-
ity of the reconstructed image only improves for a few iterates, before becoming
worse again (perhaps due to noise in the data and inconsistencies arising from the
approximation of the measurement matrix).

This algorithm naturally takes advantage of sparseness in the measurement ma-
trices. Indeed, computing orthogonal projections requires primarily computing in-
ner products with the rows ri, which becomes simple when ri has many zeros.
Moreover, we can see from (3) that in passing from xk to xk+1, the only entries
that change are those at indices at which the appropriate row has a nonzero entry.

In the case that rx = p has more than one solution, we may use Kaczmarz
iteration to find a solution of minimal norm.

Lemma 1. With x0 = 0, the solution x∗ obtained by Kaczmarz iteration has
minimal norm.

Proof. The image R(rT ) is invariant under Kaczmarz iteration. This follows from
(3) and the fact that ri belongs to the image of rT (it is the image of the ith standard
basis vector). Thus if we choose x0 = 0 ∈ R(rT ), we deduce that xk ∈ R(rT ) for
all k and hence x∗ ∈ R(rT ). As R(rT ) = [ker(r)]⊥, we deduce that

‖x∗ + v‖2 = ‖x∗‖2 + ‖v‖2 ≥ ‖x∗‖2 for any v ∈ ker(r).

As any solution to rx = p is of the form x∗ + v for some v ∈ ker(r), the result
follows. �
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We will discuss imaging artifacts in a later section. These frequently appear as
rapid oscillations in the image. To minimize such effects, we may wish to construct
solutions with the smallest possible variation. To make this precise, define the
average value of a vector x ∈ RJ by

µx = 1
J 〈e, x〉, where e = (1, . . . , 1)T .

We then define the variance of x ∈ RJ by

σ2
x = ‖x− µxe‖2.

Proposition 1. If e ∈ span{ri}, then finding a minimal variance solution to rx = p
is equivalent to finding a minimal norm solution.

Proof. It suffices to show that if rx = p, then ‖x‖2 and σ2
x differ by a fixed constant.

To this end, first observe that if e =
∑
αiri, then

〈e, x〉 =
∑

αi〈ri, x〉 =
∑

αipi.

Thus

‖x− 1
J 〈e, x〉e‖

2 = ‖x‖2 − 1
J 〈e, x〉

2 = ‖x‖2 − 1
J

(∑
αipi

)2

,

and the result follows. �

We will conclude this section by describing a modification of the basic Kaczmarz
algorithm that may reduce the effects of noise and modeling error. In particular,
we may introduce some relaxation parameters to diminish noise and speed up con-
vergence. This involves introducing factors {λk} ⊂ [0, 2] so that instead of exactly
projecting onto the hyperplane ri · x = pi as in (3), we instead use the update

y 7→ y − λk
y · ri − pi
ri · ri

ri

in the kth complete iteration. In particular, λk = 0 means we do not update at all,
while λk = 1 recovers the original algorithm. If 0 < λk < 1, then we remain on the
same side of the hyperplane as the input, while if 1 < λk < 2 we end up on the
opposite side. The case λk = 2 means we reflect across the hyperplane.

One can prove that as long as λk ∈ (0, 2) for all k and the system has a solution,
the modified algorithm also converges to a solution. Furthermore, if x0 = 0 then
the limit will again be a minimal norm solution. In fact, if we let λk → 0 as k →∞,
then we may obtain convergence even when the system has no solution.

Using such modified algorithms, one can find approximate solutions that op-
timize various criteria (e.g. minimizing norm or improving contrast). See, for
example, Y. Censor and G. Herman, On some optimization techniques in image
reconstruction from projections, Appl. Numer. Math. 3 (1987), no. 5, 365–391.

We conclude our discussion with the following observation. In taking the X-ray
measurements, adjacent rays will produce measurement vectors ri and ri+1 that
are nearly parallel. As a result, when considering subsequent projections of our
approximate solutions, our approximation will only change very slightly. In fact,
the changes could be lost completely in noise and rounding errors. To improve
this situation, one would like to order the hyperplanes so that they are as close to
orthogonal as possible. One way this can be done is to order the measurements
randomly to minimize the expected correlation between successive measurements.
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The Fourier transform

We begin by defining the Fourier transform for the class of L1 functions, where
the definition as an integral transform makes sense. Later we will extend our
definition to L2, on which the Fourier transform has many nice properties. We will
focus in this section on the one-dimensional case. We will discuss extensions higher
dimensions briefly at the end.

Definition 1. For f ∈ L1(R), we define the Fourier transform of f to be the

function f̂ : R→ C defined by

f̂(ξ) =

∫
R
f(x)e−ixξ dx. (1)

Remark 1. Here eixξ is the complex exponential, given by

eixξ = cos(xξ) + i sin(xξ).

We view this as an oscillatory state with frequency ξ
2π . Equation (1) may be inter-

preted as computing the component of f in the direction of this state.

For f ∈ L1(R), we can show function f̂ : R→ C is continuous in ξ and tends to
zero as |ξ| → ∞. In particular, we may view the Fourier transform F as a linear
transformation F : L1(R)→ C0(R).

Proposition 1 (Riemann–Lebesgue lemma). For f ∈ L1, we have f̂ ∈ C0(R).

Remark 2. We will prove this below. The Riemann–Lebesgue lemma demonstrates
an important fact about the Fourier transform, namely, that it interchanges decay
(in this case, the assumption that f ∈ L1) and regularity (in this case, the fact that

f̂ is continuous).

Our first main goal is to prove the Fourier inversion formula, which allows us
to recover a function from its Fourier transform:

Theorem 1 (Fourier inversion). Let f ∈ L1(R). Suppose in addition that f is

uniformly continuous. If f̂ ∈ L1(R), then

f(x) = 1
2π

∫
R
f̂(ξ)eixξ dξ.

Before we can prove Theorem 1, we will need to collect a few lemmas. The
first lemma, which consists of working out the Fourier transform in the special
case of a Gaussian, will introduce us to some useful algebraic properties of this
transformation.

Lemma 1. Let f(x) = e−ax
2

for some a > 0. Then

f̂(ξ) =
√

π
a e
−ξ2/4a.

Proof. We first observe that with f(x) = e−ax
2

, we have

f ′(x) = −2axf(x).

Now let us take the Fourier transform of both sides of this equality. First, using
integration by parts, we have

F(f ′)(ξ) =

∫
f ′(x)e−ixξ dx = iξ

∫
f(x)e−ixξ dx = iξf̂(ξ). (2)
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On the other hand,∫
xf(x)e−ixξ dx = i ddξ

∫
f(x)e−ixξ dx = i ddξ f̂(ξ). (3)

Combining these, we deduce

d
dξ f̂(ξ) = − ξ

2a f̂(ξ).

This implies

f̂(ξ) = f̂(0)e−ξ
2/4a =

[∫
R
e−ax

2

dx

]
e−ξ

2/4a =
√

π
a e
−ξ2/4a, (4)

as desired. �

Remark 3. Equations (2) and (3) are also related to the fact that the Fourier
transform interchanges decay and regularity of functions.

We next have the following identity.

Lemma 2. Suppose f, g ∈ L1(R). Then∫
f(x)ĝ(x) dx =

∫
f̂(y)g(y) dy.

Proof. Both integrals converge absolutely, as the Fourier transform of an L1 func-
tion is bounded. Then, by Fubini’s theorem, both of the quantities above are equal
to ∫∫

f(x)e−ixyg(y) dy dx.

�

Let us turn to the proof of Theorem 1.

Proof of Theorem 1. Let f ∈ L1(R) be uniformly continuous. We will recover the
value of f at a point x ∈ R by taking the limit of averages of f against rescaled
Gaussians. More precisely, let us define the family of functions Kb(x) by

Kb(x) =
√

b
π e
−bx2

,

which (in light of (4)) obey
∫
Kb dx = 1 for all b > 0. The integrals∫

f(y)Kb(x− y) dy (5)

represent weighted averages of f around the point x. As b→∞, these averages are
concentrated in smaller and smaller neighborhoods of x, and accordingly we claim
the following:

f(x) = lim
b→∞

∫
f(y)Kb(x− y) dy. (6)

To prove (6), we use
∫
Kb dx ≡ 1 and a change of variables to write

f(x)−
∫
f(y)Kb(x− y) dy =

∫
[f(x)− f(x− y)]Kb(y) dy

=

∫
[f(x)− f(x− y√

b
)]K1(y) dy. (7)



26 JASON MURPHY, MISSOURI S&T

We now observe that since f ∈ L1 and f is uniformly continuous, we have f ∈ L∞.
Furthermore, by continuity of f we have that the integrand tends to zero as b→∞
for all y ∈ R. Thus the dominated convergence theorem implies (6).

We now consider the right-hand side of (6). By a change of variables and the
fact that Kb is even, we can first rewrite the integral as∫

f(y + x)Kb(y) dy.

Now, by Lemma 1 (with b = 1
4a ), we see that Kb is the Fourier transform of the

function 1
2π e
−x2/4b. We are then in a position to apply Lemma 2. This requires

that we compute the Fourier transform of the function y 7→ f(y + x), which (by a

change of variables) we find equals eixξ f̂(ξ). Thus Lemma 2 now yields∫
f(x− y)Kb(y) dy = 1

2π

∫
e−ξ

2/4beixξ f̂(ξ) dξ.

To complete the proof of the inversion formula, we recall that f̂ ∈ L1 by assump-
tion, so that by the dominated convergence theorem, this final quantity tends to
1

2π

∫
e−ixξ f̂(ξ) dξ as b→∞. �

Just as we view the Fourier transform F as a mapping F : L1(R) → C0(R),
we may view the operator appearing in the Fourier inversion formula as a linear

transformation, denoted F−1, and the Fourier inversion formula reads f = F−1f̂
for suitable f . As the two operators have essentially the same form, the Riemann–
Lebesgue lemma implies F−1 : L1(R) → C0(R). The interpretation of F−1 as an
inverse of F will be clarified after we have introduced the L2 theory.

The quantity appearing in (5) is an example of a convolution, and can be written
as

Kb ∗ f(x).

The argument we used (to show Kb ∗f(x)→ f(x)) is an example of an approximate
identity argument, which we will discuss in more detail in a later section.

Definition 2. For f, g ∈ L1(R), the convolution of f and g is the function f ∗ g :
R→ C defined by

f ∗ g(x) =

∫
R
f(x− y)g(y) dy.

The Fourier transform interacts simply with the convolution product.

Proposition 2. For f, g ∈ L1(R), we have f ∗ g ∈ L1(R), and

F [f ∗ g](ξ) = f̂(ξ)ĝ(ξ).

Proof. To prove f ∗ g ∈ L1, we use Fubini’s theorem and translation invariance of
Lebesgue measure:∫

|f ∗ g(x)| dx ≤
∫∫
|f(x− y)| |g(y)| dy dx

≤
∫
|g(y)|

[∫
|f(x− y)| dx

]
dy

≤ ‖f‖L1

∫
|g(y)| dy ≤ ‖f‖L1‖g‖L1 .
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For the identity, we compute directly, again using translation invariance:

F [f ∗ g](ξ) =

∫∫
e−ixξf(x− y)g(y) dy dx

=

∫
g(y)e−iyξ

[∫
e−i(x−y)ξf(x− y) dx

]
dy = f̂(ξ)ĝ(ξ).

�

With some of the basic theory in place, let us work out a simple illustrative
example, which in turn will be used in the proof of the Riemann–Lebesgue lemma.

Example 1. Let r1 be the characteristic function of the interval (−1, 1). Then

r̂1(ξ) =

∫ 1

−1

e−ixξ dx =
[
e−ixξ

−iξ
]1
x=−1

= 2 sin ξ
ξ .

The function ξ 7→ sin ξ
ξ is called the sinc function, which plays an important role

in many signal processing applications. Beware that in many other references, the
sinc function is instead defined as sinπx

πx . It is pictured below.

Observe that r1 ∈ L1(R) and r̂1 ∈ C0(R), but r̂1 is not absolutely integrable. The
discontinuity of r1 at the endpoints of the interval (−1, 1) leads to the characteristic
1/|ξ| type decay of the Fourier transform.

More generally, the Fourier transformation of χ(a,b) is given by

χ̂(a,b)(ξ) = 1
iξ [e−iaξ − e−ibξ].

The previous example illustrates the Riemann–Lebesgue lemma. In fact, it also
provides a proof of the Riemann–Lebesgue lemma. In particular, we can see that
an arbitrary finite linear combination of characteristic functions of intervals satisfies
the conclusions of the Riemann–Lebesgue lemma. Using the general fact in anal-
ysis that arbitrary L1 functions may be approximated in L1-norm by such linear
combinations, we can deduce the result for general L1 functions.

One can prove a wide range of results demonstrating the interchange of de-
cay/regularity between a function and its Fourier transform. We will not go into
too much detail, but let us mention a few representative results, which rely on
identities such as those appearing in (2) and (3):

(i) If f has j integrable derivatives, then f̂ decays like (1 + |ξ|)−j .
(ii) The rate of decay of the Fourier transform of a continuous L1 function may

be arbitrarily slow (if the function is very ‘noisy’).
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(iii) If f ∈ L1 and [1 + |ξ|]j f̂(ξ) is integrable, then f is continuous and has j
continuous derivatives.

(iv) If [1 + |x|]jf is integrable, then f̂ has j continuous derivatives that all tend
to zero as |ξ| → ∞.

(v) The Paley–Wiener theorem is a classical result, stating essentially that if
the Fourier transform of f decays exponentially, then f can be viewed as the
restriction to the line of an analytic function function defined on some strip
in the complex plane. This result implies that a function and its Fourier
transform cannot both have bounded support.

Let us prove only (i), since we will use it in what follows.

Proof of (i). Let us consider the case j = 1; the extension to larger values of j is
similar.

We have already seen that f ∈ L1 implies f̂ ∈ L∞. Now suppose further that
f ′ ∈ L1. Then, computing as in (2), we have

f̂(ξ) = 1
iξF(f ′)(ξ).

As F(f ′) ∈ L∞, this shows that f̂ decays like |ξ|−1 as |ξ| → ∞. �

♣ ♣ ♣
Our next main goal is the extension of the Fourier transform to L2. The key

fact that underlies this extension is the Parseval formula:

Theorem 2 (Parseval formula). Suppose f ∈ L1 ∩ L2. Then f̂ ∈ L2, and∫
|f(x)|2 dx = 1

2π

∫
|f̂(ξ)|2 dξ.

Let us first show that this holds for functions with some additional smoothness.

Lemma 3. Parseval’s formula holds f ∈ L1 ∩ L2 satisfying f ′ ∈ L1 ∩ L2 and
f ′′ ∈ L1.

Proof. By item (i) above, we have that f̂ decays like (1 + |ξ|)−2, so that f̂ ∈ L1.
Note also that f ′ ∈ L2 also implies that f is uniformly continuous.

We begin by writing∫
|f(x)|2 dx =

∫
f(x)f̄(x) dx = f ∗ g(0), where g(x) = f̄(−x).

We claim that the Fourier inversion formula applies to f ∗ g. Indeed, f ∗ g is in
L1 by Proposition 2. To see that f ∗ g is uniformly continuous, note that

f ∗ g(x2)− f ∗ g(x1) =

∫
[f(x2 − y)− f(x1 − y)]g(y) dy.

Thus uniform continuity follows from the facts that f ∈ L1 and f is uniformly
continuous. Finally, to see that F [f ∗ g] ∈ L1, we apply Proposition 2, which shows

F [f ∗ g](ξ) = f̂(ξ)ĝ(ξ) = f̂(ξ)f̂(ξ) = |f̂(ξ)|2.

Since f̂ ∈ L1 ∩ L∞, we have |f̂ |2 ∈ L1 as desired.
We may now apply Theorem 1 and the above identity to f ∗ g to deduce

f ∗ g(0) = 1
2π

∫
F [f ∗ g](ξ) dξ = 1

2π

∫
|f̂(ξ)|2 dξ.
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Combining this with the above identity now yields the result. �

We will recover the Parseval formula for f ∈ L1 ∩ L2 by approximation.

Lemma 4. For any f ∈ L1 ∩L2, there exists a sequence of functions fn ∈ L1 ∩L2

such that f ′n ∈ L1 ∩ L2, f ′′n ∈ L1, and fn → f in L1- and L2-norms.

Proof. We can use an approximate identity argument as in the proof of the Fourier
inversion formula. Recall the functions

Kb(x) =
√

b
π e
−bx2

for b > 0.

Now consider the sequence

fn(x) = f ∗Kn(x).

By the linearity of the convolution product, we can derive that f ′n = f ∗ K ′n and
f ′′n = f ∗K ′′n . In particular, using

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ,

we see that fn, f
′
n, f
′′
n ∈ L1. To see that fn, f

′
n ∈ L2, we first observe

‖f ∗ g‖L∞ ≤ sup
x

∫
|f(x− y)|g(y)| dy ≤ ‖f‖L1‖g‖L∞ .

Therefore (using K ′n,K
′′
n ∈ L∞) we have fn, f

′
n ∈ L1 ∩ L∞ ⊂ L2.

The proof that fn → f in L1- and L2-norms is similar to the argument in the
proof of the Fourier inversion formula (where we showed fn(x)→ f(x) pointwise).
For now, let us take the result for granted. We will discuss such arguments in more
detail in the next section. �

We turn to the proof of the Parseval formula.

Proof of Theorem 2. Let f ∈ L1 ∩ L2 and choose fn as in Lemma 4. By Lemma 3
and the linearity of the Fourier transform, we have

‖fn − fm‖2L2 = 1
2π‖f̂n − f̂m‖

2
L2 for all m,n ≥ 1.

As fn → f in L2-norm, we deduce that {f̂n} is a Cauchy sequence in L2 and hence
converges to some limit g. However, because fn → f in L1, we can deduce that

f̂n → f̂ pointwise. Thus, by uniqueness of limits, we have g = f̂ . Therefore, using
Lemma 3 again, we derive

‖f‖2L2 = lim
n→∞

‖fn‖2L2 = lim
n→∞

1
2π‖f̂n‖

2
L2 = 1

2π‖f̂‖
2
L2 ,

as desired. �

We now turn to the definition of the Fourier transform on L2.

Definition 3. Let f ∈ L2(R). We define the Fourier transform of f by

f̂(ξ) = lim
R→∞

∫ R

−R
f(x)e−ixξ dx, (8)

where the limit is taken in the L2 sense.

To make such a definition, we must check that the claimed limit always exists.

Proposition 3. For f ∈ L2, the limit in (8) exists.
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Proof. Fix f ∈ L2. Observe that χ[−R,R]f ∈ L1 ∩ L2 for any R > 0. Writing
gR = F(χ[−R,R]f), Parseval’s formula implies

‖gR2
− gR1

‖2L2 = 2π

∫
R1<|x|<R2

|f(x)|2 dx

for any R2 > R1 > 0. This, together with the dominated convergence theorem,
shows that {gR} is Cauchy in L2 as R→∞. Thus gR has an L2 limit as R→∞,
as desired. �

We collect the main properties about the Fourier transform on L2 in the following
theorem.

Theorem 3. The Fourier transform extends to a bounded linear transformation
F : L2 → L2. Parseval’s formula holds for all f ∈ L2, and consequently the
Fourier transform satisfies the Plancherel formula

〈f, g〉 = 1
2π 〈f̂ , ĝ〉 for all f, g ∈ L2.

The Fourier inversion formula holds in the following sense:

f(x) = lim
R→∞

1
2π

∫ R

−R
f̂(ξ)eixξ dξ, (9)

where the limit is taken in the L2-norm.

Proof. We have described how to extend the Fourier transform to L2 functions.
This transformation is linear by construction. The Parseval formula follows from
the definition and the Parseval formula on L1 ∩ L2. Indeed,

1
2π‖f̂‖

2
L2 = lim

R→∞
1

2π‖F
{
χ[−R,R]f

}
‖2L2 = lim

R→∞
‖χ[−R,R]f‖2L2 = ‖f‖2L2 .

Boundedness (which is equivalent to continuity by linearity) then follows from
Parseval’s identity. Parseval’s identity also implies Plancherel’s identify. To see
this, let f, g ∈ L2 and t ∈ R. Then

‖f‖2 + 2tRe〈f, g〉+ t2‖g‖2L2 = ‖f + tg‖2L2

= 1
2π‖f̂ + tĝ‖2L2

= 1
2π

[
‖f̂‖2L2 + 2tRe〈f̂ , ĝ〉+ t2‖ĝ‖2L2

]
.

As this holds for all t ∈ R, we find Re〈f, g〉 = 1
2π Re〈f̂ , ĝ〉. The same argument

using it instead of t shows that the imaginary parts are equal as well, and so we
derive Plancherel’s identity.

Finally, we consider the Fourier inversion formula. We let f ∈ L2, so that f̂ ∈ L2.

For any R > 0, we have that χRf̂ ∈ L1 ∩ L2, where χR denotes the characteristic
function of [−R,R]. Let us define

gR(x) = 1
2π

∫ R

−R
f̂(ξ)eixξ dξ.

We first wish to show that ĝR = χRf̂ . This is ‘obvious’ by the Fourier inversion
formula, but it is subtle here because we do not yet know in which spaces gR lives.
By the Riemann–Lebesgue lemma, we have that gR ∈ C0(R), but we cannot expect
gR ∈ L1 in general. We can, however, see that gR ∈ L2. Indeed,

gR(x) = 1
2πF

{
χRf̂

}
(−x).
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so that by Parseval’s formula we have

‖gR‖2L2 = 1
2π

∫
|ξ|≤R

|f̂(ξ)|2 dξ ≤ 1
2π‖f̂‖

2
L2 .

Once we establish ĝR = χRf̂ , we can complete the proof of (9) by using Parseval’s
theorem. In particular, we have

‖gR − f‖2L2 = 1
2π‖ĝR − f̂‖

2
L2 = 1

2π

∫
|ξ|>R

|f̂(ξ)|2 dξ → 0 as R→∞.

We turn to the evaluation of ĝR. This proof may be skipped in lecture. Recalling
the definition of the Fourier transform on L2, we fix T > 0 and compute∫ T

−T
e−ixξgR(x) dx = 1

2π

∫ R

−R

[∫ T

−T
e−ix(ξ−η) dx

]
f̂(η) dη

= 1
2π

∫
{χRf̂}(η) · F [χT ](ξ − η) dη

= 1
2πχRf̂ ∗ F [χT ](ξ).

Writing
KT (ξ) = 1

2πF [χT ](ξ) = 1
π · T sinc(Tξ),

the problem has now been reduced to another approximate identity type argument,
in the sense that we would like to prove

χRf̂ ∗KT → χRf̂ as T →∞. (10)

This is a bit subtle, however, because the sinc function fails to be absolutely inte-
grable. To resolve this point, we observe that we already know (by the definition
of the Fourier transform on L2) that convergence in L2 holds as T →∞:

χRf̂ ∗KT → ĝR in L2 as T →∞.

Thus it suffices to identify the limit as χRf̂ , for which almost everywhere conver-
gence in (10) will be enough. For this, we argue as follows.

Our first goal is the following: there exists a sequence Tn → ∞ such that for
almost every x, we have

lim
n→∞

1
π

∫
|y|≤M

sinc(y)[χRf̂ ](x− y
Tn

) dy = 1
π [χRf̂(x)]

∫
|y|≤M

sinc(y) dy (11)

for all M ∈ N. To this end, we note that for a given M ∈ N, we may use Minkowski’s
integral inequality and continuity of translatons in L2 to deduce∥∥∥∥∫

|y|≤M
sinc(y)

{
[χRf̂ ](x− y

T )− [χRf̂ ](x)
}
dy

∥∥∥∥
L2
x

≤
∥∥χM (y) sinc(y)‖χRf̂(x− y

T )− χRf̂(x)‖L2
x

∥∥
L1
y

≤ C logM sup
y∈[−M,M ]

‖χRf̂(· − y
T )− χRf̂(·)‖L2

x

→ 0 as T →∞.

We now rely on the fact that L2 convergence implies almost everywhere convergence
along a subsequence. In particular, we may find a sequence T 1

n → ∞ and a full
measure set S1 so that (11) holds along this sequence for x ∈ S1 and with M = 1.
Passing to a subsequence T 2

n of of T 1
n , we may find another full measure set S2 so
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that (11) holds along this subsequence for x ∈ S2 and with M = 2. Proceeding in
this way, we then take the sequence Tn = Tnn and the full measure set S = ∩MSM
and obtain that (11) holds for every M ∈ N and for every x ∈ S. Without loss of

generality, we may also assume that f̂ is finite on S.
Now let x ∈ S and take ε > 0. As

∫
sinc(y) dy = π (a fact proven by contour

integration), we may choose M ∈ N sufficiently large to guarantee∣∣∣∣1− 1
π

∫
|y|≤M

sinc(y) dy

∣∣∣∣ < ε

1 + |[χRf̂ ](x)|
.

On the other hand, as sinc ∈ L2 we may use Cauchy–Schwarz and the dominated
convergence theorem and choose M possibly even larger to guarantee

sup
T>0

∣∣∣∣∫
|y|>M

sinc(y)[χRf̂ ](x− y
T ) dy

∣∣∣∣ ≤ ‖ sinc ‖L2(|y|>M)‖χRf̂‖L2(R) < ε.

Finally, choosing x ∈ S, we obtain∣∣∣∣ 1
π

∫
sinc(y)χRf̂(x− y

Tn
)− [χRf̂ ](x)

∣∣∣∣
≤
∣∣∣∣ 1
π

∫
|y|≤M

sinc(y)[χRf̂ ](x− y
Tn

) dy − 1
π [χRf̂ ](x)

∫
|y|≤M

sinc(y) dy

∣∣∣∣
+

∣∣∣∣[χRf̂ ](x)

(
1
π

∫
|y|≤M

sinc(y) dy − 1

)∣∣∣∣
+

∣∣∣∣∫
|y|>M

sinc(y)[χRf̂ ](x− y
Tn

) dy

∣∣∣∣
< 2ε+ o(1) as n→∞.

We conclude that χRf̂ ∗KTn → χRf̂ almost everywhere as n→∞. As χRf̂ ∗KT →
ĝR in L2, we conclude that χRf̂ = ĝR, as was needed to show. �

We have now constructed the Fourier transform F as a bounded linear trans-
formation from L2 to L2. Furthermore, we have the inverse map F−1, e.g. by the
formula (9).

To conclude this section, let us briefly discuss the extension to higher dimensions.
The definition of the Fourier transform in higher dimensions is similar to the 1d
version, namely,

f̂(ξ) =

∫
Rn
e−ix·ξf(x) dx,

defined initially for f ∈ L1. The Fourier inversion formula is similar, as well. It
takes the form

f(x) = 1
(2π)n

∫
Rn
eix·ξ f̂(ξ) dξ

for suitable f . Similar phenomena occur regarding the interchange of decay and
regularity.

The Parseval formula in higher dimensions takes the form

‖f‖2L2 = 1
(2π)n ‖f̂‖

2
L2 ,

which again plays a key role in the development of the L2 theory.
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The convolution product

The convolution product was introduced in the previous section. In particular,
we defined

f ∗ g(x) =

∫
Rn
f(x− y)g(y) dy

for f, g ∈ L1 and obtained f ∗ g ∈ L1. In fact, the integral converges in other
settings, e.g. if f ∈ L1 and g is bounded. These facts may be expressed by using
the estimates

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 and ‖f ∗ g‖L∞ ≤ ‖f‖L1‖g‖L∞ ,
both of which we already proved in the previous section. More generally, one has
the estimate

‖f ∗ g‖Lp ≤ ‖f‖L1‖g‖Lp for any 1 ≤ p ≤ ∞,
which is an instance of Young’s convolution inequality.

Example 1. Let g = 1
|Br(0)|χBr(0), where Br(0) is the ball of radius r > 0 centered

at x = 0 and | · | denotes Lebesgue measure. Then

f ∗ g(x) = 1
|Br(0)|

∫
Br(0)

f(x− y) dy = 1
|Br(x)|

∫
Br(x)

f(y) dy.

That is, f ∗ g(x) is the average value of f on the ball Br(x).

More generally, convolutions have the interpretation of weighted averages, where
f ∗ g represents the weighted average of f against g (or vice versa).

The convolution product gives rise to an important class of linear transforma-
tions. In particular, for a fixed f ∈ L1, the mapping

g 7→ Cf (g) := f ∗ g
defines a linear transformation from Lp to itself, for any 1 ≤ p ≤ ∞. In the language
of engineering, we say that convolution with a fixed L1 function defines a linear
filter.

An essential property of filters defined via convolution is that they are shift
invariant.

