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References. These lecture notes are based off of the material from Rudin,
Principles of Mathematical Analysis, Chapter 7, and Wheeden—Zygmund,
Measure and Integral, Chapters 2-8. Exercises have been drawn from a
variety of sources.

Prerequisites. The prerequisite for this class is Math 4209, Advanced Cal-
culus I. The catalog description for that course is as follows:
Completeness of the set of real numbers, sequences and series
of real numbers, limits, continuity and differentiability, uni-
form convergence, Taylor series, Heine-Borel theorem, Rie-
mann integral, fundamental theorem of calculus, Cauchy-
Riemann integral.

Familiarity with these topics will be assumed.
Exercises for prerequisite material.

Ezercise 0.1. Suppose a,b € R. Show that if a < b+ ¢ for every € > 0, then
a<b.

Ezercise 0.2. Show that every open set in R can be written as a countable
union of disjoint open intervals.

FEzercise 0.3. Show that every open set in R” (with n > 1) can be written
as a countable union of nonoverlapping closed cubes.
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Ezercise 0.4. Show that Y >° jar™ = 1% for a € R and r € (0, 1).

Ezercise 0.5. Let f : R — R be continuous. Show that show that f~1(G) is
open whenever G C R is open. [Recall f~1(G) = {z € R: f(x) € G}]

Ezercise 0.6. Show that (f o ¢) ' (G) = ¢~ (f~1(Q)).

Ezercise 0.7. Suppose K, C R are a collection of nonempty compact sets
such that K, D K,11. Show that N0 K,, is nonempty.

1. SEQUENCES AND SERIES OF FUNCTIONS

Reference: Rudin Chapter 7

1.1. Pointwise convergence. Suppose { f,}22, is a sequence of real-valued
functions defined on some subset £ C R. That is, for each n, we have

fn: E—R.

Suppose that for each z € E, the sequence {f,(z)} 2, C R converges.
We can then define

f:E—R via f(z):= lim f,(z) foreach z € FE.

n—oo

In this case, we say {f,} converges (pointwise) on F and that the func-
tion f is the limit of the sequence {f,}. We may write f,, — f pointwise.

Remark 1.1. We focus on the case of real-valued functions on F C R;
however, one can also consider arbitrary metric spaces £ and complex-valued
functions.

Similarly, suppose the infinite sum

n=1

converges for each z € F. Then we can define the function
o
f:E—=R via f(z):= an(x) for each z € E.
n=1

In this case, we call f the sum of the series ) fp.

Question. Which properties of { f,,} are ‘inherited’ by the limit functions
introduced above?

For example, suppose {f,} is a sequence of continuous functions on E
that converges pointwise to f. Is the limit f continuous on E? This is
equivalent to asking if

lim f(y) = f(z) forall =z€FE.

Yy—T
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Recalling that f(z) = lim, o fn(x) and that each {f,} is continuous, this
is equivalent to asking whether

lim lim f,(y) = lim lim f,(y)

Y—>T N—>00 n—o0 Yy—T
for each x € E. In particular, we are led to the question of the interchange
of limit operations.

Let us work through several examples to see that in general, we cannot
freely exchange the order of limits.

Ezxample 1.1. Let

m
Smn = , m,n €N.
m—+n
Then
lim lim s, = lim 1 =1,
n—00 M—>00 ’ n—00
while

lim lim S, = lim 0=0.
M—00 N—>00 ’ m—00

Ezxample 1.2. Let f, : R — R be given by
2

x
Each f, is continuous. Now define
0o e 2
F) = 2 0 = 2 e

Since f,,(0) = 0, we have f(0) = 0.
For z # 0, this is a geometric series that sums to 1+ 2 (cf. 0% jar™ =
)
Thus
0 z=0
J@) = {1—|—m2 x # 0.

We conclude that a convergent series of continuous functions may be dis-
continuous.

Example 1.3. Define f, : R — R by
fm(z) = li_)rn [cos(m!mz)]?"

for m € N. Note that

fm(z) =

1 if mlz is an integer
0 otherwise.
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Note that f,, is continuous except at countably many points.

Now define the limit function
f@) = tim (o).
We claim that

f(z) = lim lim [cos(m!mz)]"" =

m—r0o0 N—00

on 1 if =z isrational,
0 if =« isirrational.

Indeed, if = is irrational then m!z is never an integer, so that f(x) = 0. On
the other hand, if z = p/q € Q then m!z is an integer whenever m > ¢, so
that f(z) = 1.

The limit function is everywhere discontinuous and not Riemann inte-
grable.

Ezample 1.4. Let f,, : R — R be defined by
fa(z) = %
for n € N. Each f, is differentiable on R, with
fo(@) = VA cos(na).
The limit function f satisfies
f(z) = 7}1_)1{)10 fa(x) =0 for every x€R.
In particular, f is also differentiable on R, with f' =0 on R.
In particular we deduce

. d d .
W3R eI 7 e 1

For example, f/(0) = \/n — o0 as n — o

Ezample 1.5. Let f, : [0,1] — R be defined by
fu(x) = nx(l — z?)™.
The limit function f : [0,1] — R satisfies
f(z) = nlgrolo fa(z) =0 forall z€]0,1].
In particular,

/01 @) dz =0,

On the other hand, a simple substitution (e.g. u = 1 — 22) reveals

1
/0 fo(z)dx = 2(7:11) —1 as n— oo
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Thus ) .
/ lim f(z)dz # lim fn(z) de.
0 n—o0 n—o0 0

In fact, considering the example f,(z) = n?z(1 — 22)" shows that we may
even have
1 1
lim fn(x)dr = co  while / lim f,(z)dz =0.
0

n—oo 0 n—o0

The takeaway of these examples is that one cannot always freely inter-
change limit operations.

At least, we have seen that pointwise convergence is too weak to allow us
to make such interchanges.

1.2. Uniform convergence. We first revisit the definition of pointwise
convergence: a sequence of functions f, : F — R converges pointwise to
f:E—>Rif
for all x € E andforall >0 thereexists N = N(z,¢)
such that n> N = |f,(z) — f(z)| <e.

We now introduce a stronger notion of convergence, namely uniform con-
vergence.

Definition 1.2. Let {f,} be a sequence of functions f, : E — R. We say
fn converges uniformly to f: F — R if

for all € >0 there exists N = N(e) such that for all z € FE,
n>N = |fu(z) — f(z)] <e.
We write f, — f uniformly on E.

This convergence is uniform in the sense that a single choice of N = N(¢)
works uniformly over all choices of x € E.

Uniform convergence is stronger than pointwise convergence (that is, uni-
form convergence implies pointwise convergence).

Ezample 1.6. Let f, : (0,1) = R be given by f,(z) = z™.
Then f,, — 0 pointwise on (0, 1) but not uniformly.

However, f, — 0 uniformly on any interval of the form (0,d) with § < 1.

Definition 1.3. Let {f,} be a sequence of functions f,, : E — R. A series
of functions Y 07 | fn(x) converges uniformly on E if the sequence of partial
sums

sp: E— R defined by s,(z) = Zfz(x)
i=1
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converges uniformly on F.
A sequence of functions that is ‘uniformly Cauchy’ converges uniformly.

Theorem 1.4 (Cauchy criterion for uniform convergence). A sequence of
functions f : E — R converges uniformly on E if and only if the following
holds:

for every e >0 there exists N = N(e) such that for all x € E,

m,n >N = |fu(z) — f(2)| <e.

(1.1)

Proof. = : Suppose {f,} converges uniformly to f. Then for any ¢ > 0
there exists N = N(e) so that

|fo(z) — f(z)| < 3¢ forany n >N, z€E.
Then for n,m > N we have
|fa() = fin(2)] < | fulz) — f(@)] + |f(2) = fn(2)] <€
for any x € E. This implies the uniform Cauchy condition.

<=: Suppose the Cauchy condition holds. In particular, for each z € F,
the sequence {f,(x)} is a Cauchy sequence in R.

Consequently, the sequence f, converges pointwise to a function f : £ —
R.

Now let € > 0 and choose N as in (1.1). Fix n > N and = € E. Then for
any m, we may write

[fn(z) = F(@)] < |fa(2) = fm(2)] + [fm(2) = f(2)].
Taking the limsup as m — oo and using (1.1) and pointwise convergence
now yields

[fn(z) = f(2)] <& +0.
This completes the proof. O

The following result follows from the definition of uniform convergence:
Theorem 1.5. Suppose f, — [ pointwise on a set E. Define
My, = sup | fu(z) — f(2)].
z€E
Then fn, — f uniformly on E if and only if limy,_,o M, = 0.
The following test for uniform convergence is due to Weierstrass.

Theorem 1.6. Suppose f, : E — R is a sequence of functions satisfying

sup | fn(z)| < My
el

for some {M,} C R.
If ZM" converges, then Z fn converges uniformly.
n

n
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Proof. Suppose ), M, converges and let ¢ > 0. Then for n > m sufficiently
large, we have

n n
Yo filw)| <> Mi<e
=m =m
for any € E. Using Theorem 1.5, this implies that > f,, converges uni-
formly. O

Uniform limits inherit continuity. This will be a consequence of the fol-
lowing theorem.

Theorem 1.7. Suppose f,, — f uniformly on an open set E. Supposex € E
and

lim fu(y) = An.

Yy—x

Then {A,} converges, with
lim A, = lim f(y).

n—00 Y=z

That is,
lim lim f,(y) = lim lim f,(y).

n—00 y— Y—T n—300
Proof. Let € > 0. By uniform convergence, there exists N = N(¢) so that
n,m>N and yeE = |fu(y)— fu(y)| <e.
Taking the limsup as y — x yields
|An — Ap| < e.
Thus {4, } is Cauchy, and hence convergent. Denote A = lim,,_,~c Aj.
Next, for any n and y € E, we have
F@) = Al < [£5) = Fa(@)| + | faly) = Aul + |4, — AL
Given € > 0, we may choose n large enough that

|f(y) = faly)| < %5 forall yeFE.

Choosing n possibly larger, we may also guarantee
|Ap — A| < e
Finally, for this (fixed) n, we choose a neighborhood U > x so that
|fa(y) — An| < 3¢ for yeU.
Continuing from above, we have
[fnly) — Al <e for yeUl,

which completes the proof. O

This implies the following:

Theorem 1.8. If {f,} is a sequence of continuous functions on E and
fn — f uniformly on E, then f is continuous on E.
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Proof. Let x € E be a limit point of E£. Then by the previous theorem and
continuity of the {f,}, we have

n—00 Y

This implies f is continuous at each =z € E. O

Remark 1.9. The limit function may be continuous, even if the convergence
is not uniform. See Example 1.5.

There is a case when the converse is true:

Theorem 1.10. Let K C R be compact. Suppose

e {fn} are continuous functions on K,
o f, — [ pointwise on K, with f continuous,
o fn(z) > fosi1(z) forx € K andn > 1.

Then fn, — f uniformly.
Proof. The functions g, = f, — f are continuous, g, — 0 pointwise, and
9n 2 Gn+1-
Let € > 0 and define
K,={z e K:gy(zx) >c}.
As g, is continuous, we have that K, is closed and hence compact.
AS gn > gn+1, we have K, D K41.

Now consider any € K. Since g,(x) — 0, we have = ¢ K, for n large
enough.

As z was arbitrary, we conclude that NS | K,, = ().
As K, D K1, this implies Ky = () for some N (and hence for all n > N).
This implies 0 < g, (x) < € for all z € K and n > N.

This implies g, — 0 uniformly, which completes the proof. ([

1
nr+1

Compactness is necessary. Indeed, f,(z) =
tonically for x € (0, 1), but not uniformly.

converges to zero mono-

We next introduce the space C'(X).

Definition 1.11. Let X C R. We let C'(X) denote the set of all real-valued,
continuous, bounded functions on X.
For f € C(X), we define the supremum norm by

If]l = sup | f(2)].
zeX

Note that || f]] < oo for all f € C(X).
The quantity || - || satisfies the definitions of a norm, namely:

e ||f]| = 0 implies f =0,
o If +gll < Irl+ gl
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o |lcf]| = |c]l|f]| for ¢ € R.
Furthermore, (f,g) — ||f — g|| defines a metric on C(X).
Remark 1.12.

(i) This definition makes sense for an arbitrary metric space X (and
complex-valued functions).

(ii) If X is compact, then the boundedness assumption is redundant.
(iii) Theorem 1.5 may be restated as follows: f, — f uniformly on X if
and only if f,, — f in the metric of C(X).
We close this section with the following result:
Theorem 1.13. The space C(X) is a complete metric space.
Proof. Let {f,} be a Cauchy sequence in C(X). Then for any € > 0, there
exists N such that || f, — fi| < € for all n,m > N.
Then by Theorem 1.4, f,, converges uniformly to some f: X — R.
Moreover, by Theorem 1.8, f is continuous.
Finally, since each f,, is bounded and there exists n such that
|fu(x) — f(x)| <1 forall zeX,
we deduce f is bounded. Thus f € C(X) and || f, — f|| = 0asn —oco. O

1.3. Uniform convergence and integration/differentiation. We recall
the definition of Riemann integration, including upper and lower sums (with
respect to a given partition), and upper and lower integrals (denoted by f

and [).

Theorem 1.14. Suppose f,, are Riemann integrable functions on an interval
[a,b] and f, — f uniformly on [a,b]. Then f is Riemann integrable and

b b
lim fn(2) dx:/ f(z)dz.

n—oo

Proof. Define
en = sup |fu(z) = f(2)|.

z€[a,b]
In particular,
Jn—én < f < fnteén,
so that

/ fule) — eal i < [tain< [ | [fae) + 2] e

In particular,

0< /f(az) da —/f(ac) dz < 2en[b — dl.
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Uniform convergence implies €, — 0 as n — oo, and hence the upper and
lower integrals of f are equal.

Therefore f is Riemann integrable, and

/abf(:v) dx — /ab fn(z)dx

This completes the proof. O

<eulb—a] -0 as n— 0.

Corollary 1.15. Suppose f,, are Riemann integrable on [a,b] and the series

= Z fn(@)

converges uniformly on [a,b]. Then

/f yaz =3 /fn

That is, the series may be integrated term—by—term.
We turn to the question of differentiation.

Theorem 1.16. Let f,, be differentiable functions on an interval [a,b]. Sup-
pose fn(xg) converges for some xq € [a,b]. Suppose further that f], converges
uniformly on [a,b]. Then f, converges to a function f on [a,b], and f], — f'.

Proof. Let € > 0 and choose N so that

MmN = |falwo) = fr(wo)| < de and [£4(8) = £o(8)] < gpiare
for all ¢ € [a, b].

By the mean value theorem (applied to f, — fin),

|fa(@) = fn(@) = [fa(t) = f(D)]] < gyl —t] < 3¢ (1.2)

for any z,t € [a,b] and n,m > N.

Thus, by the triangle inequality,

Fal@) = (@)
< ful(@) = fm(@) = [fa(@0) = fm(0)]| + | fu(0) = fm(20)| <e.

for any z € [a,b] and n,m > N.

Therefore f,, — f converges uniformly on [a, b] for some function f.

We now show f] — f’. Fix z € [a,b] and define

Bn(t) = f"(ti — i"(m)
for t € [a,b]\{z}. We have

t—x
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By (1.2),
|¢n(t) - ¢m(t)| < ms for n,m > N,
which shows that {¢,} converges uniformly for any t # .
Since f, — f, we see that the (uniform) limit of ¢, (¢) must be
ft) — f(=)
t—xz
We now apply Theorem 1.7 to {¢,} to deduce
f'(z) = lim JO=1®) — Yim lim ¢, (t) = lim lim ¢ (¢) = lim f(z),
—x

t—z t—x n—roo n—oo t—zx n—00

as desired. O

If one assumes the f; are continuous, there is a much simpler proof using
the fundamental theorem of calculus. [See homework.]

We close this section with the following interesting construction.

Proposition 1.17. There exists a real-valued continuous function that is
nowhere differentiable.

Proof. Let ¢(z) = |z| for x € [—1,1]. Extend ¢ to 2 € R by imposing

b +2) = 6(a).
For all s,t € R, we have |¢(s) — ¢(t)| < |s — t|, which shows that ¢ is
continuous.

Let

[e.e]
F@) = S () eana).
n=0
Using 0 < ¢ < 1, Theorem 1.6 implies that the series converges uniformly
on R, and hence f is continuous on R.

Let 2 € R and for m € N define

O = £1 477,
where the sign is chosen to that
4"z, A" (x4 6m)) NZ = 0. (1.3)

(That this is possible follows from the fact that 4™(6,,| = 3).

Next define
b = o(A™"(x + o)) — o(4"x)
" 5m .

When n > m, 4"§,, is an even integer, and hence ~,, = 0.
On the other hand, when 0 < n < m, we have |y,| < 4™.
Finally, note that (1.3) implies

p(4ma + 1) - p(4ma)

+34-m

h/m’ = =4".
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Thus
f(:c—i—&m)—f(ac) = 3 m n 1 m
5 —;0(4 "] > 3 23 — 13 +1).
Noting that d,, — 0 but 3™ — oo, we deduce that f is not differentiable
at x. (]

1.4. Equicontinuous families of functions.
Definition 1.18. Let {f,} be a sequence of functions on £ C R.

We call {f,} pointwise bounded if {f,(x)} is a bounded sequence for
each x € FE, that is, if there exists ¢ : E — R so that

|fn(x)| < ¢(x) forall z€E and n>1.

We call {f,} uniformly bounded if there exists M so that
|fu(z)] <M forall x€E and n>1.

Theorem 1.19. If {f,} is a pointwise bounded sequence on a countable set
E, then {fn} has a subsequence {fn,} that converges on E.

Proof. Write ' = {x;}32,

As {fn(x1)} is bounded, there exists a subsequence denoted { f1 1} so that
J1x(x1) converges.

Similarly, the sequence {fi(z2)} is bounded, and hence there exists a
further subsequence denoted { f 1} so that { fa x(x;)} converges for j =1, 2.

Proceeding in this way yields subsequences {f,x} such that {f, r(z;)}
converges for each j =1,2,...,n.

Now consider the subsequence { fi 1. }. This sequence satisfies that { fy x(z;)}
converges for each j. O

Definition 1.20. A family F of functions f defined on a set £ C R is
equicontinuous on F if

for all >0 thereexists d >0 such that
lzt—y|<d = |f(z)— fly)| <e forall feF.

Remark 1.21. Every element of an equicontinuous family is uniformly con-
tinuous.

Theorem 1.22. If K C R is compact, {f,} C C(K), and {fn} converges
uniformly on K, then {f,} is equicontinuous on K.

Proof. Let € > 0. By uniform convergence, there exists N so that

n>N = ||fn— Iyl < %5.
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As continuous functions on compact sets are uniformly continuous, there
exists § > 0 so that
lz—yl <6 = |filz) — fily)| < 3¢ forall 1<i<N.

This gives equicontinuity for {f;}X,, while if n > N and |z — y| < 6, then
[fn(@) = fa)] < |fn(@) = fn (@) + [fn(2) = In@)] + 1IN () = fa(y)] <e.
The result follows. O

The following result is known as the Arzela—Ascoli theorem.

Theorem 1.23. Let K C R be compact and {f,} C C(K). If {fn} is
pointwise bounded and equicontinuous on K, then:

o {fn} is uniformly bounded on K,
e {fn} has a uniformly convergent subsequence.

Proof. Let € > 0 and choose § > 0 so that
2 —y| <6 = |fu(2) — fu(y)| < 2e forall n.
By compactness of K, there exist {p;}]_; C K so that
K C Ui (pi — 0,pi +9).