Definition 1. Let f : Rn → C. For τ ∈ Rn, the shift of f by τ is the function

fτ (x) = f(x− τ).

A filter A : L∞ → L∞ is shift invariant if

A[fτ ] = [Af ]τ for all τ ∈ Rn and f ∈ L∞. (1)

Remark 1. In mathematical settings one often speaks of ‘translations’ rather than
‘shifts’. We can also describe translation invariance by saying that an operator
‘commutes with translations’.

Proposition 1. Filters defined by convolution are shift invariant.

Proof. Let ψ ∈ L1. Then by a change of variables we have

Cψ(fτ )(x) =

∫
ψ(x− y)f(y − τ) dy

=

∫
ψ(x− y − τ)f(y) dy = [Cψ(f)](x− τ).

�



34 JASON MURPHY, MISSOURI S&T

Remark 2. The converse is essentially true as well. That is, any shift invariant
linear filter can be represented by convolution. However, to make this precise one
must introduce the notion of convolution with distributions (also called ‘generalized
functions’), which we will not pursue here.

Another essential property of filters defined via convolution is that they are
Fourier multiplier operators.

Definition 2. Let T : L2(Rn) → L2(Rn). We say that T is a Fourier multiplier
operator if there exists a bounded function m : Rn → C such that

F [T (f)](ξ) = m(ξ)f̂(ξ)

(as an equality of L2 functions). We may write T = F−1mF , and we call m the
symbol or multiplier for T .

Proposition 2. Filters defined by convolution are Fourier multiplier operators.

Proof. Suppose ψ ∈ L1(Rn) and define Cψ(g) = ψ ∗ g as above. Proposition 2 from
the previous section implies

F [Cψ(g)](ξ) = F [ψ ∗ g](ξ) = ψ̂(ξ)ĝ(ξ) (2)

for all g ∈ L1. This identity shows that Cψ : L2 → L2 is a Fourier multiplier

operator with symbol ψ̂.
The following may be skipped in lecture: Strictly speaking, we actually need

prove (2) for g ∈ L2. We can achieve this as follows: For g ∈ L2, we may define
gk = χ[−k,k]g, which satisfy gk ∈ L1 ∩ L2 and gk → g in L2-norm. This implies

ψ ∗ gk → ψ ∗ g in L2, as

‖ψ ∗ gk − ψ ∗ g‖L2 = ‖ψ ∗ [gk − g]‖L2 ≤ ‖ψ‖L1‖gk − g‖L2 .

On the other hand, by Parseval’s theorem, we also have ĝk → ĝ in L2-norm. Thus,

as ψ̂ ∈ L∞, we have ψ̂ĝk → ψ̂ĝ in L2-norm. Therefore the identity (2) also holds
for g ∈ L2, provided it is interpreted as an equality of L2 functions. �

Remark 3. The preceding result has real practical importance. It shows that we
can compute filters arising from convolution using the Fourier transform and its
inverse. Indeed, we have

Cψ(f) = F−1(ψ̂f̂).

This is important because the Fourier transform has efficient and accurate numerical
implementations.

So far, we have primarily considered convolution operators Cψ with ψ ∈ L1. If
we additionally assume that ψ is smooth, then the convolution f ∗ ψ is smooth as
well.

Proposition 3. Suppose f is a locally integrable function and that ψ is a function
with bounded support and k continuous derivatives. Then f∗ψ also has k continuous
derivatives. In fact, for any multiindex α with |α| ≤ k, we have

∂αx (f ∗ ψ) = f ∗ (∂αxψ).

Remark 4. A multiindex α = (α1, . . . , αn) is an element of [N ∪ {0}]n. We write

∂αx = [ ∂
∂x1

]α1 · · · [ ∂
∂xn

]αn .
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Remark 5. The integrals defining the convolutions in Proposition 3 converge due
to the fact that f is locally integrable and ψ (along with all of its derivatives) have
bounded support.

Proof. Let us prove something simpler, namely, that if f is locally integrable and
ψ ∈ Cb, then f ∗ψ is continuous. Repeating the argument using difference quotients
will then yield the more general result.

Given any x1, x2 ∈ Rn, we may write

f ∗ ψ(x2)− f ∗ ψ(x1) =

∫
f(y)[ψ(x2 − y)− ψ(x1 − y)] dy.

Now suppose ψ is supported on BR(0) and let ε > 0. By uniform continuity of ψ,
we may choose 0 < δ < 1 so that |z2 − z1| < δ implies |ψ(z2)− ψ(z1)| ≤ ε

M , where
we take

M =

∫
BR(x1)

|f(y)| dy +

∫
BR(x2)

|f(y)| dy,

which is finite by the assumption of local integrability. Then for |x2 − x1| < δ, we
obtain

|f ∗ ψ(x2)− f ∗ ψ(x1)| < ε.

This implies continuity. �

Remark 6. The proof above also shows that if f ∈ L1 and ψ ∈ Cb, then f ∗ ψ is
uniformly continuous.

Remark 7. We can understand the smoothing effect as follows. As we saw in the
previous section, smoothness is connected to decay of the Fourier transform. If we

take the Fourier transform of f ∗ ψ, we obtain f̂ ψ̂. As f ∈ L1 =⇒ f̂ ∈ L∞, we

see that f̂ ψ̂ decays just as rapidly as ψ̂. Therefore f ∗ ψ is just as smooth as ψ.

Combining the previous proposition with the ‘approximate identity’ arguments
mentioned in the last section, we can now describe a general method for the smooth
approximation of functions.

Proposition 4 (Approximation to the identity). Suppose ϕ ∈ L1 and
∫
ϕ = 1.

For each ε > 0, define

ϕε(x) = 1
εϕ(xε ).

Then:

(i) If f ∈ L2, then ϕε ∗ f → f in L2 as ε→ 0.
(ii) If f ∈ L1, then ϕε ∗ f → f in L1 as ε→ 0.
(iii) If f is locally integrable and continuous at x and ϕ has bounded support,

then ϕε ∗ f(x)→ f(x) as ε→ 0.

Remark 8.
(a) While we have focused on L1 and L2, parts (i)–(ii) actually hold on Lp for

any 1 ≤ p <∞.
(b) If ϕ is smooth, then by Proposition 3 we see that ϕε ∗ f give smooth approx-

imations to f in suitable norms.
(c) When proving the Fourier inversion formula, we essentially proved (iii) under

stronger assumptions on f (namely, f ∈ L1 and f uniformly continuous) but weaker
conditions on the kernel (namely, we did not use a kernel with bounded support).
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Proof. These proofs may be skipped in lecture.
As (i) involves the L2 topology, we can give a simplified proof using Parseval’s

formula. In particular, it is equivalent to prove that

‖[ϕ̂ε − 1]f̂‖L2 → 0 as ε→ 0. (3)

Now a change of variables shows

ϕ̂ε(ξ) = ϕ̂(εξ).

Now observe that for every ξ, we have ϕ̂(εξ)→ ϕ̂(0) =
∫
ϕ = 1 as ε→ 0. Thus (3)

holds by the dominated convergence theorem.
We turn to (ii). This proof generalizes to treat the Lp case for 1 ≤ p < ∞ by

incorporating Minkowski’s integral inequality (i.e. ‖F (x, y)‖LpL1 ≤ ‖F (x, y)‖L1Lp

for 1 ≤ p ≤ ∞) and continuity of translations in Lp.
We let η > 0 and use the continuity of translations in L1 to find δ > 0 so that

‖f(· − y)− f(·)‖L1 < η for all |y| < δ.

We now use
∫
ϕ = 1 to write∥∥∥∥∫ f(x− y)ϕε(y) dy − f(x)

∥∥∥∥
L1

=

∥∥∥∥∫ [f(x− y)− f(x)]ϕε(y) dy

∥∥∥∥
L1

.

We split the dy integral into two regions, namely, |y| < δ and |y| ≥ δ. We first
estimate ∥∥∥∥∫

|y|≤δ
[f(x− y)− f(x)]ϕε(y) dy

∥∥∥∥
L1
x

≤
∥∥ϕε(y)‖f(x− y)− f(x)‖L1

x

∥∥
L1
y(|y|≤δ) < ε‖ϕ‖L1 .

On the other hand, by the triangle inequality,∥∥∥∥∫
|y|>δ

[f(x− y)− f(x)]ϕε(y) dy

∥∥∥∥
L1
x

≤ 2‖f‖L1‖ϕε‖L1(|y|>δ).

Now observe that by a change of variables and the dominated convergence theorem,

‖ϕε‖L1(|y|>δ) = ‖ϕ‖L1(|y|>δη−1) → 0 as η → 0.

Combining the estimates for the two regions, we complete the proof.
Finally, consider (iii). We let η > 0 and choose δ > 0 so that

|f(x)− f(x− y)| < η for all |y| < δ.

As φ has bounded support, we have that φε(y) = 1
εφ(yε ) is supported in {|y| ≤ δ}

for all ε sufficiently small. Thus

|φε ∗ f(x)− f(x)| =
∣∣∣∣∫
|y|≤δ

φε(y)[f(x− y)− f(x)] dy

∣∣∣∣
≤
∫
|y|≤δ

|f(x− y)− f(y)| |φε(y)| dy ≤ η‖φ‖L1 .

This completes the proof. �

As an application, let us remove the assumption of uniform continuity from the
Fourier inversion formula.
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Corollary 1. The following Fourier inversion formula holds provided f ∈ L1 and

f̂ ∈ L1:

f(x) = 1
2π

∫
R
eixξ f̂(ξ) dξ for almost every x ∈ R. (4)

Proof. This proof may be skipped in lecture.

Let f ∈ L1 with f̂ ∈ L1 and take a family of approximate identities ϕε(x) =
ε−1ϕ(xε ), where ϕ is smooth and has bounded support. Then for every ε > 0, we

have ϕε ∗ f ∈ L1 and (by Remark 6) is uniformly continuous. Moreover, its Fourier

transform is given by ϕ̂(εξ)f̂(ξ) ∈ L1. Therefore the Fourier inversion formula
proved in the previous section implies

ϕε ∗ f(x) = 1
2π

∫
ϕ̂(εξ)f̂(ξ)eixξ dξ (5)

for all x ∈ R and ε > 0. By the dominated convergence theorem (and the fact that
ϕ̂(0) =

∫
ϕ = 1), the right-hand side of (5) converges to

1
2π

∫
f̂(ξ)eixξ dξ

pointwise for x ∈ R. On the other hand, the left-hand side of (5) converges to f in
L1-norm as ε→ 0, and hence (by uniqueness of limits) we derive (4). �

In each of the items in Proposition 4, we see that the functions ϕε converge to
some kind of identity element for the convolution product. However, the limiting
object is not a function. In fact, the convolution product on L1 does not have an
identity element.

Proposition 5 (No identity element). There is no function g ∈ L1 such that
f ∗ g = f for all f ∈ L1.

Proof. For simplicity, let us work in the one-dimensional case.

Suppose such g ∈ L1 exists and let f(x) = e−x
2/2. Then we have f̂(ξ) =√

2πe−ξ
2/2, and so by the convolution identity F [f ∗ g] = f̂ ĝ we derive

e−ξ
2/2ĝ(ξ) = e−ξ

2/2 for all ξ ∈ R.

This implies ĝ(ξ) = 1 for all ξ ∈ R, which contradicts the Riemann–Lebesgue
lemma. Indeed, if g ∈ L1 then we must have g → 0 as |ξ| → ∞. �

Although the convolution product has no identity element in L1, there is in fact a
perfectly natural notion of an identity element for the convolution product, namely,
the Dirac delta distribution. This object arises frequently in mathematics, physics,
and engineering. It is not a function, but rather a linear functional or distribution.
It may also be called the δ-function (a misnomer) or a unit impulse.

Definition 3 (Dirac delta distribution). The Dirac delta distribution is the func-
tional δ : C(Rn)→ C defined by

δ(f) = f(0) for any f ∈ C(Rn).

As mentioned above, δ is not itself a function, but rather a ‘distribution’ or
‘generalized function’.
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The term ‘generalized function’ is reasonable, in the sense that functions them-
selves may be identified as distributions. For example, any function g ∈ L1 can be
identified with a functional Tg : L∞(Rn)→ C by setting

Tg(f) =

∫
f(y)g(y) dy for any f ∈ L∞(Rn). (6)

This defines a continuous linear transformation with norm equal to ‖g‖L1 . More-
over, the mapping g 7→ Tg is injective.

If we (formally) suppose that δ arises as in (6), so that

“f(0) =

∫
δ(y)f(y) dy”,

then we obtain

“f ∗ δ(x) =

∫
δ(y)f(x− y) dy = f(x)”,

demonstrating that δ is indeed the identity element for the convolution product. In
fact, by extending the definition of convolution to accommodate distributions, one
can make this rigorous. Furthermore, one can extend the Fourier transform to the
setting of distributions, and in this setting one obtains Fδ ≡ 1, which is precisely
what we expect in light of the proof of Proposition 5.

The results of Proposition 4 may be summarized succinctly by saying that for
ϕ ∈ L1 with

∫
ϕ = 1, the functions ϕε(x) = 1

εϕ(xε ) converge to δ ‘in the sense of
distributions’.

In many applications one needs to design suitable approximations to δ. For
example, if we have some ‘noisy’ data, then (as we have seen above) convolution
with an approximate identity provides a way to smooth out the data without losing
too much information. In practice, one can build approximate identities either by
using functions like ϕε above or by approximating Fδ (which is just the constant
function 1) in Fourier space.

Example 2. Suppose we want to construct a function ϕ such that ϕ̂ is approxi-
mately one in a given interval [−B,B]. If we choose

ϕ̂(ξ) = χ[−B,B](ξ),

then we obtain

ϕ(x) = ψB(ξ) := 1
πB sinc(Bx)

(called a sinc pulse in this context). This function is not a good choice for an
approximate identity because it is not absolutely integrable. On the other hand, if

we approximate δ̂ by

ϕ̂(ξ) = 1
2Bχ[−B,B] ∗ χ[−B,B](ξ),

then we obtain the sinc2 pulse

ϕ(x) = 1
2Bψ

2
B(x),

which is positive, absolutely integrable, and more sharply peaked at x = 0. Neither
sinc nor sinc2 have bounded support. They both have oscillatory tails as |x| → ∞,
known in engineering literature as side lobes.

We will close this section by discussing briefly the notion of resolution in this set-
ting. We have previously seen that convolution has a smoothing effect on functions,
which can be helpful in suppressing ‘noise’. On the other hand, convolution makes
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the function ‘blurrier’. To make this more precise, we begin with the following
result.

Proposition 6. The support of f ∗ g (i.e. the closure of the set where f ∗ g is
non-zero) is contained in the algebraic sum of supp f and supp g, i.e. the set

supp f + supp g = {x+ y : x ∈ supp f and y ∈ supp g}.

Proof. If x is not in supp f + supp g, then for every y we have f(y)g(x− y) = 0 and
hence f ∗ g(x) = 0. In fact, we can apply this argument on some ball containing x
that is disjoint from supp f + supp g. �

Using this support property, we see that if ψ is a nonnegative approximate
identity supported in the ball of radius ε, we have that the support of ψ ∗ f is
contained in the set of points within a distance ε of the support of f . The value
f ∗ ψ(x) is a weighted average of the values of f over [x− ε, x+ ε].

Now consider what happens if we take the j-fold convolution of ψ with itself,
denoted ψ ∗j ψ. This will still give an approximate identity, as its total integral is
one: ∫

ψ ∗j ψ(x) dx = F [ψ ∗j ψ](0) = [ψ̂(0)]j =

[∫
ψ(x) dx

]j
= 1.

By the above result, ψ ∗j ψ will be supported in [−jε, jε], and so f ∗ [ψ ∗j ψ](x)
will be a weighted average over [x − jε, x + jε]. On the other hand, the Fourier

transform of ψ ∗j ψ decays j times faster than ψ̂. Thus f ∗ [ψ ∗j ψ] will be a blurrier,
smoother version of f than f ∗ ψ.

We can balance the two effects (smoothing/blurring) by considering the scaled
j-fold convolution j[ψ ∗j ψ](jx). This function is again supported in [−ε, ε], so that
it blurs f no more than ψ itself. On the other hand, it is far more smoothing than

ψ, as its Fourier transform is given by [ψ̂( ξj )]j , which decays j times faster than ψ̂.
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More on the Radon transform

With the theory of the Fourier transform and convolutions in place, we return to
our study of the Radon transform. Our first main goal will be an inversion formula.

We begin by recalling the definition of the Radon transform: for a function
f ∈ Cb(R2), the Radon transform is the function

Rf : R× S1 → R

given by

Rf(t, ω) =

∫ ∞
−∞

f(sω̂ + tω) ds,

where ω = (ω1, ω2)T and ω̂ = (−ω2, ω1)T . In particular, Rf(t, ω) is the integral of
f over the oriented line `t,ω, where ω is the vector perpendicular to this line and |t|
is the distance from the line to the origin. Continuity and bounded support are not
necessary conditions for the Radon transform to be well-defined. What is really
needed is ∫ ∞

−∞
|f(tω + sω̂)| ds <∞ for all (t, ω) ∈ R× S1.

The set of functions satisfying this property is called the natural domain of the
Radon transform. This includes, for example, any piecewise continuous function
decaying like |x|−1−ε for some ε > 0 as |x| → ∞.

When integrating with respect to ω, it is useful to use the parametrization

ω(θ) = (cos θ, sin(θ))T , θ ∈ [0, 2π).

Then integration over R× S1 is given by∫ 2π

0

∫ ∞
−∞

h(t, ω(θ)) dt dθ, denoted by

∫ 2π

0

∫ ∞
−∞

h(t, ω) dt dω,

and the L2(R× S1)-norm is defined via

‖h‖2L2(R×S1) =

∫ 2π

0

∫ ∞
−∞
|h(t, ω)|2 dt dω.

We say h : R × S1 → R is continuous if h(t, θ) := h(t, ω(θ)) is 2π-periodic in θ
and continuous as a function on R× [0, 2π]. Differentiability is defined similarly.

Our first main result connects the Radon transform and the Fourier transform,
which will allow us to leverage the Fourier inversion formula into a Radon inversion
formula.

Theorem 1 (Central slice theorem). Let f ∈ L1(R2) be in the natural domain of
R. For any r ∈ R and ω ∈ S1,∫

R
Rf(t, ω)e−itr dt = f̂(rω),

where f̂ is the (two-dimensional) Fourier transform of f .

Remark 1. The expression on the left gives the one-dimensional Fourier transform
of t 7→ Rf(t, ω) (for fixed ω ∈ S1).
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Proof. We first use the definition of R to write∫
R
Rf(t, ω)e−itr dt =

∫∫
R2

f(tω + sω̂)e−itr ds dt.

Now let us change variables and write x = x(t, s) = tω + sω̂. The Jacobian is

det

[
ω1 −ω2

ω2 ω1

]
= |ω|2 = 1.

Moreover, x · ω = t, and hence the integral becomes∫
R2

f(x)e−ix·(rω) dx = f̂(rω).

This completes the proof. �

In light of the central slice theorem, we introduce the following notation:

Definition 1. For a function h = h(t, ω) on R× S1, we define

h̃(r, ω) :=

∫ ∞
−∞

h(t, ω)e−irt dt.

Then the central slice theorem is the identity

f̂(rω) = R̃f(r, ω).

Before moving on to the Radon inversion formula, let us first point out that
in contrast to the Fourier transform, the Radon transform does not extend to a
continuous map from L2(R2) → L2(R × S1), nor can R−1 be a continuous map
from L2(R × S1) to L2(R2). This will be a consequence of the following Parseval
formula for the Radon transform.

Theorem 2 (Parseval formula for the Radon transform). Suppose f ∈ L2 and f
is in the natural domain of R. Then∫

R2

|f(x)|2 dx = 1
4π2

∫ π

0

∫ ∞
−∞
|R̃f(r, ω)|2|r| dr dω.

Proof. We assume additionally that f ∈ L1. This may be removed with an approx-
imate identity argument.

We first recall that since `t,ω = `−t,−ω are the same line, the Radon transform
satisfies Rf(t, ω) = Rf(−t,−ω). This implies

R̃f(−r,−ω) =

∫ ∞
−∞
Rf(t,−ω)eirt dt =

∫ ∞
−∞
Rf(−t, ω)eirt dt = R̃f(r, ω),

where we have changed variables t 7→ −t in the final step.
Changing to polar coordinates and applying the central slice theorem, we can

therefore obtain ∫
R2

|f(x)|2 dx = 1
4π2

∫ 2π

0

∫ ∞
0

|f̂(rω)|2r dr dω

= 1
4π2

∫ π

0

∫ ∞
−∞
|R̃f(r, ω)|2|r| dr dω,

as desired. �

Using this Parseval formula, we may now preclude the possibility that R or R−1

be bounded between the appropriate L2 spaces.
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Corollary 1. There are no m > 0, M > 0 such that

‖Rf‖L2(R×S1) ≤M‖f‖L2(R2) and ‖Rf‖L2(R×S1) ≥ m‖f‖L2(R2) (1)

for all f ∈ L2(R2).

Proof. This proof may be skipped in lecture. By the 1d Parseval formula for the
Fourier transform, we have

‖Rf‖2L2(R×S1) = 1
2π

∫ 2π

0

∫ ∞
−∞
|R̃f(r, ω)|2 dr dω.

Thus, if the first bound in (1) holds for some M > 0, we have by the Parseval
theorem for the Radon transform that

1
2π

∫ 2π

0

∫ ∞
−∞
|R̃f(r, ω)|2 dr dω ≤ M

4π2

∫ π

0

∫ ∞
−∞
|R̃f(r, ω)|2|r| dr dω (2)

for all f ∈ L2(R2). Now let us consider the family of functions fa(t) = a1/4e−at
2

.

Then we have f̃a(r) =
√
πa−1/4e−r

2/4a. Thus, after a change of variables y = r/
√
a,

we find that for the left-hand side of (2) we obtain

LHS(2) = π

∫ ∞
−∞

e−y
4/16 dy for all a > 0.

On the other hand, by the same change of variables,

RHS(2) = M
4 a

1
2

∫ ∞
−∞

e−y
4/16|y| dy → 0 as a→ 0.

Thus an inequality of the form (2) (with M fixed) that holds for all f ∈ L2 is im-
possible. A similar argument shows that the second inequality in (1) is impossible,
as well. �

Remark 2. The quantity appearing in the Parseval formula, namely, |r| 12 R̃f(r, ω),
is the Fourier transform of the half-derivative operator in the affine parameter.
Thus the Parseval formula implies that the Radon transform of an L2-function
must have some smoothness in the affine parameter.

Using the central slice theorem and Fourier inversion, we can now give an inver-
sion formula for the Radon transform.

Theorem 3 (Radon inversion formula). Let f ∈ L1 be in the natural domain of

R, and suppose f̂ ∈ L1. Then

f(x) = 1
4π2

∫ π

0

∫ ∞
−∞

eirx·ωR̃f(r, ω)|r| dr dω.

Proof. We apply the Fourier inversion formula and change to polar coordinates to
write

f(x) = 1
4π2

∫
R2

eixξ f̂(ξ) dξ = 1
4π2

∫ 2π

0

∫ ∞
0

eirx·ω f̂(rω)r dr dω.

We now apply the central slice theorem. This yields

f(x) = 1
4π2

∫ 2π

0

∫ ∞
0

eix·(rω)R̃f(r, ω)r dr dω. (3)

Recalling that R̃f(−r,−ω) = R̃f(r, ω), we may rewrite (3) to obtain the stated
inversion formula. �
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Remark 3. In imaging applications, it is typical to work with piecewise continuous

functions f of bounded support. This does not guarantee that f̂ ∈ L1, and so the
Fourier inversion formula needs to be interpreted appropriately. In particular, using
the L2 theory, we may write

f(x) = lim
R→∞

1
4π2

∫ π

0

∫ R

−R
eix·(rω)R̃f(r, ω)|r| dr dω

as an L2 limit. Typically, if f is continuous at x, then the integral on the right-hand
side will exist as an improper Riemann integral and converge to f(x).

Remark 4. We now have completed a very idealized mathematical model for X-ray
CT imaging:

• The attenuation coefficient f of a two-dimensional slice of material deter-
mines the attenuation of the intensity I of X-rays of a given energy traveling
along a line `t,ω via Beer’s law: d

dsI = −fI.
• By comparing the intensity of the incident beam to the emitted beam, we

measure the Radon transform of f :

Rf(t, ω) = − log
[ Io(t,ω)
Ii(t,ω)

]
.

• Using the Radon inversion formula, we reconstruct f from the measure-
ments of Rf .

This is clearly an overly simplified model. One obvious issue is the fact that we
will have only finitely many samples of Rf to work with. Nonetheless, this basic
model will already be good starting point for developing some practical reconstruction
algorithms.

The Radon inversion formula can be viewed as two steps. In particular, one first
performs the radial integral, and then takes the angular integral.

• The radial integral has the form of a filter applied to the Radon transform.
Indeed, we may write this integral as

|∇|Rf(t, ω) = 1
2π

∫ ∞
−∞
R̃f(r, ω)eirt|r| dr, t = 〈x, ω〉.

This has the form of a Fourier multiplier operator F−1mF applied to Rf ,
where F is the Fourier transform in the affine parameter and the symbol
m is given by m(r) = |r|.
• The angular integral is essentially just the back-projection formula, but

applied to the filtered Radon transform rather than directly to the Radon
transform:

f(x) = 1
2π

∫ π

0

|∇|Rf(〈x, ω〉, ω) dω.

For this reason, we call the Radon inversion formula the filtered back-projection
formula. To better understand the filtered back-projection formula (and how we
might build approximate versions of it), we will need to take a closer look at the
filtering step, which is quite a bit more subtle than the back-projection step.

The filter |∇| appearing above is the composition of two filters. This is most
readily seen on the Fourier side, where the symbol |r| is given by the product of r
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and sign(r), where

sign(r) =


1 r > 0

0 r = 0

−1 r < 0.

We first consider both of these operators separately. To remain consistent with the
above notation, we write functions as f = f(t) and write the Fourier transform as

f̂ = f̂(r).

Example 1. The Fourier multiplier operator with symbol m(r) = r is 1
i ∂t. Indeed,

integrating by parts we have

F [ 1
i ∂tf ](r) = 1

i

∫
R
e−irt∂tf(t) dt = r

∫
R
e−irtf(t) dt = rf̂(r).

Example 2. The Fourier multiplier operator with symbol m(r) = sign(r) is called

the Hilbert transform, denoted by H. Thus for f ∈ L2 such that f̂ ∈ L1, we have

Hf(t) = 1
2π

∫ ∞
−∞

f̂(r) sign(r)eitr dr.

Differentiation is simple in the sense that it is a local operator. To evaluate the
derivative of f at a point only requires the values of f nearby that point. On the
other hand, real data will always contain some noise, which means that the data
will need to be smoothed out before it can be differentiated. On the other hand,
the Hilbert transform is a nonlocal operator. That is, to compute Hf at a single
point requires knowledge of f at all points. This poses a different challenge, as in
practice we can only ever compute integrals over finite intervals.

With the above definitions in place, the filtered back-projection formula can be
rewritten

f(x) = 1
2πi

∫ π

0

H[∂tRf ](〈x, ω〉, ω) dω.

In particular, we reconstruct f by back-projecting the Hilbert transform of 1
i ∂tRf .

Remark 5. If f has bounded support, then so does ∂tRf . Using the theory of
analytic functions, one can then show that H∂tRf does not have bounded support.
Thus the integrand in the filtered back-projection formula is typically non-zero, and
outside of the support of f the integral only vanishes due to cancellation between
positive and negative parts.

Example 3 (Example of Radon inversion). Consider the simple example of f =
χB1

, where B1 is the closed unit ball. Then, as we have previously computed,

Rf(t, ω) =

{
2
√

1− t2 |t| ≤ 1,

0 |t| > 1.

Let us apply the filtered back-projection formula. This requires that we compute
H∂tRf , which we observe equals ∂tHRf . This relies on the fact that all Fourier
multiplier operators commute.

A computation using methods from complex analysis shows that

1
iHRf(t, ω) =


2t |t| < 1

2(t+
√
t2 − 1) t < −1

2(t−
√
t2 − 1) t > 1.
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Now, this function fails to be differentiable at t = ±1. Nonetheless, we can interpret
1
i ∂tHRf as a ‘weak derivative’ in L1, given by

1
i ∂tHRf(t, ω) =

{
2− 2|t|√

t2−1
|t| > 1,

2 |t| < 1.

We now need to do the back-projection step. For x ∈ B1, we have |〈x, ω〉| ≤ 1,
and so

1
2πi

∫ π

0

H∂tRf(〈x, ω〉, ω) dω = 1
2π

∫ π

0

2 dω = 1 = χB1
(x),

as desired. Next consider x ∈ R2 with |x| > 1. Using the rotation symmetry, it
suffices to evaluate f(x, 0) for some x ∈ R with x > 1. In this case 〈x, ω〉 = x cos θ.
We now choose the angle θx ∈ (0, π2 ) so that x cos θx = 1. Then the inversion
formula becomes

f(x, 0) = 1
2π

[
4

∫ θx

0

(
1− |x cos θ|√

x2 cos2 θ−1

)
dθ − 2

∫ π−θx

θx

dθ

]
= 0.

This is a much more complicated integral, involving an unbounded integrand. In
particular, this would be a more challenging integral to compute numerically.

♣ ♣ ♣
We turn to some practical issues related to the computation of the filtered back-

projection formula. We begin with a further discussion of the Hilbert transform.
One effective approach to approximating the Hilbert transform is to use the

Fourier representation.

Proposition 1. Suppose {φε} is a uniformly bounded family of locally integrable
functions that satisfies φε(ξ)→ sign(ξ) as ε→ 0 for all ξ ∈ R. If f ∈ L2, then

Hf = lim
ε→0
F−1[φεf̂ ],

where the limit is taken in L2-norm.

Proof. By Parseval’s formula, we have

‖Hf −F−1[φεf̂ ]‖2L2 = 1
2π

∫
R
| sign(ξ)− φε(ξ)|2|f̂(ξ)|2 dξ → 0 as ε→ 0

by the dominated convergence theorem. �

Example 4. If f is smooth enough that f̂ decays as |ξ| → ∞, then we can write

Hf(t) = lim
ε→0

1
2π

∫
R
φε(ξ)f̂(ξ)eitξ dξ

as a pointwise limit. If we take

φε(ξ) = ĥε(ξ) := sign(ξ)e−ε|ξ|,

then one can compute the inverse Fourier transform of ĥε to be

hε(t) = i
π

t
t2+ε2 .

This is a smooth function that decays at infinity (although not fast enough to belong
to L1). Using these functions, we arrive at approximations to the Hilbert transform
expressed as convolutions:

Hεf = F−1[f̂ ĥε] = f ∗ hε.
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Note that as hε ∈ L2, these convolutions are well-defined pointwise for f ∈ L2

If we send ε → 0 in the previous example, we arrive at a guess for an expres-
sion of the Hilbert transform as a convolution operator. This is expected, as any
Fourier multiplier operator should be given by convolution with the inverse Fourier
transform of the symbol.

As hε(t)→ i
tπ pointwise, we arrive formally at the identity

“ Hf(t) =
i

π

∫ ∞
−∞

f(s)
t−s ds ”.

As 1
t is not integrable near t = 0, this expression cannot be expected to converge

absolutely and hence requires a suitable interpretation. For this, we use the Cauchy
principal value interpretation. It requires some degree of smoothness for f .

Theorem 4 (Hilbert transform as convolution). Suppose f has bounded support
and is Hölder continuous of some order α > 0, i.e.

there exists M > 0 such that |f(t)− f(s)| ≤M |t− s|α (4)

for all s, t. Then
Hf = i

π PV[f ∗ 1
s ],

where PV denotes the Cauchy principal value, i.e.

PV[f ∗ 1
s ](t) = lim

ε→0

∫
|s|>ε

f(t−s)
s ds. (5)

Proof. This proof may be skipped in lecture.
Let us first show that the limit defining the principal value exists for all t ∈ R.

For t /∈ [−R2 ,
R
2 ], we have

|s| ≥ |t| − |t− s| > R
2 −

R
2 =⇒ |s| > 0,

while
|s| ≤ |t− s|+ |t| ≤ R

2 + |t|.
Thus the limit exists and equals ∫

R

f(t−s)
s ds

in this regime.
For t ∈ [−R2 ,

R
2 ], we first observe that since∫

ε<|s|<R

ds
s = 0,

we have by the triangle inequality and (4)∣∣∣∣∫
|s|>ε

f(t−s)
s ds

∣∣∣∣ =

∣∣∣∣∫
ε<|s|<R

f(t−s)−f(t)
s ds

∣∣∣∣
≤M

∫
ε<|s|<R

s−1+α ds.

This implies that we the limit as ε→ 0 exists.
To conclude the proof, we recall the functions hε from the example above and

endeavor to prove
lim
ε→0

hε ∗ f(t) = i
π PV(f ∗ 1

s )(t)
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pointwise for t ∈ R. For t /∈ [−R2 ,
R
2 ], we use that hε(s)→ i

πs pointwise and argue
as above to deduce

f ∗ hε(t)→ i
π

∫
R

f(t−s)
s ds,

yielding the correct value in this regime. For t ∈ [−R2 ,
R
2 ], we use that hε is odd to

write ∫
ε<|s|<R

f(t− s)
[

1
s −

s
s2+ε2

]
ds+

∫
|s|<ε

sf(t−s)
s2+ε2 ds

=

∫
ε<|s|<R

ε2[f(t−s)−f(t)]
s(s2+ε2) ds+

∫
|s|<ε

s[f(t−s)−f(t)]
s2+ε2 ds

We rewrite the first integral with a change of variables to obtain∫
1<|s|<ε−1R

f(t−sε)−f(t)
σ(σ2+1) ds,

which tends to zero as ε → 0 by dominated convergence. For the second integral,
we can utilize the Hölder bound and again use dominated convergence, bounding
the integrand by M |s|−1+α (which is integrable on (−1, 1), say). This completes
the proof. �

Remark 6. The preceding proof shows that for a Hölder continuous function sup-
ported in [−R2 ,

R
2 ], we have

Hf(t) = i
π

∫ R

−R

f(t− s)− f(t)

s
ds for t ∈ [−R2 ,

R
2 ].

♣ ♣ ♣

In the rest of this section, we will briefly discuss issues related to approximating
the Radon transform and its inverse.

Recall that the Radon inversion formula requires that we take the Hilbert trans-
form of the derivative of some measured data (the Radon transform of the function
we are trying to recover). We also saw (from the Parseval formula) that unless
this measured data has some regularity in the affine parameter, it is not the Radon
transform of an L2 function. (In fact, the more general problem of characterizing
the range of the Radon transform is a relevant and important problem, although
we do not pursue these questions here.) In applications, our measured data will not
be so regular due to measurement noise, and more generally we should not expect
that the data will belong to the range of the Radon transform.

One approach is to work with regularized inverses as follows. Recall that we
previously approximated the Hilbert transform H by the family of convolution
operators

Hεf = f ∗ hε, hε(t) = i
π

t
t2+ε2 .

Using this and recalling f ∗ ∂tg = ∂tf ∗ g, we may derive the following approximate
Radon inversion formula:

f(x) ≈ 1
2πi

∫ π

0

[∂thε ∗ Rf ](〈x, ω〉, ω) dω.

A key advantage of this approximation is that we no longer need to approximate
derivatives of Rf .
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Another approach to approximation is to use the Fourier representation. For this,
we first fix N > 0. Suppose ψN ∈ L1 satisfies

∫
ψN = 1 and ψ′N ∈ L1. Suppose

further that ψ̂N is bounded, even ψ̂N (r) = 0 for |r| > N . We can then approximate
the Fourier multiplier operator |∇| (i.e. the filter in the Radon inversion formula)
by

P≤N |∇| := F−1[ψ̂N (r)|r|]F .

Proposition 2. Then the approximation of f given by

fN (x) := 1
2π

∫ π

0

P≤N |∇|Rf(〈x, ω〉, ω) dω (6)

is given by the convolution

fN = KN ∗ f, where KN (ρ) = − 1
π

∫ ∞
ρ

ψ′N (t)√
t2 − ρ2

dt. (7)

Proof. This may be skipped in lecture.
We express KN ∗ f using the filtered back-projection formula:

KN ∗ f(x) = 1
4π2

∫ π

0

∫ ∞
−∞

˜R[KN ∗ f ](r, ω)eirx·ω|r| dr dω.

In the lemma below, we will show that

R[KN ∗ f ](t, ω) =

∫ ∞
−∞
RKN (s, ω)Rf(t− s, ω) ds.

Thus, using the convolution identity for the 1d Fourier transform, we obtain

KN ∗ f(x) = 1
4π2

∫ π

0

∫
−∞
R̃f(r, ω)R̃KN (r, ω)eirx·ω|r| dr dω,

and so the result follows provided we can establish

RKN (r, ω) = ψN (r) (8)

(as this yields R̃KN = ψ̂N ). The verification of (8) is a direct computation, which
also fits into the theory of the Radon transform restricted to radial functions. We
will not pursue this topic in these notes. �

In the preceding proof, we needed the following lemma, which states that the
Radon transform converts convolution in the plane to convolution in the affine
parameter.

Lemma 1. For f, g piecewise continuous of bounded support,

R[f ∗ g](t, ω) =

∫ ∞
−∞
Rf(s, ω)Rg(t− s, ω) ds.

Proof. This proof may be skipped in lecture.
We first write

R(f ∗ g)(t, ω) =

∫
f ∗ g(tω + sω̂) ds.

Now we compute, using the coordinates (a, b) 7→ (aω̂+ bω) (which has area element
da db):

f ∗ g(tω + sω̂) =

∫
R2

f(y)g(tω + sω̂ − y) dy
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=

∫∫
f(aω̂ + bω)g((s− a)ω̂ + (t− b)ω) da db.

Thus by changing the order of integration and changing variables in the ds integral,
we obtain

R(f ∗ g)(t, ω) =

∫∫∫
f(aω̂ + bω)g((s− a)ω̂ + (t− b)ω) da db ds

=

∫ [∫
f(aω̂ + bω)

[∫
g((s− a)ω̂ + (t− b)ω) ds

]
da

]
db

=

∫
Rf(b, ω)Rg(t− b, ω) db,

as desired. �

Proposition 2 shows that the approximation fN obtained is a blurred version of
the real image f . As N increases, we decrease the amount of blur but also reduce
the suppression of noise in the data, which is a type of tradeoff we have encountered
before.

Remark 7. Unfortunately, this result excludes the choice ψ̂ = χ[−N,N ], as then

ψ = N sinc(N ·) /∈ L1. Nonetheless, in this case one can compute the integral
defining KN explicitly (as a convergent improper integral) by using the theory of
Bessel functions.

We finally turn to some continuity (or, equivalently, boundedness) properties for
the Radon transform and its inverse. Continuity properties for the Radon transform
are important to guarantee that the measurement process is stable. Continuity
properties for the inverse map are important to guarantee that the reconstruction
process is stable. We will not attempt a comprehensive treatment of these issues.
Instead we will try to present just a few representative results. A related issue
is characterizing the range of the Radon transform, which can yield consistency
conditions for our measured data; however, we will not discuss this topic here.

For the Radon transform itself, let us prove the following straightforward esti-
mate. We will consider functions supported where {|x| ≤ L} for some L > 0, in
which case Rf(t, ω) = 0 for any |t| > L.

Proposition 3. Suppose f ∈ L2(R2) and f is supported in {|x| ≤ L}. Then for
all ω ∈ S1, we have ∫ L

−L
|Rf(t, ω)|2 dt ≤ 2L‖f‖2L2 .

Proof. Using the support properties of f and the Cauchy–Schwarz inequality we
estimate ∫ L

−L
|Rf(t, ω)|2 dt =

∫ L

−L

∣∣∣∣∫ L

−L
f(tω + sω̂) ds

∣∣∣∣2 dt
≤ 2L

∫ L

−L

∫ L

−L
|f(tω + sω̂)|2 ds dt = 2L‖f‖2L2 .

�

Remark 8. A more careful argument implies the slightly stronger bound∫ L

−L

|Rf(t, ω)|2√
L2 − t2

dt ≤ 2‖f‖2L2 .
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We turn to the inverse transform. In order to avoid several subtle mathematical
issues, we utilize the approximate inverses introduced above. In particular, we fix
N � 1 and ψN as above, and we define corresponding operators

R−1
N F (x) := 1

2π

∫ π

0

P≤N |∇|F (〈x, ω〉, ω) dω,

for F ∈ L1(R × S1), where P≤N |∇| := F−1[ψ̂N (r)|r|]F . The limit N = ∞ and

ψ̂ ≡ 1 formally recovers the true inverse transform.
Suppose we make a measurement Rfm, which approximates the Radon transform

Rf of the unknown image f . Our reconstructed image is given by

fapp := R−1
N Rfm,

and our interest is in estimating the difference between f and fapp in terms of the
difference between Rf and Rfm. As we will see, this relies on continuity properties
for R−1

N .

Proposition 4. We have the following pointwise bound:

|f − fapp| ≤ |f −KN ∗ f |+ CN‖Rf −Rfm‖L1(R×S1), (9)

where KN is as in (7) and

CN := 1
2π‖F

−1[ψ̂N (r)|r|]‖L∞ .

Proof. This proof may be skipped in lecture.
Recall from Proposition 2 that R−1

N Rf = KN ∗ f . Thus

f − fapp = f −KN ∗ f +R−1
N [Rf −Rfm],

and we are faced with estimating the second term.
In particular, we need to prove an L1 → L∞ bound for R−1

N with constant given
by CN . To this end, we observe that

P≤N |∇|f = gN ∗ f, where gN = F−1[ψ̂N (r)|r|],
so that

R−1
N F (x) = 1

2π

∫ π

0

(gN ∗t F )(〈x, ω〉, ω) dω

= 1
2π

∫ π

0

∫
R
gN (〈x, ω〉 − s)F (s, ω) ds dω.

Thus

‖R−1
N F‖L∞ ≤ 1

2π

∫ π

0

∫
R
‖gN‖L∞ |F (s, ω)| ds dω ≤ CN‖F‖L1(R×S1),

yielding the desired bound. �

The first term on the right-hand side of (9) can be made arbitrarily small by
choosing N sufficiently large, at least at points of continuity of f . As for estimating

CN , we have (by the support properties of ψ̂N )

‖F−1[ψ̂N (r)|r|]‖L∞ ≤ ‖ψ̂N (r)|r|‖L1 ≤ N2‖ψ̂N‖L∞ ≤ N2‖ψN‖L1 .

Thus we expect this component of the error to increase as N increases. Nonetheless,
Proposition 4 does achieve our stated goal, in that it allows us to estimate the
difference between the true image and the reconstructed image in terms of the
measurement error.
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Fourier series

So far, we have been working with a continuous model for measurement and
reconstruction in X-ray CT. In practice, however, our measurement data will be a
finite, discrete set of points, and so it will be important to build a discrete model.
Our first step in this direction is to introduce the theory of Fourier series.

To simplify formulas, we will initially work with functions defined on the interval
[0, 1] ⊂ R. We will discuss the extension to general bounded intervals and higher
dimensions at the end of the section.

The general problem we consider is that of representing functions by Fourier
series, i.e. as a linear combination of complex exponentials e2πinx, where n ∈
Z. Such a function automatically admits a 1-periodic extension to all of R, as
e2πin(x+1) ≡ e2πinx for all n ∈ Z and x ∈ [0, 1]. Accordingly, it is natural to
consider the 1-periodic extension of f : [0, 1) → C, defined by f(x + n) = f(x) for
x ∈ [0, 1) and n ∈ Z. We note that if f is a continuous function on [0, 1], then
its 1-periodic extension is continuous if and only if f(0) = f(1). Similar assertions
(using limits from the left/right) may be made concerning differentiability.

Example 1. The function f(x) = x is continuous on [0, 1] but its 1-periodic ex-
tension is not.

The function g(x) = x(1− x) is continuous on [0, 1] with a 1-periodic extension;
however, its derivative g′(x) = 1− 2x is not continuous as a 1-periodic function.

The function h(x) = e2πix, along with all of its derivatives, is continuous as a
1-periodic function.

Given a function f : [0, 1]→ C, we seek to represent f in the form

f(x) =
∑
n∈Z

f̂(n)e2πinx (1)

for some complex coefficients f̂(n) (called the Fourier coefficients of f). Observing
that ∫ 1

0

e2πinxe−2πimx dx = δnm :=

{
1 n = m

0 n 6= m,

we derive that if such a decomposition holds, the Fourier coefficients should be
defined by

f̂(n) :=

∫ 1

0

f(x)e−2πinx dx.

We observe that for f ∈ L1([0, 1]), the Fourier coefficients form a bounded sequence
of complex numbers. Indeed,

sup
n∈Z
|f̂(n)| ≤ ‖f‖L1 .

Example 2. If f(x) = cos(2πn0x), then

f̂(n) =

{
1
2 n = ±n0

0 n 6= ±n0

In this case, (1) reduces to the well-known formula

cos(2πn0x) = 1
2 [e2πin0x + e−2πin0x].
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Example 3. Let f(x) = χ[a,b](x) for some 0 ≤ a < b < 1. Then

f̂(n) =

{
b− a n = 0,

1
2πin [e−2πina − e2πinb] n 6= 0.

In general, because f̂(n) decays like 1
n , the series (1) will not converge absolutely

(e.g. take b − a = 1
4). Thus we will need to be careful about how we interpret a

statement like (1).

Using the definition of the Fourier coefficients, one can readily verify a few sym-
metry properties. For example, if f is real-valued, then

f̂(−n) = f̂(n).

Moreover, real-valued even functions have real Fourier coefficients, and real-valued
odd functions have purely imaginary coefficients, where we say f : [0, 1] → R is
even if f(x) = f(1− x) and odd if f(x) = −f(1− x).

To study the convergence properties of Fourier series as in (1), we introduce the
following partial sum operators. For N ∈ N, we define the partial sum operator
SN : L1([0, 1])→ C([0, 1]) by

SN (f ;x) =
∑
|n|≤N

f̂(n)e2πinx.

For each fixed N , this defines a continuous linear operator.
Our goal is to establish the convergence of SN (f) to f in suitable topologies as

N → ∞. In general, pointwise convergence of SN (f ;x) to f(x) may fail, even at
points of continuity of f . For smooth enough functions, however, we will obtain de-
cay for the Fourier coefficients, which will in turn allow us to establish convergence.
Our first result in this direction is the following.

Theorem 1 (Fourier inversion formula). Suppose f ∈ C([0, 1]) and {f̂(n)} ∈ `1.
Then

f(x) =
∑
n∈Z

f̂(n)e2πinx for all x ∈ [0, 1].

Proof of Theorem 1. We will use an approximate identity argument.
For r ∈ (0, 1), let us define the convergent series

fr(x) =
∑
n∈Z

f̂(n)r|n|e2πinx.

Using absolute convergence and the fact that limr→1 r
n = 1 for each n ∈ Z, we may

derive that

lim
r→1

fr(x) =
∑
n∈Z

f̂(n)e2πinx

uniformly for x ∈ [0, 1]. Thus to prove the theorem it suffices to establish fr(x)→
f(x) as r → 1.

For this, we compute

fr(x) =
∑
n∈Z

f̂(n)r|n|e2πinx =

∫ 1

0

f(y)

[∑
n∈Z

r|n|e2πin(x−y)

]
dy,
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where we have used absolute convergence to interchange summation and integra-
tion. We may therefore write

fr(x) =

∫ 1

0

f(y)Pr(x− y) dy,

where

Pr(x) =
∑
n∈Z

r|n|e2πinx = 1 + 2 Re

∞∑
n=1

rne2πinx.

Using the formula for the sum of a geometric series (
∑∞
n=1 ρ

n = ρ
1−ρ ) and some

algebra, we may obtain the following:

Pr(x) =
1− r2

1− 2r cos(2πx) + r2
.

We now observe that Pr are positive functions obeying∫ 1

0

Pr(x) dx = 1 for all r ∈ (0, 1)

and limr→1 Pr(x) = 0 for all x 6= 0. Thus, using approximate identity arguments
(as in previous sections), we may establish that for f ∈ C([0, 1]),

fr(x) =

∫ 1

0

Pr(x− y)f(y) dy → f(x) as r → 1,

as desired. �

The previous result assumed a decay condition on the Fourier coefficients,

namely, {f̂(n)} ∈ `1. While we cannot expect such decay for arbitrary f ∈ L1,
we can establish the following.

Theorem 2 (Riemann–Lebesgue lemma). If f ∈ L1([0, 1]), we have f̂(n) → 0 as
|n| → ∞.

Proof of Theorem 2. We can prove this result by using the Riemann–Lebesgue
lemma for the Fourier transform. Indeed, if we set F = fχ[0,1] ∈ L1(R), then

we have f̂(n) = F̂ (2πn), where F̂ is the Fourier transform of F . �

The Riemann–Lebesgue does not give any quantitative decay rate for the Fourier
coefficients. Such a result would be impossible, since for any sequence {an} with

lim|n|→∞ an = 0, one may find f ∈ L1 such that |f̂(n)| ≥ |an| for all n.
On the other hand, we can relate smoothness properties of f to decay properties

for f̂(n) (and vice versa), just as in the case of the Fourier transform. We record
some results of this type in the following proposition.

Proposition 1 (Exchange of smoothness/decay). If f ∈ Ck([0, 1]) and f
(j)
+ (0) =

f
(j)
− (1) for j = 0, . . . , k − 1 (where ± denote limits from the right/left), then

f̂(n) =
1

(2πin)k
f̂ (k)(n) for n 6= 0,

so that |f̂(n)| = o(|n|−k) as |n| → ∞.
Conversely, if f ∈ L1([0, 1]) and there exist C > 0 and ε > 0 such that

|f̂(n)| ≤ C[1 + |n|]−(k+ε),
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then f ∈ Ck−1([0, 1]) with f
(j)
+ (0) = f

(j)
− (1) for j = 1, . . . , k − 1.

We will not prove Proposition 1 in its entirety. Let us only demonstrate the
main idea of the proof.

Partial proof. We use the identity

e−2πinx = − 1
2πin

d
dxe
−2πinx

to integrate by parts, yielding

f̂(n) =

∫ 1

0

f(x)e−2πinx dx

= 1
2πin [f(0)− f(1)] + 1

2πin f̂
′(n).

In particular, if f is periodic then the first term vanishes. The extension to higher
order derivatives follows from further integration by parts. �

Analogous to the case of the Fourier transform, functions with jump discontinu-
ities exhibit a typical 1

|n| decay rate in their Fourier coefficients.

Example 4. Let f(x) = x(1− x) for x ∈ [0, 1]. As we saw above, this function is
periodic but its derivative f ′(x) = 1− 2x is not. We have

f̂(n) =

{
1
6 n = 0

− 1
2π2n2 n 6= 0

and f̂ ′(n) =

{
0 n = 0

1
πin n 6= 0,

showing that f̂ ′(n) = (2πin)f̂(n). Note also that while f̂(n) = O(|n|−2), we have
that f fails to be C1 as a periodic function, showing that the ε > 0 appearing in the
preceding proposition is indeed necessary.

♣ ♣ ♣

As was the case of the Fourier transform, there is a very natural L2 theory
for Fourier series. Note that since L2([0, 1]) ⊂ L1([0, 1]), we can already define the
Fourier coefficients of an L2-function as a bounded sequence that decays as n→∞.
We also have the following Parseval formula:

Theorem 3 (Parseval formula). If f ∈ L2([0, 1]), then∫ 1

0

|f(x)|2 dx =
∑
n∈Z
|f̂(n)|2.

To prove Theorem 3, we will need some preliminary lemmas.
The first result we need is Bessel’s inequality, which is equivalent to the statement

that the partial Fourier series represent the orthogonal projection onto the subspace
of trigonometric polynomials. To make this precise, let us define

VN =

{ ∑
|n|≤N

ane
2πinx : an ∈ C

}
for N ∈ N.

Then each VN is a finite-dimensional closed subspace of the Hilbert space L2([0, 1]),
and we have the following result:
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Lemma 1 (Bessel’s inequality). For N ∈ N, the partial sum operator SN is the
orthogonal projection of L2 onto VN . In particular, for any {an}|n|≤N ⊂ C, we
have ∥∥∥∥f − ∑

|n|≤N

f̂(n)e2πinx

∥∥∥∥2

L2

≤
∥∥∥∥f − ∑

|n|≤N

ane
2πinx

∥∥∥∥2

L2

, (2)

with equality if and only if an = f̂(n) for all |n| ≤ N .

Consequently, {f̂(n)}n∈Z ∈ `2, with ‖f̂(n)‖`2 ≤ ‖f‖L2 .

Proof. By definition of f̂(n) and orthonormality of {e2πixk}Nk=−N , we have that

〈e2πixk, f −
∑
|n|≤N

f̂(n)e2πinx〉 = 0 for all |k| ≤ N.

This implies that SNf is the orthogonal projection onto VN , which in turn implies
(2). In fact, by orthogonality, we have that to obtain equality in (2), we should add∥∥∥∥ ∑

|n|≤N

[an − f̂(n)]e2πinx

∥∥∥∥2

L2

to the left-hand side. Specializing to an ≡ 0, we obtain∑
|n|≤N

|f̂(n)|2 =

∥∥∥∥ ∑
|n|≤N

f̂(n)e2πinx

∥∥∥∥2

L2

≤ ‖f‖2L2

uniformly in N , which implies the desired `2 bound on the Fourier coefficients. �

The other key ingredient in the proof of the Parseval formula is the fact that
trigonometric polynomials are dense in L2. To derive this fact, we will actually
use a quantity related to the partial Fourier sums, namely, the Fejér means of the
function.

We begin by taking a closer look at the partial Fourier series. Fix a periodic
function f : [0, 1]→ C. Proceeding as in the proof of the inversion formula, we may
write

SNf(x) =

∫ 1

0

f(y)

[ ∑
|n|≤N

e2πin(x−y)

]
dy, (3)

which we may express as the convolution

SNf(x) = f ∗DN (x), where DN (x) :=
∑
|n|≤N

e2πinx. (4)

Remark 1. If f and g are periodic functions on [0, 1], we may define the convolu-
tion

f ∗ g(x) =

∫ 1

0

f(y)g(x− y) dy

as a periodic function on [0, 1]. The periodic convolution shares many properties
with the convolution on R. We also have the following product formula for the
coefficients:

f̂ ∗ g(n) = f̂(n)ĝ(n), (5)

which can be checked by direct computation.
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We call DN the Dirichlet kernel. By using the formula for the sum of a geometric
series, we may also write

DN (x) =
sin[2π(N + 1

2 )x]

sin(πx)
.

Observe that by the representation in (4), we have that

D̂N (n) =

{
1 |n| ≤ N
0 |n| > N.

The kernels DN share some properties with approximate identities as N → ∞.
For example, ∫

DN (x) dx = D̂N (0) = 1 for all N,

and the kernels become increasingly concentrated around x = 0 as N →∞. How-
ever, one can also prove that∫ 1

0

|DN (x)| dx ≈ logN →∞ as N →∞,

and so we cannot apply the usual approximate identity arguments with DN . Instead
of studying the Dirichlet kernels directly, we take an average in N . As we will see,
this leads to a well-behaved family of kernels.

Definition 1. The Fejér kernels are defined by

FN (x) = 1
N+1

N∑
j=0

Dj(x).

These are given explicitly by

FN (x) = 1
N+1

[
sin[π(N + 1)x]

sin(πx)

]2

.

The Fejér means of a function f : [0, 1]→ C are defined by

σN (f ;x) = 1
N

N∑
j=0

Sj(f ;x) = f ∗ FN (x).

The following shows a comparison between the Dirichlet and Fejér kernels (with
N = 20):
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The Fejér kernels are amenable to approximate identity arguments, as one can
verify that the L1-norms of the FN are uniformly bounded in N . In particular, we
can prove the following:

Theorem 4 (Fejér’s Theorem). Let f ∈ L1([0, 1]) ∩ C([0, 1]). Then

lim
N→∞

σN (f ;x) = f(x)

uniformly over x ∈ [0, 1].

Before proving this theorem, let us record an important corollary, which is the
second main ingredient in the proof of Parseval’s formula.

Corollary 1. Trigonometric polynomials are dense in L2. That is, for f ∈
L2([0, 1]) and ε > 0, there exists a trigonometric polynomial

g(x) =
∑
|n|≤N

ane
2πinx

(for some N ∈ N and {an} ⊂ C) such that

‖f − g‖L2 < ε.

Proof. Using convolution with approximate identities, we may first find f̃ ∈
C([0, 1]) such that

‖f − f̃‖L2 < 1
2ε.

By Fejér’s theorem, there exists N such that g := f̃ ∗ FN obeys

sup
x∈[0,1]

|f̃(x)− g(x)| < 1
2ε,

which implies
‖f̃ − g‖L2 < 1

2ε.