As {fn} is pointwise bounded, for each i there exist M; so that |f,(p;)| < M;
for all n.

Writing M = max{M;}, we deduce
|f(x)] < M +¢e forall zeK,
giving uniform boundedness.

Next, let E be a countable dense subset of K. Then by Theorem 1.19, { f,,}
has a subsequence (which we also denote by f,,) such that f,(x) converges
for every x € E.

We will show (the subsequence) f,, converges uniformly on K.
Let € > 0 and pick § > 0 as above. For x € E, let
V(z,0)={ye K :|z—y| <d}.
As E is dense in K and K is compact, there exist {z;}]"; C E so that
K Cc U V(zy,9).
As {fn(z)} converges for x € E, there exists N so that
|filex) = fi(zr)| < §e for 4,j>N and 1<k<m.

Now let € K. Then x € V(xy,d) for some k, so that for i,7 > N, we have
|filz) = fi ()] < 1filx) = filz)| + | filzr) = fi(@)| + | fi(ze) — fi(2)| <e,
which completes the proof. ([
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1.5. The Stone—Weierstrass theorem. For this section we will consider
complex-valued functions.
We begin with the following approximation theorem.

Theorem 1.24 (Weierstrass theorem). Let f : [a,b] — C be continuous.

Then there exists a sequence of polynomials so that P, — f uniformly on
[a,0].

Remark 1.25. This result holds for real-valued functions (with real poly-
nomials) as well.

Proof. Without loss of generality, take [a,b] = [0,1]. We may also assume
f(0) = f(1) =0, for then we may apply the result to

g9(x) = f(z) = f(0) — 2[f(1) = F(0)].
We set f =0 for z ¢ [0,1], making f uniformly continuous on R.

For n > 1, define
1

f_ll(l — z2)n de’

Qn(z) = cu(1 —2H)™,  where ¢, =

so that .
/ Qn(z)dx = 1.
-1

Note that

1 1
/ (1x2)"d1:22/ﬁ(1932)"dx
-1 0

1

N
22/ 1—na?)de = 2,
0 ( ) 3\/5

which implies ¢, < y/n. Here we used (1 — 22)" > 1 — nz? on (0, 1).
We deduce that for 6 > 0 and [d| < |z] < 1,
Qu(z) < Vn(1 - 8%)",
so that @, — 0 uniformly for 6 < |z| < 1.
Now define

1
P.(z) = /_1 flx+6)Qn(t)dt, =z €]0,1].

In particular, since f = 0 outside [0, 1],

11—z 1

Pa)= [ et 0Quydt = [ 10@u(t -2 dr

—x 0

which shows that P, is a polynomial in z. (Furthermore, P, € R if f € R.)

We now claim that P, — f uniformly. To this end, we let ¢ > 0 and
choose > 0 so that

o —yl <6 = |f(x) - f(W)| < z¢.
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Let M =sup|f|. Using @, > 0 and [ @, = 1, we have for z € [0,1]:

1
/ @+ 1) — F@)]Qu(t) dt

-1

|Po(2) = f(2)| =

< / @+ ) — ()| Qn(t) dx

1
—0 1 o
1
< 2M/_1 On(t) dt+2M/6 Qn(t) dt + 26/_562”(16) it

<4AMy/n(1 = &)™ + 3,
so that
|Pp(xz) — f(z)| <e forall xze€[-1,1] and n large enough.
This completes the proof. [l

Corollary 1.26. For any a > 0, there exists a sequence of real polynomials
P, so that P,(0) =0 and P,(z) — |x| uniformly on [—a,a].

Proof. Let P} be the polynomials given by Theorem 1.24, and set P, (x) =
P¥(x) — PX(0). (|

This approximation theorem can be generalized.

Definition 1.27. A family A of complex functions on a set E is an algebra
if for all f,g € A and c € C,

e f+ge 4,
* fge A,
o cfecA
We can also consider algebras of real-valued functions (in which we only
consider ¢ € R).
If A is closed under uniform convergence, then we call A uniformly
closed.

The uniform closure of A is the set of all uniform limits of sequences
in A.

The Weierstrass theorem states that the set of continuous functions on
[a, b] is the uniform closure of the algebra of polynomials on [a, b].

The following is left as an exercise:

Theorem 1.28. Let B be the uniform closure of an algebra A of bounded
functions. Then B is a uniformly closed algebra.

Definition 1.29. A family of functions A defined on a set E is said to
separate points if for every 1 # x9 € E there exists f € A so that
f(@1) # f(a2).

If for each = € E there exists g € A so that g(x) # 0, we say A vanishes
at no point of F.
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For example, the algebra of polynomials has these properties on R. How-
ever, the algebra of even polynomials on [—1,1] does not separate points
(since f(x) = f(—=x) for every f in this algebra).

The following is also left as an exercise:

Theorem 1.30. Suppose A is an algebra of functions on E that separates
points and vanishes at no point of E. For any x1 # xo € E and ¢1,co € C,
there exists f € A so that

flx1)=c1 and f(z2)=co.
If A is real, then this holds for c1,co € R.

We can now state the generalization of Weierstrass’s theorem. It gives

conditions for an algebra of functions on a compact set K to be dense in
C(K).

Theorem 1.31 (Stone-Weierstrass, real version). Let A be an algebra of
real-valued continuous functions on a compact set K. If A separates points
on K and vanishes at no point of K, then the uniform closure B of A
consists of all real continuous functions on K.

Proof. The proof proceeds in four steps.

1. If f € B then |f| € B.

Let a = sup,ci |f(z)| and € > 0. By the corollary above, there exist
{ci}?, so that

n
ch-yi - |y' <e for yé€[—a,al].
i=1

As B is an algebra, the function

n

gzzcifi

i=1
belongs to B. Thus
llg(z) — |f(z)|| <e for ze€K.

This implies that we may find g, € B so that g, — |f| uniformly. As B is
uniformly closed, this implies that |f| € B.

2. If f € B and g € B, then max{f, ¢} and min{f, g} belong to B.
This follows from Step 1 and the fact that
max{f,g} = 5(f +9) + 3|f —gl, min{f,g} = 5(f +9) =3/ — gl

By iterating this, we can extend Step 2 to any finite collection of functions
in B.

3. For f € C(K), z € K, and € > 0, there exists g, € B so that
9z(z) = f(x) and gz(t) > f(t) —e for teK.
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As A C B and A satisfies the hypotheses of the preceding theorem, so
does B. Thus for y € K we may find h, € B so that

hy(z) = f(z) and hy(y) = f(y).
By continuity of h,, there exists open U, > y so that
hy(t) > f(t) —e for teU,.
As K is compact, there exists {y1,...,yn} so that
K CUj_,Uy,.
Now the function g, = max{h,;} € B has the desired properties.

4. For f € C(K) and ¢ > 0, there exists h € B so that ||h — f]| < e.
This implies that we may find h,, € B so that h,, — f uniformly. As B is
uniformly closed, this implies the theorem.

Let € > 0 and for each x € K define g, € B as in Step 3. By continuity,
there exist open sets U, > x so that

9z(t) < f(t)+e for teU,.

By compactness of K, there exists {x;}!", so that

K Cc U2 U,,.
Now set h = min{gy, } € B. Then by Step 3, we have h(t) > f(t) —c on K,
while by construction h(t) < f(t) +¢ on K. This implies the result. O

The analogue of Theorem 1.31 for complex-valued functions requires an
additional assumption, namely that the algebra is self-adjoint. This means
that the algebra is closed under complex conjugation.

We leave the complex version of Theorem 1.31 as an exercise. It can be
deduced from Theorem 1.31.

Theorem 1.32 (Stone-Weierstrass, complex version). Let A be a self-
adjoint algebra of complex-valued continuous functions on a compact set K.
If A separates points on K and vanishes at no point of K, then the uniform
closure B of A consists of all complex continuous functions on K.

1.6. Exercises.

FEzercise 1.1. Show that the functions f,,(z) = #ﬂ converge to zero mono-
tonically for x € (0,1) but not uniformly.

Ezercise 1.2. Suppose that f, are differentiable functions on an interval
[a,b], with f] continuous on [a,b]. Suppose {fn(zo)} converge for some
xo € [a,b]. Finally, suppose f/ converges uniformly on [a,b]. Then f,
converges uniformly to some f and f; — f'.

FEzercise 1.3. (i) Show that if {f,} and {g,} are bounded sequences that
converge uniformly, then {f,g,} converges uniformly. (ii) Find {f,} and
{gn} that converge uniformly but {f,g,} does not converge uniformly.
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Ezercise 1.4. Let f,(z) = sin?(r/x) for %H <z < Land fo(z) =0
otherwise. (i) Show that f,, converges to a continuous function but not
uniformly. (ii) Show that > f,, converges absolutely for all x, but does not

converge uniformly.

Ezercise 1.5. Show that Z(—l)"‘”i# converges uniformly on any bounded
interval, but does not converge absolutely at any point.

Ezercise 1.6. Let fn(z) = 77-5. (i) Show that f, converges uniformly to
some f. (ii) Show that f/(z) — f'(x) everywhere but z = 0.

FEzercise 1.7. Suppose Y |cp| < 0o and {z,} is a sequence of distinct points
in an interval [a, b]. Show that the series Y ¢, H(x —x,,) converges uniformly
and is continuous off of the set {x,, }, where H(x) = 1forx > 0and H(z) =0
otherwise.

Ezercise 1.8. Suppose f, are continuous and converge uniformly to f on a
set S. (i) Show f,(x,) — f(x) whenever E 3 x,, - x € E. (ii) Prove or
disprove the converse.

Exercise 1.9. Suppose f, are monotonically increasing functions on R taking
values in [0,1]. (i) Show that there exists a function f and a sequence ny
such that f,, — f on R. (ii) If f is continuous, show that the convergence
is uniform.

Ezercise 1.10. Show that if an equicontinuous family of functions converges
on a compact set, then the convergence is necessarily uniform.

Ezercise 1.11. Classify all real-valued continuous functions f on R such that
{f(nz)}>2, forms an equicontinuous family for x € [0, 1].

FEzercise 1.12. Suppose { f,,} are uniformly bounded and Riemann integrable
on [a,b]. Show that Fy,(z) := [ f.(t) dt converges uniformly along a subse-
quence.

FEzercise 1.13. Suppose f is continuous on [0, 1] and satisfies fol flx)x™dx =
0 for all integers n > 0. Show that f = 0.

Ezxercise 1.14. Let S be the unit circle in the plane. Let A be the algebra of
functions of the form f(e') = Zﬁ[:o cne™. Show that A separates points
on S, A vanishes at no points of S, but that there are continuous functions

on S that are not in the uniform closure of A.

Ezercise 1.15. Let B be the uniform closure of an algebra A of bounded
functions. Then B is a uniformly closed algebra.

Ezercise 1.16. Suppose A is an algebra of functions on E that separates
points and vanishes at no point of E. For any z1 # x9 € E and ¢y, ¢ € C,
there exists f € A so that

f(x1) =1 and f(x2) = co.
If A is real, then this holds for ¢1,c9 € R.
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Ezercise 1.17. Let ¢ be a continuous, bounded, real-valued function on
[0,1] x R. Show that the initial-value problem

y =d(z,y), y0)=c
has a solution for any ¢ € R by carrying out the following scheme: let
x; = i/n and take f, to be continuous on [0, 1] with f,,(0) = c and f],(t) =
(i, fn(x;)) on (x4, zi41). Then define A, (t) in such a way that

folz) =c+ /Oz[qﬁ(t, fn(®) + An(t)] dt.

Now show that { f,} converges uniformly on [0, 1] and A,, — 0 uniformly on
[0, 1] to deduce that the limit f obeys

f@) =+ /0 "ot £(1)) dt.

2. FUNCTIONS OF BOUNDED VARIATION

Reference: Wheeden—Zygmund Chapter 2

2.1. Functions of bounded variation.
Definition 2.1. Let f : [a,b] — R, and let

I'={zo,...,Tm}
be a partition of [a, b]. Define

Sr = Srlf;a,b =Y [f(x:) = flaia)l.
i=1

The variation of f over [a,b] is defined by
V =VI|f;a,b] =sup Sr.
r
As 0 < Sp < oo, we have V € [0,00]. If V < o0, we say [ is of bounded

variation. We may write f € BV ([a,b]) and V = || f||gy. Otherwise, we
say f is of unbounded variation.

If we simply write St, V, etc., then we assume that we are working with
some real-valued function f defined on an interval [a, b].

Ezample 2.1. If f is monotone on [a, b], then St = |f(b) — f(a)| and hence
V =1f() = fa)l

Ezample 2.2. If we can write [a,b] = U¥_, [a;, a;+1] with f monotone on each
subinterval, then
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(see below).

Example 2.3. Let f(z) = 0 when = # 0 and f(0) = 1. Let [a,b] be any
interval with 0 € (a,b). Then St € {0,2}, depending on whether or not
0 €I'. Thus Via,b] = 2.

If ' = {xo,...,2y} is a partition of [a,b], then we define the norm of T’
to be
IT| = mzax[a:i — 1]

If f is continuous on [a,b] and |I';| — 0, then we will see that
V= hm Srj.

J—00

The previous example shows that this may fail if there is even a single
discontinuity.

Ezample 2.4. Let f be the Dirichlet function: f(z) = 1 for z € Q and
f(z) =0 for z € R\Q. Then V]a,b] = co for any interval.

Ezxample 2.5. Continuity does not imply bounded variation:

Let {a;} and {d;} be decreasing sequences in (0, 1] with a; =1, aj,d; — 0,
and ) d; = oo.

Construct f as follows. On each [a;1, a;], the graph of f consists of the
sides of the isosceles triangle with base [aj41, a;] and height d;.

Then f(aj) = 0 and f(m;) = dj, where m; is the midpoint of a;;; and
Qaj.

Setting f(0) = 0, we have that f is continuous on [0, 1].

Let I'y, be the partition defined by 0, {aj};?ill, and {mj};‘?:l. Then Sr, =
22;?:1 d;, whence V[f;0,1] = oo.

Ezample 2.6. A function f : [a,b] — R is Lipschitz if there exists C' > 0
such that
[f(@) = fW)| < Clz—yl, =,y €la,b].
Lipschitz implies bounded variation, with V[f;a,b] < C(b— a).
If f has a continuous derivative on [a, b], it is Lipschitz by the mean value
theorem (C' can be taken to be the maximum of f”).

The following theorem is left as an exercise:
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Theorem 2.2.

o If f is of bounded variation on |a,b], then f is bounded on [a,D].

e The family of bounded variation functions on [a,b] is an algebra.

o If f and g are of bounded variation and there exists € > 0 so that
lg| > €, then f/g is of bounded variation.

Definition 2.3. Let I" be a partition. Another partition I is a refinement
of 'if I' C T

Note that if [ is a refinement of T', then (by the triangle inequality)
Sr < Sg.

Theorem 2.4.
o If[d,b] C [a,b], then V]d',b'] < V]a,b].
e Variation is additive on adjacent intervals: Va,b] = V]a,c]+ Ve, b]
whenever a < b < c.

Proof. It T” is any partition of [a/, ], then T' = IV U {a, b} is a partition of
[a, b] and
Sri[a’, '] < Srla,b] < Via,b].
This implies V[a/, 0] < V]a,b].
Write I = [a,b], I) = [a,¢], and Iy = [b,c]. Let V = Va,b], V; = V[I;].
If 'y, 'y are partitions of I, I, then I' = I'y U T’y is a partition of I, with
Sr[I] = Sr,[1] + Sty [L2) < V.
Taking the supremum over I'y and I'y yields V3 + Vo < V.
On the other hand, suppose T is a partition of I. Let I' = T'U {c}. Then
Sr[I] < Sg[I].

Note I splits into partitions I'; of I; and 'y of I (e.g. take I'y = ' N Iy).
Thus
SF[I] < Sf[]] = SI‘I[II] + SFQ[[Q] <Vi+ Vs

Taking the supremum over all partitions I yields V' < V; + V5. Thus V =
Vi+ Va. -

Given z € R, let

I r x>0 _ 0 x>0
Tt = and z7 =
0 =<0 —x x<0.

These are called the positive and negative parts of . They satisfy

2T >0, |z|=2" 427, z=2" -2,
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For a function f and a partition I' = {x;};" of [a, b], let

[f(zs) — f(l“ifl)]ﬂ

I~F

I
—

Pr = Prf;a,b] =

1

I

Il
-

Nr = Nrlf;a,b] = » [f(xi) — f(zi1)]"-

(2

Thus Pr, Nr > 0, with
Sr=Pr+ Nr, Pr—Nr=f(@®)- f(a).
The positive variation and negative variation are defined by

P = P[f;a,b] =sup Pr, N = N|[f;a,b] =sup Nr.
r r

Then P, N € [0, o0].
Theorem 2.5. If any one of P, N, or V are finite, then all three are finite,
with
P+N=V and P—N=f()— f(a).
FEquivalently,
P=3[V+f0b)—fa)], N=3[V-(f(b)—f(a))
Proof. As Pr + Nr = Sr for any partition I', we have
Pr+Np <V.

Because Pr, Ny > 0, this implies P <V and N < V. Thus, finiteness of V'
implies finiteness of P, V.

Using Pr+ Nr = Sr again, we see that Sp < P+ N and hence V < P+ N.

On the other hand, since Pr — Np = f(b) — f(a), we see that finiteness
of P or N implies finiteness of the other, and hence finiteness of V. This
completes the first part of the theorem.

Now assume Ppr, — P. Then Nr, — N (since Pr — Nr is constant for
any partition). Sending k — oo, we deduce

P—N=f(®b)- f(a), P+N<V.
Recalling V' < P 4+ N, the theorem follows. ([l

Corollary 2.6 (Jordan’s theorem). A function is of bounded variation on
[a,b] if and only if it can be written as the difference of two bounded increas-
ing functions on [a,b].

Proof. <= Bounded monotone functions are of bounded variation, and dif-
ferences of bounded variation functions are of bounded variation.

—> Suppose f is of bounded variation on [a,b]. Then f is of bounded
variation on every [a,z] for x € [a, b].
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Let P(x) and N(x) denote the positive and negative variations of f on
[a, z].

Noting that P, N also increase on increasing intervals (like V'), we have
that P, N are bounded and increasing on [a,b]. By the previous theorem,

f(z)=[P(z)+ f(a)] — N(z) for =z € [a,b)].
The corollary follows. O

We can rephrase the corollary by saying that f is the sum of a bounded
increasing function and a bounded decreasing function.

We turn to a continuity property of bounded variation functions. We
say that a discontinuity is of the first kind if it is a jump or removable
discontinuity.

Theorem 2.7. Fvery function of bounded variation has at most a countable
number of discontinuities, all of which are of the first kind.

Proof. Let f be of bounded variation on [a,b]. Using Jordan’s theorem, we
may assume f is bounded and increasing on [a,b]. Then the only disconti-
nuities of f are of the first kind; in fact, they are all jump discontinuities.
However, each jump continuity defines a distinct interval, which contains a
rational number; thus there can be at most countably many. O

Theorem 2.8. If f is continuous on [a,b], then

V = lim SF.
|T|—0

That is, for M <V, there exists 6 > 0 so that |I'| <§ = Sp > M.

Proof. Let M <V and let p > 0 so that M + pu < V. Choose I' = {:Z“j}é“zo
so that
Sg > M + p.

By uniform continuity of f on [a,b], choose n > 0 so that
[z -yl <n = [f(x) = f(W)| < 3557
Now take a partition I' = {x;}", satisfying
'l <n and |I'| <min{Z; —Z;_1}.
We will show that Sp > M, which will complete the proof.
We have

Sr =Y |f(x:) = f(@i-1)] = S1 + s,
=1

where Y5 is the sum over 4 such that (z;_1,2;) N T # 0.