The result will now follow once we verify that g is a trigonometric polynomial. For
this, we use (3) to write

g(x) = f̃ ∗ FN (x) = 1
N+1

N∑
j=0

f ∗Dj(x)

= 1
N+1

N∑
j=0

∫ 1

0

f(y)
∑
|n|≤j

e2πin(x−y) dy

= 1
N+1

N∑
j=0

∑
|n|≤j

[∫ 1

0

f(y)e−2πiny

]
e2πinx,

which shows that g is indeed a linear combination of complex exponentials. �

We turn to the proof of Fejér’s theorem.

Proof of Fejér’s theorem. We use the usual approximate identity argument. We
write

σN (f ;x)− f(x) =

∫ 1

0

FN (y)[f(x− y)− f(x)] dy.

The contribution near y = 0 is small using the continuity of f and the uniform
L1-bounds on the FN . For y away from zero, we use boundedness of f and the fact
that for any δ > 0, FN (y)→ 0 uniformly on {δ < |y| < 1} as N →∞. �
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We are now in a position to prove the Parseval formula.

Proof of the Parseval formula. We first show that the Parseval formula holds for
an arbitrary trigonometric polynomial. Indeed, if

f(x) =
∑
|n|≤N

ane
2πinx

(so that f̂(n) = an), then (using orthonormality of {e2πinx}) we have∫ 1

0

|f(x)|2 dx =
∑
n,m

ānam

∫ 1

0

e2πi(n−m) dx =
∑
|n|≤N

|an|2,

giving the result in this case.
Next, we let f ∈ L2. By Bessel’s inequality, we have∑

n∈Z
|f̂(n)|2 ≤ ‖f‖2L2 .

Thus it suffices to show that for any ε > 0, we have

‖f‖L2 ≤
[∑
n∈Z
|f̂(n)|2

] 1
2

+ ε.

To this end, we let ε > 0 and choose a trigonometric polynomial

g(x) =
∑
|n|≤N

ane
2πinx

obeying

‖g − f‖L2 < ε.

Now, using the triangle inequality and Bessel’s inequality, we have

‖f‖L2 ≤ ‖f − SN (f)‖L2 + ‖SN (f)‖L2

≤ ‖f − g‖L2 +

[ ∑
|n|≤N

|f̂(n)|2
] 1

2

≤ ε+

[∑
n∈Z
|f̂(n)|2

] 1
2

,

as desired. �

Let us now return to the question of convergence of Fourier series. For a typical

L2 function, we only know that {f̂(n)} belongs to `2, and hence the Fourier series
cannot be expected to converge pointwise in general. Nonetheless, we do have an
L2 inversion formula.

Proposition 2 (Fourier inversion in L2). For f ∈ L2([0, 1]), we have

lim
M,N→∞

∥∥∥∥f − N∑
j=−M

f̂(j)e2πijx

∥∥∥∥
L2

= 0.
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Proof. This proof may be skipped in lecture.
Using the orthogonal projection property for partial Fourier series, we first ob-

serve that ∥∥∥∥f − N∑
j=−M

f̂(j)e2πijx

∥∥∥∥2

L2

= ‖f‖2L2 −
N∑

j=−M
|f̂(j)|2.

By the Parseval formula, we may deduce that the right-hand side tends to zero as
N,M →∞. �

While L2-norm convergence seems less simple than pointwise convergence, it is
actually reasonable to use in problems where measurement is a serious concern.
In particular, any g ∈ L2 can be used to define a ‘measurement’ mg(f) = 〈f, g〉
(and any continuous linear ‘measurement’ is of this form). Then L2 convergence
guarantees that mg(SN (f))→ mg(f) for any g ∈ L2.

Example 5. If we let

gε(y) =

{
0 |x− y| > ε
1
2ε |x− y| ≤ ε,

then we have
∫
gε = 1, and we use gε to model a measurement near x with resolution

of size ε. In place of the pointwise difference SN (f ;x)− f(x), we may consider the
average∫ 1

0

|f(y)− SN (f ; y)| gε(y) dy ≤ ‖f − SN (f)‖L2‖gε‖L2 = 1√
2ε
‖f − SN (f)‖L2 .

Thus for a fixed resolution, the measured error tends to zero as N →∞.

♣ ♣ ♣

The failure of pointwise convergence of Fourier series is related to an important
phenomenon known as the Gibbs phenomenon. In particular, near jump disconti-
nuities the Fourier series exhibit oscillatory behavior that consistently overshoots
the jump in a ‘universal’ way. An example is shown in the following figure from [1].

A precise formulation is the following:

Theorem 5 (Gibbs phenomenon). Suppose f is a piecewise continuously differen-
tiable function with a jump discontinuity at x = x0 of size h > 0, i.e.

lim
x→x+

0

f(x) = lim
x→x−0

f(x) + h.
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Then
lim
N→∞

SN (f ;x0) = lim
x→x−0

f(x) + 1
2h,

while for any small ε > 0, we have

lim
N→∞

max
0<x−x0<ε

[
SN (f ;x)− f(x)

]
= (G− 1)h2 ,

where G is the universal constant given by

G := 2
π

∫ 1

0

sinπt
t dt = 1.17898...

Remark 2. This shows that near a jump discontinuity, the Fourier series overshoot
the jump by around 9% of the height of the jump. In particular, the size of the
overshoot does not decrease as N →∞ (although it does concentrate in an interval
of size ∼ 1

N around the discontinuity).

We will not prove this theorem. Instead, let us just consider one example that
demonstrates this phenomenon. In fact, this example already contains the main
idea of the proof of the more general result.

Example 6. Consider the 2π-periodic function

g(x) =

{
π
2 −

x
2 0 ≤ x ≤ π

−π2 −
x
2 −π ≤ x,< 0.

which has a jump of height h = π at x = 0. Here we use the theory of Fourier
series on (−π, π), which will be discussed below. The Fourier series for g reduces
to

g(x) =

∞∑
k=1

sin kx

k
.

We would like to find the maximum of SN (g;x) − g(x), which we do by setting
the derivative equal to zero. By explicit calculation, this reduces to the condition

sin
[
(N + 1

2 )x] = 0,

for which the smallest solution is

xN := π
N+ 1

2

.

We now note that

SN (g;xN ) =

N∑
k=1

sin
[
k( π

N+ 1
2

)
]

k
N+ 1

2

1

N + 1
2

is a Riemann sum for the integral∫ 1

0

sin(πx)

x
dx = π

2G.

Thus (noting that g(xN )→ π
2 ) we observe

SN (g;xN )− g(xN )→ π
2 [G− 1] = h

2 [G− 1]

as N →∞.

One way to reduce the Gibbs effect is to use the Fejér kernels instead of the
Dirichlet kernels. However, this comes at the expense of reducing the overall reso-
lution.
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♣ ♣ ♣
In this section, let us briefly discuss the extension of Fourier series to more

general intervals, as well as to higher dimensions.
For a P -periodic function, the Fourier coefficients are given by

f̂(n) =

∫ P

0

f(x)e−2πinx/P dx.

One then has the Fourier inversion formula

f(x) = 1
P

∑
n∈Z

f̂(n)e2πinx/P

and the Parseval formula ∫ P

0

|f(x)|2 dx = 1
P

∑
n∈Z
|f̂(n)|2.

One can derive explicit formulas for the Dirichlet and Fejér kernels, as well.
To extend the theory to higher dimensions, we define

f̂(k) =

∫
[0,1]n

f(x)e−2πik·x dx,

where now f : [0, 1]n → C and k ∈ Zn. The Riemann–Lebesgue lemma also holds
in higher dimensions, and we have the same Fourier inversion formula provided
the Fourier coefficients decay sufficiently. We also have the Parseval formula and a
natural L2-based theory.
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Sampling theory

In this section, we discuss the topic of sampling functions of continuous variables.
A basic model for measurement is the evaluation of a continuous function f at

a discrete set of points. A set {xj} is discrete if it has no convergent subsequence,
and the values {f(xj)} are called samples of f . We frequently consider equally
spaced samples at points, so that

xj = x0 + j` for j ∈ Z and some ` > 0.

In this case we call `−1 the sampling rate.
A more realistic model for measurement of a function f is the evaluation of a

convolution f ∗ ϕ, where ϕ ∈ L1. As we have discussed before, convolution is
a smoothing operator that suppresses the high frequency content of f . In fact,
in many applications we work with the assumption that f has no high-frequency
content at all.

Definition 1. A function f : R → R is bandlimited (or has finite bandwidth) if

f̂ is supported in a finite interval.

Bandlimited functions are always smooth, as their Fourier transforms have ar-
bitrarily good decay. In particular, for an L-bandlimited function f ∈ L2 we have
the Fourier inversion formula

f(x) = 1
2π

∫ L

−L
f̂(ξ)eixξ dξ. (1)

The first main result in this section is Nyquist’s theorem, which states that
bandlimited functions are uniquely by a discrete set of uniformly spaced samples
of sufficiently large sampling rate.

Theorem 1 (Nyquist’s theorem). If f ∈ L2(R) and

f̂(ξ) = 0 for |ξ| > L,

then f is uniquely determined by the samples {f(nπL ) : n ∈ Z}.
If {f(nπL )}n∈Z ∈ `1, then

f(x) =
∑
n∈Z

f(nπL ) sinc(Lx− nπ). (2)

Proof. By (1), the numbers {2πf(−nπL )} are the Fourier coefficients of f̂ , and so
the Fourier inversion formula implies

f̂(ξ) = π
L

∑
n∈Z

f(−nπL )einπξ/L = π
L

∑
n∈Z

f(nπL )e−inπξ/L for |ξ| ≤ L,

with convergence in the L2-sense. In particular,

f̂(ξ) = π
L

[∑
n∈Z

f(nπL )e−inπξ/L
]
χ[−L,L](ξ).

Thus we see that the samples of f determine its Fourier transform, and hence f
itself.

If the samples form an `1 sequence, then we can compute

f(x) = 1
2π

∫ L

−L
f̂(ξ)eixξ dξ
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=
∑
n∈Z

f(nπL ) 1
2L

∫ L

−L
eiξ[x−nπ/L] dξ

=
∑
n∈Z

f(nπL ) sinc(Lx− nπ).

�

Remark 1. The exponentials e±iLx have frequency L
2π . Nyquist’s theorem therefore

states that if L
2π is the highest frequency appearing in a function, then we must

sample a function at the rate L
π (the Nyquist rate) to completely determine f .

Sampling at a lower/higher rate is called under/oversampling.

The reconstruction formula in (2) is sometimes called the Shannon–Whittaker
interpolation formula. To use this formula in practice, we would truncate the sum
after finitely many terms. However, because

| sinc(Lx− nπ)| ≈ 1
n ,

the partial sums may converge to f very slowly. This situation can be improved by
oversampling, as we now explain:

Oversampling. Suppose f is an (L − η)-bandlimited function for some η > 0.
Let us choose a window function ϕ̂ such that

ϕ̂ =

{
1 |ξ| ≤ L− η
0 |ξ| > L.

Repeating the computation in the proof of Theorem 1 and using the fact that

f̂(ξ) = f̂(ξ)ϕ̂(ξ) for |ξ| ≤ L, we derive

f(x) = 1
2L

∑
n∈Z

f(nπL )

∫ L

−L
ϕ̂(ξ)eiξ[x−nπ/L] dξ

= 1
2L

∑
n∈Z

f(nπL )ϕ(x− nπ
L ).

(3)

This generalizes (2), which corresponds to choosing ϕ̂ = χ[−L,L].
By choosing a smoother window function, we may obtain faster convergence

of the series above (as a smoother Fourier transform corresponds to better decay
of ϕ). On the other hand, ϕ will not be as simple as the explicit sinc function.
Furthermore, we need to sample f above the Nyquist rate. Indeed, f is an (L− η)-
bandlimited function, but we use the sample spacing π

L <
π

L−η .

In applications, we will be sampling functions of bounded of support, which
cannot be bandlimited. Thus, we will always be undersampling. To understand
the effects of undersampling, we introduce a result known as the Poisson summation
formula.

Theorem 2 (Poisson summation formula). If f ∈ L1 is continuous and {f̂(2πn)} ∈
`1(Z), then ∑

n∈Z
f(x+ n) =

∑
n∈Z

f̂(2πn)e2πinx. (4)

Proof. The function on the left-hand side of (4) is 1-periodic and integrable on
[0, 1]. Thus it suffices to prove that the Fourier coefficients of this function are
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given by f̂(2πm) (i.e. samples of the Fourier transform of f). We compute∫ 1

0

∑
n∈Z

f(x+ n)e−2πimx dx =
∑
n∈Z

∫ n+1

n

f(x)e−2πimx

=

∫
R
f(x)e−2πimx dx = f̂(2πm).

�

Remark 2. More generally, for a 2L-periodic function we obtain∑
n∈Z

f(x+ 2nL) = 1
2L

∑
n∈Z

f̂(nπL )einπx/L.

Using this, we observe that if f is supported in [−L,L], then

f(x) = 1
2L

∑
n∈Z

f̂(nπL )einπx/L for x ∈ [−L,L],

giving a dual version of the Nyquist theorem. This is relevant in MRI, where one
actually measures samples of the Fourier transform of the image function.

Arguing similarly to the above, we can obtain the following ‘dual Poisson sum-
mation formula’, which will play a key role in our understanding of undersampling.

Theorem 3 (Dual Poisson summation). Suppose f, f̂ ∈ L1 and {f(nπL )} ∈ `1.
Then ∑

n∈Z
f̂(ξ + 2nL) = π

L

∑
n∈Z

f(nπL )e−inπξ/L.

Undersampling. Given a function f and L > 0, we may use the Shannon–
Whittaker formula to define an L-bandlimited approximation to f , namely

FL(x) :=
∑
n∈Z

f(nπL ) sinc(Lx− nπ), (5)

which agress with f at the sample points nπ
L . Then, by the same computations that

led to the Shannon–Whittaker formula and the dual Poisson summation formula,
we obtain

F̂L(ξ) =
∑
n∈Z

f̂(ξ + 2nL)χ[−L,L](ξ).

Thus

f̂(ξ)− F̂L(ξ) =

{
f̂(ξ) |ξ| > L

−
∑
n6=0 f̂(ξ + 2nL) |ξ| ≤ L.

(6)

In particular, we have that f̂ ≡ F̂L if and only if f is L-bandlimited. Otherwise,
we see two sources of error arising in the approximation FL:

• First, we have the truncation error, which refers to the fact that the high-
frequency information in f is not available in FL.
• Next, we have the aliasing effect, which refers to the fact that the high-

frequency information in f reappears in the low frequencies of FL.

Example 1. Movie images are sampled at some fixed rate. The tires of a driving
car may rotate at a higher frequency, leading to undersampling and aliasing effects.
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Example 2. The following images show two reconstructions of the function f :
[0, 1]× [0, 1]→ R defined by

f(x) =

{
1
∣∣15|x|2 − b15|x|2)c

∣∣ < 1
15

0 otherwise

using a 500 × 500 sample grid versus a 1000 × 1000 sample grid. Aliasing effects
are clearly present in the reconstruction using the larger sample spacing.

Continuing from above, we may express the approximation FL using the inverse
Fourier transform:

FL(x) = 1
2π

∫ L

−L
f̂(ξ)eixξ dξ + 1

2π

∫ L

−L

∑
n 6=0

f̂(ξ + 2nL)eixξ dξ.

Thus FL is the sum of the partial Fourier inverse of f (which produces Gibbs
oscillations if f has jump discontinuities) and the aliasing error.

As mentioned above, nontrivial functions with bounded support cannot be ban-
dlimited. Nonetheless, if the function we sample is smooth enough, then its Fourier
transform decays rapidly and so we may view the function as ‘effectively bandlim-
ited’. In applications, it is not enough that the Fourier transform itself becomes
small; instead, we need to choose a high enough sampling rate that the entire
aliasing error ∑

n 6=0

f̂(ξ + 2nL)

becomes small.
To diminish aliasing effects in general, we may first apply a low-pass filter to the

signal being sampled. An ideal low-pass filter replaces f with fL obeying

f̂L(ξ) =

{
f̂(ξ) |ξ| ≤ L
0 |ξ| > L

.

In this case, the Shannon–Whittaker reconstruction formula is just the partial
Fourier inverse, i.e.

fL(x) = 1
2π

∫ L

−L
f̂(ξ)eixξ dξ.

Thus the aliasing effect is removed, while any Gibbs oscillation effects will remain.
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The measurement process itself can attenuate the high-frequency content of the
signal. We may model measurement of a signal f as a convolution ϕ ∗ f , where∫
ϕ = 1. If ϕ is supported in [−η, η], then the measurement of f at nπ

L is given by

ϕ ∗ f(nπL ) =

∫ η

−η
f(nπL − x)ϕ(x) dx.

As F [ϕ∗f ] = ϕ̂f̂ → 0 when |ξ| → ∞, we see that measurement attenuates the high

frequencies. On the other hand, as ϕ̂(0) = 1, we expect that F [ϕ ∗ f ] resembles f̂
at low frequencies. The aliasing error in the measured samples is∑

n 6=0

ϕ̂(ξ + 2nL)f̂(ξ + 2nL),

which can be made small if ϕ is smooth.

Remark 3. Signals are often sent along a carrier frequency (e.g. in FM radio
or MRI). For example, we have a bandlimited signal f with Fourier support in
[ω −B,ω +B], where for simplicity we assume ω = NB for some N ∈ N.

Suppose we sample f at {nπB : n ∈ Z} and build the bandlimited approximation
FB as in (5). By the dual Poisson summation formula,

F̂B(ξ) = f̂(ω + ξ).

Thus f(x) = e−iωxFB(x). We call FB the demodulated version of f .

♣ ♣ ♣

So far, we have discussed the problem of sampling continuous functions defined
on the line. We turn to the problem of sampling functions defined on intervals (or
their periodic extensions). This involves the theory of the finite Fourier transform.

Definition 2. Let {xj}m−1
j=0 ⊂ C. The finite Fourier transform of {xj} is the

sequence {x̂j}m−1
j=0 ⊂ C defined by

x̂k = 1
m

m−1∑
j=0

xje
−2πijk/m.

We may also write {x̂j} = Fm({xj}).

By summing the geometric series, we can obtain

m−1∑
j=0

exp{ 2πij
m [k − `]) = mδk`,

which implies that the set

{(1, exp{ 2πik
m }, exp{ 4πik

m }, . . . , exp{ 2πi(m−1)k
m }) : k = 0, . . . ,m− 1}

forms an orthogonal basis for Cm. These vectors consist of samples of the functions
e2πikx at the points j

m , where j = 0, . . . ,m− 1.
The identity above also implies that the inverse of the finite Fourier transform

is given by

xj =

m−1∑
k=0

x̂ke
2πijk/m.
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Just as we extended functions periodically, we extend finite sequences periodi-
cally via

xj+m = xj and x̂k+m = x̂k.

Remark 4. When m ∈ 2N, the fast Fourier transform (FFT) provides a way to
compute the Fourier transform (or inverse Fourier transform) using O(m logm)
computations, compared to the O(m2) computations usually needed to multiply an
m×m matrix and a vector in Cm.

Now suppose f is an L-periodic function with Fourier coefficients {f̂(n)}. We

say f is N -bandlimited if f̂(n) for all |n| ≥ N , in which case

f(x) = 1
L

∑
|n|<N

f̂(n)e2πinx/L.

Lemma 1. If f is L-periodic and N -bandlimited, then the Fourier coefficients of
f correspond to the finite Fourier transform of the sequence of samples f( jL

2N−1 ).
In particular, if

xj = f( jL
2N−1 ), j = 0, . . . , 2N − 2,

then

F2N−1({xj}) = 1
L{f̂(0), . . . , f̂(N − 1), f̂(1−N), . . . , f̂(−1)}.

Proof. This proof may be skipped in lecture.
Extend the finite Fourier transform x̂k periodically as above. By direct compu-

tation, for |k| ≤ N − 1,

(2N − 1)x̂k =

2N−2∑
j=0

xj exp{− 2πikj
2N−1}

=

2N−2∑
j=0

f( jL
2N−1 ) exp{− 2πijk

2N−1}

= 1
L

2N−2∑
j=0

∑
|n|<N

f̂(n) exp{ 2πinjL
(2N−1)L −

2πijk
2N−1}

= 1
L

∑
|n|<N

f̂(n)

2N−2∑
j=0

exp{ 2πij
2N−1 [n− k]} = 2N−1

L f̂(k).

This implies the result. �

Using the inversion of the finite Fourier transform, we can obtain a Nyquist
theorem for bandlimited periodic functions.

Theorem 4 (Nyquist for periodic functions). If f is L-periodic and N -bandlimited,
then f can be reconstructed from the samples

{f( jL
2N−1 ) : j = 0, . . . , 2N − 2}.

In particular,

f(x) = 1
2N−1

2N−2∑
j=0

f( jL
2N−1 )

sin((2N−1)yj(x))
sin(yj(x)) , where yj(x) = π[ xL −

j
2N−1 ].
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Proof. This proof may be skipped in lecture.
Using the Fourier inversion formula and the preceding result:

f(x) = 1
L

∑
|n|<N

f̂(n)e2πinx/L

= 1
2N−1

2N−2∑
j=0

∑
|n|<N

f( jL
2N−1 ) exp{− 2πinj

2N−1 + 2πinx
L }

= 1
2N−1

2N−2∑
j=0

f( jL
2N−1 ) sin((2N−1)y)

sin y , where y = π[ xL −
j

2N−1 ].

�

Similar to the continuous case, the function given in the Nyquist theorem always
produces an N -bandlimited function

FN (x) = 1
2N−1

2N−2∑
j=0

f( jL
2N−1 )

sin((2N−1)yj(x))
sin(yj(x))

that agrees with f at the sample points { jL
2N−1}, where j = 0, . . . , 2N − 2. The

Fourier coefficients of FN are given by

F̂N (k) = f̂(k) +
∑
n 6=0

f̂(k + n(2N − 1)),

and so we again see the aliasing effect if f is itself not N -bandlimited.

♣ ♣ ♣
We turn to a discussion of sampling in higher dimensions. In this setting, the

notion of bandlimited data refers to having bounded Fourier support. For B ∈ Rn+,
we say f : Rn → C is B-bandlimited if

f̂(ξ1, . . . , ξn) = 0 if |ξj | > Bj for j = 1, . . . , n.

For R > 0, we may also define f : Rn → C to be R-bandlimited if

f̂(ξ) = 0 for |ξ| > R.

Theorem 5 (Nyquist in higher dimensions). Suppose B ∈ Rn+ and f ∈ L2 is
B-bandlimited. Then f can be reconstructed from the samples{

f( j1πB1
, . . . , jnπBn ) : (j1, . . . , jn) ∈ Zn

}
.

Remark 5. To apply this to an R-bandlimited function would lead to oversampling,

as f̂ vanishes in a large subset of [−R,R]n.

The Poisson summation formula also extends to higher dimensions via∑
j∈Zn

f(x+ j) =
∑
k∈Zn

f̂(2πik)e2πi〈x,k〉.

In general, many general results and computational methods related to sampling
theory in higher dimensions rely on the assumption of uniformly spaced sample
points, say {xj}. In practice, we may only be able to sample on some points {yk}
that do not belong to a uniform grid. To arrive at an approximation to samples
of a function f on a uniform grid, one may try to interpolate the values. For
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example, suppose that xj is a point on the uniform grid and {yk1 , . . . , yk`} are the
non-uniform sample points closest to xj . If we can write

xj =
∑̀
i=1

λiyki

for some λi ∈ (0, 1), then we may approximate

f(xj) ≈
∑̀
i=1

λif(yki).

If the function f is reasonably smooth, this may work reasonably well. In later
sections, we discuss other approaches to interpolation, as well as computational
schemes adapted to nonuniform samples.

To conclude, let us point out one other important topic related to sampling and
computation, namely, quantization error. This is related to the inherently finite
representation of numbers on the computer and can lead to truncation/rounding
errors. We will not discuss this topic in these notes.
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Theory of filters

In this section we will discuss the theory of filters in general. We focus largely on
shift-invariant linear filters, which are widely used in applications. Much of what we
discuss will be restricted to one-dimension, although there are natural extensions
to higher dimensions.

The word filter is basically synonymous with function, mapping, operator, trans-
formation, and so on. Whenever some input is mapped to some output, we can say
we have applied a filter to the input. Our focus will be on linear filters. We keep
in mind two canonical classes of linear filters. At this stage, we will not concern
ourselves with specifying the domain of each filter.

• First, we have multiplication operators. Given a function ψ, we may define
the filter Mψ on a function x(t) via

Mψx(t) = ψ(t)x(t).

Given two functions ψ1 and ψ2, the filters Mψ commute: Mψ1
Mψ2

=
Mψ2

Mψ1
.

• Next, we have integral transforms. Given a function a = a(t, s), we may
define the filter A by

Ax(t) =

∫
a(t, s)x(s) ds,

which may only be well-defined under suitable assumptions on a and x. If
a(t, s) = ψ(t−s) for some function ψ, then we call A a convolution operator
and write Ax = ψ ∗ x.

An important class of filters that we have already encountered is the class of
shift-invariant integral transforms. Writing xτ (t) = x(t− τ), these filters obey

A(xτ ) = (Ax)τ .

We have the following fundamental result concerning such filters.

Proposition 1. An integral transform is shift-invariant if and only if is a con-
volution operator, which holds if and only if it is a multiplication operator in the
Fourier representation.

Proof. The equivalence between convolution operators and Fourier multiplier op-
erators follows from the identity

F [f ∗ g] = f̂ ĝ.

It is also straightforward to check that convolution operators are shift invariant.
On the other hand, if an integral transform is shift-invariant, then combining the
identities

(Ax)τ (t) =

∫
a(t− τ, σ)x(σ) dσ

and

Axτ =

∫
a(t, σ + τ)x(σ) dσ

for arbitrary inputs x shows that

a(t, σ + τ) = a(t− τ, σ) for all t, σ, τ.

Evaluating at σ = 0 shows a(t, τ) = a(t − τ, 0), and the result follows by defining
the convolution kernel ψ via ψ(t) = a(t, 0). �
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Remark 1. We can now observe two key properties of linear shift-invariant filters.
First, because of their representation as Fourier multiplier operators, they can be
implemented efficiently. Second, all linear shift-invariant filters commute, as can be
seen either from the convolution formulation or the Fourier multiplier formulation.

We next recall the Dirac δ distribution δf = f(0), which (under a suitable
interpretation of the convolution) satisfies f ∗ δ ≡ f .

Definition 1. Given a linear, shift-invariant filter A, we call the underlying con-
volution kernel ψ the impulse response of A. This refers to the fact that

ψ(t) = Ψ ∗ δ(t) = Aδ(t).

We may also call ψ the point spread function or PSF of A.

If we are studying an unknown physical system that we believe to be linear and
shift-invariant, then we may derive the underlying convolution kernel by measuring
the response to an approximation to the δ distribution (e.g. some localized energetic
input).

Any linear, shift-invariant filter is also a Fourier multiplier operator, as

F [Ax] = F [ψ ∗ x] = ψ̂x̂.

Definition 2. Let A be a linear, shift-invariant filter with impulse response given

by ψ. Then ψ̂ is called the transfer function of A (or modulation transfer function
[MTF]).

Linear, shift-invariant filters are therefore completely determined by their im-
pulse response or transfer function.

We may formally understand the transfer function as describing the effect of the
filter on a pure oscillatory state, that is,

A[eitξ] =

∫
ei(t−s)ξψ(s) ds = ψ̂(ξ)eitξ.

For a general input x(t), we often express the Fourier transform x̂(ξ) in polar
coordinates:

x̂(ξ) = |x̂(ξ)|eiφ(ξ),

where |x̂(ξ)| is the amplitude at frequency ξ
2π and φ(ξ) ∈ R is the phase. We call

these quantities the harmonic components of the input x.

Example 1. Suppose x(t) = cos(ωt) for t ∈ [t1, t2]. We would informally say that
x has frequency ω

2π on the interval. In fact, for the idealized signal xi(t) = cos(ωt)
for all t ∈ R, one has

x̂(t) = π[δ(ξ − ω) + δ(ξ + ω)].

(To make this precise, we need to use the extension of the Fourier transform to
distributions.) A more realistic model is

xr(t) = ψ(t) cos(ωt),

where ψ is a smooth cutoff to [t1, t2]. Then

x̂r(t) = 1
2 [ψ̂(ξ − ω) + ψ̂(ξ + ω)].

If ψ = 1 over and decays smoothly to zero, then |ψ̂| will be sharply peaked at ξ = 0,
so that |x̂r| describes which frequencies are present are in the signal. If ψ is shifted
by some t0, then its Fourier transform is multiplied by eit0ξ; accordingly, the phase
indicates where the signal is nonzero.
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If we write the transfer function ψ̂ for a linear, shift-invariant filter in its harmonic
components, i.e.

ψ̂(ξ) = a(ξ)eiθ(ξ),

then we have

F(ψ ∗ x) = a(ξ)|x̂(ξ)|ei[θ(ξ)+φ(ξ)],

where x̂ is as above. This gives the frequency-space description of the filter, namely,
the amplification or attenuation of each coefficient and corresponding phase shift.

Before turning to some concrete examples, let us introduce a few important types
of filters.

• Given a collection {A1, . . . , Ak} of filters, we may form the cascade of filters
by the composition

x 7→ Ak ◦ · · · ◦A1x.

In particular, more complicated filters may be built out of simpler ones.
In general, the order matters. In theory, this is not the case for linear,
shift-invariant filters; in practice, however, the order in which filters are
computed numerically can make a big difference.
• A one-dimensional integral filter with kernel a(t, s) is causal if a(t, s) = 0

for s > t. We may write

Ax(t) =

∫ t

−∞
a(t, s)x(s) ds.

For linear, shift-invariant filters, this corresponds to saying that the convo-
lution kernel ψ vanishes for t < 0.
• A filter is a bandpass filter if it restricts the range of the Fourier transform

(to some passband).
• A filter is isotropic if it commutes with rotations. A linear, shift-invariant

filter is isotropic if and only if its impulse response or transfer function is
radial.

♣ ♣ ♣

Let us consider several examples to illustrate the ideas introduced above.

Example 2 (Identity). Let Af = f (the identity map). This is a linear, shift-
invariant filter. Its impulse response is the δ distribution, and its transfer function

is δ̂ ≡ 1.

Example 3 (Differentiation). Let Af = f ′ (the derivative of f). This is a linear,
shift-invariant filter. Its impulse response should be δ′, whatever that means. In
fact, δ′ is a well-defined distribution, given by

δ′f = −f ′(0).

(This definition is obtained by performing a formal integration by parts in the in-
tegral

∫
δ′f .) The transfer function is once again a bit more mundane, given by

F [δ′](ξ) = iξ.

Example 4 (Ideal bandpass filters). For α < β, we define the bandpass filter B[α,β]

via

B[α,β]x = F−1[χ[α,β](|ξ|)x̂(ξ)].



MATH 5001 - MATHEMATICS OF MEDICAL IMAGING 73

This is a linear, shift-invariant filter that is defined to have transfer function equal
to χ[α,β](|ξ|). The impulse response function is

b[α,β](t) = 2 Re
[
e−

it(α+β)
2

sin(t(β−α)/2)
πt

]
.

We call [α, β] the passband. If α = 0, the filter is called an ideal lowpass filter,
while an ideal highpass filter has transfer function 1− χ[0,β](|ξ|).

An ideal lowpass filter coincides with a partial inverse, with point spread function
given by

hβ(t) =
β sinc(βt)

π
.

Because such functions fail to be absolutely integrable, the filtered outputs will be
susceptible to Gibbs oscillations.

Instead of exact lowpass filters, one can use approximate lowpass filters (known
as apodizing filters), as in the following two examples.

Example 5 (Tent function). Given β > 0, define the transfer function

t̂β(ξ) = 1
βχ[− β2 ,

β
2 ] ∗ χ[− β2 ,

β
2 ](ξ),

which obeys t̂β(0) = 1 and t̂β(ξ) = 0 for |ξ| ≥ β. The corresponding point spread
function is

tβ(s) = 1
β

[ sin(βs/2)
πs

]2
.

Example 6 (Hanning window). For β > 0, we may define the transfer function

ĥβ(ξ) =

{
cos2(πξ2β ) |ξ| < β

0 |ξ| > β,

which is even smoother than the tent function. The point spread function is given
by

hβ(t) = π
2β2

sin(tβ)
t[(π/β)2−t2] .

Example 7 (Hilbert transform). The Hilbert transform H is a linear, shift-
invariant filter with transfer function sign(ξ). The impulse response function is
the distribution PV[ iπt ].

Example 8 (Ramp filter). The ramp filter |∇| is defined via the transfer function
|ξ|. It can be written as 1

iH∂x, where H is the Hilbert transform. More general
fractional derivatives |∇|s can be defined via the transfer function |ξ|s.

Example 9 (Commutativity). Suppose A1x = ∂tx and A2x = ϕ ∗ x for some
differentiable ϕ of bounded support. In theory, A1 ◦ A2 = A2 ◦ A1. In practice,
however, it is much simpler to compute A1 ◦A2 than A2 ◦A1. Indeed,

A1 ◦A2x = ∂t[ϕ ∗ x] = [∂tϕ] ∗ x,

whereas computing A2 ◦ A1 would require that we numerically approximate the de-
rivative of an arbitrary input before convolving with ϕ.

♣ ♣ ♣
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In many instances, it is natural to try to invert a given filter. As a simple
example, suppose our model for measurement of a signal x is given by a convolution
Ax = k ∗ x. To recover x, we would then therefore need to invert this filter.

Of course, this is not always possible. Consider, for example, a bandpass filter,
which explicitly throws away part of the function.

Nonetheless, as a starting point for this problem, we observe the formal identity

x = F−1

[
F [k ∗ x]

k̂

]
,

where k ∗ x represents the measured data. In some cases, k̂ may vanish, and so

this formula may not be useful. In general, if k ∈ L1, then we know that f̂(k)→ 0
as |ξ| → ∞. Therefore the inversion process (i.e. the filter with transfer function

given by 1/k̂) will amplify high frequencies. In realistic settings, the measurement
may be modeled by k ∗ x+ n, where n represents some noise. We then have

F [k ∗ x+ n]

k̂
= x̂+

n̂

k̂
,

which shows that the high frequencies in the noise will be amplified by this approach
to inversion.

A modification to this approach involves truncating the support of the transfer
function and using the following approximate inverse:

y 7→ F−1

[
χ[−a,a](ξ)

k̂(ξ)
y

]
for some a > 0,

which would give perfect reconstruction for suitably bandlimited data. While real
signals will not typically be bandlimited, they may be ‘effectively bandlimited ’ in
the sense that most of the content of the signal is contained in a bounded interval
of frequencies.

This modification still does not address the possibility that k̂ could vanish at
some finite frequencies. In this setting, we can ‘repair’ the transfer function near its

zeros. That is, near a zero ξ0 of k̂, we could replace k̂(ξ) with ±ε in a neighborhood
of size ε.

In practice, designing inverse filters is really a problem in engineering. We will
conclude our discussion by considering just one example.

Example 10. Suppose x is L-bandlimited. By Nyquist’s theorem, we should sample
x at equally spaced points with a mesh size at most π

L .
To model the measurement of x, fix ε > 0 and define

hε(t) = 1
2εχ[−1,1](

t
ε ).

Observe that hε ∗ x is still L-bandlimited.
Samples of hε ∗ x at {nπL }n∈Z allow for recovery of F [hε ∗ x] via

F [hε ∗ x](ξ) = χ[−L,L](ξ)
∑
n∈Z

hε ∗ x(nπL )e−inπξ/L.

Now, ĥε(ξ) = sinc(εξ/2) has its first zero at 2π/ε. If ε is sufficiently small (so that
ε
2 <

π
L), then we may safely divide F [hε ∗ x] by ĥε and hence exactly reconstruct x̂.

In fact, if ε is small enough (e.g. ε = π
L) then the consecutive sampling intervals

do not overlap and we may obtain a uniform lower bound on ĥε over [−L,L].
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This example shows that a bandlimited signal can be exactly and stably recon-
structed from fairly realistic measurements, provided the ‘resolution’ of the measur-
ing device is high enough (relative to the bandwidth of the signal).

♣ ♣ ♣

The preceding example leads us naturally to the notion of resolution. In fact,
resolution is not exactly a well-defined mathematical concept and is mostly useful
for purposes of comparison of different filters.

For a filter A, the resolution RA in the output of A is given as a length, which
may be interpreted as the size of the smallest discernible feature in the output; the
minimum separation between discernible features; or the extent to which a pointlike
object is spread out. The resolution increases as RA decreases.

We will focus on giving just a few possible definitions for resolution in the output
of a linear, shift-invariant filter Ax = k ∗ x.

• Assume k attains its maximum M at zero. For κ ∈ (0, 1), let

∆(A, κ) = t+(κ)− t−(κ),

where t±(κ) denote the largest negative and smallest positive values where
k(t) = κM . This is called the full-width κ-maximum of A. If k has zeros,
then the special case of κ = 0 just gives the largest negative and smallest
positive zeros. A special case is given by κ = 1

2 , which corresponds to the
FWHM (full width half maximum).

• Suppose |k̂| attains it maximum at ξ = 0. For ε ∈ (0, 1), we let ξ± denote

the largest negative value and smallest positive values of ξ such that |k̂(ξ)| ≤
ε|k̂(0)|. Then the ε-Nyquist width is defined by

∆(A,Ny, ε) =
π

min{|ξ+|, |ξ−|}
.

This is connected to the fact that a broader transfer function (corresponding
to a smaller ∆) corresponds to keeping a larger range of frequencies, and
hence retaining a higher degree of resolution in the output of the filter.

The notions of resolution introduced above carry over naturally to higher-
dimensional filters, provided the filters are isotropic. Otherwise, the situation be-
comes more complicated.

The resolution generally decreases as we apply cascades of filters; however, the
precise statements depend on (i) the types of filters appearing in the cascades and
(ii) the precise notion of resolution being considered. We will not pursue this topic
in detail here.

♣ ♣ ♣

In the final topic of this section, we will consider the filtering of periodic inputs
(or periodic extensions of inputs defined on intervals).

Viewing inputs as defined on R, we say x(t) is L-periodic if x(t + L) = x(t) for
all t ∈ R. A filter A is L-periodic if it maps L-periodic functions to L-periodic
functions.

The L-periodic unit impulse δL is given formally by the sum

δL(t) =
∑
j∈Z

δ(t+ jL).
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In this setting, an L-periodic, linear, shift-invariant filter is given by convolution
with the impulse response k(t), defined by

k(t) = A(δL).

The transfer function in this case becomes the sequence {k̂(n)}n∈Z, obtained by
applying the filter to the complex exponentials e2πint/L:

A(e2πint/L) = k̂(n)e2πint/L.

As the Fourier coefficients of k ∗ x are given by k̂(n)x̂(n), we have the following
Fourier representation:

Ax(t) = 1
L

∑
n∈Z

k̂(n)x̂(n)e2πint/L.

Example 11. The bandpass filter with passband [a, b] has transfer function

k̂(n) =

{
1 |n| ∈ [a, b]

0 otherwise.

Various notions of resolution carry over to this setting as well.
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Implementation of filters

In this section, we discuss (briefly) the actual ‘implementation’ of shift-invariant
filters. This refers to the transition from the continuous filters introduced in the
previous section to their approximate realizations on finitely sampled data. The
main tools needed are the finite Fourier transform and Riemann sums.

We suppose x is some input to a linear, shift-invariant filter H with impulse

response h and transfer function ĥ. Fixing some t0 ∈ R, τ > 0, and N ∈ N, our
goal is to derive practical approximations to the values

h ∗ x(t0 + kτ), k = 0, . . . , N − 1

using finitely many samples of x and h (or ĥ). We will assume uniform sampling of
x and h. In situations where this is not feasible, one may interpolate the available
data to produce equally spaced samples. To simplify matters, we will fix t0 = 0
and consider the case τ = 1

N , which corresponds to the sample points {k/N} for a
signal supported on [0, 1].

We begin with the Riemann sum approximation

h ∗ x( kN ) =

∫ 1

0

h( kN − y)x(y) dy ≈ 1
N

N−1∑
j=0

h(k−jN )x( jN ). (1)

This approximation requires that we sample the impulse response h at the 2N − 1
points

−N−1
N , . . . ,− 1

N , 0,
1
N , . . . ,

N−1
N .

We therefore define the sample sequences hs ∈ R2N−1 and xs ∈ R2N−1 as follows.
First, we set

hs = {h(0), . . . , h(N−1
N ), h(−N−1

N ), . . . , h(− 1
N )}.

Next, we apply zero padding and define xs as follows:

xs = {x(0), . . . , x(N−1
N ), 0, . . . , 0}.

We extend both hs and xs as (2N − 1)-periodic sequences.
Continuing from (1), we therefore have the initial approximation

h ∗ x( kN ) ≈ 1
N

N−1∑
j=0

hs(k − j)xs(j) = 1
N hs ? xs(k),

where ? denotes the discrete periodic convolution.
To compute this discrete convolution in practice, we may use the following con-

volution identity for the finite Fourier transform:

Lemma 1. Let x, y be sequences of length M . Then

FM (x ? y) = M{x̂0ŷ0, . . . , x̂M−1ŷM−1},

where FM is the finite Fourier transform, {x̂k} = FM (x), and {ŷk} = FM (y).

Proof. The proof may be skipped in lecture. We have

FM (x ? y)k = 1
M

M−1∑
`=0

[M−1∑
j=0

x`yj−`

]
e−2πijk/M .

Setting m = j − ` and using periodicity then yields the result. �
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Thus, continuing from above, we arrive at the following approximation:

h ∗ x( kN ) ≈ 2N−1
N F−1

2N−1

(
{x̂s(0)ĥs(0), . . . , x̂s(2N − 1)ĥs(2N − 1)}

)
(k), (2)

where x̂s = F2N−1xs and ĥs = F2N−1hs are the finite Fourier transforms of the
sample sequences. This is a useful formulation in general due to the efficient nu-
merical implementation of the finite Fourier transform and its inverse.

In the remainder of this section, let us discuss the following questions:

(i) How is x̂s related to the Fourier transform or Fourier series of the original
signal x?

(ii) Can we approximate ĥs without first having to sample the impulse function?
Could we instead sample the transfer function directly?

For (i), we can observe that

x̂s(k) = 1
2N−1

2N−2∑
j=0

xs(j)e
−2πijk/(2N−1)

= 1
2N−1

N−1∑
j=0

xs(j)e
−2πijk/(2N−1)

= N
2N−1

N−1∑
j=0

1
N xs(j) exp{−2πi jN

kN
2N−1}

≈ N
2N−1

∫ 1

0

x(t)e−2πit( kN
2N−1 ) dt = N

2N−1 x̂( 2πNk
2N−1 ),

showing that x̂s is indeed related to samples of the Fourier transform of x̂.
We remark that the finite Fourier transform of the unpadded sample sequence

can also be connected rather directly to the Fourier coefficients of x (thought of as
a function on [0, 1]).

For (ii), we note that there is another approach to approximating the convolution,
namely, via the Fourier inversion formula:

h ∗ x( kN ) ≈ 1
2π

∫ Nπ

−Nπ
ĥ(ξ)x̂(ξ)eiξk/N dξ.

The truncation to frequencies |ξ| ≤ Nπ is consistent with the assumption that a
sample spacing of 1

N is sufficient for approximate the given signal. Continuing, we
make a Riemann sum approximation and arrive at

h ∗ x( kN ) ≈ 1
2π

N−1∑
j=−(N−1)

ĥ( 2πNj
2N−1 )x̂( 2πNj

2N−1 ) exp{ 2πijk
2N−1}

2πN
2N−1 .

If we make the approximations

x̂s(k) ≈ N
2N−1 x̂( 2πNk

2N−1 ) and ĥs(k) ≈ N
2N−1 ĥ( 2πNk

2N−1 ), (3)

then we arrive at the same approximation to h ∗ x( kN ) as the one appearing in
(2). This derivation shows that it is possible to build an approximation using only

samples of the transfer function ĥ, rather than the impulse response h.
We summarize our discussion as follows: The formula in (2) provides an approxi-

mation to the convolution h∗x at the sample points k
N using finitely many samples.

In particular, we sample the signal at finitely many points, pad by zeros, and take



MATH 5001 - MATHEMATICS OF MEDICAL IMAGING 79

the finite Fourier transform to form the sequence x̂s(k). For approximating ĥs(k),
there are two basic approaches:

• First, we may sample the impulse response function h and then obtain ĥs
as the finite Fourier transform of the sample sequence hs.
• Second, we may use the approximation in (3) to obtain an approximation

to the values of ĥs(k).

In general, these two approaches will perform differently, and which choice is better
depends on the particular situation at hand.

We will leave it as an exercise to extend the ideas above to the more general
scenario of sampling at points {t0 + τk} for some t0 ∈ R and uniform sampling
spacing τ > 0.
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X-ray CT reconstruction

In this section, we return to the reconstruction problem in X-ray CT and discuss
several approaches.

In this section, we will continue to make various simplifying assumptions:

• First, we continue with assumption of one-dimensional monochromatic X-
ray beams, which (as we have previously discussed) is not realistic.
• Next, we assume that measurements are made with infinite precision and

can similarly be represented digitally with infinite precision. In truth, the
accuracy of measurements depends on the accuracy and sensitivity of the
X-ray detectors, the stability of the X-ray source, the correct calibration of
the scanning machine, and so on. Similarly, the contrast available in the
reconstructed image actually depends on the range of measurements made
and the number of bits used to store them.

We will revisit some of these assumptions later sections.
The quality of a reconstruction algorithm can be characterized by several key

properties:

• The first key property is of course the accuracy of the reconstructed image.
In the case of X-ray CT, one benefits greatly from the availability of exact
reconstruction formulas on which to base the reconstruction algorithm.
• The next property is stability (e.g. with respect to various types of noise

in the measured data). As we have discussed before, this is connected to
continuity properties present in the inversion formulas.
• Finally, a good algorithm should be efficient in terms of computational cost.

In the present setting, we will see that many computations are paralleliz-
able, thus allowing for their efficient implementation.

To test the accuracy and stability of reconstruction algorithms, one can utilize
so-called ‘phantoms’. This refers to both physical and mathematical phantoms.

• With a physical phantom, one tests the reconstruction algorithm on an
object for which one knows the internal structure. In this case, one mixes
the measurement error with algorithmic error.
• The idea of a mathematical phantom was introduced by Shepp. The idea

is to isolate algorithmic errors by tests the reconstruction algorithm on a
purely mathematical construction. To simulate measurements, one should
digitize the image and replace point values by some kind of weighted av-
erage. One can use mathematical phantoms to test robustness to mea-
surement error, understand sampling artifacts, and compare different algo-
rithms. An example of a mathematical phantom is pictured below:
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We consider the problem of reconstructing a single slice of a 3d object contained
in the disc of radius L. We denote the unknown attenuation coefficient by f =
f(x, y), which we will attempt to reconstruct on the reconstruction grid

Rτ = {(xj , yk) = (jτ, kτ)},

where τ > 0 is the sample spacing. Here j, k range between −K and K, where
K = bLτ c+ 1.

♣ ♣ ♣

Parallel Beam Scanner

♣ ♣ ♣

Let us first consider reconstruction using a parallel beam scanner. This type
of scanner represents the ‘first generation’ of X-ray CT scanners. In the parallel
beam setup, we place an array of X-ray sources on one side of the object, with a
corresponding array of detectors on the other side, as in the following figure from [1]:

The sources and detectors are then rotated together around the object and data is
collected.

We fix M > 1 and choose a finite collection of directions

{ω(k∆θ)}k=0,...,M , where ∆θ = π
M+1 .

For a fixed direction, the X-ray source/detector pairs will yield the Radon transform
along the discrete set of affine parameters

{jd}Nj=−N ,

where d > 0 is the affine sample spacing and N = Ld−1.
The data acquired in the parallel beam setup takes the form

{Rf(jd, ω(k∆θ)) : j = −N, . . . , N, k = 0, . . .M},
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which represents a rectangular grid in (t, θ)-space. Note that by the evenness of
Rf , it is technically sufficient to obtain samples of corresponding to angles in [0, π);
practically, it can be useful to obtain ‘redudant’ information and average the results.

We will discuss the connections between the choices of M,N, and K (the number
of points in the reconstruction grid) below.

Definition 1. We call an individual measurement a ray. We call the collection of
samples of Rf(t, ω) for a fixed ω a view.

A plot of Rf(t, ω) is called a sinogram. Such plots are not easy to interpret (for
humans, at least).

? ? ? Direct Fourier Inversion ? ? ?

One approach to reconstruction using parallel beam data is to directly appeal to
the Fourier inversion formula. As we will see, this approach has some issues.

Using the convention that

f̂(rω(θ)) = f̂(|r|ω(θ + π)) for r < 0,

and supposing we had complete data for each fixed angle, the central slice formula
tells us that

f̂(rω(k∆θ)) =

∫ ∞
−∞
Rf(t, ω(k∆θ))e−irt dt.

Then, by the Fourier inversion formula (stated in polar coordinates) and taking a
Riemann sum approximation, we obtain

f(x, y) = 1
4π2

∫ π

0

∫ ∞
−∞

f̂(rω)eir(x,y)·ω|r| dr dω

≈ 1
4π(M+1)

M∑
k=0

∫ ∞
−∞

f̂(rω(k∆θ))eir(x,y)·ω(k∆θ)|r| dr.

In practice, we have only the samples Rf(jd, ω(k∆θ)), which would allow us to
approximate

f̂(rjω(k∆θ)), rj ∈ {0,±η, . . . ,±Nη}, η = 1
N
π
d = π

L .

We could then take another Riemann sum approximation in the sum above.
Now consider the computational cost of the scheme outlined above. To approx-

imate f at a single point (x, y) requires O(MN) operations. As there are O(K2)
points in the reconstruction grid, this approach requires an enormous O(MNK2)
computations.

An alternate approach would be to use the fast Fourier transform (FFT). As the
Radon transform data is sampled uniformly in t for each fixed angle, one could use

the FFT to obtain the values f̂(rjω(k∆θ)) in O(MN logN) operations.
However, we do not obtain uniform samples of the Fourier transform, and hence

we cannot directly apply the fast inverse Fourier transform (IFFT). Indeed, we
instead obtain samples along concentric circles. One possible remedy is to use
a nearest neighbor interpolation to obtain a uniform grid of O(K2) approximate
samples of the Fourier transform. Then, in O(K2[logK]2) operations, one can
evaluate the IFFT. In particular, we can perform the complete inversion in

O(MN logN +K2[logK]2)
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operations.
Unfortunately, this does not work well. The reason is that for a typical atten-

uation coefficient f , the Fourier transform f̂ will exhibit rapid oscillation of both
phase and magnitude; this can be seen clearly at the level of mathematical phan-
toms. In particular, the nearest neighbor interpolation introduces too many errors
and the reconstruction is not accurate.

? ? ? Filtered Back-Projection ? ? ?

The starting point for the parallel beam reconstruction algorithm is instead the
filtered back-projection formula, which we recall here:

f(x) = 1
2π

∫ π

0

|∇|Rf(〈x, ω〉, ω) dω.

Accordingly, the reconstruction is based on two steps:

1. Implement the 1d filter |∇| on the Radon transform data.
2. Implement the back-projection.

Note that because the filter acts only on the affine variable, we should be able
to carry out the filtering step one view at a time, so that the algorithm can be
parallelized.

The back-projection step will be implemented with a simple Riemann sum ap-
proximation. The more challenging component of this algorithm involves the im-
plementation of the nonlocal filter |∇|.

As discussed previously, one approach to approximating |∇| is to instead approx-
imate the transfer function, which is given by |r|. Let us denote the approximate

transfer function by φ̂. Frequently, one writes φ̂ in the form

φ̂(r) = A(r)|r|
for some apodizing function A(r). Some standard options for A(r) include a simple
bandlimiting filter, the ‘Hamming’ filter, or the ‘Hanning’ filter. Once a choice has
been made, we may denote the filtered Radon data as

Qφf(t, ω) = 1
2π

∫
R̃f(r, ω)φ̂(r)eirt dr =

∫
Rf(s, ω)φ(t− s) ds.

Assuming we have complete data for Rf , our approximation to f would then be

fφ(x, y) := 1
2π

∫ π

0

Qφf(〈(x, y), ω〉, ω) dω.

Using the discretized data and a Riemann sum approximation, our reconstructed
function is therefore

f̃φ(xm, y`) = d
2(M+1)

M∑
k=0

N∑
j=−N

Rf(jd, ω(k∆θ))φ[〈(xm, y`), ω(k∆θ)〉 − jd]. (1)

We now turn to a crucial observation for the parallel beam reconstruction prob-
lem. Because the filter is with respect to the affine variable only, we can carry
out the filtering step after each view is collected. This presents an opportunity for
parallelizing the algorithm and thereby speeding up reconstruction. However, when
we examine formula (1), it seems as though we need to use a different filter for each
point in the reconstruction grid. That is, we must repeat the filter step K2 times
for each view!
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To remedy this, Ramachandran and Lakshminarayanan had the idea to simply
fix the values of the filtering function φ at {jd}Nj=−N and then linearly interpolate to
obtain approximate values at intermediate points. For the filter itself, Ramachan-
dran and Lakshminarayanan used the simple bandlimiting

φ(jd) = 1
2π

∫ B

−B
|r|eirjd dr

for some B > 0. In the medical imaging context, we call this the Ram-Lak filter.
Because φ can be expected to be a slowly varying real-valued function, this

interpolation will introduce far less error than what we considered in the case of
direct Fourier inversion. In particular, we can expect some blurring to result, but
we do not expect to introduce any oscillatory effects, for example.

The interpolation works as follows: As N = Ld−1, we have that for each m, `, k
there exists an integer nk`m ∈ [−N,N ] such that

nk`md < 〈(xm, y`), ω(k∆θ)〉 ≤ (nk`m + 1)d.

Consequently, there exists αk`m ∈ [0, 1] such that

〈(xm, y`), ω(k∆θ)〉 = αk`m(nk`m + 1)d+ (1− αk`m)nk`md. (2)

As the sampling angles and reconstruction grid are fixed at the beginning, the
values (nk`m, αk`m) may be computed and stored in a table.

The reconstruction algorithm is then carried out as follows:

1. For each view (i.e. for each fixed k), we approximate the filtered Radon
transform at the via the discrete convolution

Qφf̃(jd, ω(k∆θ)) = d

N∑
n=−N

Rf(nd, ω(k∆θ))φ((j − n)d)

for j = −N, . . . , N . This step can be done after the data for a single view
is collected.

2. Back-project Qφf̃ using linear interpolation to produce the approximations

f̃φ(xm, y`) = 1
2M+1

M∑
k=0

[
αk`mQφf̃((nk`m + 1)d, ω(k∆θ))

+ (1− αk`m)Qφf̃(nk`md, ω(k∆θ))
]
,

where αk`m and nk`m are as in (2). By linearity, this is equivalent to
interpolating the values of φ itself.

The computation of Qφ as a discrete convolution requires O(MN2) operations (al-
though this could be reduced by computing using the FFT), while the second step
requires O(MK2) operations. Later we will take K ≈ N , so these two computa-
tional costs are of the same order.

Use of the Ram-Lak filter and linear interpolation works ‘surprisingly well’.
Shepp and Logan carried out an analysis to explain the success of this approach.
Essentially, the key to success is to make sure that the transfer function resembles
|r| near r = 0, while at the same time guaranteeing that the point spread function
resembles that of −i∂tH for large t (i.e. φ(t) ≈ − 1

πt2 as t→∞).
So far, we have taken our parameters K,M,N for the reconstruction grid, pro-

jection angles, and affine parameter completely independently. In practice, these
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should be linked by considering principles such as Nyquist’s theorem. In the remain-
der of this section, we will show that a reasonable choice of parameters corresponds
to choosing K ≈M ≈ N and τ ≈ d.

First, since we have d = LN−1 (the affine sample spacing), the effective support

of f̂(rω) should be contained in a disc of radius ≈ d−1. Now, f̂ is sampled at N
points along each radial line, giving a sample spacing of ≈ L−1; here we are just
using that NL−1 = d−1.

Now consider the widest sample spacing of f̂ in the angular direction. This
occurs at at the largest radius, and hence is given by ≈ ∆θd−1. It is reasonable
to ask that the radial spacing coincide with the worst angular spacing (i.e. L−1 ≈
∆θd−1), leading to the condition

N = Ld−1 ≈ (∆θ)−1 ≈M.

Now, since we obtain ≈ N ×N samples of the Fourier transform, then we should
use the same number of grid points in the reconstruction grid, which is essentially
an L×L square. That is to say, the sample spacing τ should be given by LN−1 = d.
But then

K ≈ Lτ−1 ≈ Ld−1 = N,

and hence we should take K ≈ N as well. Another way to arrive at K ≈ N is to
ask that the total number of measurements (≈ NM ≈ N2) agree with the total
number of nontrivial reconstruction points (≈ K2).