By construction, (x;—1, ;) can contain at most the point Z; from T. Thus
Y9 has at most k + 1 summands.
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Now, we may write
Srur = 21 + 3,
where Y3 is obtained from Y5 by replacing each term by

| (i) = f(@)] + 1 f(Z5) — f(@i- 1)’

By uniform continuity, each of these is less than 2(k ) and thus
Y3 < .
Therefore
Sr=21+%X2>% =S5 —23>Srup — 1> Sp—p> M,
as desired. O

Corollary 2.9. If f has a continuous derivative f' on [a,b], then

L/“|f e, P = J/ (@)} ds, N= L/“{f )} da.

Proof. Using the mean-value theorem,

m

Sr =Y 1f'(&) (@i — wia)

i=1
for some &; € (z;—1, ;). Thus, by the definition of the Riemann integral,

b
V = lim Spr= lim Z\f &l xi_l):/ |f'(z)| dz.

IT|—0 IT|—

Moreover, using 3(|y| +y) = yT,

=i+ 100~ @) =3] [ W@+ [ 1@ = [ e

A similar argument yields the formula for N. U

The notion of bounded variation makes sense in the setting of open inter-
vals, infinite intervals, half-open intervals, complex-valued functions, etc.

2.2. Rectifiable curves. A curve C in the plane is two parametric equa-
tions

x:¢(t), ?J:T/J(t)v te [a’ub]'
The graph of C is

{(z,y) :x=9(t), y=1(@), telab]}
For a partition I' = {¢;}*, of [a,b], we define
=2 _VIo(t) = o(ti1)P + (k) — vt

The length of C is defined by
L =L(C)=sup/(T).
r
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We call C rectifiable if L < oo.

Theorem 2.10. A curve C is rectifiable if and only if ¢ and 3 are of
bounded variation. Moreover,

V(g), V() < L <V(p) + V(¥).
Proof. We will use

2], [yl < Va2 4+y? <|z[+y| for z,y R
As

oIy =" V0o(t:) — ¢lti1)]> + [(t:) —(ti1)]® < L,
we have
S Tlo(t) — o(tic)| <L and > [p(t;) — ¢(tior)| < L.

This implies
V(¢),V(¥) < L.

Conversely,
UT) < D 1o(t:) = d(tima)| + D [ (t) — d(tioa)] < V(9) + V (),
and hence L < V() + V(). O

If ¢ is a bounded function that is not of bounded variation, the the curve
x =y = ¢(t) is not rectificable. However, the graph lies in a finite segment
of the line y = z.

Thus the length of the graph of a curve is not necessarily equal to the
length of the curve.

If C is given by y = f(x), then the theorem reduces to the statement that
C is rectifiable if and only if f is of bounded variation.

These ideas generalize to curves in R" as well.

2.3. The Riemann—Stieltjes Integral.

Definition 2.11. Let f,¢ : [a,b] = R. Let I' = {z;}, be a partition of
[a,b] and let {&}", satisfy

Ti—1 < 57, < xX; for each 1.

The quantity
Rr =Y f&)[b(x:) - d(xi1)]
i=1

is called a Riemann—Stieltjes sum for I'.

If

I = lim Ry (2.1)
|T'|—0
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exists and is finite, then [ is called the Riemann—Stieltjes integral of f
with respect to ¢ on [a,b], denoted

I—/f ) do(x /fd¢>

The condition (2.1) means that for any € > 0, there exists § > 0 so that

T|<d0 = | —Rp|<e

(for any choice of ;). Equivalently, the integral exists if and only if for any
€ > 0, there exists 6 > 0

IT,|I'| <6 = |Rr — Rp/| <e.

Here are some properties of the integral:

If ¢(x) = x, then the Riemann—Stieltjes integral is simply the Rie-
mann integral.
If f is continuous on [a,b] and ¢ is continuously differentiable on

[a, b], then
/abfcw:/abfddx.

Indeed, the essential fact is the mean value theorem:

D fE)o(xi) — dlaia)] =) f(&)o — Ti-1)

Suppose ¢ is a step function, that is, there exists partition {«a;}",
of [a,b] such that ¢ is constant on each (a;_1, ;). Define the left
and right limits at «; by

gbaﬁ:ngZ;Jrgb(:E) for i=0,...,m—1,
Doy = Emigb(:n) for i=1,...,m.

Define the jumps of ¢ by

d(ai+) —dlai—), i=1,...,m—1
di = § ¢(ao+) — Pp(ap), i
P(am) — dlam—), i=m.
For f € C([a,b]), one can check that

b m
[ rds =3 ftad,
a i=0

The most important cases occur when ¢ is monotone (or of bounded
variation).

Il
o

If f; fd¢ exists, then f and ¢ have no common points of disconti-
nuity.
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Proof. Suppose f, ¢ are both discontinuous at = € (a,b).

Suppose the discontinuity of ¢ is not removable.

Then there exists g9 > 0 so that for any § > 0 there exist Z1, Zo with
T—30<T <T<T2<Z+30 and |§(Z2)— d(Z1)| > eo.

Given § > 0, take a partition I' = {z;} of [a, b] so that |T'| < ¢, with
Ziy—1 = &1 and x;, = T2 for some 7.

Let 51 € [CL'i,l,.Zl'} for ¢ 75 io and gio ?é 520 S [$Z’O,1,l’i0]

Let Rr be the Riemann-Stieltjes sum using &; in [z;_1, ;] and &, €
[Zip—1, Zi, ], and define Ry similarly but using &/ S [Tig—1, %iy]. Then

|Rr — Rrv| > eol f(&is) — F(&,)]-
As f is discontinuous at Z, we can choose 51-0,52’-0 so that

| (&io) = f(&)I > n
for some p (independent of ¢). It follows that

RF—RF/7L>O as ‘F‘,|F/’—>O.

Similar arguments treat the case of a removable discontinuity at Z,
or with z € {a, b}. O

The following theorem follows from the definition of the integral and is
left as an exercise.

Theorem 2.12 (Linearity).
(i) If fabfd¢ exists, then for any c € R

/abcfd¢=/abfd<c¢>:c/abfd¢.

(In particular, the first two integrals exist.)
(i) If [0 f1de and [ fod¢ exist then

/ab(f1+fz)d¢=/abf1d¢+/abfzd¢~

(In particular, the integral exists.)
(iii) I [ fdr and [° fdy ewist, then

/abfd(¢>1+¢2)—/abfd¢1+/abfd¢2-

(In particular, the integral exists.)

We also have the following:
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Theorem 2.13 (Additivity). Iff fdo exists and ¢ € (a,b), then

/afd¢:/a fd¢+/c fdo.

(In particular, the latter two integrals exist.)

Proof. Denote a sum corresponding to a partition of [a,b] by Rr[a,b], and
similarly with other intervals.

Let € > 0. Choose 6 > 0 so that for any partitions I} and T}, of [a, b] with
[T, IT%| < d, we have

|Rr [a,b] — Ry [a,b]] <e. (2.2)
Now let I'1, I's be partitions of [a, ¢| and let I be a partition of [c, b]. Let
I =T, U, T)=T,UT.

Then
RF/l [a,b] = Rr, la, c] + Rr[c, b],

Ry la,b] = Rr,[a, c] + Rrc, bl.

Now assume |I'1|, |T's| < ¢ and choose IV with |[I| < §. Then |T'}|, |T| < ¢
and (2.2) implies

(2.3)

|Rr, [a, c] — Rr,[a,c]| < e.
This gives existence of fac f do¢. Existence of fcb f do follows similarly. More-

over, (2.3) implies
b c b
/qub:/ fd¢+/ fdo.

We turn to an integration by parts formula.

Theorem 2.14. If fabqub exists, then so does f;qbdf, and

b b
/ fdé = [F(B)e(b) — F(a)d(a)] — / odf.

Proof. Let I' = {x;}, be a partition of [a,b] and & € [x;—1,x;]. Then

Rp = Z f&)o(zi) — d(wi-1)]

=1

=" f&)da) — S f(€)dlai)
i=1 i=1
m m—1

=3 FEd@) — Y FlEr)el)
i =0

== 2 2@l (&ir1) = F(&)] + [ (Em)d(b) — F(&1)(a).
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Now add and subtract

P(a@)[f (&) — f(a)] + S(B)[f(b) — f(&m)]
on the right-hand side. This yields

Rp = =Tr + [f(0)9(b) — f(a)p(a)],

where
m—1

Tr =Y ¢(@)[f (1) = F(&)]+ @)]f(&) = f(@)] + e®)[f(B) = f(Em)]-
i=1

This is in fact a Riemann—Stieltjes sum for fab odf.

From this we deduce ff f d¢ exists if and only if f; ¢ df exists.

Moreover,

b b
/ fdé = [FB)6b) — f(a)dla)] — / odf,

as desired. O

Next, suppose f is bounded and ¢ is increasing on [a, b]. For a partition
I' = {z;}*, of [a,b], define
m; = inf f(l'),
r€[wi—1,74

M;= sup f(x),

2€[Ti-1,24]

Lr =) mi[¢(x;) = d(xi-1)],
=1

Ur = Z M;[op(zi) — d(xi-1)]-
i=1
Note that

Ly < Rr < Ur.

We call Lt and Ur the lower and upper Riemann—Stieltjes sums for
r.

Lemma 2.15. Let f be bounded and ¢ be increasing on [a,b).
(i) If I" is a refinement of I' (that is, I' C '), then

LF/ > LF and UF/ < UF.
(ii) For any partitions I'1 and T'y,

Lr, < Ur,.
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Proof. For (i), it is enough to check the case that IV = T'U{2’}. In this case,
if ' € (wj—1,2;) (where T' = {zx}), then

sup f(z) < M; and sup f(x) < M;,

[xi—1,2'] [ 2]
SO
[ sup qf(l")[qﬁ(fr')—¢($z‘—1)]+[8}1p]f(w)[qﬁ(xi)—(ﬁ(w')] < M;[p(xi) — p(wi-1)],

giving Upr < Up. A similar argument handles lower sums.
For (ii), note that 'y UT'; is a refinement of both I'; and T'e, and hence
Ly, < Lr,ur, < Uryur, < Ury,
as desired. O

The following result gives sufficient conditions for the existence of [ f d¢.

Theorem 2.16. Suppose f € C([a,b]) and ¢ € BV ([a,b]). Then f;quﬁ

exists, and

b
/ fdas] < WAy = fplsl] - Vigsa. ]

Proof. Tt suffices to consider the case that ¢ is increasing (and non-constant).
In this case,
Lr < Rr <Ur,
and hence it suffices to show

lim LF = lim UF.
T|—0 T'|—0

Let I' = {z;} be a partition of [a, b]. By uniform continuity of f, for any
€ > 0 there exists d > 0 such that

Thus
0<Up—Lr =Y _[M; — mi)(¢(xi) — $lwi1) <&,
and so
lim [Ur — Ly| = 0.
T'|—0
It remains to prove that limp_,oUr exists. If not, there would exist
g0 > 0 and sequences of partitions {I'y}, {I', } such that

|Fk‘,|r;€‘ —0 but UFk _UF;C >€0,
However, this means that for large enough k,
LFk — UI‘; > 0,

contradicting that Ly < Ups for any partitions.
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The desired bound, i.e.

b
/ quzs‘ < I ll6llsv

follows from an analogous bound on Rr and taking the limit. O

Combining this result with the ‘integration by parts’ formula, we see that
J fd¢ exists if either f or ¢ is continuous and the other is of bounded
variation.

We turn to the following mean value theorem for Riemann—Stieltjes inte-
grals.

Theorem 2.17 (Mean value theorem). Let f € C([a,b]) and ¢ be a bounded
increasing function on [a,b]. Then there exists £ € [a,b] so that
b
[ s =)o) - ola).
Proof. We have
(min f)[p(b) — ¢(a)] < Rr < (max f)[¢(b) — ¢(a)]

for any partition I'. Since f: f do¢ exists, we therefore have

2 fde
d(b) — ¢(a)

The result now follows from the intermediate value theorem. O

min f < < max f.

We can define Riemann—Stieltjes integrals on open intervals, half-open
intervals, infinite intervals, etc. For example, for (a,b) we would set

b b
/ fdé= lim / 1 do,
a a'—a, b'—b [,

where the right-hand side has integrals over [d/, ).

2.4. Further results. Suppose f is bounded and ¢ is increasing. Then we
always have

sup Lr < inf Ur.
r r
Question. If
sup Lr = inf Ur, (2.4)
T r

then does f; fd¢ exist? [This is the case, for example, for Riemann inte-
grals.|
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Answer. No. Let [a,b] = [-1,1] and define
{0 ze[-1,0
J(z) = {1 zel0,1],
{0 ze[-1,0
9(z) = {1 € (0,1].

As f and ¢ have a common discontinuity, f; f d¢ does not exist. Depending
on whether or not a partition I' straddles 0, we have Rr € {0,1} and in
particular does not have a limit.

However, Ur = 1, while Lt € {0,1}. Thus (2.4) holds.

We do have the following results, the proofs of which we leave as exercises.

Theorem 2.18. Let f be bounded and ¢ increasing on [a,b]. If f fdo
exists, then

b
lim Ly = hm Ur = supr = mf Ur = / fdo.
IT|—0 T — a

[Hint: given € > 0, take a sufficiently fine partition and refine it in two ways,
first picking points that almost attain the infimum, and second picking points
that almost attain the supremum. This will give you good approximations
to Ur and Ly that are close to the value of the integral.]

Theorem 2.19. Let f be bounded and ¢ increasing and continuous on [a, b].

Then
lim Lp = sup Ly, lim Up =inf Ur.
IT|—0 IT|—0 r

Moreover, if (2.4) holds, then fa fdo exists and

b
sup Lr = inf Ur = / fdo.
r r a
[Hint: the proof is similar in spirit to that of Theorem 2.8.]

2.5. Exercises.

FEzercise 2.1. Show that if f and g are of bounded variation on [a, b], then
so is the pointwise product fg. [Hint: First show f, g are bounded.]

FEzercise 2.2. Show that f(z) = zsin(1/z) (with f(0) := 0) is bounded and
continuous on [0, 1] but has infinite variation.

FEzercise 2.3. Show that if f is of bounded variation and continuous on [a, b],
then V(x), P(x), N(x) are also continuous.

FEzercise 2.4. Construct a continuous function on [0, 1] that is not BV on
any subinterval.
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Ezercise 2.5. (i) Suppose fi is a sequence of BV functions with variation
uniformly bounded on an interval [a,b]. Show that if f — f pointwise on
[a,b], then f is BV and V|[f] < limsup,_,. V[fx]. (i) Find an example of a
convergent sequence of BV functions whose limit is not BV.

Ezercise 2.6. Let ¢ = 0 for x < 0, ¢ = 1 for x > 0, and ¢(0) = % Show
that the Riemann—Stieltjes integral of f with respect to ¢ exists if and only
if f is continuous at x = 0.

Ezercise 2.7. Suppose f and g are Riemann—Stieltjes integrable with respect
to ¢ on [a,b]. Show that

/ab fgdczﬁ‘ < (/b f\pd¢);(/ab rgr%);

whenever p, q are positive real numbers such that }D+% = 1. [Hint. Combine
the fact that uv < %up + %vq for u,v > 0 and the fact that ff fgdo <1
whenever f,g > 0 and [° fPd¢ = [* g%dp = 1.

Ezercise 2.8. If A\ < A9 < -+ < A, is a finite sequence and s € R, write
>k ape”** as a Riemann-Stieltjes integral.

Ezercise 2.9. Show that f; fdo exists if and only if for any € > 0 there
exists § > 0 so that |Rp — Rpv| < & whenever |T|,|TV] < 4.

Ewercise 2.10. Show that if [” fidé and [° fodg exist, then ["[fi + foldo
exists and equals the sum of fab f1d¢ and fab fodo.

FEzercise 2.11. Suppose f is continuous and ¢ is BV on some interval [a, b].
(i) Show that ¢ (x) := [ f d¢ is BV on [a,b]. (ii) Show that for continuous

b b

g, we have fa gdiyp = fa gf do.

FEzercise 2.12. Suppose ¢ is BV on [a, b] and that f is bounded and continu-
ous except for finitely many jump discontinuities on [a, b]. If ¢ is continuous
at each discontinuity of f, show that ff f d¢ exists.

FEzercise 2.13. Suppose f is continuous on R with f — 0 as |z| — oo, and
that ¢ is BV on R. Show that [ f d¢ exists.

Ezercise 2.14. Let y1(t) = e, yo(t) = €, and ~3(t) = e2™*sn(1/t)  with
t € [0,27r]. Show that these three curves have the same range, that the
length of ~; is 27, that the length of 79 is 47, and that 3 is not rectifiable.

FEzercise 2.15. Let C be a curve with parametric equations x = ¢(t) and
y = 1(t) for t € [a,b]. Show that if ¢, 1) are continuously differentiable when
the length of the curve is

b
[ (s 0r+wor

NI

dt.
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3. LEBESGUE MEASURE AND OUTER MEASURE

Reference: Wheeden—Zygmund Chapter 3

3.1. Lebesgue outer measure; the Cantor set. Given a; < by (k =
1,...,n), we define the n-dimensional intervals

I={xzeR":aqp<axp<bp, k=1,...,n}

and their volumes
n

o(I) = [ [ 1ox — axl-

k=1

Definition 3.1. Any set £ C R™ may be covered by a countable collection
S of intervals Iy (that is, F C Ugly). For each such cover S, define

a(S) =) v(lp).
I,eS
The outer measure of a set £ C R" is defined by
|E|e = inf o (S) € [0, o0]
where the infimimum is taken over all such covers S.

Theorem 3.2. If I is an interval, then |I|. = v(I).

Proof. Since I is a cover of itself, we have
[ I]e <v(J).

Conversely, let S = {I} be a cover of I and let € > 0. Denote by I; and
interval containing [ in its interior, with

v(lg) < (1 +&)v(l).

Since I C Ug(I})° (where o denotes interior) and I is compact, it follows
that
I CUN I; forsome N.

Thus
N N
v(I) <Y o) < (L+2)> v(I) < (1+¢e)a(S).

k=1 k=1
This implies

v(I) < o(5),
and hence upon taking the infimum that
v(l) < |I]e.
This completes the proof. ([

One can check that the boundary of any interval has outer measure zero.

We record a few other properties of outer measure.
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Theorem 3.3. If £y C Ey then |E1le < |Es]e.

Proof. This follows from the fact that any cover of Es is a cover of Fj.

Theorem 3.4. If E = Ui E} is a countable union, then
|E’e S Z ’Ek|e-
k

Proof. Tt suffices to assume |Fy|. < oo for each k.
Let € > 0 and for each k choose intervals I Jk’ so that
Ex CUI} and ) o(If) < |Ey| +e27.
J

Then
E C Uj,kj]k,

’E’e S ZZU(IJ]C) S Z[’Ek‘e +€2_k] S Z ’Ek‘e +e.
k J k k

As € > 0 was arbitrary, the result follows.

and so

O

Remark 3.5. Any subset of a set with outer measure zero has outer measure
zero, and the countable union of sets of outer measure zero has outer measure
zero. In particular, since a point has outer measure zero, any countable

subset of R™ has outer measure zero.

On the other hand, there are uncountable subsets with outer measure zero.

Before presenting an example, we introduce the notion of a perfect set.

Definition 3.6. A set C' is perfect if C' is closed and every point in C'is a
limit point of C. That is, for any x € C, there exists {x;} C C\{x} so that

T — I.
We leave the following as an exercise.

Proposition 3.7. A perfect set is uncountable.

Ezample 3.1 (Cantor set). For a closed interval [a, b], define
F([a,b]) = [a, 2a + $b] U [3a + 2b,0].

Note {a,b} C F([a,b]) C [a,b]. We extend this to disjoint closed intervals

{I;}j— via
F(Ui_ 1)) = U1 F(1;).

Note that F'(I;) are also disjoint, and that F'(UI;) contains the endpoints

of all the I;.
Now define a sequence of sets {C}} via

Co = [07 1]’ Ck-‘rl = F(Ck) C Ck.
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By construction, Cy is the union of 2* closed disjoint intervals of length (%)k

The set
C:=()C
k=0

is called the Cantor set (or the Cantor é set). Note that C is a closed
subset of [0, 1] that contains the endpoints of all of the intervals in each Cj.

As C' is covered by the intervals in each C, we deduce
ICle <2%37%  for any k, sothat |Cl.=0.
Moreover, we claim C' is perfect (and hence uncountable). Indeed, if
x € C then z belongs to some interval in C} for each k. Thus, since the

length of these intervals approaches 0, z is the limit of the endpoints of these
intervals (which belong to C' by construction).

We will next construct a function related to the Cantor set that we will
use in later sections.

Ezample 3.2 (Cantor-Lebesgue function). Let Cj be as in the Cantor set
construction, and define

Dy, = [0, 1]\Ck.
Then Dy, consists of 2% — 1 intervals I Jk (ordered from left to right) removed
in the first k stages of the Cantor set construction.

Let fi be the continuous function on [0, 1] satisfying
o fr(0) = fi(1) =1,
o fu(z) =j27% on IJ’?, j=1,...,2F -1,
e f; is linear on each interval of Cj.

Each fj is increasing, with

Jes1=fr on I]'-“, j=1,...,2" 1.
Furthermore
|fie = frepa| < 27F

> i — fora

k
converges uniformly on [0, 1], and hence {fi} converges uniformly on [0, 1].

Let f = limg_,o fr. Then
o f(0)=f(1)=1,

e f is increasing and continuous on [0, 1],
e f is constant on every interval removed in the Cantor set construc-
tion.

Thus
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The function f is called the Cantor—Lebesgue function.

We next consider the question of approximating the outer measure of sets.

Theorem 3.8. Let E C R™. For any € > 0, there exists an open set G so
that

EcCcG and |Gle <|E|c+e.

In particular,

|Ele = inf{|Glc : EC G, G open}.
Proof. Let € > 0. Choose intervals I, with

o0 [o¢]
Ec|JI and ) () <|El+ 3e.
k=1 k=1

Let I} be an interval with I}, C (I})° and
v(I) < v(Iy) + 2~ (k+D),

The set
G =U(ly)°

is open, contains F, and satisfies
o0 o0
Gle < Y 0(I7) < D o) + 2] < |Ble + ¢,
k=1 k=1

which completes the proof. O

We next need the concept of a Gg set.

Definition 3.9. A set is called a Gy set if it is the countable intersection
of open sets.

Theorem 3.10. If E C R"”, then there exists a G5 set H such that

ECH and |E|.=|H]|.
Proof. By the previous theorem, for each k we may find G, D E so that

|Gile < |Ele + -
Now set
H =n;Z,Gy.
Then H is Gg, contains F, and for each k we have
|E’e < ‘H‘e < |Gk|e < ‘E|e + %

This implies |Ele = |H]e. O
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The notion of outer measure is not tied to our choice to define intervals
relative to the standard coordinate axes.

Suppose we rotate to new coordinates z’, and write I’ for an interval
with edges parallel to the new coordinate axes. The volume of an interval
is invariant under rotation.

Then we may define
Bl =inf ) o(l}),
with the infimum taken over all coverings of E by rotated intervals I’.

Theorem 3.11. We have |E|. = |E|, for all E C R".

Proof. First, given any I’ and € > 0, let I be an interval with I’ C (I7)°
and

() <o(I') +e.
We may write I{ as a countable union of nonoverlapping intervals I,. In
particular, for each N

N 00
v(Iy) <wv(Iy), whence ZU(I[) <o(l}) <o) +e.
=1 (=1

Now let £ C R™. Given € > 0, choose {I}2, so that
EcuUly and Y w(Iy) < |El + e
For each k, we may (by the argument above) choose {Ij, ¢’} so that
I, C Uely, and ZU(I,'M) < v(I) 4+ 2~ k+D),

l
Thus F C Uk,ZI]/cg and
Do vllhe) £ o) + g2 < |Ble +e,
k¢ k
which implies |E|, < |E|. +¢. As € was arbitrary, we have |E|, < |El.

A similar argument proves the reverse inequality. U

3.2. Lebesgue measurable sets. Recall the notations

A\B=ANB*, B°‘={x:x¢ B}.
Definition 3.12. A set £ C R" is (Lebesgue) measurable if for every
€ > 0, there exists an open set G such that

ECG and |G\E|.<e.

If E is measurable, its outer measure is called its (Lebesgue) measure
and is denoted by |F|. That is,

|E| = |E|. for measurable FE.
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Remark 3.13. Compare carefully with Theorem 3.8. It is always true that
there exists open G D E with
|Gle < |E|e +&.
However, when E C G, we have
G C EUG\E,

which only implies
Gle < |Ele + |G\Ele.
In particular, we cannot deduce |G\ FE|. < e.

Example 3.3. Every open set is measurable. Indeed, if E is open and we
take G = F, then |G\ E|. = |0, = 0.

Ezample 3.4. If |E|. = 0, then E is measurable. Indeed given ¢ > 0, by
Theorem 3.8 we may find G so that

|G| < e.

As G\E C G, we have
|G\E|. < ¢,
giving the claim.

Theorem 3.14. Let {E}} be a countable collection of measurable sets. Then
E .= UE} is measurable, with
Bl <) |Ex.

Proof. Let € > 0. For each k, let G be an open set so that
Ey C Gy and |Gp\Ekle < g2k,
Then G = UG}, is open and F C G.
Moreover,
G\E C | JIGk\Ex),
so that
IG\Ele < || Gr\Ekle <D |Gk — Eile <e.

Thus F is measurable. The subadditivity follows from the analogous prop-
erty for outer measure. ([

Corollary 3.15. An interval I is measurable, with |I| = v(I).

Proof. Write I as the union of its (open) interior and its boundary. As the
boundary has measure zero, the result follows. O
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Our next result is the following:
Theorem 3.16. Closed sets are measurable.
We need a few lemmas.

Lemma 3.17. If {Ik},]y:l 1$ a finite collection of nonoverlapping intervals,
then Ul is measurable and

(ULl =) |Lil.

Proof. Measurability follows from the previous theorem. The equality is left
as an exercise (cf. Theorem 3.2). O
Recall that the distance between two sets Fq and FEs is defined by

d(E1, Eq) = inf{\xl —x9| 11 € By, 19 € Eg}.
We then have the following lemma.
Lemma 3.18. If d(E1, E3) > 0 then |E1 U Esle = |E1le + | Eole.
Proof. 1t suffices to prove that

|Erle + | Eale < |E1 U Eale.

To this end, let € > 0 and choose intervals {Ij} so that

EyUE, | Iy and ) |Ii| < |EyU Bl +e.

We may assume that each [ has diameter less than d(E7, Es), for otherwise
we may divide each I}, into a finite number of subintervals with this property.

In particular, {I} splits into {I}} and {I?}, where {I,{,}k covers ;.
Then
|Eile + [Bale < Y1+ ) 1EI =) 1kl S 1B U Bale +e.
k k

As £ > 0 was arbitrary, this gives the desired inequality. U

We will use this along with the following fact (which is left as an exercise):
if £ and Ey are compact and disjoint, then d(E7, Eq) > 0.

Proof of Theorem 8.16. Suppose F' is a compact set.
Given € > 0, let G be an open set with
FCG and |G|<|Flc+e.
As G\ F is open, there exist nonoverlapping closed intervals Iy, so that
G\F = U}
(exercise).

Now since
G=FU |[Uls] D FU[UL i)
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for every N, and F' and Ufﬁvzll r are disjoint and compact, we deduce

N
612 |FuUn)| =1+ [ 5|
e k=1 e
and hence
N N
Il = I| <IG| — |Fle < e
k=1 k=1

for any N. We conclude
IG\Fle <) |Ix| <,

which implies that F' is measurable.
Finally, for arbitrary closed F' we may write F' as a countable union of
compact sets:

F=J[Fn{al < k)],
k

which implies the result. O
Next, we prove:
Theorem 3.19. If E is measurable then E° is measurable.
Proof. For each k, let Gy D E be open with |G,\E|. < 1.
Since G, is closed, it is measurable.
Now set H = Uy GY,, which is measurable and satisfies H C E°.
We may now write £ = H U Z, with Z = E°\H.
Then
7Z C E\GY, = Gi\E,
so that | Z|. < % for every k. In particular, |Z|. = 0 and hence is measurable.
Thus E¢ = HUZ is the union of measurable sets, and hence measurable. [J

‘We record some corollaries:

Theorem 3.20. The countable intersection of measurable sets is measur-

able.

Proof. Indeed, its complement is the countable union of measurable sets. [
Theorem 3.21. If Eq, Ey are measurable, then E1\FEs is measurable.
Proof. Indeed, E1\E2> = E1 N ES. O

The previous results show that the class of measurable subsets contains
the emptyset and is closed under (i) complements, (ii) countable unions, and
(iii) countable intersections. Such a class is called a o-algebra.

For example, note that if { E;} are measurable, then

limsup By, = Nj2; UpZ; By and  liminf By = U2, N2, By
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are both measurable.
If C1,Cqy are two collections of sets, we say C; is contained in Cs if
Sel = Sel.
If F is a family of o-algebras X, we define
Nyerd

to be the collection of all sets E that belong to every ¥ in F. Then NycrX
is a o-algebra that is contained in every X in F.

Given a collection C of sets in R™, consider the family F of all o-algebras
that contain C, and let
E =Nyerd.
Then £ is the smallest o-algebra containing C. [That is, any o-algebra
containing C contains &.|

The smallest o-algebra of subsets of R™ containing all of the open subsets
of R™ is called the Borel g-algebra of R™, denoted B. The sets in B are
called Borel subsets of R™ [they include open sets, closed sets, Gy sets...].

Theorem 3.22. FEvery Borel set is measurable.

Proof. The collection M of measurable subsets is a g-algebra that contains
the open sets. O

3.3. A nonmeasurable set. Not every set is measurable, as we now show.
We present a construction due to Vitali in the setting of R.

The construction relies on the axiom of choice: let {E, : « € A} be a
collection of nonempty disjoint sets, where A is an index set. There exists a
set consisting of exactly one element from each E, (a € A).

We also need the following lemma:

Lemma 3.23. Let E C R be measurable, with |E| > 0. Then the set
D={z—-—y:z,ycE}
contains an interval centered at 0.

Proof. Let € > 0 to be chosen below, and let G D E be an open set with
|G| < (1+¢)|E|.

Write G as a union of nonoverlapping intervals: G = Ul}.

Defining Fr, = E N I, we have that E = UpFE, and that each Fj is
measurable.

Furthermore, #(E, N E;) < 1 for j # k.

Now, we have

Gl =) 1| and |E] =" |Exl.
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As |G| < (1 4 ¢)|E|, we must have
| Ik,| < (14 ¢)|Ek,| for some ko.
Choose ¢ = % and denote Iy = I,, Ey = Ej,. Then we have
EyC Iy with |Eg| > 3|Io|.
Now, let d satisfy |d| < §|Io| and consider the set Ey + d. We claim that
EyN[Ey+d] #0.
Indeed, if Ey and [Ey + d] are disjoint, then
3ol < 2| Eo| = |Eo| + |[Eo + d]| = |Eo U [Eo + d]| < |Io| +d],

contradicting |d| < 3|Io|.

This implies that for any |d| < 3|Io|, there exist 2,y € Ey so that z—y = d.
Thus

Dy ={z—y:x,y € Eo}

contains an interval of length |$|Iy| centered at the origin, and hence the
same is true for D D Dy. O

Theorem 3.24. There exist nonmeasurable sets.

Proof. Define an equivalence relation on R as follows:
x~y ifand onlyif z—yeQ.
An equivalence class has the form
[] ={z+7r:r€Q}.
For any z,y we have either [z] = [y] or [z] N [y] = 0.
In particular, [0] = Q and all other classes are disjoint sets in R\Q.

The number of distinct classes is uncountable, as each [z] is countable but
Ukl=R

is uncountable.

Using the axiom of choice, let E be a set with exactly one element from
each equivalence class.

Any two points of E must differ by an irrational number, and thus
D={z—y:x,y€c E}
cannot contain an interval.
Using the lemma, either F is not measurable or |E| = 0.

Suppose |E| = 0. Then since E has an element from every class and
[] = {x +r:r € Q}, we have

UE+r=kl =R

reQ z€R
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Thus
Rl = | JIE+r| <> |IE+r| <) |EI=0,
reQ reQ reQ
giving a contradiction. We conclude that E' is not measurable. ([

Corollary 3.25. If A C R has |Ale > 0, then A contains a nonmeasurable
set.

Proof. Let E be the nonmeasurable set constructed above and set E, =
E +r. Then {E, },cq are disjoint sets with

UET:R.

reQ
Hence
A=JAnE] and [Al. <) |ANE|.
reQ r

If ANE, is measurable, then by the lemma above we must have |[ANE,| =0
(since the set of differences of elements in E, cannot contain an interval).

As |Ale > 0, it follows that there exists » € Q such that AN E, is not
measurable. g

3.4. Properties of Lebesgue measure. We turn to general properties of
Lebesgue measure.

The definition of measurable concerns approximation by open sets ‘from
without’. We next consider approximation by closed sets ‘from within’.

Lemma 3.26. A set E C R" is measurable if and only if for every e > 0,
there exists closed F' C E such that

|E\F). < e.

Proof. Exercise: use the fact that E is measurable if and only if £¢ is mea-
surable, along with the definition of measurable. (|

Theorem 3.27. If {Ey} is a countable collection of disjoint measurable

sets, then
U Er| = IExl.
k k

Proof. First consider the case that each Ej is bounded.
Let & > 0 and for each k, let F}, C Ej, be closed with |Ej\Fy| < e27F.
Then E;, = Fj, U [Ek\Fk], SO

|Ey| < |Fy| +e27".
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Since the Ej are bounded and disjoint, the Fj are compact and disjoint.
Thus, by Lemma 3.18, we have

m m
U Fy| = Z |Fy| for each m.
k=1 k=1
As
Uznlek C UznzlEk,
we deduce
m o
Z|Fk\ < U Ei| for any m.
k=1 k=1
Thus

oo
U &
k=1

We conclude

oo o0 oo
>N IR = (1B — 27 =) |Ex| - e
k=1 k=1 k=1

oo o
U Bx| =D Bk
k=1 k=1

As the reverse inequality is always true, the theorem holds in this case.
For the general case, let I; be an increasing sequence of intervals with
UI; = R"™. Define

Sl = Il, Sj = Ij\[j_l for ] > 2.

The sets ,
Ei = FEp N Sj
are bounded, disjoint, and measurable, with

EBy=JE] and |JE:=|JE].
J k k,j
By the case above,
UB|=|UE = 1B =Y IE) = B,
k k,j k,j k j k

as desired. O

We have the following corollaries:
Corollary 3.28. If {I} is a sequence of nonoverlapping intervals, then
VI | = Z 1|
Proof. As the Iy are disjoint, we have
(ULl 2 JURI =Y IR =D 1l
As the reverse inequality is always true, this completes the proof. O

Corollary 3.29. If E5 C Ey (both measurable) and |Es| < oo, then
[E1\Eo| = [Eq| — | Ex.
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Proof. Write Fh = Eo U El\EQ. O
We turn to the next property of Lebesgue measure.
Theorem 3.30. Let {Ey} be a sequence of measurable sets.
(i) If Ek /‘ E then limkﬁoo |Ek‘ = ’E‘
(ii) If Ex \¢ E and |Ey| < oo for some k, then limy_,~ |Ey| = |E|.
Proof. (i) Without loss of generality we may assume |Ej| < oo for all k.
We write

E= USk’ where Sl = El, Sk = Ek\Ekfl (k > 2).
k
Then

|E| = |USk| = |1 +; |E\Ei—1| = | B +kZ>2(|Ek| |Bpal) = lim |Egl,
proving (i).
(ii) Without loss of generality, |E1| < oo. Now write
Ey = EU [Up>1Ep\Ery1].

Then
|Er| = |El+ ) [|Ekl = [Bral]l = |E| + | E1| — lim |Eyl,
k—o0
E>1
which implies the desired result. O

Remark 3.31. We need to assume |Fj| < oo for some k. Indeed, suppose
Eyx = {|z| > k}. Then |E;| = +o0c for each k, but Ej, \ (.

We close this section with an analogous result about outer measure, which
we leave as an exercise.

Theorem 3.32. If E;, 7 E then limy_,o |Egle = | Ele-
Hint. Approximate by a measurable set and apply the previous theorem.

3.5. Characteriziations of measurability. Measurability was defined in
terms of approximation ‘from without’ by an open set. We also saw that
measurability is equivalent to a statement about approximation ‘from within’
by a closed set.

Here we give some other characterizations. Recall that a Gs set is a
countable intersection of open sets, and an F, set is a countable union of
closed sets.

Theorem 3.33.

(i) A set E is measurable if and only if E = H\Z, where H is Gs and
|Z] = 0.

(ii) A set E is measurable if and only if E = HU Z, where H is F, and
|Z| = 0.
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Proof. 1t suffices to prove the = directions.
Suppose E is measurable. For each k, let G, D E be an open set with
IGK\E| < 7.
Then H = NGy is G, with
ECH and |H\E|< ir]if |GL\E| = 0.

Thus (i) follows with Z = H\FE.

The result in (ii) follows either from taking complements in (i), or by
using approximation from within by closed sets. [The details are left as an
exercise. | O

The following characterization is also left as an exercise.

Theorem 3.34. Suppose |E|. < co. Then E is measurable if and only if
for any e > 0 we may write

E = [S U Nl]\NQ,
where S is a finite union of nonoverlapping intervals and |Ni|e,|Na2|e < €.

Finally, the following characterization becomes important when one wants
to introduce abstract measure theory. We rely on Theorem 3.10.

Theorem 3.35 (Carathéodory). A set E is measurable if and only if for
every A,

‘A‘e = ’A N E‘e + ’A\E‘o
Proof. = Suppose E is measurable and let A C R".

Let H D A be Gs with |A|. = |H|. Write H as the disjoint union of
measurable sets

H=[HNE|U[H\E], sothat |H|=|HNE|+|H\E|.
Then
|Ale = |HNE|+ |H\E| > |[ANE|. + |A\E|.
As the reverse inequality always holds, we deduce
|Ale = [AN Elc + |A\E]e.

<= Suppose E satisfies the ‘splitting’ condition above.

First consider the case |E|. < oco. Then choose a G§ set H D E with
|H| = |E|.. Then
H=EU[H\E]
and by hypothesis
|H| = [H N Ele+ [H\E|. = |Elc + [H\E]e.
Thus |[H\E|. = 0, so that writing
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(H G5 and H\E measure zero) shows that E is measurable.
If |E|. = oo, then we let By = {|z| < k} and Ey, = E'N By.
Each E} has finite outer measure, and E = Uy E}.

Let Hy D Ej be a Gs set with |Hy| = |Eg|e. By hypothesis,
|Hi| = [Hip N Ele + [HE\Ele = |Egle + [Hi\Ele.