♣ ♣ ♣

Fan Beam Scanner

♣ ♣ ♣
We next consider the divergent beam or fan beam geometry. Beginning with

the second generation of X-ray CT scanners, scanning machines began to utilize a
single X-ray source emitting X-rays in a ‘fan beam’ shape.

• In a ‘second-generation’ scanner, the X-ray source is across from a flat
arrangement of detectors, and the entire configuration is translated and
rotated around the patient.

In later designs, the source and detectors were arranged on opposite arcs of a circle
and only rotation was used.

• In a ‘third-generation’ scanner, detectors are arranged in an arc centered
on a single X-ray source. The source and detectors are rotated together.

• In a ‘fourth-generation’ scanner, the detectors are on a fixed ring around
the object, and only the X-ray source is rotated around the object.

Our discussion will be limited essentially to third- and fourth-generation scanners.
All of the engineering developments related to the detector/source configuration,
number of detectors, and so on, have certainly improved the measurement process
significantly (e.g. by shortening the scan time). At the level of detail we are
currently considering, however, there is not much difference in terms of describing
the resulting X-ray data.

In the fan-beam setting, a view consists of samples of Rf for a family of lines
passing through a point.

• In the third-generation setting, this refers to the family of lines emanating
from a fixed X-ray source.
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• In the fourth-generation setting, this refers to the family of lines that pass
through a fixed detector as the source rotates.

In particular, the two viewpoints are ‘dual’ to one another and can be treated
basically at the same time. It is perhaps conceptually simpler to imagine the lines
comprising a single fan beam, which corresponds to third-generation scanners.

In contrast to the parallel-beam setting, data from a single view no longer pro-
vides all of the Radon transform data for a fixed ω, and hence we cannot apply
results such as the central slice theorem directly. There are then two basic ap-
proaches to using the fan beam data:

(i) Re-sort the data and interpolate to obtain parallel-beam type information.
This is called rebinning. We will not discuss this issue here, but only point
out that this approach both introduces interpolation error and sacrifices
‘parallelizability’ of the algorithm.

(ii) Build a reconstruction algorithm that works directly with the fan-beam
data. Such an algorithm was first proposed by Herman, Lakshminarayanan,
and Naparstek.

We parametrize the fan beam data as follows (see the figure below from [1]).

• We consider an X-ray source (S below) with a central ray emanating from
S and passing through the origin.
• We write D for the distance from S to the origin along the central ray.
• We write β for the angle formed by this ray and the vertical axis.
• We parametrize other the other lines in the view by the angle γ they form

with the central ray.
• Using trigonometry, the line parametrized by γ may be described in the

standard (t, θ) coordinates as `t,ω(θ), where

θ = γ + β and t = D sin γ. (3)

The variables (β, γ) will describe the family of lines for which we have Radon
transform data. The data obtained by the scanner will be uniformly sampled in
these coordinates.

Our goal is an analogue of the approximate reconstruction formula

fφ(x, y) = 1
2π

∫ π

0

∫ L

−L
Rf(t, θ)φ(x cos θ + y sin θ − t) dt dω,

where convolution with φ is our approximation to the filter |∇|.
Let us firstly deal with one technical annoyance and re-express this quantity

using an integral over [0, 2π] rather than [0, π]. To do this, we observe that the
integrand may be written as a function G obeying G(−t,−ω) = G(t, ω). We have
established this fact previously for the Radon transform, so let us focus on showing
that this is true of the filter term. Here the key is to observe that the argument
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|x cos θ + y sin θ − t| is precisely the distance from (x, y) to the line `t,ω(θ). This
follows from the fact that the projection of (x, y) onto `t,ω is

(x, y)− {(x, y) · ω − t}ω.

As `−t,−ω = `t,ω, we find that this even symmetry holds for the filter term as well,
at least provided we impose the condition that φ is even. Using this even symmetry,
we may now re-write (4) as

fφ(x, y) = 1
π

∫ 2π

0

∫ L

−L
Rf(t, θ)φ(x cos θ + y sin θ − t) dt dω, (4)

We will focus first on an analogue of this filtered back-projection formula and
consider the problem of implementation after arriving at a suitable formula. In
what follows, we change notation and denote the convolution kernel of the filter by
κ rather than φ. We also use ξ for the Fourier variable. This frees up the variables
ϕ and r, which we will use to express (x, y) in polar coordinates via

(x, y) = (r cosϕ, r sinϕ).

In particular, (4) becomes

fκ(r, ϕ) = 1
π

∫ 2π

0

∫ L

−L
Rf(t, θ)κ(r cos(θ − ϕ)− t) dt dθ,

where we have used

cos θ cosϕ+ sin θ sinϕ = cos(θ − ϕ).

We now recall the relations in (3) to change variables in the integral above. We
define the fan angle 2γL so that the family of lines corresponding to the parameters

{(β, γ) : β ∈ [0, 2π), |γ| ≤ γL}

includes all lines intersecting the disc of radius L. We then obtain

fκ(r, ϕ)

= D
π

∫ 2π

0

∫ γL

−γL
Rf(D sin γ, β + γ)κ[r cos(β + γ − ϕ)−D sin γ] cos γ dγ dβ.

Let us introduce the notation

Pf(β, γ) = Rf(D sin γ, β + γ),

which represents the data we will collect in the fan beam setup. We now use some
trigonometry to simplify the expression appearing in the argument of κ. For this,
it is useful to consider the following figure from [1]:
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Lemma 1. Let

` = `(r, ϕ, β)

denote the positive distance from the source S to the point (x, y), and let

γ′ = γ′(r, ϕ, β)

denote the angle formed between the central ray and the ray joining S to (x, y).
Then the argument of κ simplifies as follows:

r cos(β + γ − ϕ)−D sin γ = ` sin[γ′ − γ].

Proof. We may first rewrite

r cos(β + γ − ϕ)−D sin γ

= r cos(β − ϕ) cos γ − [D + r sin(β − ϕ)] sin γ.

Now, consulting the figure above and using some trigonometry, we observe

` cos γ′ = D + r sin(β − ϕ),

` sin γ′ = r cos(β − ϕ).

Thus, continuing from the computation above, we have

r cos(β − ϕ) cos γ − [D + r sin(β − ϕ)] sin γ

= ` sin γ′ cos γ − ` cos γ′ sin γ

= ` sin(γ′ − γ),

as desired. �

Remark 1. The proof above also shows that

`(r, ϕ, β) =
√

[D + r sin(β − ϕ)]2 + [r cos(β − ϕ)]2,

γ′(r, ϕ, β) = tan−1
[ r cos(β−ϕ)
D+r sin(β−ϕ)

]
.

With our new notation and the lemma in place, we obtain

fκ(r, ϕ) = D
π

∫ 2π

0

∫ γL

−γL
Pf(β, γ)κ[` sin(γ′ − γ)] cos γ dγ dβ.

We turn our attention to describing the filter κ. We state the following informal
derivation as a lemma.

Lemma 2. Suppose κ̂(ξ) ≈ |ξ| over the effective bandwidth of γ 7→ Pf(β, γ). The
following approximation holds:

fκ(r, ϕ) = D
π

∫ 2π

0

∫ γL

−γL
Pf(β, γ)

[
γ′−γ

` sin(γ′−γ)

]2
κ(γ′ − γ) cos γ dγ dβ.

Proof. Write κ̂(ξ) = |ξ|χε(ξ), where χε → 1 uniformly in ξ as ε → 0. We consider
a general integral of the form∫

h(γ)κ[` sin(γ′ − γ)] dγ = 1
2π

∫∫
h(γ)ei` sin(γ′−γ)ξ|ξ|χε(ξ) dξ dγ.

We now change variables via

η =
[ ` sin(γ′−γ)

γ′−γ
]
ξ,
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which yields the integral

1
2π

∫∫
h(γ)

[
γ′−γ

` sin(γ′−γ)

]2
ei(γ

′−γ)η|η|χε[η γ′−γ
` sin(γ′−γ) ] dη dγ.

Using

χε[η
γ′−γ

` sin(γ−γ) ] ≈ χε(η),

we arrive at the approximation∫
h(γ)

[
γ′−γ

` sin(γ′−γ)

]2
κ(γ′ − γ) dγ,

which implies the result. �

In light of the previous lemma, we introduce the new filter defined by the con-
volution kernel

g(γ) := 1
π [ γ

sin γ ]2κ(γ), where κ̂(ξ) ≈ |ξ|,
and we finally define our approximation

fg(r, ϕ) =

∫ 2π

0

1

`2(r, ϕ, β)

∫ γL

−γL
Pf(β, γ)g[γ′(r, ϕ β)− γ]D cos γ dγ dβ.

We view this as a weighted filtered back projection formula, writing

Qgf(β, γ′) =

∫ γL

−γL
P ′f(β, γ)g(γ′ − γ) dγ, P ′f(β, γ) = Pf(β, γ) ·D cos γ,

fg(r, ϕ) =

∫ 2π

0

1

`2(r, ϕ, β)
Qgf(β, γ′(r, ϕ, β)) dβ.

This is the analogue of the approximate filtered back-projection formula adapted
to the fan beam setting. In the next section, we discuss the implementation of this
formula for reconstruction.

? ? ? Implementation ? ? ?

Fan beam data takes the form {Pf(βj , nα)}, where βj = 2πj
M+1 and n ranges over

some set of integers. Here we recall that

Pf(β, γ) = Rf(D sin γ, β + γ).

We can obtain the data P ′f(βj , nα) appearing in our reconstruction formula via

P ′f(βj , nα) = Pf(βj , nα) ·D cos(nα).

This can be done ‘one view at a time’ (i.e. for a fixed βj).
The reconstruction algorithm using fan beam data then consists of the following

steps.

1. Evaluate the discrete convolution with the kernel g:

Qg f̃(βj , nα) = α[P ′f(βj , ·) ? g](nα),

where

g(nα) = 1
π

[
nα

sin(nα)

]2
κ(nα).

Here κ(·) is the convolution kernel approximating the filter |∇|, chosen
similar to the parallel beam case.
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2. Compute the weighted back projection of each filtered projection:

f̃g(xm, y`) = 2π
M+1

M∑
j=0

1

`2(xm, y`, βj)
Qg f̃(βj , γ

′(xm, y`, βj)).

Here the values of Qg f̃ are obtained by interpolating the values of
Qgf(βj , nα).

The values `(xm, y`, βj) and γ′(xm, y`, βj) may be computed and stored at the
beginning. Then the computational cost of this algorithm is similar to that of the
parallel beam.

The first step can be carried out as soon as the data from a single view is collected.
In third-generation scanners, a view is determined by the source position, so one
can begin the filtering step as soon as the data from one position is collected. In a
fourth-generation scanner, a view is determined by the detector position, so filtering
must wait until all the data for the first view is collected.

It is worth mentioning that in practice, there are some subtleties related to data
collection in the fan beam setting. For example, if we take β ∈ [0, 2π), then we will
actually collect every projection twice! Let us only mention this issue in passing
and not discuss it here.

♣ ♣ ♣

Other Approaches

♣ ♣ ♣

In the second, third, and fourth generations of scanners, data is collected one slice
at a time. In the 1990s, the spiral scan or helical scan approach was introduced, in
which the patient is translated continuously as the source is continuously rotated.
Relative to the patient, the X-ray source traces out the shape of a helix. In this
way, one obtains X-ray data for the entire volume all at once. Assuming that we
are working with ‘third-generation’ type data, the collected data (in the continuous
model) has the form

D = {P (β, γ, z(β)) : β ∈ [βmin, βmax], γ ∈ [−γL, γL]},

where β now refers to the total accumulated rotation angle of the source and z(β)
is determined by the translation speed. Typically, one keeps the speed constant, so
that z(β) = cβ+z′. The data obtained is inherently two-dimensional. One approach
to obtaining three-dimensional data is to perform some interpolation to simulate
conventional scanner data. Here one finds a tradeoff between inconsistencies in the
interpolated data (leading to issues like streaks in the images) and increasing the
speed of translation (which would in turn decrease measurement time). Essentially,
increasing the translation speed increases the effective ‘slice thickness’.

Alternate approaches directly use three-dimensional data for reconstruction. For
example, one can use several rows of detector arrays and collect a two-dimensional
family of line integrals from the source, leading to so-called cone beam data. To
model this, one can define the cone beam transform D mapping functions on R3 to
functions on R3 × S2 via

Df(y, θ) =

∫ ∞
0

f(y + tθ) dt, y ∈ R3, θ ∈ S2.
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The basis for reconstruction using this three-dimensional data is Grangeat’s for-
mula, which relates the cone beam transform to the three-dimensional Radon trans-
form of f : R3 → R, which is defined by

Rf(s, ω) =

∫
x·ω=s

f(x) dA(x), s ∈ R, ω ∈ S2

and admits the inversion formula

f(x) = − 1
8π2

∫
S2
∂2
sRf(x · ω, ω) dA(ω).

The result is the following:

Theorem 1 (Grangeat’s formula). Suppose f : R3 → R has bounded support. Let
y ∈ R3 and θ ∈ S2. Then

∂sRf(y · θ, θ) =

∫
θ⊥∩S2

∇θDf(y, ω) dω,

where θ⊥ is the orthogonal complement of the span of θ and

∇θDf(y, ω) := ∂t
[
Df(y, tθ +

√
1− t2 ω

]∣∣
t=0

.

Proof. This proof may be skipped in lecture. We start from the right-hand side of
the formula. Explicit computation shows

∇θDf(y, ω) =

∫ ∞
0

tθ · ∇f(y + tω) dt,

and so the right-hand side equals∫
θ⊥∩S2

∫ ∞
0

tθ · ∇f(y + tω) dω dt.

We next consider the left-hand side of the formula. Making a change of variables
(y = x− h · ω), we may write

Rf(s+ h, θ)−Rf(s, θ) =

∫
x·θ=s

[f(x+ h · θ)− f(x)] dA,

which then implies

∂sRf(s, θ) =

∫
x·θ=s

θ · ∇f(x) dA(x).

In what follows, we fix s = y · θ. Now consider the change of variables

x = a(t, ω) = y + tω, ω ∈ θ⊥ ∩ S2, t ∈ (0,∞).

This is a bijection between {x · θ = s} and [0,∞) × {θ⊥ ∩ S2}, with the inverse
given by

ω(x) = x−y
|x−y| and t = |x− y|.

The Jacobian factor is given by dA(x) = t dt dA(ω), and so we obtain

∂sR(y · θ, θ) =

∫
θ⊥∩S2

∫ ∞
0

tθ · ∇f(y + tω) dt dA(ω),

which agrees with what we obtained for the left-hand side of the formula. �
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Imaging artifacts in X-ray CT

In this section we have two main goals. The first is to describe in some more detail
the modeling of the X-ray source/detector pair and the measurement process. The
second goal is to describe some common imaging artifacts that arise in X-ray CT.
Imaging artifacts arise from several sources, including inaccuracies in the physical
model, the sampling process, and measurement errors. Our discussion will be an
abbreviated version of the one appearing in [1].

We will describe a model for the mapping from the true attenuation coefficient
to the reconstructed image by means of a ‘point spread function’ (PSF) Ψ. Here
‘point spread function’ is put in quotation marks due to the fact that this filter will
not actually be shift-invariant (due to the sampling process), and so calling Ψ a
PSF is a bit of a misnomer. We write

fψ(x, y) =

∫
R2

Ψ(x, y; a, b)f(a, b) da db,

where f is the true attenuation coefficient and fΨ is the reconstructed image. The
PSF Ψ should be built out of several pieces, including:

• a model for the source-detector pair,
• sampling of the measurements, and
• implementing the filtered back-projection step.

? ? ? Partial Volume Effect ? ? ?

So far, we have modeled X-rays as lines in R2. This is not accurate. A more
accurate model (though still not the ‘truth’) is to model an X-ray beam as a strip
in R2, with a corresponding beam profile w. We can view this profile as being built
out of a source function ws and a detector response function wd. Typical examples
used in modeling are

wd(u) = 1
2δχ[−δ,δ](u) and ws(u) = ce−u

2/σ,

and we say that the X-ray source has a Gaussian focal spot. In scanners in which
the detectors are fixed and the sources move, the beam profile is given by the
convolution w = ws ∗ wd. We may refer to the FWHM of w as the beam width.

As we discussed earlier in these notes, we have been modeling the measurement
of a one-dimensional X-ray beam by

Io
Ii

= exp{−Rf(t, ω)}.

For a strip with beam profile w, a better model is

I0
Ii

=

∫
w(u) exp{−Rf(t− u, ω)} du, (1)

which is now a nonlinear function of the attenuation coefficient. An argument using
Taylor series expansion leads to the following:

Lemma 1. The following approximation holds:

log I0
Ii
≈
∫
w(u)Rf(t− u, ω) du+O

(∫
w(u)[Rf(t− u, ω)−Rf(t, ω)]2 du

)
.
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If the variation of Rf(t, ω) is small over the width of the strip, then we recover
an approximate linear model for measurement, namely the convolution

Rwf(t, ω) =

∫
w(u)Rf(t− u, ω) du. (2)

This is essentially a low-pass filter applied to Rf in the affine parameter. Incorpo-
rating this into the reconstruction algorithm, we expect to reconstruct a smoothed
version of f . This is good in the sense that it will reduce aliasing artifacts from
sampling; however, it will also lead to a loss of resolution.

A nontrivial imaging artifact known as the partial volume effect arises in the
case that Rf(t, ω) has large variation over the width of the strip. This arises, for
example, if the X-ray beam passes through both bone and soft tissue. In this case,
the error term in Lemma 1 dominates, and there can be a nontrivial difference
between (1) and (2). This can occur even if there is only a small inclusion of more
absorbent material like bone. In this setting, we are essentially using the ‘wrong’
data to reconstruct the attenuation coefficient, and the resulting image may have
abnormally bright spots or streaks emanating from a hard object. An example
(from [1]) is given in the following figure:

? ? ? Modeling the PSF ? ? ?

In what follows, we will work with the linear model of measurement given by
(2), as this is what our reconstruction algorithms actually assume. In this case, if
the complete data were available, our reconstructed function would take the form

fφ,w = R∗QφRwf.

Here R∗ is the back-projection operator. We use Qφ to denote the shift-invariant
filter in the affine variable with impulse response φ. Here we choose φ so that

φ̂(r) = |r|ψ̂(r) ≈ |r|,

which corresponds to Qφ ≈ |∇|. In fact, because Rw is also defined by convolution
with w in the affine variable, we may write

fφ,w = R∗Qφ∗wRf.

Writing Qφ∗w in the Fourier representation and applying the central slice theo-
rem, we may obtain

Qφ∗wRf(t, ω) = 1
2π

∫
R
eirtψ̂(r)ŵ(r)f̂(rω)|r| dr,
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and so (back-projecting and using the fact that r dr dω is the area element on R2)

fφ,w(x, y) = 1
4π2

∫
R2

f̂(ξ)ψ̂(|ξ|)ŵ(|ξ|)ei(x,y)·ξ dξ

In particular, we derive:

Proposition 1. The modulation transfer function (MTF) for f 7→ fφ,w is given
by

ξ 7→ ψ̂(|ξ|)ŵ(|ξ|).
The point spread function (PSF) is given by

(x, y) 7→ 1
4π2

∫
R2

ψ̂(|ξ|)ŵ(|ξ|)ei(x,y)·ξ dξ.

We next incorporate sampling into the model. We work exclusively with the par-
allel beam geometry in this section, and we first consider the effect of ray sampling.
We will briefly discuss view sampling later in this section.

Let d be the sample spacing in the affine parameter, and suppose our reconstruc-
tion involves a linearly interpolated filter φ. We suppose that we have complete
data in the angular variable, and that our data consists of the samples

{Rwf(jd, ω) : j = −N, . . . , N}.
We will derive the following.

Proposition 2. The PSF for the measurement and reconstruction process with
sampling in the affine parameter is given by

Ψ(x, y; a, b)

= 1
4π2

∫ ∞
0

∫ 2π

0

sinc2( rd2 )φ̂p(r)e
i〈(x−a,y−b),rω〉

[∑
j∈Z

ŵ(r + 2πj
d )e−

2πij
d 〈(a,b),ω〉

]
drdω,

where d is the sample spacing, w is the beam profile, φ is the filtering function, and

φ̂p(r) =
∑
j∈Z

φ(jd)e−ijdr.

Proof. Our reconstructed image takes the form

f̃φ,ω(x, y) = 1
2π

∫ 2π

0

Qφ,wf̃(〈(x, y), ω〉) dω,

where

Qφ,wf̃(t, ω) = d
∑
j∈Z

φ(t− jd)Rwf(jd, ω).

In this formula, we suppose we have extended our data by zero beyond t = −dN
and t = dN . In practice, we will compute the Fourier transform of this quantity,
which is given by

Q̃φ,wf̃(r, ω) = dφ̂(r)
∑
j∈Z

e−ijdrRwf(jd, ω). (3)

To derive the PSF ψ(x, y; a, b), we need to derive the reconstruction of a point
source at (a, b), which we model by f = δ(a,b). In this case, first observe that

Rδ(a,b)(t, ω) = δ(t− ω · (a, b)),
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and so

Rωδ(a,b)(jd, ω) = w(jd− ω · (a, b)).

We next wish to express φ̂(r) solely in terms of the sampled values φ(jd). In
fact, we claim that

φ̂(r) = sinc2( rd2 )φ̂p(r), φ̂p(r) =
∑
j∈Z

φ(jd)e−ijdr. (4)

This follows from the fact that we are using a linearly interpolated filter. The proof,
which may be skipped in lecture, is as follows:

Proof of (4). We may write the linearly interpolated filter as

φ(r) =
∑
j∈Z

[
θj(r)φ(jd) + (1− θj(r))φ((j + 1)d)

]
χ[jd,(j+1)d)(r),

where

θj(r) =
(j + 1)d− r

d
.

We now rewrite this to see the contribution of each sample φ(jd). In particular, we
split the sum into two pieces, change variables in the second sum, and recombine.
This yields

φ(r) =
∑
j∈Z

φ(jd)

[
(j+1)d−r

d χ[jd,(j+1)d)(r) + r−(j−1)d
d χ[(j−1)d,jd)(r)

]
.

Thus φ(jd) appears whenever |r − jd| ∈ [0, d], and in this case both of the factors

appearing in front of the characteristic functions may be rewritten as d−|r−jd|
d .

That is,

φ(r) =
∑
j∈Z

φ(jd)
[d−|r−jd|

d χ[0,d](|r − jd|)
]

=
∑
j∈Z

φ(jd)G(r − jd),

where

G(r) :=
[
1− |r|d ]χ[0,d](|r|) = (χ[− d2 ,

d
2 ] ∗ χ[− d2 ,

d
2 ])(r).

Now the result follows from taking the Fourier transform! �

Returning to (3), we have arrived at

Q̃φ,ω f̃(r, ω) = d sinc2( rd2 )φ̂p(r)
∑
j∈Z

e−ijdrw(jd− ω · (a, b)).

We evaluate the sum by the dual Poisson summation formula (with ‘d = π
L ’), which

yields

d
∑
j∈Z

w(jd− ω · (a, b))e−ijdr = e−irω·(a,b)
∑
j∈Z

ŵ(r + 2πj
d )e−

2πij
d (a,b)·ω.

This computation requires that w and ŵ decay sufficiently fast. We conclude

Q̃φ,wf̃(r, ω) = sinc2( rd2 )φ̂p(r)e
−irω·(a,b)

∑
j

ŵ(r + 2πj
d )e−

2πij
d (a,b)·ω.
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To derive the formula for Ψ(x, y; a, b), we now apply the inverse Fourier trans-
form, i.e.

Qφ,wf̃(t, ω) = 1
2π

∫
ei(t−ω·(a,b))r sinc2( rd2 )φ̂p(r)

∑
j

ŵ(r + 2πj
d )e−

2πij
d (a,b)·ω dr

Integration with respect to ω with t = ω · (x, y) now yields the desired formula. �

Remark 1. Translation invariance has been broken, in the sense that Ψ(x, y; a, b)
no longer depends only on (x−a, y−b). This is due to sampling, which manifests in
the infinite sum. Similarly, the symmetry between φ and w found in the continuum
model has also been lost.

Remark 2. The infinite sum appearing in the PSF will lead to aliasing errors,
with sharper beam profiles producing larger errors.

? ? ? Resolution; Oscillatory Artifacts ? ? ?

Let us now consider in more detail some of the parameters present in the recon-
struction algorithm and our model thereof. These include:

• The beam profile w with corresponding beam-width δ. This is largely a
physical problem (i.e. producing narrow beams of X-rays), but of course
our model plays a role in analyzing the subsequent imaging artifacts.
• The sample spacing d.
• The filter φ, or equivalently the apodizing function ψ.

The amount of resolution in our reconstruction algorithm should be related to
how sharply peaked the PSF is, at least in the shift-invariant setting that does
not include sampling. When sampling is included, one typically looks instead at
(x, y) 7→ Ψ(x, y; 0, 0). In what follows, let us explain the following principle:

• The spatial resolution in our image largely depends on the sample spacing
d, although it is ultimately limited by the beam width δ. Taking fewer than
one sample per beam width may lead to aliasing effects, wheres taking more
than two does not lead to much improvement in resolution.

For the first point, let us consider the formula appearing in Proposition 2 and view
things ‘on the Fourier side’. Instead of considering how peaked the PSF is, let us
consider the spread the MTF is. In the terms arising from the filter, namely

r 7→ sinc2( rd2 )
∑
j∈Z

φ(jd)e−ijdr,

we see from the dependence on rd that in general, the function will spread as we
decrease the sample spacing d, leading to increased resolution. However, we do not
see this dependence in the term arising from the beam profile, i.e.

r 7→
∑
j∈Z

ŵ(r + 2πj
d ).

Thus we expect that the resolution depends on the beam width (with a larger
beam corresponding to lower resolution), with some sort of fundamental limit in
resolution arising from the beam profile. In particular continuing to decrease d
will not improve resolution after a certain point. In order to avoid aliasing effects,
however, we should take d sufficiently small depending on δ. To see this, we note
that if the w is mostly supported in a ball of radius δ, then we may expect ŵ is
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mostly supported in a ball of radius δ−1. Thus the ratio δ
d (related to the number of

samples per beam width) should be sufficiently large to avoid aliasing. The optimal
choice seems to be about two samples per beam width, which has been found both
by studying some examples and by experimentation.

The resolution of a scanner or reconstruction algorithm can be measured by
studying so-called ‘resolution phantoms’, as in the following figure from [1]:

If the transfer function involves a sharp cutoff in frequency, then the PSF may
have long oscillatory tails. These lead to oscillatory effects. If the transfer function
is smooth and decaying, then this can be avoided, and we should see some blurring
but without oscillatory artifacts. As we saw in (4), linear interpolation for the
filter leads to a smooth, decaying Fourier tranform. We also note that Gibbs-like
artifacts may arise if the sample spacing is larger than the beam.

The objects themselves can lead to oscillatory artifacts and aliasing in the im-
ages, due to the fact that discontinuities lead to slow decay in the Fourier trans-
form. Accordingly, reconstruction algorithms are frequently tested on mathematical
phantoms involving characteristic functions of disks and polygons (which in partic-
ular have sharp edges). These oscillatory effects are present in the following figure
from [1], which shows the reconstruction of a phantom using parallel beam data:

Even the numerical methods used to carry out the reconstruction algorithms can
lead to artifacts in the image. For example, artifacts with a rectangular symmetry
may arise due to the fact that we use rectangular partial sums in our approximation
to the inverse Fourier transform.

? ? ? View Sampling ? ? ?
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It remains to consider the effect of sampling in θ. For this, let us just take a look
at one example presented in [1] and give a purely qualitative description. Consider
the following reconstruction of an elliptical phantom using filtered back-projection:

In this figure, one can see many oscillatory artifacts outside of the body of the
ellipse.

• For points that lie outside the ellipse, the back-projection will involve lines
outside the ellipse but very close to it. This leads to oscillation along lines
tangent to the boundary via Gibbs effects and aliasing.
• In general, for exterior points the filtered back-projection formula only van-

ishes due to cancellation. When points are far from the boundary, there
are not enough samples to obtain this cancellation and we see a pattern of
oscillation.
• Oscillation near to the boundary and parallel to the boundary may occur

due to ray sampling (through Gibbs/aliasing effects).

Further discussion in [1] shows that the oscillatory artifacts appear at a distance
≈ ∆θ−1 from the body. Furthermore, [1] re-derives the estimate ∆θ . dL−1 in
terms of choosing a suitable sample spacing for θ to avoid sampling artifacts as
much as possible. Whereas our previous derivation of relied on an assumption of
bandlimiting, in the present case we know that bandlimiting holds due to the finite
beam width.

? ? ? Measurement Errors ? ? ?

In [1], one finds a very interesting discussion of the types of artifacts that can
arise from measurement errors, e.g. from faulty detectors. There is a discussion
of the effect of a single bad ray, a bad ray in each view, and one entire bad view.
The discussion concludes by pointing out that since these artifacts have been so
well analyzed and understood, they are largely absent from CT images! We will
therefore skip this discussion, but refer those interested to [1, Section 12.4].

? ? ? Beam Hardening ? ? ?

Finally, let us give a brief discussion of beam hardening, which we recall is related
to the faulty assumption that our X-ray beams are monochromatic. In particular,
the energy of the incident X-ray beam is described via

Ii =

∫ ∞
0

S(λ) dλ,
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where S(·) is the spectral function. The attenuation coefficient depends on λ, and
the measured output of an X-ray beam directed along `t,ω could be modeled by

Io(t, ω) =

∫ ∞
0

S(λ) exp

{
−
∫
R
f(sω̂ + tω, λ) ds

}
dλ.

In particular, we do not actually measure the Radon transform itself. Essentially,
our reconstruction algorithms are based on the wrong data! We say that are our
measurements are inconsistent. The effect of this is beam hardening, which mani-
fests as dark streak artifacts that look similar to those caused by the partial volume
effect.

In some special cases, we can reduce the inconsistency of our measurements as
follows. Let fw(λ) denote the attenuation coefficient of water, and suppose that we
are imaging soft tissue. Then the ratio

ρ = ρ(x, λ) = f(x,λ)
fw(λ)

will be nearly independent of λ. We make the simplifying assumption that this
ratio is independent of λ, so that ρ = ρ(x).

Using ρ, we may express our measurement via

Io(t, ω) =

∫ ∞
0

S(λ) exp

{
−fw(λ)

∫ ∞
−∞

ρ(sω̂ + tω) ds

}
dλ.

Now, consider the function

H(T ) := log

[ ∫
S(λ)e−Tfw(λ) dλ∫

S(λ) dλ

]
This is a function that can be (in principle) computed explicitly. Moreover, because
S and fw are nonnegative, we have thatH is strictly decreasing and hence invertible.
Again, the values of its inverse could be computed. This function is connected to
our measurement as follows:

log
[ Io(t,ω)

Ii

]
= H(Rρ(t, ω)) =⇒ Rρ(t, ω) = H−1

(
log
[ Io(t,ω)

Ii

])
.

Thus, our measurements should suffice to determine the Radon transform of ρ. If
we reconstruct ρ, then we have an approximation to the attenuation coefficient of
our body.

Of course, the preceding approach will not work if the body we are imaging
consists of very different types of tissues. This is a much more challenging problem
beyond the scope of these notes.
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Noisy measurements in X-ray CT

This section will give a brief discussion of the modeling of noise/randomness in
X-ray CT. There are three main sources of noise, which are all connected to the
randomness inherent in our quantum description of the photons comprising X-ray
beams. These are the generation of X-rays, the absorption or scattering of X-rays,
and the detection of X-rays.

In the first part of this section, we will introduce a few topics from probability
theory, which provide the language needed to describe randomness. In the second
part of the section, we will describe how randomness may be incorporated into our
description of the X-ray reconstruction algorithm. Our discussion will be short and
omit many details (which may instead be found in [1]). To guide our efforts, we
will work primarily towards the goal of deriving the ‘fourth power law’ in X-ray
CT, which states the following:

• To increase the resolution by a factor of 2 while keeping the signal-to-noise
ratio constant, we must increase the X-ray dosage by a factor of 16.

Here the ‘signal-to-noise ratio’ refers to the expected value of the measurement
divided by the standard deviation of the measurement; in this setting, it is related to
the ‘contrast’ available in the image. This is an important physical fact that speaks
to some inherent limitations in X-ray CT imaging in light of the consideration of
patient safety.

♣ ♣ ♣

Some Topics from Probability Theory

♣ ♣ ♣
Recall that we introduced the notion of ‘Lebesgue measure’ of subsets of Rn,

which was meant to to make our notion of ‘volume’ precise. More generally, a
measure is a function µ that takes in sets and assigns a nonnegative value. Various
technical conditions must be satisfied to earn the name ‘measure’. An important
such condition is the following: if A and B are disjoint ‘measurable’ sets, then

µ(A ∪B) = µ(A) + µ(B).

There are many examples of measures beyond Lebesgue measure. For example, we
have the ‘counting measure’, defined on subsets of Z as the number of elements
in the set. Any measure gives rise to a theory of integration with respect to that
measure. The construction is the same as it was for Lebesgue measure: the integral
of χE is µ(E), which is then extended to simple functions and then to more general
measurable functions.

Example 1. An important example that is very different in character from
Lebesgue measure is that of a ‘Dirac mass’ at a point. For example, we may define
the Dirac mass at x = 0 by

µ0(E) =

{
1 0 ∈ E
0 0 /∈ E.

In this case, ∫
E

fdµ0 =

{
f(0) 0 ∈ E
0 0 /∈ E.
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We can then form measures by taking sums of Dirac masses at different points.
For example, counting measure # consists of Dirac masses at each integer. Then
if f : Z→ R is given by f(n) = n2 and S = {1, 2, 3}, we obtain∫

S

f d# = 1 + 4 + 9 = 14.

We call measures consisting of Dirac masses ‘singular’ with respect to Lebesgue
measure, since they are supported entirely on sets of Lebesgue measure zero. On the
other hand, many measures are ‘absolutely continuous’ with respect to Lebesgue
measure (meaning they assign zero measure to any set of Lebesgue measure zero).

Example 2. Let w be a nonnegative, integrable function on R. Define the measure
w(E) =

∫
E
w(x) dx, where dx denotes Lebesgue measure. Then∫

R
f dw =

∫
R
f(x)w(x) dx.

Such a measure is absolutely continuous with respect to Lebesgue measure.

A probability measure on a set Ω is a measure such that the measure of Ω equals
one. We use the notation P to denote a probability measure. A measurable subset
of Ω is called an event, and the measure of such a set is called the probability of
that event.

A random variable X is a measurable function defined on Ω, i.e. X : Ω→ R. It
is convention to minimize reference to the explicit elements ω ∈ Ω (or even to say
too much about Ω in general). For example, instead of writing

P[{ω ∈ Ω : X(ω) > 2}],

one will write

P[{X > 2}]
and read this as ‘the probability that X is greater than 2’.

Example 3. A simple example of a random variable is given by the characteristic
function of a set S ⊂ Ω, i.e. X = χS. In the language of probability, however,
we would say X is the indicator function of the event S and write X = 1S. [In
fact, the ‘characteristic function’ means something else in probability—it refers to
the Fourier transform!]

We may wish to model the outcome of an experiment (the result of which returns
some number) as a random variable X. What should the probability space be?
This is less clear. In many cases, it does not really matter. In fact, we are typically
not concerned with outcome of a single experiment (i.e. the value of X(ω) for
some ω ∈ Ω), but rather the statistical properties obtained by repeating the same
experiment many times. For example, we may be interested in the expected value
(or mean, or average value) of X, denoted by

E[X] =

∫
X dP.

More generally, we may wish to know the expected value of other functions of X,
which we may write as

E[f(X)] =

∫
f(X) dP.
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It turns out (for reasons we will not discuss in these notes) that one can instead
express these quantities as integrals over R with respect to a suitable measure µX ,
i.e.

E[f(X)] =

∫
R
f(t)dµX .

We call µX the distribution or law of the random variable. In many cases, this
measure is of the type presented in Example 2, so that

E[f(X)] =

∫
R
f(t)µX(t) dt

for some nonnegative µX ∈ L1. This function is called the distribution function of
X. Knowledge of this function allows us to compute all of the relevant statistical
quantities associated to the random variable X.

Example 4. Suppose X is a random variable with distribution function µX . Then

P[{a ≤ X ≤ b}] =

∫
X∈[a,b]

dP = E[1[a,b](X)] =

∫ b

a

µX(t) dt.

With the following discussion in mind, let us introduce some of the fundamental
statistical quantities of random variables that will be of interest to us.

Definition 1. Let X be a random variable with distribution function µX .

• The expected value of X is given by

X̄ = E[X] =

∫
R
tµX(t) dt.

• The variance of X is given by

Var [X] = E[X2 − E(X)2].

• The standard deviation of X is given by σ =
√

Var [X]. In particular, the
variance may be written as σ2.
• The signal-to-noise ratio is given by

SNR =
X̄

σ
.

Other quantities of interest include moments of X, i.e. E[|X|p]. These are ba-
sically just the Lp-norms with respect to the probability measure! One can also
compute the characteristic function of X, which is the function ξ 7→ E(eiXξ). This
is basically the Fourier transform of the distribution function of X! In particu-
lar, knowledge of the characteristic function completely characterizes the random
variable.

To incorporate randomness into a model, we may describe measured quantities as
random variables. Often, we make assumptions (hopefully with some justification)
about how the random variables are distributed. In what follows, we consider
several important examples.

Example 5. A Gaussian random variable is determined by two parameters, the
mean x̄ and the standard deviation σ. The distribution function is given by

µX(t) = 1√
2πσ

e−(x−x̄)2/2σ2

.
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This is also called a normal distribution, and may be denoted X ∼ N(x̄, σ) (with ∼
read as ‘is distributed as’). It is ubiquitous and used often in modeling, which may
often be justified by appealing to the ‘Central Limit Theorem’.

Example 6. A Bernoulli or binomial random variable is also given by two pa-
rameters, a probability p ∈ [0, 1] and an integer N ∈ N. The distribution is given
by

dµX =

N∑
k=0

(
N

k

)
pk(1− p)N−kδk,

where δk is a Dirac mass at k. This means that X only takes on the values
{0, 1, . . . , N} and that

P[{X = k}] =

(
N

k

)
pk(1− p)N−k.

This models a scenario in which one repeats an experiment N times (independently)
with a probability p of ‘success’ each time. We have

E[X] = pN, Var [X] = p(1− p)N.
The standard example of a Bernoulli random variable is a coin flip. In our setting,
this could be a reasonable model for the detection of X-rays, where N photons reach
the detector and each has a probability p of being detected.

Example 7. A Poisson random variable is determined by a single parameter λ
(called the intensity). The distribution is given by

dµX =

∞∑
k=0

λk

k!
e−λδk,

where δk is a Dirac mass at k as before. In particular, X only takes the values
{0, 1, 2, . . . }, and one can show that

E[X] = λ and Var[X] = λ.

This is used to model many different situations, such as radioactive decay and
arrival times. In our setting, the most relevant example is the generation of X-
rays. The SNR for a Poisson random variable of intensity λ is given by

√
λ.

There are many important and subtle concepts in probability theory that we
will not really discuss here, including the notions of independence, covariance, and
conditional probability. Let us conclude with only a brief mention of independence.
The notion of independence of two events is relatively straightforward, namely, that

P[Event 1 AND Event 2] = P[Event 1] · P[Event 2].

We may also speak of independence of two random variables X and Y . This refers
to the statement that

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

for functions f and g of X and Y . This is the form in which we will quote inde-
pendence below.

♣ ♣ ♣

Noisy Measurements in X-Ray CT
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♣ ♣ ♣

In the following, we will allow ourselves to be fairly brief in presentation and
to omit many details. The reader will find more discussion and more details in [1,
Chapter 16].

We start by describing our model for our reconstructed attenuation coefficient
using the discretized filtered back-projection formula. The formula, which will
require some explanation, takes the following form:

f̊φ(x, y) = πd
M+1

M∑
j=0

N∑
k=−N

P̊θj (kd)φ
[
〈(x, y), ω(θj)〉 − kd

]
.

• Here d is the sample spacing and kd denote the sample points for the affine
variable. We write θj = j∆θ.

• The function φ is our filtering function, chosen so that φ̂(ξ) ≈ |ξ|.
• P̊θj (kd) denotes the measured value corresponding to the line `kd,ω(θj). Pre-

viously, this was simply modeled by Rf(kd, ω(θj)). This is assumed to be

a random variable, and hence so is the reconstruction f̊φ.

Notational remark. The above notation demonstrates the following conven-
tion: we indicate random variables by adorning quantities with .̊ This is not stan-
dard notation, but is just meant to remind us of the presence of randomness in this
section.

Recall that our model for what is actually measured in X-ray CT is given by

P̊θ(kd) = log

[
N̊in

N̊θ(kd)

]
, (1)

where N̊in and N̊θ(kd) are described as follows:

• N̊θ(kd) is the number of photons measured by the detector corresponding
to the line `kd,ω(θ). This may be modeled by a Bernoulli random variable.

• N̊in is the number of incident photons. This may be modeled by a Poisson
random variable.

When taken together, the source-detector pair may be modeled as a single Pois-
son random variable (see [1, Section 16.1.1]). Therefore, in what follows, we will

simply assume that N̊in ≡ Nin is deterministic, and that N̊θ(kd) is modeled as a
Poisson random variable.

As described early in these notes, Beer’s law is probabilistic in nature, describing
the probability that a given photon is absorbed or scattered by material with a given
attenuation coefficient. In the present setting, Beer’s law is the statement that

E[N̊θ(kd)] = Nin exp{−Rf(kd, ω(θ))}. (2)

This is derived in [1, Section 16.1.2]. We will not present the details here. The
basic idea is to split the line into small segments of length ∆s and suppose that
the probability of absorption along such a segment is given by f(s)∆s. One can
then compute the probability that a given particle emerges from the body. Sending
∆s→ 0 recovers Beer’s law.

From (1), we deduce that

E[P̊θ(kd)] = log[Nin]− E[log N̊θ(kd)].
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Because the logarithm is not linear, we cannot simply ‘pass the expectation through
the logarithm’. Instead, we use the following lemma:

Lemma 1. Denote
N̄θ(kd) = E[N̊θ(kd)].

Then we have the following approximation:

E[log N̊θ(kd)] ≈ log N̄θ(kd)− 1

2N̄θ(kd)
.

Idea of the proof; may be skipped in lecture. Because Nθ(kd) is assumed to be Pois-
son, we have an explicit formula for the distribution function, and hence we can
compute

E[log N̊θ(kd)] =

∞∑
`=0

Ln(`)[N̄θ(kd)]`e−N̄θ(kd)

`!
,

where Ln(0) := 0. We then use Taylor’s formula to estimate the difference between

E[log N̊θ(kd)] and log N̄θ(kd). In particular, for a random variable y with a large
mean ȳ and small variance σ2, one can derive

E[log y] ≈ log ȳ − 1
2ȳ2σ

2.

Approximating the Poisson distribution with a suitable Gaussian distribution, one
can then derive the final approximation. �

Corollary 1. The measurement P̊θ(kd) has the following statistics:

E[P̊θ(kd)] ≈ Rf(kd, ω(θ)), Var [P̊θ(kd)] ≈ 1

N̄θ(kd)
.

Sketch of proof. Using the result above and Beer’s law in the form (2),

E[P̊θ(kd)] ≈ log[Nin]− E[log N̊θ(kd)]

≈ log[Nin]− log N̄θ(kd) +
1

2N̄θ(kd)

≈ Rf(kd, ω(θ)).

Here we have discarded the 1/N̄θ term under the assumption that N̄θ is a large
number.

For the variance, we first observe that

Var P̊θ(kd) = E
[
(P̊θ(kd)− P̄θ(kd))2] ≈ E

[(
log

N̊θ(kd)

N̄θ(kd)

)2]
,

where we have written P̄θ for the expected value of Pθ. This final quantity may
be expressed as an integral using the probability distribution function and then
estimated, leading to the approximation

Var P̊θ(kd) ≈ 1

N̄θ(kd)
.

See [1, (16.22)–(16.24)]. �

At this point, we have an understanding of the statistics of a single measurement.
In particular, the expected value is that of the Radon transform (as it should be),
and we see that the variance is inversely related to the number of photons measured.
This latter point makes the analysis significantly more complicated. Indeed, the
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measurement error gets worse as the X-rays pass through (and are absorbed by)
more tissue!

We now return to our model for the reconstructed image, namely,

f̊φ(x, y) = πd
M+1

M∑
j=0

N∑
k=−N

P̊θj (kd)φ
[
〈(x, y), ω(θj)〉 − kd

]
.

By the linearity of expectation and Corollary 1, we have

E
[
f̊φ(x, y)

]
= f̃φ(x, y).

That is, the expected value of our reconstruction agrees with our deterministic
reconstruction formula.

We next consider the variance of the reconstructed image. This requires expand-
ing out the square in

E
[
(f̊φ(x, y)− f̃φ(x, y))2

]
and computing. Under the assumption that the measurements at different points
are independent random variables, this reduces to

Var f̊φ(x, y) =
[
πd
M+1

]2 M∑
j=0

N∑
k=−N

E[(P̊θj (kd)− Pθj (kd))2]φ2
[
〈(x, y), ω(θj)〉 − kd

]
≈
[
πd
M+1

]2 M∑
j=0

N∑
k=−N

1

N̄θj (kd)
φ2
[
〈(x, y), ω(θj)〉 − kd

]
.

We would now like to derive the fourth power law concerning the signal-to-noise
ratio of our measurements. First, let us discuss the significance of the SNR in this
context. Recall that in medical applications, the measured quantity takes values
(in Hounsfield units) between around -1000 (for air) and 1000 (for bone), while the
soft tissues occupy a range of about -50 to 60. This is only about 5% of the total
range. The SNR in the measurement determines the ‘numerical resolution’ in the
reconstructed attenuation coefficient, which is referred to as contrast in imaging.
This is distinct from the notion of spatial resolution, which is in turn determined
by parameters such as the beam width, sample spacing, and FWHM of the filters
used in the reconstruction algorithm.

In what follows, we will make several simplifying assumptions:

• We assume that the object is a disk of radius R centered at the origin.
• We assume that the object has a constant attenuation coefficient m.
• We focus on estimating the variance at the reconstruction point (x, y) =

(0, 0).

The first two assumptions imply that

N̄θ(kd) = Nine
−2m
√
R2−(kd)2 for all θ. (3)

Indeed, this follows from (2) and the explicit computation of the Radon transform
of the characteristic function of a disk.

Let us also recall that φ is chosen so that φ̂(ξ) ≈ |ξ|. We assume that the spatial
resolution is given by δ, which is consistent with φ being bandlimited with highest
frequency ≈ δ−1.
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Specializing to (x, y) = (0, 0) and using (3) and Plancherel’s formula, we therefore
obtain

Var f̊φ(0, 0) ≈
[
πd
M+1

]2 N∑
k=−N

M∑
j=0

e2mR

Nin
φ2(−kd)

≈ dπ2e2mR

MNin

∫
φ2(t) dt

≈ dπ2e2mR

MNin

∫
|φ̂(t)|2 dt ≈ de2mR

δ3MNin
.

With d ≈ δ (i.e. sampling spacing comparable to spatial resolution) and

Ef̊φ(0, 0) ≈ f(0, 0) = m,

we obtain the following signal-to-noise ratio:

SNR =
Ef̊φ(0, 0)√
Var f̊φ(0, 0)

≈ mδM 1
2N

1
2
ine
−mR.

Observe that the SNR depends badly on the thickness and density of the object,
and it also decreases as we decrease the resolution.

Now let us consider the dosage D of radiation absorbed by the center pixel
(measured in rad/cm3). The total photon density passing through the point (0, 0) is
≈MNine

−mR. If the pixel size is proportional to the resolution δ, then the number
of photons absorbed is ≈ δMNine

−mR. If the slice thickness is also proportional
to the resolution δ, then we obtain

D ≈ δ−2MNine
−mR,

and so we may rewrite

SNR ≈ mδ2D
1
2 e−

1
2mR.

This demonstrates the ‘fourth power law’, which shows that to increase resolution
by a factor of 2 while keeping the SNR constant, we would need to increase the
dosage by a factor of 16. The derivation of this law was our primary goal, and so
we will be content to end our discussion here.
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Introduction to MRI

In this section, we give an introduction to the technique of magnetic resonance
imaging (MRI). This imaging modality is based on the physical phenomenon of
‘nuclear magnetic resonance’. This is considerably more complicated than the sit-
uation in X-ray CT, which is based on the absorption or scattering of X-rays.

? ? ? The Physics of MRI ? ? ?

A rotating charged particle has an associated magnetic moment µ. This means
that it would experience a torque µ×B if placed in the external magnetic field B.
This fact is due in part to the orbital angular momentum of the particle, and in
fact the magnetic moment due to the orbital motion is proportional to the orbital
angular momentum. The surprising fact revealed by the famous Stern–Gerlach
experiment (1921–1922) is that a particle may possess an ‘intrinsic’ magnetic mo-
ment that is independent of its orbital angular momentum. To account for this,
the quantum mechanical model introduces a notion of intrinsic angular momen-
tum, also known as spin angular momentum, which is also given as a multiple
of the intrinsic magnetic moment; this latter fact is perhaps best regarded as an
experimental fact (as opposed to a theorem, or even a definition). The total an-
gular momentum is then the vector sum of these two different types of angular
momentum.

The torque experienced by a particle determines the rate of change of the angular
momentum. If we denote the angular momentum by J and the magnetic moment
by µ, then a particle placed in an external magnetic field B evolves according to

d
dtJ = µ×B,

at least in the classical model. In fact, by a general result known as Ehrenfest’s
theorem, this equation describes the evolution of the expected value of the corre-
sponding quantum observables. In the idealized setting of a stationary particle, the
angular momentum and magnetic moment would both be of the ‘intrinsic’ type.
Recalling the proportionality µ = γJ (for some constant γ called the gyromagnetic
ratio), we can then obtain the following:

d
dtµ = γ[µ×B],

where µ denotes the (expectation value of) the magnetic moment of the particle.
As we will see, solutions to this ordinary differential equation exhibit precession

about the direction B with the angular frequency ω0 := γ|B| (known as the Lar-
mor frequency). This precession, which manifests as detectable, rapidly varying
magnetic fields at the Larmor frequency, is the ‘magnetic resonance’ at the heart
of MRI.

For hydrogen protons in water, we have

γ ≈ 42.5764× 106

(in units of (cycles/second)/Tesla). Here Tesla is a unit of magnetic induction.
The magnets used in MR imaging devices are in the 1–3 Tesla range (∼5,000 times
stronger than the magnetic field of the earth), resulting in resonant Larmor fre-
quencies in the standard FM radio band 40–120 MHz. This is rather advantageous,
as electromagnetic radiation at these frequencies is harmless to the body (unlike
X-ray frequencies!) and it is technologically simple to work with such frequencies.

? ? ? The Bloch Phenomenological Equation ? ? ?
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Let us now turn to the problem addressed in MRI. We would essentially like to
determine the distribution of protons in an object, which we may denote by a density
ρ = ρ(x, y, z). To begin, we apply a strong uniform magnetic field B0 = B0(x, y, z).
In light of the discussion above, we essentially regard each proton as a magnet,
which we expect to become ‘polarized’ (i.e. aligned with the ambient field B0). We
then consider the magnetization vector M , which is meant to model the sum of all
of the magnetic moments of the protons at each location in the sample. After some
time, we obtain the so-called equilibrium magnetization

M0(x, y, z) = cρ(x, y, z)B0(x, y, z),

where c is some constant depending on factors like the ambient temperature. In
practice (e.g. at room temperature in a 1 Tesla field), only ≈ 1 in 106 moments will
become aligned with B0. Thus M0 is actually a tiny fraction of B0, and hence would
be very difficult to detect directly. The basic idea in MRI is to apply additional
fields in such a way that the interaction of the spins with these fields produces a
detectable signal (i.e. due to Larmor precession).

To describe the macroscopic evolution of the magnetization vector M =
M(t, x, y, z) in an external magnetic field of the form

B = B(t, x, y, z) = B0(x, y, z) + B̃(t, x, y, z), with |B̃| � |B0|,
we may use the Bloch equation, introduced by Felix Bloch in 1946. The equation,
which will require some explanation, takes the following form:

d
dtM = γ[M ×B]− 1

T2
M⊥ − 1

T1
[M‖ −M0]. (1)

The meaning of each term is as follows:

• The M × B term is the ‘torque’ term describing interactions of the spins
with the magnetic field. The parameter γ is the gyromagnetic ratio. If
B were time independent, this term would predict precession about B at
frequency γ|B(x, y, z)| (see below).
• The M⊥ term is a relaxation term. Here M⊥ denotes the transverse com-

ponent of M relative to B0, i.e. the component of M perpendicular to B0.
This term reflects the fact that the transverse components decay due to
‘spin-spin’ type interactions. The parameter T2 encodes how quickly this
relaxation occurs. As this is dependent on the material, one should actually
regard T2 as a function of (x, y, z). Typical values of T2 are ∼ 50ms.
• The M‖ is another relaxation term. Here M‖ denotes the longitudinal com-

ponent of M relative to B0, i.e. the component of M parallel to B0. This
term reflects the fact that the longitudinal components return to equilib-
rium due to dissipation of energy from the spins. As in the T2 term, the
parameter T1 encodes how quickly this relaxation occurs and is material
dependent. Typical values of T1 are ∼ 1s.

Remark 1. In the Bloch equation, the spins at different points do not interact
directly. Instead, the relaxation terms are meant to account for the average effect
of such interactions.

In MRI imaging, the goal is basically to design the time-dependent field
B̃(t, x, y, z) in order to put the magnetization into certain states, which will then
result in a measurable signal from which we can infer information about the spatial
distribution ρ. In practice, the fields are ‘piecewise constant in time’, with the time
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between different fields small enough that the relaxation terms may be essentially
ignored.

In what follows, we will consider several special cases of the Bloch equation
corresponding to different choices of magnetic field B.

Example 1 (Uniform, time-independent background field, without relaxation).
Suppose

B ≡ B0 = (0, 0, b0), T1 = T2 =∞.
Then the Bloch equation at a fixed point (x, y, z) is simply{

d
dtM = γM ×B0,

M |t=0 = M0,

where M0 is the magnetization at t = 0 (not necessarily in equilibrium). Computing
the cross product, we obtain

d
dtM = γb0

 0 1 0
−1 0 0
0 0 0

M (2)

This is a linear ODE and can be solved by matrix exponentiation. In particular,
writing ω0 = γb0, the solution is given by

M(t) = U(t)M0, where U(t) =

 cosω0t sinω0t 0
− sinω0t cosω0t 0

0 0 1

 .
In particular, U(t) is a rotation matrix, and we obtain precession at the Larmor
frequency ω0.

It is often convenient to introduce a rotating reference frame in which to study
the Bloch equation. This entails defining m = m(t, x, y, z) via the relation

M(t, x, y, z) = U(t)m(t, x, y, z)

and deriving the equation for m. In particular, assuming M0 points in the z direc-
tion, one obtains the following:

d
dtm = γ[m×Beff]− 1

T2
m⊥ − 1

T1
[m‖ −M0], (3)

where m⊥ and m‖ are the transverse and longitudinal components relative to B0

and the effective magnetic field is given by

Beff = U−1(t)B − (0, 0, b0).

Proof of (3). This proof may be skipped in lecture. Writing M = U(t)m, we first
observe

d
dtM = U(t) ddtm+ [ ddtU(t)]m.

By definition of U(t) (as matrix exponential), the time derivative of U(t) equals
the matrix on the right-hand side of (2). Recalling how this matrix was obtained
(by computing the cross product), we observe

[ ddtU(t)]m = γ m× (0, 0, b0).

Now observe that since U(t) is a rotation,

U(t)−1[U(t)m×B] = m× U−1(t)B.
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Similarly, U(t) leaves the ⊥ and ‖ spaces invariant, so that U(t)−1[U(t)m]⊥ = m⊥,
and similarly for the ‖ component. Furthermore, U(t)−1M0 = M0 since M0 is
assumed to point in the z-direction. Putting together all the pieces leads to the
desired equation. �

We turn to another special case of the Bloch equation. In this case, we consider
the effect of adding a time-dependent spatially homogeneous radio frequency (RF)
field that is perpendicular to the background field B0. As we will see, this has the
effect of ‘tipping the magnetization vector out of equilibrium’. If we then turn off
the RF field, Example 1 shows that the magnetization vector will begin to precess
about B0 with frequency ω0 (until it eventually relaxes back to equilibrium).

We will consider RF fields of the form

B1 = B1(t) = ([α(t) + iβ(t)]e−iω0t, 0), where ω0 = γb0. (4)

where here we introduce the convention that a vector

(a+ ib, 0) ∈ C× R corresponds to (a, b, 0) ∈ R3.