Thus |Hj,\E| = 0.

Now H = UHj}, is measurable, H D F, and H\E = UH\E.

Thus |[H\E| = 0, and so (writing £ = H\[H\E]) we conclude that E is
measurable. O

Corollary 3.36. If E is a measurable subset of A, then
[Ale = [E] + [A\E.
Thus if |E| < oo, then |A\E|. = |Al|. — |E].
We conclude with a strengthening of Theorem 3.10.
Theorem 3.37. Let E C R™. There exists a Gs set H D E such that for

any measurable M,
|[ENM|.=|HnNM]|.
Proof. Suppose |E|. < oo and let H D E be a Gy set with |E|. = |H|.
If M is measurable, then by Carathéodory,
|Ele=|ENMl|.+ |E\M|. and |H|=|HNM|+ |H\M|.
Because all of these terms are finite and E\M C H\M, we deduce
|[ENM|.>|HnNM)|.

However, the reverse inequality is true because £ C H. Thus |[EN M|, =
|H N M|.

If |E|e = oo, then write E' = UE), with |Eg|. < oo and Ey, N E.
By the case above, for each k there is a Gy set Uy D Ej such that
|Ex N Mle = |Uy N M| for measurable M.
Set Hj, = N>°_, Uy, which is measurable and satisfies Hy, ' H := UHj,.
Note that E, C Hp C Uy, so that
|Ex N M|, = |Hp N M| for measurable M.
Now, since £y, " E and Hp / H, we have
ExnM ENM and HynNM S HNM.
Thus, by Theorem 3.32, we have
|[ENM|.=|HNM| for measurable M.
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The set H is not G, (it is “G,s”). To obtain a Gy set, write
H=H\Z, H, Gs, |Z]=0.
Then £ C H;, and since
HNM=HNM)U(ZnM),
we have
|[HHNM|=|HNM|=|ENM|.
This completes the proof. O
3.6. Lipschitz transformations of R". This proofs in this section were
skipped in lecture.

Recall the following:

Definition 3.38. A function 7" : R™ — R" is called Lipschitz if there exists
¢ > 0 so that

for all z,y e R", |T(x)—T(y)| <clx—yl
Lipschitz functions are automatically continuous.
Theorem 3.39. Lipschitz maps preserve measurability.

Proof. (i) We first show that Lipschitz maps preserve the class of F, sets.
Indeed, since any closed set is a countable union of compact sets, and con-
tinuous functions preserve compact sets, we have that 7" maps closed sets
into Fy sets (cf. T(UEy) = UT(E%)). The result follows.

(ii) We next show that Lipschitz maps preseve measure zero sets. Indeed,
the image of a set with diameter d has diameter at most cd. Thus, there
exists ¢ > 0 so that

T(D)] <[]
for any interval I (note T'(I) is F, and hence measurable). Now cover any
measure zero set by intervals of arbitrarily small measure to conclude the
result.

Now if E is measurable, we may write £ = H U Z where H is F, and
|Z] = 0. Then measurability of T'(E) follows from (i) and (i7). O

Suppose T : R” — R" is a linear transformation (and hence represented
by an n X n matrix, also denoted T').

A parallelepiped
P = {Ztkek, tr € [0, 1]}

k=1

satisfies |P| = v(P) (exercise), and hence |P| is the absolute value of the
n X n determinant of the matrix whose rows are {ej,...,e,}.



REAL ANALYSIS 51

Theorem 3.40. A linear transformation T : R™ — R™ satisfies
I T(E)| = |det T - |E]
for any measurable set E.

Proof. 1t is a fact of linear algebra that |T'(I)| = |detT| - |I| when [ is an
interval.

Now for £ C R™ and € > 0, choose intervals {I;} covering F with
D Mkl < [Ble+e.
Then
IT(E)le <Y ITU)| = |det T| Y L] < 6(|E]e + ¢)-
It follows that
T(B)|e < |detT] - |E].. (3.1)

We wish to show that |T(E)| = |detT| - |E|. It suffices to consider
|det T'| > 0.

Now choose open G D E with |G\E| < e.

Write G as a union of nonoverlapping intervals {I;}. Since the T'(I;) are
non-overlapping parallelipipeds, we have

T(@)] = |TIx)| = |[det T| Y |Ix| = | det T| - |G.
Using £ C G and (3.1),
[detT| - |E| < [detT|- |G| = [T(G)| < |T(E)| + |T(G\E)| < |T(E)| + de,
and hence
[det 7] - |B| < |T(E)|.
Combining with (3.1), we conclude |T'(E)| = |detT| - |E|. O
3.7. Exercises.
Ezercise 3.1. Show that the boundary of an interval has outer measure zero.

Exercise 3.2. Show that any perfect subset of R is uncountable.

Exercise 3.3. Show that £ C R" is measurable if and if for every € > 0 there
exists a closed set F' C E so that |[E\F|. < e.

Ezercise 3.4. Show that if F; and E9 are compact and disjoint then d(Fy, E) >
0.

Ezercise 3.5. Show that if Ey ' F then limg_,o |Egle = |Ele-

FEzercise 3.6. Construct a subset of [0, 1] similar to the Cantor set, obtained
by removing from each remaining interval a subinterval of relative length
6 € (0,1). Show that the resulting set is perfect and has measure zero.
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Ezercise 3.7. (i) If b is an integer larger than one and 0 < x < 1, show that
there exist integer coefficients 0 < ¢ < b such that z = 220:1 cxb™ k. Show
that this expansion is unique unless z = cb™*, in which case there are two
expansions. (ii) When b = 3 in part (i), we call the expansion the ternary
expansion. Show that the Cantor set consists of all  such that x has a
ternary expansion in which ¢ € {0,2} for all z.

FEzercise 3.8. Construct a subset of [0,1] similar to the Cantor set, where
at the kth stage each interval removed has length 63~ for some § € (0,1).
Show that the resulting set is perfect, has measure 1 — §, and contains no
intervals.

Exercise 3.9. Prove that outer measure is translation invariant.

Exercise 3.10. Let {E;} be disjoint measurable sets and let A be any set.
Show that ’A N UjEj‘e = Zj ’A N Ej’e-

Ezxercise 3.11. Find disjoint sets {E;} so that |U Ej|. < > |Ej|e with strict
inequality.

Ezercise 3.12. Show that there exist sets Ej with Ey \( F, |Eg|e < 0o, and
lim |Eg|e > |E|e (with strict inequality).

FEzercise 3.13. Suppose |E|. < oo. Show that E is measurable if and only if
for any € > 0 we may write

FE = [S U Nl]\NQ,
where S is a finite union of nonoverlapping intervals and | Ny, |[Na|. < €.

FEzercise 3.14. Show that if > |Ex|. < oo then limsup,,_,., Ej has measure
Zero.

Ezercise 3.15. Let Z C R have measure zero. Show that {x? : x € Z} also
has measure zero.

4. LEBESGUE MEASURABLE FUNCTIONS

Reference: Wheeden—Zygmund Chapter 4

4.1. Properties of measurable functions, I.

Definition 4.1. Let f : E — R U {+£oo} for some £ C R". We call f
Lebesgue measurable (on F) if

VaceR {x€E: f(x)>a} ismeasurable.

We abbreviate the set appearing above by {f > a}. Note that
E={f=-c0c}U [U{f > —k}],
k=1

so that if f is measurable then measurability of E is equivalent to measur-
ability of {f = —o0}.
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We shall always assume {f = —oo} is measurable, so that we only consider
measurable functions defined on measurable sets.

Ezxample 4.1. If E = R™ and f is continuous, note that {f > a} is always
open. Thus continuous functions are measurable.

If E is Borel and {f > a} is Borel for every a, then f is measurable. In
fact, we call f Borel measurable.

Theorem 4.2. Let f : E — RU {xo0} for some measurable E. Then f
is measurable if and only if any of the following statements hold for every
a€R:

(i) {f > a} is measurable.
(ii) {f < a} is measurable.
(i) {f < a} is measurable.

Proof. To see that measurability implies (i), write
o0

{fzay={f>a-3}
k=1

To see (i) implies (ii), note {f < a} = {f > a}*.
To see (ii) implies (iii), write
{f<a} =M {f<a+i}
Finally, to see (iii) implies measurability, write {f > a} = {f < a}. O
The following corollary is left as an exercise:

Corollary 4.3. If f is measurable then {f > —oo}, {f < oo}, {f = oo},
{a < f <b}, {f =a}, and so on, are all measurable.

Definition 4.4. For f: E — R and § C R, we define
A8 ={zcE: f(x)e S}
We call this set the inverse image of S under f.

Theorem 4.5. A function f is measurable if and only if f~*(G) is measur-
able for every open G C R.
Proof. <: If G = (a,00), then f~1(G) = {f > a}. Thus if f~1(G) is
measurable for every open GG, we have that f is measurable.
= : Suppose f is measurable and G C R is open. Then G can be

written in the form G = Ug(ag, b).

As f~Y((ag,br)) = {ar < f < by}, we have that f~*((ag,bs)) is measur-
able for each k. Thus, using f~1(G) = Upf~1((ax, b)), we conclude that
f~YG) is measurable. O
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Remark 4.6. The proof above also shows that f is Borel measurable if and
only if f~!(G) is Borel measurable for every open G C R.

We also have the following characterization:

Theorem 4.7. Let A C R be dense. Then f is measurable if {f > a} is
measurable for all a € A.

Proof. Let a € R and choose {a;} C A so that ax \, a. Then
{f >a} =Up{f > ar},

and hence the theorem follows. O

Definition 4.8. A property P(z) (for z € E) is said to hold almost ev-
erywhere in F if the set

{z € E: P(x) does not hold}

has measure zero. We write P(x) holds a.e.
For example, if we say f =0 a.e. in E then we mean

o+ flw) 0} =0,

Theorem 4.9. If f is measurable and g = f a.e., then g is measurable and
{g > a}[ = [{f > a}|

for all a € R.

Proof. Let Z = {f # g}. Note that |Z| = 0 and

{g>a}UZ={f>a}UZ

Thus {g > a} U Z is measurable, and hence (since Z has measure zero) we
have {g > a} is measurable. This shows that ¢ is measurable, as well as the
desired equality of measures. ([

Using the previous theorem, we can extend the definition of measurable
functions to include those functions that are only defined almost everywhere.

The composition of measurable functions need not be measurable (see the
homework). However, we do have the following:

Theorem 4.10. Let ¢ : R — R be continuous and let f be finite a.e. on
E CR™ If f is measurable, then so is ¢ o f.

Proof. Let us assume that f is finite everywhere in F.
By Theorem 4.5, it is enough to show that
{z:9(f(2)) € G}
is measurable for every open G C R.

To see this, note that
{z:0(f(2) €GY=[po f]HG) = [0 1 (G).
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As ¢ is continuous, we have ¢~!(G) is open. As f is measurable, we therefore
have f~! o ¢~ 1(G) is measurable. The result follows. O

Ezample 4.2. For a measurable function f, we have that |f|, |f|P (p > 0),
el and so on, are measurable. In fact, this does not require f to be finite
a.e.

One also has that f* = max{f,0} and f~ = —min{f,0} are measurable
whenever f is.

Theorem 4.11. If f and g are measurable, then {f > g} is measurable.
Proof. Write Q = {ry}, so that

{f>g} =Ue{f >r> g} = U [{f >} 0 {g <}
This implies the result. O

The following is left as an exercise:

Theorem 4.12. If f is measurable and A € R, then f 4+ XA and \f are
measurable.

We next consider sums of measurable functions, say f + ¢. Sums are not
well-defined if they are of the form oo + (—o0) or (—o0) + 0o, so we will
consider the simpler case that f + g is well-defined everywhere.

Theorem 4.13. If f and g are measurable and f + g is well-defined every-
where, then f + g is measurable.

Proof. By the previous resut, a — g is measurable for any a € R. As
the result follows from Theorem 4.11. (]

The previous two theorems show us that the set of measurable functions
on a set F forms a vector space.

In the following, we adopt the convention 0 - +o0o = 00 -0 = 0.

Theorem 4.14. If f and g are measurable, then so is fg. If g # 0 a.e.,
then f/g is measurable.

Proof. Recall that F? is measurable whenever F is. Thus, if f and g are
measurable and finite, so is

fg=1lf +9° = (f - 9)%
We leave the case of infinite f, g as an exercise, along with the second part
of the theorem. (]

We turn to the question of taking limit operations.

Theorem 4.15. If {fi.} is a sequence of measurable functions, then supy, fx
and infy fr are measurable.
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Proof. Tt suffices to prove the result for supy, fx, as infy fr = — sup(—fx)-

To prove measurability of sup,, fi, we note
{Sllip fi > a} = Up{fx > a},

which completes the proof. O

Theorem 4.16. If { fi.} is a sequence of measurable functions, then lim sup fy
and liminf fi are measurable.

In particular, if lim f;. exists a.e., then it is measurable.

Proof. This follows from the previous result, since

limsup fi = infsup fi, liminf fi = sup inf f;.
k—»o0 J k>j j k2J

This completes the proof. ([l

Notation. Given a set F, we define the characteristic function of F
(also called the indicator function of E) by

(2) 1 ifxek,

€Tr) =

X 0 ifz¢E.

We remark that F is measurable if and only if x g is.

A simple function is a function of the form

N
@) =3 arx, (@)
k=1

for some distinct {a} and disjoint {Fy}.
A simple function is measurable if and only if each Ej is. [Ezercise.]
Simple functions play an important role in the theory of measurable func-
tions.
Theorem 4.17.

(i) Every function can be written as the limit of a sequence of simple
functions.
(ii) Every nonnegative function can be written as the increasing limit of
a sequence of simple functions.
(iii)) A measurable function can be written as the limit of a sequence of
measurable simple functions.

Proof. We begin with (ii) and suppose f > 0.

Let k € N. We partition [0, k] as follows:
k2k

0,8 = JIG — 127, 5274,

J=1
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het =1 k k k
fula) = {;k ;Eg ;[157—1)2 G27R), =1, k2K,
Fach fi is a simple function, defined where f is.
By passing from fj to fr11, each subinterval
[(G—1)27", 527"
is divided in half. It follows that fi < fri1.
Note also that fr — f. Indeed, wherever f is finite, we have
0< f—fr<27F,
and fr — oo wherever f = oco. This proves (ii).
To prove (i), we write f = f* — f~ and apply part (ii) to f* and f~.
Finally for (iii) we may assume f > 0 (otherwise, write f = f* — f7).

In this case, the sets {f € [(j — 1)27%,j27%)} and {f > k} are all mea-
surable, and the result follows. O

Remark 4.18. If f is bounded, the simple functions converge to f uniformly
(exercise).

4.2. Semicontinuous functions.

Definition 4.19. Let f : E — R and let 9 € E be a limit point of E. The
function f is upper semicontinuous at x if

limsup f(z) < f(xo).

T—T0o

We write this as f is usc at xg.
Similarly, f is lower semicontinuous at xy (written lsc) if
liminf f(z) > f(xo).
Tr—xQ
Remark 4.20. If f(z() = oo, then f is automatically usc at xg. Similarly,
if f(zg) = —oo, then f is automatically Isc at xg.

Remark 4.21. For finite f, we have that f is usc at zg if for any M > f(x¢),
there exists § > 0 so that

Vee B |z—x0| <d = f(x) <M.
Similarly f is Isc at xq if for any m < f(xg) there exists § > 0 so that
Vee E |z—xo| <6 = f(z)>m.
Equivalently, f is Isc at xg if and only if — f is usc at zg.

Remark 4.22. One can check that f is continuous at xg if and only if
|f(zo)| < oo and f is both usc and Isc at xg.

Remark 4.23. Usc functions ‘jump up’; Isc functions ‘jump down’.
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Example 4.3. The following functions are usc on R but not continuous at
zo € R:
Ul = X[zg,00)> U2 = X{z}-

We call a function usc relative to FE if it is usc at every limit point of
E that belongs to E (similarly for Isc or continuous).

We have the following characterizations. Recall that A C F is relatively
open (in E) if A = ENG for some open G C R (and similarly for relatively
closed).

Theorem 4.24.
(i) A function f is usc relative to E if and only if for all a € R,
{reE: f(zx)>a}
1s relatively closed; this is equivalent to
{reE: f(z) <a}

being relatively open.
(ii) A function f is lsc relative to E if and only if for all a € R,

{zeE: f(z) <a}
1s relatively closed; this is equivalent to
{reFE: f(z)>a}
being relatively open.
Proof. Tt is enough to prove (i).

= : Suppose f is usc relative to E and let a € R. Suppose x¢ € E is a
limit point of
E,:={x € E: f(x)>a}.
Then there exist {x}} C E, so that z; — xo.
As f is usc at xg, we have

f(xo) > limsup f(xx) > a.
k—o0

Thus zg € E,, so that F, is relatively closed.
<=: Suppose xg € F is a limit point of E and f is not usc at zg.
Then f(zg) < oo and there exist M € R and zy € E with
lzp — ol < g, f(mo) <M < f(xy).

Thus
{z e B: f(x) > M}
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is not relatively closed in E: it does not contain all of its limit points that
belong to F. O

We have the following corollary, which we leave as an exercise:

Corollary 4.25. A finite function f is continuous relative to E if and only
if all sets of the form

{reFE: f(x)>a} and {x € FE: f(zx)<a}
are relatively closed (where a € R). This is equivalent to all sets of the form
{zeE: f(x)>a} and {x € FE: f(zr)<a}
being relatively open.
We also have the following:

Corollary 4.26. If E is measurable and f : E — R is usc relative to E,
then f is measurable. (Similarly if f is lsc or continuous relative to E ).

Proof. Suppose f is usc relative to E. Since
E,={xc€FE: f(zx)>a}

is relatively closed for a € R, we may write £, = E N F for some closed
F. Thus FE, is measurable for all @ € R, and so the result follows from
Theorem 4.2. O

Remark 4.27. The previous results imply that if f is usc on R”, then f is
Borel measurable (similarly for lsc or continuous). Indeed, we can write

{f>a} =2 {fza+ )
and hence {f > a} is F, (and in particular Borel) for every a € R.

4.3. Properties of measurable functions, II. The following result is
known as Egorov’s theorem:

Theorem 4.28 (Egorov’s theorem). Let E C R™ be of finite measure.

Suppose {fi} are measurable functions on E that converge a.e. to a finite
limit f.

Then for any € > 0, there exists a closed set F C E such that
|[E\F| <e and fr— f wuniformly on F.

Roughly speaking: a convergent sequence of measurable functions actu-
ally converges uniformly, up to sets of arbitrarily small measure.

To see the necessity of the hypotheses, we consider the following example.

Ezample 4.4. Let E = R" and fi, = X{|z|<k}- Then fr, — 1 on R", but {fi.}
does not converge uniformly outside of any bounded set.
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We begin with a lemma.

Lemma 4.29. Let E,{f}, f be as in Theorem 4.28.
For any e > 0 andn > 0, there exists a closed set E C F and K > 0 so that
|[E\F|<n and |f(x)— fe(zx)|<e for ze€F and k>K.
Proof. Let e,n > 0.
For each m, define
Ep ={z:|f(z) — fu(z)| <e forall k>m}.
That is,
Em = () {z:|f(z) = fulo)| <<},

k>m
so that E,, is measurable.

By construction, E,, C Ep11.
Moreover, since fi — f a.e. in E and f is finite, it follows that
E, " (E\Z), where |Z|=0.
Thus (by Theorem 3.30) we have
(Bl — |E\Z] = |E].