Example 2 (Spatially homogeneous RF field over uniform background field, with-
out relaxation). Suppose

B = B(t) = B0 +B1(t),

where B0 = (0, 0, b0) and B1(t) is as in (4) with β(t) ≡ 0. Suppose further that
T1 = T2 =∞.

In the rotating reference frame, the Bloch equation at a fixed point (x, y, z) is{
d
dtm = γ[m× U(t)−1B1(t)],

m|t=0 = m0,

where again m0 is not necessarily in equilibrium. Now observe that by construction,

U(t)−1B1(t) =

 cos(ω0t) − sin(ω0t) 0
sin(ω0t) cos(ω0t) 0

0 0 1

 α(t) cos(ω0t)
−α(t) sin(ω0t)

0

 =

 α(t)
0
0

 ,
which implies

γ[m× U(t)−1B1(t)] = γ

 0 0 0
0 0 α
0 −α 0

m.
This is once again a linear ODE that we solve with matrix exponentiation, leading
to

m(t) = V (t)m0, where V (t) =

 1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)


with

θ(t) = γ

∫ t

0

α(s) ds.

Thus in the rotating reference frame, we obtain a rotation in the yz plane by angle
θ(t).
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So far, we have only considered spatially homogeneous fields. We consider now
the effect of adding a constant (in time) gradient field of the form

G = G(∗, ∗, `), ` = `(x, y, z) = (x, y, z) · (gx, gy, gz). (5)

Here the ∗ is meant to denote small components that may safely be ignored. In
truth, some nonzero component must be included lest we violate the divergence
free condition arising in Maxwell’s equations.

Example 3 (Gradient field over uniform background field, without relaxation).
Suppose B = B0 + G, with G as in (5). Then, ignoring the ∗ components and
arguing similarly to the previous examples, we find that (since B points only in the
z direction)

Beff = (0, 0, `),

and hence the solution to the Bloch equation in the rotating reference frame is given
by

m(t) =

 cos(γ`t) sin(γ`t) 0
− sin(γ`t) cos(γ`t) 0

0 0 1

m0.

At the level of the original magnetization vector M(t), we therefore observe pre-
cession about B0 at the angular frequency γ[b0 + `(x, y, z)]. In particular, we may
encode information about the spatial location in the frequency of the precession.

? ? ? A Basic Imaging Experiment ? ? ?

In this section, we describe a basic imaging experiment that will demonstrate
how (in principle) we may use an applied magnetic field to produce a detectable
signal that provides information about the density ρ. We perform the following
steps:

(i) We put the sample in the field B0 and allow it to become polarized.
(ii) We turn on a uniform RF field as in (4), with β ≡ 0. After a certain time

(normalized to t = 0) we obtain θ(0) = 90◦, meaning that the magnetization
vector is tipped into the xy-plane (uniformly across the sample).

(iii) We turn off the RF field at t = 0, and (according to Example 1) the
magnetization vector M(t) begins to precess about B0 ‘in phase’ (that is,
with angular velocity ω0 = γb0).

At this point, relaxation effects begin to take over, and the magnetization vector
obeys

M(t, x, y, z) ∝ ω0ρ(x, y, z)(e−t/T2e−i(ω0t+φ), 1− e−t/T1),

where φ ∈ R is some phase.
By Faraday’s law, a changing magnetic field induces an electromotive force in a

loop of wire (with the force given by the time derivative of the flux of the field). As
the transverse components of M are a rapidly varying magnetic field, they generate
a measurable signal, which then takes the form

S0(t) ∝ ω2
0e
−t/T2e−iω0t

∫
ρ(x, y, z) dx dy dz.

Here we make the simplifying assumption that T2 is independent of (x, y, z), and we
encode the effect of the detector as simply another constant. This simple situation
therefore provides a way to measure the total density of the object. The signal,
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which is ∝ ω2
0 ∝ b20, is still rather small in amplitude (e.g. for a 1.5 Tesla magnet

we can expect a signal in the microwatts, i.e. 10−6 watts).
Now let us consider the same three steps above but now add a fourth step:

(iv) Turn on a gradient field G = (∗, ∗, `) as in (5).

In this case, incorporating the analysis of Example 3, we obtain the signal

S`(t) ∝ ω2
0e
−t/T2e−iω0t

∫
ρ(x, y, z)e−itγ(x,y,z)·(gx,gy,gz) dx dy dz

∝ ω2
0e
−t/T2e−iω0tρ̂(k), where k = tγ(gx, gy, gz).

Repeating this for several different choices of `, we can therefore obtain a radial
sampling of ρ̂ in a neighborhood of k = 0. In principle, this may be used to
reconstruct ρ.

In practice, this approach is too crude. For example, the time decay of the signal
limits how many samples we can take, which ultimately limits the highest frequency
we can sample and hence the resolution of the reconstructed image. Other serious
issues arise due to measurement noise, which is basically proportional to the volume
of the part of the sample generating signal.

In what follows, we will describe how to design RF and gradient fields so that (i)
we can excite a single 2d slice of the sample at a time and (ii) we can obtain samples
of the (2d) Fourier transform on a uniform grid (rather than radial samples). With
these two ingredients, we will be able apply the fast inverse Fourier transform on
each 2d slice and ultimately obtain an efficient reconstruction of the entire 3d object.

? ? ? Selective Excitation ? ? ?

In the process of selective excitation, the goal to excite (that is, disturb from
equilibrium) a 2d slice of the magnetization vector. Without loss of generality,
suppose we aim to excite a plane parallel to the xy-plane, determined by

(x, y, z) · (0, 0, g) = const, i.e. z = const.

To begin, we apply the gradient field as in (5) with (gx, gy, gz) = (0, 0, g). In light
of Example 3, we may then define the offset frequency

f = 1
2πγ〈(x, y, z), (0, 0, g)〉 = gγ

2π z.

This represents the amount that the local resonance frequency differs from the un-
perturbed resonance frequency ω0. With the background field B0 +G, we therefore
have a correspondence between z-location in the sample and offset frequency.

We now turn to the much more subtle problem of designing an RF ‘pulse’ that
will tip the magnetization vector out of equilibrium only at spatial locations lying
near our prescribed plane. Because of the correspondence given by G and the fact
the field we apply will be uniform in space, we view the magnetization vector m
(in the rotating reference frame) as a function of the offset frequency f . Assuming
that the magnetization vector is initially in equilibrium, we may define our desired
final magnetization profile m∞ = m∞(f) as follows. We aim to obtain

m∞(f) =

{
(0, 0, 1) f /∈ [f0 − δ, f1 + δ],

(sin θ, 0, cos θ) f ∈ [f0, f1],
(6)
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for some small interval [f0, f1] and some angle θ (most often equal to π
2 or π), where

the small parameter δ > 0 allows for a smooth transition between the different
states.

We expect to achieve this state by a short RF ‘pulse’ of the form (4) on some time
interval [t0, t1] of length much smaller than either T1 or T2 (e.g. a few milliseconds).
Thus, in our model we will be content to ignore relaxation terms. Arguing as we
did in Examples 2 and 3, we are therefore led to study the Bloch equation (in the
rotating reference frame) with effective potential

Beff = (0, 0, zg) + (α(t), β(t), 0) = (α(t), β(t), 2πγ−1f).

Computing the cross product, we then obtain the ODE

d
dtm =

 0 2πf −γβ(t)
−2πf 0 γα(t)
γβ(t) −γα(t) 0

m. (7)

We thus arrive at the following problem:

Problem 1. Find a function α(t)+ iβ(t) supported in [t0, t1] such that the solution
m = m(t, f) to (7) with initial condition

m(t0, f) = (0, 0, 1)

obeys the final condition

m(t1, f) = m∞(f),

where m∞ is given in (6).

Note that this is an inherently nonlinear problem. It is a classical example of
a so-called inverse scattering problem. In what follows, we will consider the case
of |θ| � 1, which is easier than the general case. In this setting, we have m3 ≈ 1
throughout the pulse and we may approximate the nonlinear problem by a simpler
linear problem. The solution will then be obtained by using the Fourier transform.

Under the assumption that m3 ≡ 1, the equation (7) reduces to

d
dt (m1 + im2) = −2πif(m1 + im2) + iγ(α+ iβ).

This equation may be solved using the integrating factor e2πitf . This leads to

d
dt [e

2πitf (m1 + im2)] = iγe2πitf [α+ iβ].

Under the assumption that

[m1 + im2]
∣∣
t=t0

= 0,

we derive

e2πitf [m1 + im2](t) = iγ

∫ t

t0

e2iπsf [α(s) + iβ(s)] ds.

Integrating to t = t1 and recalling that α + iβ is to be supported in [t0, t1], we
obtain the relation

e2πit1fm∞(f) = iγ

∫ ∞
−∞

e2πisf [α(s) + iβ(s)] ds.

This may be rewritten in terms of the Fourier transform:

e2πit1fm∞(f) = 2πiγF−1[α+ iβ](f),
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which becomes

[α+ iβ](t) =
1

2πiγ
F [m∞](t+ t1). (8)

Example 4. Suppose f0 = −f1 in (6) (so that we are exciting around z = 0) and
|θ| � 1. If t1 is normalized to t1 = 0, then (8) reduces to

α(t) + iβ(t) = − sin(θ) sin(2πtf1)

4π2γt
.

This is a sinc pulse.

By now, there are books full of MRI pulse sequences designed to produce pre-
scribed magnetization profiles. A typical pulse lasts about 1ms or less! The deriva-
tion above was carried out in a simplified setting and under the assumption that θ is
small. In fact, the same type of pulse may work even for angles up to π

2 . To move to
larger angles, one can use an approach known as the Shinnar-Le Roux algorithm for
designing pulse sequences. As it turns out, the problem may also be re-formulated
so that it becomes equivalent to a well-known inverse scattering problem, known as
the 2×2 Zakharov–Shabat or AKNS system.1 This provides another avenue for the
designing pulse sequences to obtain prescribed magnetization profiles in a precise
manner. Furthermore, one can obtain pulses obeying certain optimality conditions
(such as the minimal energy pulse).

? ? ? Spin Warp Imaging ? ? ?

Suppose we have applied a selective RF pulse so that the magnetization is flipped
out of equilibrium in the region |z − z0| < ∆z (and left in equilibrium outside of
this region). We now consider the problem of imaging the 2d slice at z = z0. The
technique we describe is known as spin warp imaging.

As in the basic imaging experiment above, signal is produced due to the rapid
change of the transverse components of the magnetization vector. In particular,
signal will only be received from the region of the sample where |z − z0| < ∆z. In
what follows, we write

ρ = ρ(x, y)

to denote ρ(x, y, z0), or (more precisely) for the average of ρ over the slice |z−z0| <
∆z0.

Our goal is to sample the 2d Fourier transform of ρ on a uniform grid. We will
achieve this by applying two gradient fields, known as the phase encoding gradient
and the frequency encoding gradient. In particular, we take the following steps:

1. We apply a gradient

Gph = (∗, ∗,−gxx+ gyy)

for some time Tph. Arguing as in Example 3, we obtain the following for
the transverse components (in the rotating reference frame):

m⊥(x, y) ∝ eiγ(gxx−gyy)Tphρ(x, y),

1As an interesting coincidence, this is the same inverse scattering problem that arises in the
study of the one-dimensional cubic nonlinear Schrödinger equation (an important ‘completely

integrable’ model in mathematical physics).
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where we use the correspondence R2 ∼= C and observe that multiplication
by eiθ corresponds a rotation by angle θ. Defining

(kx, ky) = 1
2πγTph(gx, gy),

we may rewrite this as

m⊥(x, y) ∝ e−2πi(−kxx+kyy)ρ(x, y).

This is called the phase encoding step. It takes about 1ms.
2. At time Tph, we change the gradient to the form

Gfr = (∗, ∗, gxx)

Just as in the first step, after a time t the effect is multiplication of the of
m⊥(x, y) by the rotation factor

e−itγgxx.

In particular, if we begin reading the signal as we apply the field then we
obtain

S(t) ∝
∫
e−2πi[−kxx+kyy]e−itγgxxρ(x, y) dx dy

=

∫
e−2πi[kyy+(−kx+t γ2π gx)x]ρ(x, y) dx dy.

This is the frequency encoding step. It also takes on the order of 1ms.

If we sample the signal uniformly in time, then we obtain samples of

ρ̂(−kx + t γ2π gx, ky).

Thus, for each fixed ky, we can obtain uniformly spaced samples of ρ̂(·, ky).
Returning to Step 1, we can repeat this process to obtain samples of ρ̂ for a

discrete set of ky values. That is, we may obtain a set of data of the form

ρ̂(m∆kx, n∆ky), −Nx ≤ m ≤ Nx, −Ny ≤ n ≤ Ny.

In practice, for a given slice one will need to repeat these steps many times in order
to sample a large enough region of ‘k-space’.

With samples of the Fourier transform in hand, the reconstruction process is
simply a matter of implementing the Fourier inversion formula! From the descrip-
tion above, one can also begin a discussion of resolution in MRI, although we will
not go into this topic here.

Remark 2. We have described a process whereby we can sample the Fourier trans-
form of (a 2d slice of) ρ on a uniform grid. It is possible to sample on different sets
in ‘k-space’ by using different gradient fields. We will not pursue this topic here,
but will point out that in some settings it is advantageous to sample along a fairly
‘sparse’ set in k-space and make use of compressed sensing techniques to carry out
the reconstruction.

The following figure from [1] is a schematic that shows the an example of a pulse
sequence used in the spin warp imaging process.
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The ‘TE’ in this figure refers to the notion of an ‘echo time’. In this case the
diagram is referring to what is called a ‘gradient echo’. In the next section we will
discuss a related concept, namely, that of a spin echo.

? ? ? Spin Echoes and Contrast Mechanisms in MRI ? ? ?

The preceding discussion describes how images may be produced in MRI. How-
ever, we have so far said very little about what types of contrast mechanisms are
available in MRI, other than just the difference in proton density between differ-
ent materials. Indeed, so far we have regarded T1 and T2 fixed constants, while
in truth these two parameters are material-dependent and actually provide an im-
portant contrast mechanism in MRI. In what follows, we will mostly consider the
contrast due to T2.

In the preceding discussion, we discussed the application of RF pulses and field
gradients of extremely short duration. Indeed, this was essential in many derivations
in which we ignored the relaxation terms. In particular, the imaging processes we
described would not ‘notice’ at all the variation in T2 (or T1) throughout the sample.

On the other hand, if we could arrange things so that the duration of our exci-
tation and phase encoding was comparable to a typical T2 value (e.g. 50ms), then
when we started signal acquisition, the signal would be ‘T2-weighted’. That is, we
could detect the variation in T2 over the sample.

The problem is that we cannot simply excite our sample, and then ‘wait around’
sufficiently long before performing phase/frequency encoding and signal acquisition.
The issue arises from the fact that while our model assumes a perfectly static
background field leading to precession at the Larmor frequency, in reality there will
always be field inhomogeneities that lead to slightly different frequencies of rotation
throughout the sample. Thus, if we ‘wait around’, decoherence will occur and we
will not ultimately obtain a useful signal. A typical timescale for such decoherence
(known as T ∗2 decay) is ∼ 5ms.

Fortunately, there is a very clever remedy. The idea is to produce a ‘spin echo’
as follows: Suppose we will perform our initial RF excitation pulse (to a flip angle
of π

2 , say) at time t = 0, but we wish to have the resulting state occur not after
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∼ 1ms, but rather after some ∼ 2τ (known as the echo time, denoted TE). We can
achieve this as follows:

1. First, perform an RF excitation corresponding to flip angle π
2 (in xz plane)

2. Wait for time τ .
3. Next, apply an RF pulse corresponding to flip angle π in the yz plane.
4. Wait for time τ .

The claim is that at the conclusion of Step 4, the magnetization vector is in the
same state as at the end of Step 1. In this case, we have achieved our stated goal!

To see why this works, note that at the conclusion of the first RF pulse, the
magnetization vector (at each spatial position we wish to excite) will be in the
state (1, 0, 0). As long as relaxation effects remain negligible, it will then evolve in
time approximately as (eitΦ, 0) for some phase Φ, which may vary in (x, y, z) due
to field inhomogeneities. Thus, at time τ , the vector is in the state

(eiτΦ, 0) = (cos τΦ, sin τΦ, 0).

We now apply the RF pulse with flip angle π in the yz plane. This puts the vector
in the state

(cos τΦ,− sin τΦ,−1 · 0) = (e−iτΦ, 0).

Now it evolves as before, namely, as (eitΦe−iτΦ, 0). In particular, after time τ , the
vector is back in the state (1, 0, 0), as desired!

Note that we could also apply the second RF pulse to effect a flip angle π in the
xz plane. Then we would obtain

(eiτΦ, 0) 7→ (− cos(τΦ), sin(τΦ), 0) = (−e−iτΦ, 0)

and after another evolution by time τ the magnetization vectors would all be aligned
at the state (−1, 0, 0).

We now have two parameters that we can vary to produce different types of
images that exploit different contrast mechanisms available in MRI. These are the
echo time TE (corresponding to 2τ in the discussion above) and the repetition time
TR. Here the repetition time refers to the amount of time between the initial RF
excitation pulses, including the repeated phase encodings, frequency encodings, and
signal acquisition.

The initial approach we described (without spin echoes), may be described as
obtaining proton density weighted image. Here the difference in proton density
provides the main contrast mechanism.

By using spin echoes, we can also produce so-called T2-weighted images. In
this set up, we choose τ so that the echo time TE is comparable to a typical T2

value. Thus the strength of our signal will vary according to the variation of T2

throughout the sample. In this setting, we choose the repetition time TR longer
than a typical T1 value. This means we essentially wait for a complete return to
equilibrium between each repetition. In particular, we will not detect any variation
in the T1 parameter.

Finally, there is also a notion of T1-weighted images. In this case one chooses the
echo time TE much smaller than a typical T2 value (so that variation in T2 over
the sample will not be detected). In this case, however, one chooses TR less than a
typical T1 value. That is, we do not necessarily allow the entire sample to recover
back to equilibrium. In this way, one can obtain an image that detects the variation



MATH 5001 - MATHEMATICS OF MEDICAL IMAGING 119

in T1 over the sample. To produce such images, one makes use of a different tool
known as a ‘gradient echo’, which we will not discuss here.

To end the discussion, we display the following figure from [1] demonstrating the
difference between a T1-weighted MRI image (left) and a proton density weighted
MRI image (right).
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Introduction to PET

In this section, we present a brief introduction to the imaging modality of
positron emission tomography (PET), adapted from [1].

? ? ? Physics of PET ? ? ?

The physics of PET is based on electron-positron annihilation events. In partic-
ular, when an electron and positron meet, they annihilate each other and produce
a pair of γ-ray photons. In medical applications, an organic element with a short-
lived isotope that decays via positron emission is injected into the patient. The
substance is metabolized in the body and taken up by structures in the body. The
distribution of this substance is described by a density ρ that is reconstructed by
counting γ-ray photons outside of the body. As in X-ray CT and MRI, we proceed
by constructing one slice at a time.

In the context of medical applications, the momentum of the incoming pair is
small. Under the simplifying assumption that the momentum is zero, it follows
that the outgoing γ-rays travel in opposite directions.

? ? ? Probabilistic model for PET ? ? ?

Suppose ρ is supported in a bounded region D ⊂ R2. We divide D into a disjoint
collection of boxes {Bj}Nj=1. Then the number of decays in a fixed time in Bj may
be modeled as a Poisson random variable nj with intensity

λj =

∫∫
Bj

ρ(x, y) dx dy.

Then the random variables {n1, . . . , nN} are independent and obey E[nj ] = λj . We
let

λ = (λ1, . . . , λN ).

We place a finite collection of detectors on a ring surrounding D. Each pair of
detectors defines a tube bounded by the lines joining their outer edges. We denote
this set of tubes by {Tk}Mk=1. The setup is depicted in the following figure from [1].

Definition 1. We define the transition matrix (pjk) by taking pjk to be the prob-
ability that a decay event in box Bj results in a coincidence event detected in tube
Tk.

At this point, we will not specify the transition matrix. We will, of course, need
to return to this point below.
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The value

pj :=

M∑
k=1

pjk

represents the probability that a decay in box j is detected (by any one of the
tubes). In general, we have 0 < pj ≤ 1. In fact, it turns out that we may assume
pj = 1 for each j with no real change in what follows (see [1, p. 598] for the
argument), and so we will do so.

We now let n∗k be the number of coincidence events counted in Tk, and define
the vector of measurements by

n∗ = (n∗1, . . . , n
∗
M ).

The reconstruction problem in PET consists of estimating λ from a measurement
of n∗. For a given λ, we may define the probability of observing n∗ as a conditional
probability. We denote this by

L(λ) = P(n∗|λ)

and call λ 7→ L(λ) the likelihood function.

Our goal will be to construct a maximum likelihood estimate, that is, a vector λ̂
so that

L(λ̂) = max{L(λ) : λ1, . . . , λN ≥ 0}.
Such a vector provides the most consistent model given our measurements.

Example 1. Suppose n is a single Poisson random variable whose intensity we
would like to estimate. Then the likelihood function is

L(λ) = P(n|λ) =
e−λλn

n!
.

Thus the maximum likelihood estimate for λ is simply λ̂ = n. Indeed,

d
dλL(λ) = 1

n!e
−λλn{−1 + n

λ}.

That is, if we measured n∗ counts, we should estimate using λ̂ = n∗.

We consider the more general scenario in the next section.

? ? ? Maximum Likelihood Algorithm ? ? ?

In this section, we discuss an algorithm due to Shepp and Vardi for finding the
maximum likelihood vector introduced above.

We recall that nj denotes the number of decays in Bj (modeled as a Poisson
random variable with intensity λj), and that n∗k denotes the number of counts in
Tk. The elements in the transition matrix, denoted pjk, give the probability that a
decay in Bj is counted in Tk.

We begin by letting njk denote the number of events counted in Tk resulting from
a decay in Bj . These are independent Poisson random variables with intensity

λjk := E{njk} = λjpjk.

Then the njk are independent Poisson random variables that satisfy

n∗k =

N∑
j=1

njk.
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In particular, this implies that each n∗k is a Poisson random variable with intensity

λ∗k := E{n∗k} =

N∑
j=1

λjpjk.

Remark 1. One approach to estimating the maximal likelihood vector λ̂ would be
to use the measured values {n∗k} for the {λ∗k} and try to solve the linear system

N∑
j=1

pjkλj = n∗k, k = 1, . . . ,M.

However, it turns out that this is usually ill-conditioned and the measurements may
be noisy, so this is not done in practice.

We will proceed by writing down the likelihood of observing n∗ for a given λ.

Proposition 1. Let An∗ denote the set of all N ×M matrices (mjk) satisfying

n∗k =

N∑
j=1

mjk for k = 1, . . . ,M.

Then the likelihood function for n∗ is given by

λ 7→ L(λ) =
∑

(mjk)∈An∗

N∏
j=1

M∏
k=1

e−λjkλ
mjk
jk

mjk!
, (1)

Proof. Proceeding as in Example 1, we find that for a matrix (mjk) ∈ An∗ , the
likelihood function for the decay event mjk given λ is

λ 7→
e−λjkλ

mjk
jk

mjk!
,

where λ = (λ1, . . . , λN ) and λjk = λkpjk as above. By independence, the likelihood
function associated to the matrix (mjk) is then

λ 7→
N∏
j=1

M∏
k=1

e−λjkλ
mjk
jk

mjk!
.

Finally, to compute the likelihood of observing n∗, we must sum over all the possible
matrices in An∗ . Thus the likelihood function for n∗ is

λ 7→ L(λ) =
∑

(mjk)∈An∗

N∏
j=1

M∏
k=1

e−λjkλ
mjk
jk

mjk!
,

as was needed to show. �

Our goal is now to compute the arg-max of L(λ). Towards this end, we first
compute the partial derivatives of L(λ).

We fix some j0 and differentiate with respect to λj0 . The computation is related
to the one appearing in Example 1. The power of λj0 appearing in the product
over j, k is seen to be

M∑
k=1

mj0k.
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The power of e−λj0 is
M∑
k=1

pj0k = pj0 = 1.

Accordingly, we deduce

∂L
∂λj0

=
∑
m

{∏
j,k

e−λjkλ
mjk
jk

mjk!

}{
−1 + 1

λj0

M∑
`=1

mj0`

}

= −L(λ) +
∑

m∈An∗

[
1
λj0

M∑
`=1

mj0`

]
·
∏
j,k

e−λjkλ
mjk
jk

mjk!
.

The second term can be viewed as some conditional expectation of 1
λj0

∑M
`=1mj0`

over matrices (mjk) ∈ An∗ , conditioned on λ. In particular, this term will take the
form

Ẽ
{

1
λj0

M∑
`=1

mj0`

}
·
∑

m∈An∗

∏
j,k

e−λjkλ
mjk
jk

mjk!
= Ẽ

{
1
λj0

M∑
`=1

mj0`

}
L(λ).

To get an expression for this final expected value, we claim that

Ẽ{mj0`} = n∗` ·
λj0pj0`∑N
n=1 λnpn`

. (2)

This firstly reflects the fact that the sum of the entries in column ` is expected to
equal the measured value n∗` . The fraction then gives the expected fraction of total
events arising from row j0. While we have been somewhat informal here, this can
all be made precise using properties of independent Poisson random variables and
conditional probability.

Inserting (2) back into the expression above, we deduce

∂L
∂λj

= L(λ)

[
−1 +

M∑
m=1

n∗mpjm∑N
n=1 λnpnm

]
.

This suggests that we study the function

`(λ) := logL(λ),

which evidently obeys

∂`
∂λj

= −1 +

M∑
m=1

n∗mpjm∑N
n=1 λnpnm

.

Taking another derivative leads to

∂2`
∂λj∂λk

= −
M∑
m=1

n∗mpjmpkm

[
∑N
n=1 λnpnm]2

.

We now consider the quadratic form corresponding to this Hessian:

N∑
j,k=1

xj
∂2`

∂λj∂λk
xk = −

N∑
j,k=1

M∑
m=1

n∗mxjpjm xkpkm

[
∑N
n=1 λnpnm]2

= −
M∑
m=1

n∗m

[ ∑N
j=1 xjpjm∑N
n=1 λnpnm

]2

.
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As each n∗m is negative, we find that this is a negative semidefinite quadratic form.
This means that the function ` is concave, and in particular any maxima of ` (and
hence of L) is a global maximum.

Now the problem of finding the maximal likelihood estimate amounts to finding
the global maximum of the concave function `. There are many approaches one
may take. Here we describe the approach proposed by Shepp and Vardi.

Maximal likelihood algorithm. Begin with an initial vector λ̂0 with all components
positive. We then proceed iteratively. The approach is essentially ‘gradient ascent’
(cf. ‘gradient descent’ in the setting of convex optimization).

Now λ̂old denote the current iterate. Then our new iterate is defined component-
wise by

λ̂new
j = λ̂old

j [1 + ∂`
∂λj

∣∣
λ̂old ] = λ̂old

j ·
M∑
m=1

n∗mpjm∑N
n=1 λ̂

old
n pnm

.

We observe that nonnegative inputs lead to nonnegative outputs, and that the true
number of counts is preserved in each iteration. That is,

N∑
j=1

λ̂new
j =

M∑
k=1

n∗k.

One can then prove that this iteration only strictly increases L (unless one has
arrived at the maximum at some finite step in the iteration). In particular, this
algorithm leads to a good approximation to the maximal likelihood vector. �

? ? ? The transition matrix ? ? ?

To finish the discussion of PET reconstruction, we need to say something about
how to choose the transition matrix pjk, specifying the probability that a decay in
box Bj leads to a coincidence event detected in tube Tk. Intuitive definitions of
pjk may be hard to actually compute (e.g. if they include the unknown density).
On the other hand, some simple choices may empirically give reasonable results.
In general, one would like a balance, i.e. something reasonably simple to compute
but connected in some sense to the underlying physics. A typical example used by
Shepp and Vardi is the following:

pjk = 1
2CR × width(R, j, k),

where C is the number of detector elements, R is a radius (a parameter to be
chosen), and the width is the width of the intersection of the circle of radius R
centered at the center of Bj and the tube Tk.

? ? ? Related topics: SPECT ? ? ?

A related technique is that of SPECT: single photon emission CT. In this case,
the radioactive compounds produce a single γ-ray that is then detected. The recon-
struction for this problem is more difficult mathematically and involves inverting
the attenuated X-ray transform, which was only resolved mathematically in 2001.