Because |E| < oo, this implies |E\E,,| — 0.
Now choose K so that |[E\Eg| < 1n, and let F C Ex be closed and satisfy

Ex\F| < n.
It follows that |E\F| < n and |f — fi| < e in F for any k > K.
This completes the proof. ([l

We can now prove Egorov’s theorem.
Proof of Egorov’s theorem. Let € > 0.
Using Lemma 4.29, choose closed sets F,, C E and integers K,, . such that
|[E\Fyn| <e2™™ and |f—fil<Z in F, for k>K,..

The set

(o)
F = ﬂ F,,
m=1
is closed and satisfies
[ee] [ee]
E\F = E\[ Fm] = |J B\En.
m=1 m=1

Thus
|E\F| <) |E\Fy| <e.
m
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It remains to show that the {fi} converge uniformly on F.
To this end, let § > 0. Then choose mg > 6~ L.

As F C F,,, we have
f = ful < 75 <0
on F, provided k > K, .. This completes the proof. O

We next turn to a result known as Lusin’s theorem.

Definition 4.30. A function f defined on a measurable set E has property
C on FE if for any € > 0, there exists closed F' C E so that

(i) [E\F| <e,
(ii) f is continuous relative to F.

Theorem 4.31 (Lusin’s theorem). Let f be a finite function on a mea-
surable set E. Then f is measurable if and only if f has property C on
E.

Roughly speaking: measurable functions are actually continuous, up to
sets of arbitrarily small measure.

We begin with a lemma.

Lemma 4.32. A simple measurable function (on E) has property C (on

Proof. Let
N
[ = ZaiXEi
i=1

be a simple measurable function on E.
Given € > 0, choose closed F; C E; with
[E;\Fj| < -
The set
N
F=JF
j=1
is closed, with

[E\F| = [UE\UE;| < [UE\F| <e
(where we use UE;\ U F; C UE;\ F}).

We claim that f is continuous relative to F. To see this, suppose that
{zr} C F satisfies z, — x9 € F. We need to prove that f(zx) — f(x0).

Suppose xg belongs to the set F;. We claim that there exists kg so that
for all k& > kg, we have x;, € Fj.

If not, then we may find a subsequence {zy,} C F\Fj.
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By the pigeonhole principle, we may pass to a further subsequence and
assume {zy, } C Fj for some j’ # j.

However, we must have x, — x (since the original sequence converges).
This gives a contradiction, because then (since Fj’ is closed) we have
X0 EFjﬁFj/ = 0.

Now since f is constant on F; and zj € F}; for k > ko, we can conclude
that f(zr) — f(xo), as desired. This completes the proof. O

We can now prove Lusin’s theorem.

Proof of Lusin’s theorem.

= : Suppose f is measurable. By Theorem 4.17, there exist measurable
simple functions fr — f.

By Lemma 4.32, each fi has property C on E. Thus given € > 0, we may

find closed sets F}, C E so that
|E\Fy| < 2= and f, is continuous relative to  Fj.
We now break into two cases. First, suppose |F| < co.
Then by Egorov’s theorem, there exists closed Fy C E so that
|E\Fy| < 3¢ and fy — f uniformly on Fp.
Now let
F = Fyn (NkFy).

Then F' is a closed set, each fi is continuous on F, and {f;} converges

uniformly to f on F. Thus (by Theorem 1.8), we have that f is continuous
on F'. Moreover,

)
|E\F| < [E\Fo| + ) [E\Fy| <e,
k=1

and hence (since € was arbitrary) we conclude that f has property C on E.

Next, suppose |E| = +oo. Then we write

E=U2E,, Ey=En{k—1<|z|<k}.
By the above, we may select closed Fj, C Ej so that
|Ep\F)| <e27% and f is continuous on Fj.
Writing
F = Uy Fy,

we have
|E\F| < B \Fy| <,
k
with f continuous relative to F'. In order to conclude that f has property
C on E, we need to verify that F' is closed.
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To this end, suppose {x,} C F satisfies x,, — xg9. Then there exists N
and k so that
k—1l<xzp,<k forall n>N,

that is, the tail of the sequence belongs to Fj U Fj_; for some k. As this is
a closed set, it follows that zg € F U F,_1 C F, as was needed to show.

<= Suppose [ has property C on FE.
For each k, let F, C E be a closed set such that
|[E\Fy| <+ and f is continuouson Fy.
Set H = U2 Fy. Then
HCFE and Z=FE\H satisfies |Z|=0.
Now, for any a € R, we have
{zeE:flx)>a={x e H: f(x)>alU{zeZ: f(zx)>a}
=Up{zr € Fy: f(z) >atU{z € Z: f(z) > a}.

As {z € Z : f(x) > a} has measure zero, measurability of f follows from
that of {z € Fj, : f(z) > a}.

Indeed, f is continuous on F}, and hence measurability of the latter set
follows from Corollary 4.26. This completes the proof. ([

4.4. Convergence in measure.

Definition 4.33. Let {f;} and f be measurable functions on a set E that
are finite a.e. The sequence {f;} converges in measure on F to f if

Ve >0 kli_}rn Hz € E:|f(x) — fr(x)] >} = 0.
We write fi, =™ f.

Convergence in measure appears in many places throughout analysis. We
focus on a few fundamental results.

First, we see that pointwise convergence implies convergence in measure
(on sets of finite measure).

Theorem 4.34. Let f, fi be measurable and finite a.e. on E. If fr, — f
a.e. on E and |E| < oo, then f, =™ f on E.

Proof. Let €, > 0 and choose F' and K as in Lemma 4.29, that is,
|[E\F| <n and |f(z)— fi(z)|<e for z€F and k>K.
Then for £ > K, we have
{z € E:[f(z) - fu(z)| > e} C E\F.
Thus
limsup [{z € E: f(z) — fr(z)| > e} <n.

k—o0

As n was arbitrary, the result follows. O
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Note that the conclusion may fail if |E| = oo. Indeed, we can once again
take the example fr = X{|z|<k}-

Convergence in measure does not imply pointwise convergence a.e., even
on sets of finite measure.

Ezample 4.5. Let {I} be a sequence of subintervals of [0, 1] such that

e each point of [0, 1] belongs to infinitely many Iy,

For example, we could take I; = [0, 1], the next two intervals to be the
two halves of [0,1], the next four intervals to be the four quarters of [0, 1],
and so on.

If fr = xr, then fi =™ 0. However, {fi(x)} does not converge for any
x € [0,1].

In the direction of a converse to Theorem 4.34, we have the following.

Theorem 4.35. If fi, =™ f on E, then there exists a subsequence fi; such
that fx; — f a.e. in E.

Proof. By definition, for each j there exists k; so that
B2k = {If = il > 1} <277,
Without loss of generality, we may take k; to be increasing in j.
Define the sets
By ={If = fo,l > 1} and Hy = U2, B,
By construction,
|Ej| <277, andso |Hp| <2 ™.
Furthermore,
|f = fi;| <5 on E\E;.
It follows that for j > m, we have
|f_fkj|§% on E\Hm7
and so fx; — f pointwise on E\H,, for any m.

Since |H,,| — 0 as m — oo, we deduce that f — f a.e. in E, as desired. [
Our last result is a Cauchy criterion for convergence in measure.

Theorem 4.36. A sequence {fr} converges in measure on E if and only if

Ve >0 m |[{z € E:|fi(z)— fi(x)] > e} =0.

li
kf—o0
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Proof. = : This direction follows from the fact that

{Ifx = fel > e} C{Ifi — fI > 3y U{lfe — f1 > 3¢},
which is perhaps best proved in the contrapositive.

<=: Choose an increasing sequence IV; so that k,/ > N; implies

{1 = fil > 277} < 277,
Then
’fN]'+1 - fNJ‘ S 2_]
except for on a set E; with |E;| < 277.

We set H; = UJ2, Ej, so that

|fN (@) = [, (2)] <277 for j>i and = ¢ H;.
Thus
Z[fNj+1 - fNj]

J

converges uniformly outside H;, and hence {fy,} converges uniformly out-
side H; for each 1.

As
|H;| < ZQ—j — 9—itl
J=i
we have |H;| — 0. Thus {fy,} converges a.e. on E to some f.

In fact, we have that |f — fn,| S 277 outside of each H; , which implies
that {fn,} converges in measure to f.

We wish to upgrade this to f =™ f on E. Thus we let € > 0 and note
that

{fs — fI > e} < {Ifs — f,| > 3e3 U LI fn, — £ > e}

for any N;. Now let > 0 and (using the Cauchy criterion) select NN, large
enough that

{Ifx — fn,| > 3} < 3n for all large k.
Using fn; =™ f, we may also choose N; large enough that
H{If; = I > 3¢} < 3.

Thus
H|fk — fl >¢e} <n forall k large enough.

As n was arbitrary, this completes the proof. O
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4.5. Exercises.

Ezercise 4.1. Suppose {f,} is a sequence of measurable functions. Show
that the set of points at which f,, converge is measurable.

Ezxercise 4.2. Show that a simple function f taking distinct values on disjoint
sets F1, ... F, is measurable if and only if each F; is measurable.

Ezercise 4.3. Let f be measurable on R™ and T a nonsingular linear trans-
formation of R™. Show that x — f(T'x) is measurable.

Ezercise 4.4. Show that the image of a measurable set under a continuous
transformation need not be measurable.

Ezercise 4.5. Show by example that ¢ o f need not be measurable, even if
¢ and f are measurable.

Ezercise 4.6. Let D C R be a dense set. Suppose f is a real-valued function
on R so that {z : f(x) > a} is measurable for every a € D. Show that f is
measurable.

Ezercise 4.7. Let f be measurable and B a Borel set. Show that f~1(B) is
measurable.

Ezercise 4.8. Show that if f is continuous at almost every point of an interval
[a,b], then f is measurable on [a, b].

Ezercise 4.9. Show that if f; and g converge in measure on a set E of finite
measure, then the product converges in measure as well.

FEzercise 4.10. Suppose f = f(z,y) is defined on the square [0, 1] x [0, 1] and
is continuous in each variable separately. Show that f is measurable.

Ezercise 4.11. Show that for any measurable function f on an interval [a, b]
and any ¢ > 0, there exists a continuous function g on [a, b] so that |{f #

gt <e.

Ezercise 4.12. Suppose fr —™ f and g —™ g on a set E with |E| < oo,
then frgr —" fg. If additionally g — g on E and g # 0 a.e. then
fr/gr =™ f/g. [Here =™ denotes convergence in measure.|

FEzercise 4.13. Construct a family {f;} of measurable functions on [0,1]
(where t € [0, 1]) such that for every z, we have lim;_,o fi(x) = 0, but such
that there exists § > 0 so that |{z : fy(z) > 1}| > ¢ for all ¢.

5. THE LEBESGUE INTEGRAL

Reference: Wheeden—Zygmund Chapter 5
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5.1. The integral of a nonnegative function. Let f : £ — R be a
nonnegative function on some measurable £ C R". We define the graph of
f over E to be

L(f,E) ={(z, f(z)) eR" :z € B, f(z) < oc}.
We define the region under f over E to be

R(f.E)={(z,y) eR"™ 1z € B, 0<y< fa)}
where we understand the last interval to be [0, 00) if f(x) = oc.

If R(f, E) is measurable (as a subset of R"™!) its measure |R(f, E)|n+1
is called the Lebesgue integral of f over E. We write

R(f, B) i1 = /E F(z) dz.

/Efda; or /Ef

If one wishes to emphasize the dimensions, one can write

/Em/f(xl’”'7$n)d$1---da¢n.

So far, we have only defined the integral for nonnegative functions. Exis-
tence of the integral is equivalent to measurability of R(f, E) and does not
require |R(f, E)|n+1 to be finite.

We may also write

Here is a fundamental result about integrability.

Theorem 5.1. Let f be nonnegative on a measurable set E. Then fEf
exists if and only if f is measurable.

In fact, we will only show the <= direction, saving the other direction
for later.

We will need several lemmas.
Lemma 5.2. Let E C R" and a € [0,00]. Set
Eo={(z,y):xz € E, yecl0ad}
(where we understand y € [0,a) if a = 00).
If E C R™ is measurable, then E, C R™" is measurable, with
|Ealni1 = alEln.

Here and below we take 0 - 0o = 0.
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Proof. First suppose a < oo. If E is any kind of interval, then the result is
immediate.

If E' is an open set, then we may write it as a disjoint union of partly open
intervals, say 2 = UI},. It follows that F, = Ul} , and hence is measurable.
In fact, the I , are disjoint and so

|Ea| = Z i,al = Za|lk| = alE|.

Next suppose E is G5, with £ = N2, G, and |E| < oo.

We may assume |G1| < oo and Gy N\, F (e.g. by writing £ = G1 N (G1 N
Ga)N---).

By Theorem 3.30, we have |G| — |E| as k — co. Moreover, by the above,
we have G}, , is measurable with |Gy, 4| = a|Gyl.

As G o \ Eq, we deduce that E, is measurable, with
|Eq| = lim |G ol = a lim |G| = a|E|.

k—o0 ’ k—00
Now if E is any measurable set with |E| < oo, then by Theorem 3.33 we
may write £ = H\Z where |Z| =0 and H is Gs (and of finite measure).
Now E, = H,\Z,, and hence E, is measurable, with

|Ea| = |Hq| = a|H| = a| E|
using the above. This completes the proof of @ € R and |E| < oo.

If a € R and |E| = oo, then the result follows from writing E as a disjoint
countable union of finite measure sets.

Finally, if a = oo, then choose {ax} C R with a; * co. The result then
follows from the fact that E,, " Fu. O

Lemma 5.3. If f is a nonnegative measurable function on a measurable set

E, then |T'(f,E)| = 0.
Proof. Let € > 0 and set
Ey={ke< f<(k+1)e}, k=0,1,2,....
The sets E}, are disjoint and measurable, with
UrEr = {f < oo}.
Thus

L(f, E) = UL'(f, E).
By Lemma 5.2, we have

ID(f, Ex)| < €| Eg|,

and thus
D, E)le <D ID(f, Ex) <) || <elE.
When |E| < oo, this implies |I'(f, E)|e = 0, giving the result.
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If |E| = oo, we write E as the countable union of disjoint sets of finite
measure; then I'(f, F) is the countable union of measure zero sets and hence
ID(f, E)| = 0. U

Proof of <= direction of Theorem 5.1. Let f be nonnegative and measur-
able on F.

Let fr be simple measurable functions such that fx  f (cf. Theo-
rem 4.17).

We then have
R(fkaE) UF(f7E) / R(f7E)7

and since I'(f, F') has measure zero, it is enough to prove that each R(fy, E)
is measurable.

Fix k and suppose that

k= ZanEj-

R(fi, B) = UjL1 By,
Thus R(fk, F) is measurable (by Lemma 5.2), and the proof is complete. [J

Then

We record the following corollary:

Corollary 5.4. If f is a nonnegative measurable simple function of the form

N
f = Z anEj7
j=1
then

N
/ =Y ajlEjl.
UE; j=1

Proof. First, note that R(f, E) = ijzlEjﬂj. As the E; are measurable and
disjoint, so are Ej ;. Thus by definition of the integral and Lemma 5.2,

N N
/ F=Y1Eja,l =D ajlEjl.
UE; j=1 j=1

This completes the proof. O

5.2. Properties of the integral. We turn to the following theorem.

Theorem 5.5.
(i) If f and g are measurable and 0 < g < f on E, then

Jo< /1

In particular, fE inf f < fE I
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(ii) If f is nonnegative and measurable on E and fEf is finite, then f
18 finite a.e. on E.
(iii) Let Ey C E2 be measurable. If f is nonnegative and measurable on

Es, then
IREY R
Eq E>

Proof. Ttems (i) and (iii) follow from the observations that
R(Q,E) CR(fvE) and R(faEl) CR(faEQ)

We turn to (ii). Without loss of generality, assume |E| > 0. Suppose f = oo
on some E; C E with |Eq| > 0.

Then, using (i) and (iii), we have

/f>/ f>/ a=al|E| forall a€R,
E1 El

which contradicts that [, f is finite. O
We turn to the following convergence result.

Theorem 5.6 (Monotone convergence theorem for nonnegative functions).
Suppose {fr} is a sequence of nonnegative measurable functions such that

fe /' f on E. Then
éh%éf

Proof. First observe that f is measurable (by Theorem 4.15).

Next, since R(fx, E) UTL'(f, E) / R(f, F) and I'(f, E) has measure zero,
we deduce

|R(fr, E)| = |R(f, B,
which gives the result. ([

We next show countable additivity of the integral.

Theorem 5.7. Suppose f is nonnegative and measurable on E, where E is
the countable union of disjoint measurable sets E;. Then

Af:;éf

Proof. The sets R(f, E;) are disjoint and measurable, and
R(f, E) = U;R(f, Ej).
Thus the result follows from Theorem 3.27. O
We now record some theorems that are corollaries of these results.

The first provides an alternate definition of the integral that is similar in
spirit to the definition of the Riemann integral.
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Theorem 5.8. Let f be nonnegative and measurable on E. Then
=su inf f(x)||E; ],
1 p(;[ﬂjﬂ niE)
where the supremum is taken over all decompositions E = U;E; into the

disjoint union of finitely many measurable sets.

Proof. Consider such a decomposition F = U;V:lEj. Let

N
9= Za’jXEja aj 1= inf f(y)
= yEEj

Then by the results above,

jilaﬂEj\:/Egs/Ef.

As this decomposition was arbitrary, we deduce
sup Y lint AIE; < [ 7
; Ej E

We turn to the reverse inequality.
As in the proof of Theorem 4.17, for each k > 1 we introduce

(B} :j=0,...,k2"}
by Ef = {f >k} and
EBf ={(j-12"<f<j2*} for j>1.

Then the simple functions

fie = > _linf flxpr
j J

satisfy 0 < fi " f. Thus, by the monotone convergence theorem

St 185 = [ 5 [ £
—~ EF E E
7 J
Thus
suplinf f]|E}| Z/f,
i j E
which completes the proof. O

This result immediately implies the following:
Theorem 5.9. If f is nonnegative on E and |E| =0, then [, f =0.

We turn to an improvement of Theorem 5.5(i).
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Theorem 5.10. If f and g are measurable on E and 0 < g < f a.e. on E,

then [pg < [p f
In particular, if f, g are nonnegative and measurable on E and f = g a.e.,

then fEf: ng.

Proof. We can write E = AUZ, where A and Z are disjoint and Z = {g > f}
has measure zero.

Thus,
Af=Af+éf=Af2Ag:ég

The result follows. O

In light of the previous result, we may consider integrals |’ | for measur-
able functions f that are only defined a.e. on F.

Theorem 5.11. Let f be nonnegative and measurable on E. Then
/f:O <~ f=0 a.e in FE.
E

Proof. <=: If f =0 a.e. in E, then by Theorem 5.10 we have

[1=[o-0

= : Suppose f > 0 is measurable on F and fE f =0. Then for any o > 0,

al{wGE:f(fE)>a}|=/{f> }as/{f> }fg/Efzo.

It follows that
{f >a} =0 forall «a>0.
Writing
{f >0} =Up{f >3},
the result follows. O

The proof of the theorem above also establishes the following useful in-
equality:

Corollary 5.12 (Tchebyshev’s Inequality). Let f be nonnegative and mea-
surable on E. For any a > 0,

{eeE: f(z)>a) <1 /f

We turn to linearity properties of the integral.

Theorem 5.13 (Linearity, I). If f > 0 is measurable on E and ¢ > 0, then

[or-fs
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Proof. If f is a simple function, then so is ¢f and hence the result follows
from the formula for integrating simple functions.

For general f, choose simple measurable 0 < fi, 7 f. Then cfy 7 cf and

/cleim ck:hmc/fk:c/f,
E k—)ooE k—o0 E E

giving the result. O

Theorem 5.14 (Linearity, II). If f and g are nonnegative and measurable

on E then
Ju+a=[r+]a

N M
= Z ;X A; and g= Z ijBj
i=1 j=1
are simple functions. Then

F+9="> (ai+b)xans
i’j

Proof. Suppose

is simple and

/ f+9)= ZazZ!A n B !+Z” Z’A "7l
_zi:a,-yAiHijbj’Bj' ‘/E”/Eg

Now for general f,g, we choose simple measurable fi ~ f and g " g.
Then fi + g are simple and fx + gr " f + g. Thus

foren=w fpsm=w([ns )= fn

giving the result.

Corollary 5.15. Suppose f and g are measurable on E with 0 < f < g. If

J5 f is finite, then
/E(g—f)Z/Eg—/Ef-

/Ef+/E(g—f)=/Eg,

and hence (since [, f is finite) the result follows from subtraction. O

Proof. We have

We turn to the following additivity result:
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Theorem 5.16. Suppose fi, are nonnegative and measurable on E. Then
[rn=> [ s
E k=1 =17F

Proof. The functions Fy = Ek:l fx are nonnegative, measurable, and in-
crease to > oy fr. Thus (by the monotone convergence theorem and finite

linearity)
/E fk:—hm/FN—hmZ/fk— /fk,

k=1
which implies the result. O

Monotone convergence allows us to interchange integration and passage
to a limit.

We consider other situations in which we can make this interchange. Mere
convergence of fi to f is not enough:

Ezxample 5.1. Let E = [0,1]. For k > 1 let fj be defined as follows:

For x € [0, %] the graph of fj, consists of the isosceles triangle with height
k and base [0, 1].

[0,
For z € [+,1], fx(z) = 0.
Then f; — 0 on [0, 1], but

[ ae=tet=1

for all k. Thus lim fol I # fo lim f.

In the positive direction, we have the following convergence results.

Theorem 5.17 (Fatou’s lemma). If { fx} is a sequence of nonnegative func-

tions on E, then
/ liminf f; < liminf/ [
E k—oo k—o0 E

Proof. The integral on the left exists, since the integrand is nonnegative and
measurable.

Define the functions
gk = ;erlg In-
Then g /' liminf fj and 0 < g < fk.
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Therefore by Theorem 5.6 (monotone convergence) and Theorem 5.10, we

have
/ Tk —>/ liminf f, and / 9k < / Tk
E E E E
so that
/ liminf f = lim/ gr < lim inf/ S,
E E E
which gives the result. 0

Corollary 5.18. Suppose fi are nonnegative and measurable on E and
fr — f a.e. on E. IffEfk < M for all k, then fEf <M.

Proof. By Fatou’s lemma,

/ liminf f;, < liminf/ fre <M.

E E

Since liminf f, = f a.e. in E, the result follows. O
Finally, we have the following:

Theorem 5.19 (Lebesgue dominated convergence theorem for nonnegative
functions).

Let {fi.} be nonnegative measurable functions on E such that fr, — [ a.e.
on E.

Suppose there exists a measurable function ¢ such that fr < ¢ a.e. for all
k and [ ¢ is finite. Then
[ 1
E E
Proof. By Fatou’s lemma,
/f:/liminffkgliminf/ fr-
E E E

Thus, it suffices to prove
/leimsup/ fr-
E E

For this, we apply Fatou’s lemma to the nonnegative function ¢ — fj, which
yields

/ liminf(¢ — fi) < liminf/ (¢ — fr)-
E E
As fr — f a.e., the integrand on the left equals ¢ — f a.e. Thus, by linearity,

[ tminto— )= [ o= [ 1
On the other hand,

fimint [ (6~ )= [ o timswp [ fi
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—/Efs —nmsup/Efk,

giving the desired inequality. ]

Hence

5.3. The integral of arbitrary measurable functions. To define the
integral of an arbitrary measurable function f on a set E, we break into
positive and negative parts:

f=r=r,
each of which are measurable. We then define
L= [ [
E E E

provided at least one of these integrals is finite. In this case we say that the
integral [, f exists.

This agrees with the original definition in the case that f = fT.

As before, we can make sense of this definition even when f is only defined
a.e.

If [ p [ exists and is finite, we say that f is Lebesgue integrable, or
simply integrable. We write f € L(E), or f € L'(E). That is,

-7 v

We have the following triangle inequality: if | p [ exists, then

f‘ L [ =[urvr=[ s

Theorem 5.20. Let f be measurable on E. Then f is integrable if and only
if | f] is.
Proof. By the triangle inequality, |f| € L(F) = f € L(E).

Suppose f € L(FE). Then
+ _ —
L=

is finite, and hence (since at least one is finite by definition) both are finite.

o L= [+ [

is finite, i.e. |f| € L(E) O

Many properties of f g [ follow from results already established for non-
negative f.

Theorem 5.21. If f € L(E) then f is finite a.e. in E.
Proof. This follows from the fact that |f| € L(E) (and Theorem 5.5(ii)). O
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Theorem 5.22.

(i) If both [ f and [, g exist and f < g a.e. in E, then [, f < [pg.
In particular, if f = g a.e. in E then fEf = ng.
(ii) If [, [ exists and Ey C Eq is measurable, then [, [ exists.

Proof. For (i), note that f < g implies 0 < f* < gt and 0 < g~ < f~.

Thus
[ o ma [5= ],

The desired inequality follows from subtraction of these two inequalities.

For (ii), we note that at least one of | Ey fTor | 1, /7 is finite. Thus at
least one of [, f* or [, f is finite, and hence [, f exists. O

Theorem 5.23. If fEf exists and E = UpEy, is a disjoint union of mea-

surable sets, then
f= f
L=z,

Proof. Each | g, | exists by the previous theorem.

We write f = f* — f~ and use countable additivity for nonnegative

functions to write
N AR o) s
L=/ -],

At least one of these sums is finite, and hence

LS [r)-Eh

which completes the proof. [l
We leave the following as exercises:

Theorem 5.24. If |[E| =0 or if f =0 a.e. in E, then [, f =

Theorem 5.25. If [, f is defined, then so is [p(—f), and

Jen==1

Theorem 5.26. If [, [ exists and c € R, then [;(cf) exists, and

fen=c 1

Theorem 5.27. If f,g € L(E), then f + g € L(F), and

/(f+g /f+/
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Remark 5.28. It is not difficult to prove f+ g € L(F) [it follows from the
triangle inequality]. To prove the equality, one must consider all the possible
sign combinations of f,g.

Remark 5.29. The preceding show that for fr € L(F) and aj € R,

N N
/E;akfk:;ak/th

Corollary 5.30. Let f,¢ be measurable on E, with f > ¢ and ¢ € L(E).

[r-a=[1[e

Proof. Note that [, f exists, since f~ < ¢~ (and hence [, f~ is finite).
Since f — ¢ > 0, we have that [,(f — ¢) exists.
If f € L(E), then the result follows by linearity.
If f ¢ L(E), then we must have [, f = +oc.

As ¢ € L(FE), we also have f — ¢ ¢ L(E), and hence (since f — ¢ > 0)
Jg f — ¢ = +00. Thus the result follows in this case as well. O

It is an interesting question to ask when fg € L(F). For now, we give
only a simple sufficient condition.

Theorem 5.31. Let f € L(E) and let g be a measurable function on g such
that |g| < M < oo a.e. on E. Then fg € L(E).

Proof. Since |fg| < M|f| a.e., it follows that

Lisal< [ wigi=ar [ 15

Thus fg € L(E). O
Similarly, we have the following;:

Corollary 5.32. If f € L(E) and f > 0 and there exist a, 3 € R so that
a<g<pae inkE, then

a/EfS/Efgéﬁ/Ef-

As before, we will be interested in conditions that guarantee

/Efk—>/Ef

in the case that fr — f. In particular, we can prove extensions of the results
we established in the case of nonnegative functions.

Theorem 5.33 (Monotone convergence theorem). Let {fi} be a sequence
of measurable functions on E.
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(i) If f /' f a.e. on E and there exists ¢ € L(E) so that fr, > ¢ on E

for all k, then fEfk — fEf.
(ii) If fx ¢ f a.e. on E and there exists ¢ € L(E) so that f, < ¢ on E

for all k, then [, fr — [5 f-
Proof. We focus on (i), leaving (ii) as an exercise.
We may assume that fr  f everywhere on E. Thus
0<fk—0 " f—¢

on F, so that by the monotone convergence theorem for nonnegative func-

tions we have
[=0= [ (-0
E E

Thus, using Corollary 5.30, we deduce

[ fo=[1-] 0

and since ¢ € L(FE) the result follows. O

Theorem 5.34 (Uniform convergence theorem). Let fi, € L(E) and let
fr — f uniformly on E, where |E| < co. Then f € L(FE) and

Ln%éf

Proof. As
< 1kl + 1 = fil
and fr — f uniformly on E, we have
1< 1ful +1

on E for all large k, and hence (since |E| < o0) f € L(E). Thus

Af—éﬁ LU—&)SLV—&I

< [B|-sup | f() — ful@)| = 0 as k- ox,
zel
which completes the proof. [l

Theorem 5.35 (Fatou’s lemma). Let {fy} be a sequence of measurable
functions on E. If there exists ¢ € L(E) such that fr > ¢ on E for all k,

then
/ liminf f; < liminf/ fr-
E k—o0 k—o0 E
Proof. Apply Fatou’s lemma for nonnegative functions to the sequence fi —

¢. O
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Corollary 5.36. Let {fr} be a sequence of measurable functions on E. If
there exists ¢ € L(E) such that fr, < ¢ on E for all k, then

/ limsup fr > lim Sup/ fr-
E koo k—oco JE
Proof. Use Fatou’s lemma and the fact that liminf(—f;) = —limsup fr. O

Theorem 5.37 (Lebesgue’s dominated convergence theorem). Let { fi.} be a
sequence of measurable functions on E such that f, — f a.e. on E. If there
exists ¢ € L(E) such that |fi| < ¢ a.e. in E for all k, then [, fx = [5 [

Proof. We have —¢ < fi. < ¢, and hence
0< fe+o<2¢

a.e. in E. As 2¢ € L(F), we have by the dominated convergence theorem
for nonnegative functions that

/Efk+¢%/Ef+¢-

The result follows. ([

Corollary 5.38 (Bounded convergence theorem). Let {fx} be a sequence
of measurable functions such that fr — f a.e. in E. If |[E| < oo and
|fel <M < o0 a.e. inE, then [, fr, = [ f.

Proof. Take ¢ = M and use the dominated convergence theorem. O

Remark 5.39. To extend the notion of Lebesgue integrability to complex-
valued functions, we define

/f1+if2=/f1+i/f2-

5.4. Riemann—Stieltjes and Lebesgue integrals. This section will be
mostly skipped in lecture.

Let f be a measurable function on a set £. We define the distribution
function of f by

w(a) =wrpla) =z € E: f(x) > a}|
Here a € R. This is a decreasing function of «. Note that if we assume that
f is finite a.e. and |E| < oo, then
lim {f > a} ={f =00}, sothat lim w(a)=0
a—r00

a— 00

and
lim w(a) = |E| < .

a—r—00
Thus w is bounded, and furthermore w is of bounded variation with variation
equal to |E|.
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In what follows, we let f denote a measurable function, finite a.e. on F,
with |E| < co. We write

w(a) =wrp(a), {f>a},
and so on.
Lemma 5.40. If a < 3 then |[{a < f < 8}| = w(a) — w(p).
Proof. This follows from the facts that
{r>pyc{f>a}l, {la<f<pi={f>a}\{f>5},
and |[{f > B}| < oo (cf. Corollary 3.29). O
We denote

w(a+) = gi\%w(a +¢) and w(a—)= ii\rﬁ)u)(@ —€).

Lemma 5.41. The following hold:

o w(a+) =w(a) (i.e. wis continuous from the right)

e wla—)=|{f zajl
Proof. For e, \, 0, we get that

{f>a+e,} A{f>a} and {f>a—ce,} \{f>a}.
As these sets have finite measure, we deduce
wla+e,) »wla) and w(a—e,) — {f > a}l

This completes the proof. O

Thus w is a decreasing function that is continuous from the right. It may
have jumps w(a—) — w(a) or intervals of constancy. We can characterize
these situations as follows.

Corollary 5.42. The following hold:

(a) w(a—) —w(a) = {f = a}|. Thus w is continuous at o if and only

if {f = a}[=0.
(b) w is constant on («, B) if and only if
{a < f<B}=0.
Proof. (a) follows from the fact that
{f=a=Kf>a}l+ {f =0}l
For (b), we use
w(a) —w(B=) = [{f >a}[ = {f =B} = {a < f < B}

This is zero if and only if w is constant on [a, 8); using right continuity, this
is equivalent to being constant on («, 3). ([

We now relate the Lebesgue integral to a Riemann—Stieltjes integral:
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Theorem 5.43. Ifa < f <b on E (with a,b,|E| finite), then

/Ef = —/abadw(a).

Proof. The integral on the left exists because a, b, |E| < co. The integral on
the right exists because o — « is continuous and w € BV.
Now partition [a, b] as {aj}g?zo and set
Ej={aj1 < f<aj}.
Note FE is the disjoint union of the E;. Thus

k
/Efzj;/Ejf,

k

k
Zalejlg/fg/ ;| Ejl.
=1 E J

=1

and

However, we have just seen that
|Ej = w(aj-1) = wlay),
and hence the sums above are Rieman-Stieltjes sums for — fab adw(ar). Send-

ing the mesh of the partition to zero now yields the claim. ([

More generally, if f is measurable on F, then

/{a<f§b} f== /ab adw(a).

In fact, if either [}, f or [* adw(c) are finite, then

/Ef: —/O;adw(a).

We leave the proof as an exercise.
We call two measurable functions f,g on a set E equidistributed (or
equimeasurable) if
wrp(a) =wgp(a) forall o

We may think of f,g as being rearrangements of eachother. We have the
following;:

Corollary 5.44. If f,g are equimeasurable on E and f € L(FE), then g €

L(E) with
= e

Remark 5.45. We now see the difference between Riemann and Lebesgue
integration: The Riemann integral is defined using partitioning of the do-
main, while the Lebesgue integral uses partitioning of the range.
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In fact, let f > 0 be measurable and finite a.e. on E, with |E| < co. Let
I' = {a;} be a partition of [0, 00) by a countable number of points o;; — oo.

Let By = {ax < f < agy1} and Z = {f = +oo}. Then
1Z| =00 and |E|=)_|El
Define
S = Zak|Ek| and SF = Zak+1|Ek"
We have the following:

Theorem 5.46. Let f > 0 be measurable and finite a.e. on E, with |E| <
o0. Then

/f: lim sp = lim Sr.
E |T'|—0 T'|—0

Proof. Without loss of generality, suppose f is finite everywhere.

Given T, let ¢r and ¢r be defined by ¢r = oy in Fy and ¢r = ag4q in
FE;. Then
0 S ¢>F S f S ¢F7

SF:/EQZ)FS/]CS/ET/)F:SP

If sp < 00, then we have
0<Sp—sp=Y (aps1 —ax)| Byl < [T]|E],
so that Sp < oo and Sy — sp — 0 as |I'| — oo. This implies the result when

Jf <.

If [f = oo then we deduce Sp = oo (and sp = o), which gives the
result. g

and so

Next, we turn to the following result:

Theorem 5.47. Ifa < f <b on E (with |E| < c0) and ¢ is continuous on

[a,b], then .
[ otn=- / Bla)deo().

Proof. First note that ¢(f) € L(E), and that (as ¢ is continuous) the
Rieman—Stieltjes integral exists.

We write f = lim f, where a < fi < b is simple;. In particular, we form
partitions {a? } of [a, b] with mesh size tending to zero and set

fr(z) = a? for a?,l < f(z) < af.

Then ¢(fr) = ¢(f) € E. As the ¢(f) are uniformly bounded and |E| < oo,
the bounded convergence theorem implies

/E B(k) - /E )
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However, using that ¢(fy) is simple, we use Lemma 5.40 to deduce
[ otn = - 3 ol fale) =)
giving ,
[ o)== [ ot@) dta).

This completes the proof. O
We also have the following extension: if ¢(f) € L(E) then

Jon=-/ Z b(a) dw,

which we leave as an exercise.

In fact if ¢ is continuous and nonnegative then we can write

[otn=- [ o) dsta)

without restricting either side to be finite.

In particular, for any continuous ¢,

L1otni== [ 1ot et

We apply this to the special class of functions ¢(a) = |a|P, 0 < p < oo,

which gives
/ = / afPdu(a).
E —00

For nonnegative f, this yields

[Efp _ —/OOO aPdeo(a), (5.1)

/E\f|p——/0000¢pdw|f(04)-

For ¢ > 0, we may denote by Lg(FE) the class of measurable functions f
such that ¢(f) € L(E). When ¢(«) = |a|P (p € (0,00)), we write Ly(E) =
LP(E). In particular, L(E) = LY(E).

To complete this section, we continue from (5.1) above. First observe the
LP version of Tchebyshev’s inequality (which we leave as an exercise):

w(a)galp/ P, a>0.
{f>a}

Thus for f € LP we have a’w(«) bounded. In fact:

and in general

Lemma 5.48. For f € LP, a’w(a) — 0 as o — o0.
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Proof. This will follow from Tchebyshev’s inequality, once we prove

lim f=0.

a—0o0 {f>a}

To this end, let ap — oo and define f = f when f > g, fr = 0 elsewhere.

Then
L
{f>au} E

Since f is finite a.e., we have fr — 0 a.e.

Moreover, 0 < fr < |f|P € L(E). Thus, the result follows from the
dominated convergence theorem. O

Finally, we have the following:

Theorem 5.49. If f > 0 and f € LP, then

/Efp :p/ooo P lw(a) da.

Proof. First let 0 < a < b < oo. Using the integration by parts formula
for Riemann—Stieltjes integrals and the fact that o — o is continuously
differentiable on [a, b], we find

b b
—/ af dw(a) = —bPw(b) + a’w(a) —|—p/ P Lw(a) da.

By the lemma above, bPw(b) — 0 as b — oo, while a’w(a) — 0 follows from
|E| < co. Thus the result follows from sending a — 0 and b — oo. U

5.5. Riemann and Lebesgue integrals. This section will be mostly skipped
in lecture.

In the following, we denote the Riemann integral by (R) [ and the Lebesgue
integral by |.

Theorem 5.50. If f is bounded and Riemann integrable on [a,b], then

f e L(la,b)) and b b
/afz(R)/a I3

Proof. Let Ty, be a sequence of partitions of [a,b] with mesh size tending to
ZEro.

For each k, define two simple functions ¢, uj on [a,b) by taking the lower
and upper bounds on each semi-open interval [z¥, z¥ ] (where I';, = {z}}).

The functions g, uy are bounded and measurable on [a,b). If Ly, Uy
denote the lower/upper Riemann sums of f, then

b b
/Ek:Lk, / uk:Uk.
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We have 0, < f < —K, and if we let 'y 1 be a refinement of I'y, then ¢
is increasing and uy decreasing.

Writing ¢ = lim ¢;, and u = lim ug, we have £, u measurable and ¢ < f < .

By the bounded convergence theorem,

b b
Lk—>/€ and Uk—>/u

However, because f is Riemann integrable we have

b
Lk,Uk — (R)/ f

Thus

o[ /ﬁ—/
Using that u ¢>0,wededucel = f =wua.e. in [a,b]. Thus f is measurable
and [ f=(R) [ f. O

Compare this with the Dirichlet function f(z) = 1 for z € Q N [0, 1]
and f(x) = 0 otherwise. This function is bounded, Lebesgue integrable
(J f=0), but not Riemann integrable.

Here is a useful result:
Theorem 5.51. Let f > 0 on [a,b] and Riemann integrable (hence bounded)

on each interval [a + €,b], where ¢ > 0. If

b
I :=lim(R) f

e—0 ate
exists and is finite, then f € Lla,b] and f;f =1
Proof. The result follows from the monotone convergence theorem, since

ff+€f:(R)fa+€ff0reachs>0 0

On the other hand, one can construct a function f whose improper Rie-
mann integral exists and is finite, but which is not integrable. (The function
must not be nonnegative...)

We conclude with the following characterization of Riemann integrable
functions:

Theorem 5.52. A bounded function is Riemann integrable on [a,b] if and
only if it is continuous a.e. on |a,b].

Proof. = : Let f be bounded and Riemann integrable.

Let T'y, 0, ui be as above. Let Z be the set of measure zero outside of
which ¢ = f = u.

We will show that if = is not a partitioning point of any I'y and = ¢ Z,
then f is continuous at .
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If not, then there exists e > 0 depending on x (but not k) so that ug(x) —
¢(k) > e. This implies u(x) — ¢(x) > &, which contradicts x ¢ Z.

<=: Let f be bounded and continuous a.e. on [a,b]. Let {I',} be a
sequence of partitions with mesh size tending to zero and define ¢, u, L}, U},
as above.

Because I'; ;| need not be a refinement of I'}, ¢ and uj may not be
monotone. However, by continuity, ¢, — f and u) — f a.e.

Thus, by the bounded convergence theorem,

b b b
/ 14 ,/ uf, — / I
Since L), = fab ¢, and Uy, = f; uy,, it follows that f is Riemann integrable. O

5.6. Exercises.

Ezercise 5.1. If f >0 and [ g [ dx =0, show that f = 0 almost everywhere
on E.

Ezercise 5.2. Let E be measurable. If [ 4 Jdx = 0 for every measurable
subset A C F then f =0 almost everywhere on F.

Ezercise 5.3. Suppose {fx} is a sequence of nonnegative measurable func-
tions on E. If fr — f and fr < f almost everywhere on E, show that

Jefe— Jpf

Ezercise 5.4. Suppose f € L(0,1). Show that 2* f(z) € L(0,1) for all k > 1,
and that fol 2* f(x)dr — 0 as k — oo.

Ezercise 5.5. Show that the bounded convergence theorem is a consequence
of Egorov’s theorem.

Ezercise 5.6. Give an example of a function that is not Lebesgue integrable,
but has an improper Riemann integral that exists and is finite.

Ezercise 5.7. Let p > 0. (i) Show that if [ |f — fix|? — 0 then f) converges
to f in measure. (ii) Show that if [|f — fu[’? — 0 and [ |fx|? < M for all
k, then [, [f[P < M.

Ezxercise 5.8. Let f be nonnegative and measurable on F. Show that for
any o > 0,

]{xGE:f(x)>oz}]§é/Ef.
Ezercise 5.9. If [, |f — fi| = 0 as k — oo, show that there exists a subse-
quence fi; such that fr, — f a.e. in E.

Ezxercise 5.10. Find a bounded continuous function that tends to zero at
infinity but does not belong to any LP for any p > 0.
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FEzercise 5.11. Let f(x) = 0 if z is irrational and f(x) = 1 if = is rational.
Show that f has upper Riemann integral equal on [0, 1] equal to 1, but lower
integral equal to 0. On the other hand, show that there exists a sequence f,,
of nonnegative Riemann-integrable functions such that f,, increases mono-
tonically to f.

Ezercise 5.12. Show that strict inequality may hold in Fatou’s lemma.

Ezercise 5.13. Let f > 0 be integrable. Show that F(z) := ffoo f(y)dy is
continuous. Hint: Use monotone convergence.

Ezercise 5.14. Show that if f is integrable on R, then [, f(x) cos(nx) dz — 0
as n — 0.

FEzercise 5.15. Construct a sequence of functions f,, : R — R such that (i)
fn — 0 uniformly on R, (ii) sup,, [ [fn|dz < oo, but (iii) [, fn dz does not
converge to zero.

Exercise 5.16. Let g be Lebesgue integrable on R and f : R — R be bounded,
measurable, and continuous at x = 1. Compute the limit
n
i @
nhﬁn;() » f(1+5)g(x) dx

and justify your answer.

Exercise 5.17. Find an example of a nonnegative sequence f, such that
fn— 0and [ f, — 0, but such that there is no integrable g with f,, < g for
all n.

6. LP CLASSES

Reference: Wheeden—Zygmund Chapter 8

6.1. Definition of L?. Let F be a measurable subset of R™ and 0 < p < oo.
We define

1P(E) = {f - /E 1P < oo}

1l = 1 Fllo ) = ( / |f|p> '

We define L>(F) as follows. We define
esssup f = inf{a: [{x € E: f(z) > a}| =0},
E

and

unless [{z € E : f(z) > a}| > 0 for all a, in which case we set esssupg f =
0.

The essential supremum is the smallest number M such that f(z) < M
a.e. in .
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A function is essentially bounded (or bounded) on F if esssupy |f|
is finite. The set of essentially bounded functions on E is denoted L*>(FE),
and we write

1 £lloo = 1 fll e () = ess sup | ]
Theorem 6.1. If |E| < oo then || f|loo = limp—so0 || f1|p-

Proof. Let M = || f|loo. For M’ < M, the set A := {|f| > M’} has positive

measure. Moreover,
1/p -
1= ([ 167) " = arrape

As |A|Y/P — 1 when p — oo, we find
liminf || ||, > M’,
pP—00
which then implies
liminf || f||, > M.
pP—00

On the other hand,

1/p
1l < ( / Mp) _ M|,

showing limsup,,_, . || fl|; < M. This completes the proof. O

This can fail for |E| = oo (consider e.g. f(x) = ¢).
Theorem 6.2. If0 < p; < ps < o0 and |E| < oo, then LP2 C LPL.

Proof. Exercise. For ps < oo, split f into the sets where |f| < 1 and
|f] > 1. O

This also can fail if |E| = co. Consider e.g. f(z) = 2~ /P1 on (1, 00).
Then f € LP2\LP! for p; < pa < o0.

A function can belong to all LP* with p; < p2 but not belong to LP2.
Consider e.g. =/72 on (0, 1), which belongs to LP* for p; < ps but not to
LP2. Similarly, log(1/x) is in LP*(0,1) for p; < oo but not in L.

If f e LPrNL*® then f € LP2 for all po > p;. [Exercise.]

The spaces LP are vector spaces, i.e. closed under addition and scalar
multiplication. [Exercise.]
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6.2. Holder and Minkowski inequalities.

Theorem 6.3 (Young’s inequality). Let y = ¢(z) be continuous, real-
valued, and strictly increasing for © > 0, with ¢(0) = 0. Writing x = ¥ (y)
for the inverse of ¢, then for a,b > 0 we have

a b
b < d dy.
< [Cowdr+ [vway
Equality holds if and only if b = ¢(a).

Proof. One can draw a picture, interpret the integrals as areas under curves,
and the result follows. O

Set ¢(x) = x® for some a > 0, and hence P (y) = yafl. Then Young’s
inequality says

ab < La1+a + #lera’l
T 14« 1+ ol
Setting p =1+« and p’ = 1 + o', this yields
aP bp/
ab < S+ 57

fora,b20,1<p<oo,and%+z%:l.
Two numbers p, p’ satisfying

1 1 _
l+l=1

K

and p,p’ > 1 are called conjugate exponent pairs. In particular, p’ =
and 2/ = 2.

We write 1’ = oo and oo’ = 1.
Theorem 6.4 (Holder’s inequality). For 1 < p < oo,
1fgllzy < [[fllzellgpe-
Proof. The case p € {1, 00} is straightforward, so consider 1 < p < co.

It suffices to consider the case 0 < || f||p, [|g]ly < co. In this case, define

i f . g
f= and ¢ = .
£l 9l
Then
P L S
A;m%;ézy+p,—p+ﬂ—1
and rearranging yields the desired inequality. O

When p = p/ = 2, Holder’s inequality is called the Cauchy—Schwarz in-

o [ua=(/ m?)é( / |g|2)§.

In fact, one has the following ‘duality’ between LP and LP .
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Theorem 6.5. Let f be real-valued and measurable on E and 1 < p < oo.
Then

1£llp = sup /E f9.

where the supremum is taken over all real-valued g such that ||g|y <1 and
|5 fg ewists.

Proof. Let us prove this result in the simple case of f > 0, 1 < p < oo and
0 < ||f]lp < oo, leaving other cases as exercises (or see Wheeden-Zygmund).

By dividing both sides of the equality by || f|,, we may assume || f||, = 1.
Now let ¢ = fP/P'. Then one can verify lglly =1 and [ fg = 1, which
yields the result in this case. O

Another classical inequality for LP functions is the following:
Theorem 6.6 (Minkowski’s inequality). For 1 < p < oo,
1f +9llp < 1 Fllp + llgllp-

Proof. The cases p € {1,00} are straightforward and left as an exercise.

For 1 < p < o0, we write

£ 49l = [ 1549 r ol < [15+9P 7071+ [ 17+ 9P gl

Now, apply Holder’s inequality (noting p’ = 1%) to get

/ 1+ gl Vgl < 1F + gl gl

and similarly to get

/ P+ gl A <+ glE M

Thus
1+ glly < 11f + gl (1l + llgllp),
which implies the result. O

Remark 6.7. Minkowski’s inequality fails when p € (0,1): let f = X(0,1)
2

and g = x(11)- Then ||f + g, = 1 but [|f]l, + llgll, =2-27"/7 < 1.

6.3. (P classes. A sequence a = {ay} belongs to ¢ if

1/p
laller = llall, = (Z \ak\p) < .

k
This is the definition for 0 < p < oo; for p = co we set

lalle = sup jag|.

For (P spaces we have P1 C (P2 whenever 0 < p; < py < co. [Exercise.]
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One can also construct sequences belonging to P2 but not /P! for any
p1 < p2 [exercise].
One can also prove analogues of Holder’s and Minkowski’s inequality, i.e.
llablly < llallpllblly,  [la+bllp < llall, + (bl
for suitable ranges of exponents.
6.4. Banach and metric space properties. A Banach space is a normed

vector space such that the space is complete with respect to the metric in-
duced by the norm.

Theorem 6.8. For 1 < p < oo, L” is a Banach space with norm | f||, =

1fllze-

Remark 6.9. Elements of LP are identified as equivalence classes of func-
tions that are equal a.e.

Proof. The results we have established so far show that f — || f||, is a norm
and LP is a vector space. It therefore remains to show that LP is complete.

Let {fr} be Cauchy in LP. If p = oo, then
|fr = fml <k = fmlloo

a.e. and hence { fi} converges uniformly a.e. to a bounded limit f; it follows
that fi — f in L*°.

If 1 < p < o0, then Tchebyshev’s inequality implies
U= fnl > et <27 [ 1= £

and hence {fi} is Cauchy in measure. Thus there exists f such that f — f
a.e. (cf. Chapter 4). Now for any € > 0, there exists K such that

I fx — fill, <e for k,j>K.

Sending j — 0o, we obtain by Fatou’s lemma that || f — fx||, < € for k > K.
Noting that

1A llp < W = ullp + 11 fellp < oo,
it follows that f € LP(E), which completes the proof. O

A metric space is separable if it has a countable dense subset. Note
that L is not separable, since there exist an uncountable set of functions
a distance one apart (e.g. fr = x(0,) in L>((0,1))).

Theorem 6.10. For 1 < p < oo, LP is separable.

Sketch of proof. First consider the case LP(R™).

Consider a class of dyadic cubes in R” and let D be the set of all finite
linear combinations of characteristic functions of these cubes, wth rational
coeflicients. This is a countable subset of LP.
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To see that D is dense in LP, we approximate more and more general
functions.

First, we can approximate characteristic functions of open sets (since
every open set is a countable union of nonoverlapping dyadic cubes).

We can then approximate characteristic functions of Gy sets, and thus
measurable sets of finite measure.

This lets us reach simple functions whose supports have finite measure,
which in turn lets us reach nonnegative functions in L? and finally arbitrary
functions in LP.

To handle E C R", just work with the restrictions of functions in D to
E. O

Recall that we showed Minkowski’s inequality fails for p € (0, 1), so that
| - |l fails to be a norm. Still we have the following:

Theorem 6.11. For 0 < p < 1, LP is a complete separable metric space
with distance

d(f,9) = Ilf — gll7,-

Proof. To show that d is a metric, we need to verify the triangle inequality.
This follows from the inequality
(a+bP <a?+b for a,b>0, pe(0,1).

To see this, one can divide by a (say) and reduce the inequality to (14¢)P <
1+ tP for t > 0, which can be proved with calculus.

Thus

|f = gl” < |f = h[" +[h—gl",

which gives the triangle inequality upon integrating. The proofs that L? is
complete and separable are the same as those for p > 1. ([l

We have analogous results for ¢P spaces:

Theorem 6.12. For p € [1,00], ¢ is a Banach space. For p € [1,00), P is
separable, while £>° is not separable.

For p € (0,1), P is a complete separable metric space with distance
d(a,b) = |la —bllp.

The proofs are left to the reader. We only point out an example to
show that £°° is not separable: consider the sequences a = {ax} such that

ar, € {0,1}. The number of such sequences is uncountable and |ja—a/|| g~ =1
for any two different such sequences.

We turn to the following continuity property:

Theorem 6.13 (Translations are continuous in LP). For f € LP(R™) with
1 < p < oo, we have

Tim |G+ h) = £, = 0.
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Proof. Let C), be the set of f € LP so that the conclusion of the theorem
holds.

We first note that (a) C, is closed under finite linear combinations and
(b) Cp is closed under strong L* limits. In fact, these are both consequences
of Minkowski’s inequality, e.g. if C), > fi — f in LP then we have

1f(z+h) = f(2)lp
< |If(@+h) = fe(z + )l + [ fe(z + ) = fr(@)llp + /e = fllp
= Ifwle +h) = fr(@)llp + 20k = fllp,

which implies the result.

Now, the characteristic function of a cube belongs to C),. As finite linear
combinations of characteristic functions of cubes are dense in LP (cf. the
proof of separability of LP), we have that (a) and (b) imply LP C C),. This
completes the proof. O

Remark 6.14. Translation is also continuous in LP for p € (0,1), but it
fails for p = oo. Indeed, consider x (g 0)-

6.5. L? and orthogonality. We can define an inner product on L?(E)

by
<f,g>=/ fa.
E
Indeed, by Cauchy—Schwarz,
[l < A fll2llgll2-

In the following we often denote || f||2 by || f|| and omit reference to the set
E.

The product (-, -) satisfies the properties of an inner product (e.g. linearity
in the first variable) and || f|| = /{f, f)

If (f,g) = 0, then we call f and g orthogonal. A set {¢q}aca is or-
thogonal if any two of its elements are orthogonal and orthonormal if it
is orthogonal and ||¢|| =1 for all « € A.

By convention, we always assume that orthogonal sets consist only of
nonzero elements.

Theorem 6.15. Any orthogonal system {¢} in L? is countable.

Proof. Suppose {¢4} is orthonormal. For a # 3, we find (using orthogonal-
ity)
I¢a — 0511 = lleall? + o] = 2,

so that ||¢a — ¢sl| = /2. Because L? is separable, this implies that {¢a}
must be countable. [To see this, argue by contradiction.] O
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A collection {¢;}Y_, C L? is linearly independent if
N
Zak¢k:0 = ar =0
k=1
An infinite collection of functions is linearly independent if each finite sub-
collection is.

Theorem 6.16. If {¢}} is orthogonal, then it is linearly independent.

Proof. If
> apr =0

then taking inner products with v, implies a; = 0. ]

The span of a set {1} is the collection of all finite linear combinations
of the wk

The Gram-Schmidt algorithm takes as input a linearly independent set
of vectors and produces an orthogonal set of vectors with the same span as
the original vectors. It works by taking in {1} and defining

1 =1,

o (e, )
¢2_1/]2 <¢1’¢1>¢17

o {dsdn) (s, 02)
=Y o0 (6a60) Y

and so on.

An orthogonal system {¢y} is complete if (f, ¢x) = 0 for all k implies
f=0.
A set {11} is a basis for L? if its span is dense in L?. Noting that any

countable dense set in L? is a basis, we deduce that L? has an orthogonal
basis (cf. Gram-Schmidt).

Theorem 6.17. Any orthogonal basis in L? is complete. In particular, there
exists a complete orthonormal basis for L?.

Proof. Let {11} be an orthonormal basis for L?. Suppose now that (f, ;) =
0 for all k. Then

N
<f,f)=<f,f—2ak¢k) forall N andall ay.

k=1
By Cauchy—Schwarz,

N
DTS-I =D artdel)-

k=1
As the term on the right-hand side can be made arbitrarily small, we deduce
f=0. O
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6.6. Fourier series and Parseval’s formula. Let {¢y} be an orthonormal
set in L2. For f € L?, we define the Fourier coefficients of f (with respect

to {#x}) by
o= (o) = [ S
We define the Fourier series of f (with respect to {¢r}) by

= ko
i

We abbreviate this by writing f ~ >, cx¢r. We define the partial Fourier

series by
N
SN = E Ck Pk
k=1

Theorem 6.18. Let {¢} be an orthonormal set in L? and f € L?.
(i) Given N, the best L? approrimation to f using the ¢y, is given by
the partial Fourier series.
(i) (Bessel’s inequality) We have ¢ := {cy} € €% and

lellez < N1l 22,

where {ci} are the Fourier coefficients of f.

Proof. Fix N and v := (71, -+ ,yn) and consider linear combinations of the

form
N
= o
k=1

By orthonormality,

I7|? = ZI%F

Thus, recalling ¢ := (f, ¢x), we can wrlte

If = FI> ={f - Zmﬁk,f Z’Yk:ﬁbk
= /I —Z[%CH—%% +Z|W\2

k=1 k=1
N N
= NFIP 4D ler — > =D lexl*
k=1 k=1
It follows that
N
min IF=FIP = £ =D lexl
k=1

and
[&

argmin, || f — F(7)[|* = (c1,- -+, en).
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This proves (i). Furthermore (evaluating at v = (c1,...,cn)) we can deduce
N
Dol =112 = I1f = Swli?,
k=1

which yields Bessel’s inequality upon sending N — co. ([

If equality holds in Bessel’s inequality (i.e. |[c||;2 = || f]lz2), we say f
satisfies Parseval’s formula. From the proof of Bessel’s inequality, we
deduce the following;:

Theorem 6.19. Parseval’s formula holds if and only if S[f] converges to f
in L2,
We can also use Fourier coefficients to define L? functions.

Theorem 6.20 (Riesz-Fischer). Let {¢} be an orthonormal set in L? and
{ck} € 2. There exists an f € L? such that S[f] = Y. ck¢r and f satisfies
Parseval’s formula.

Proof. Write ty = Z]kvzl cp¢r. For M < N, orthonormality implies
N

len —tar®> = el

k=M+1

Thus {ci} € L? implies {ty} is Cauchy and hence converges to some f € L.
Now observe for N > k

/f@z;k:/(f_tN)Q_Sk“‘/tNQ_Sk:/(f_tN)QEk‘FCk

which tends to ¢ as N — oo by Cauchy—Schwarz and the fact that tny — f
in L?. Thus S[f] = Y. cx¢r and ty = sy(f). In particular, Parseval’s
formula follows from the fact that ¢ty — f in LZ. O

This result does not guarantee uniqueness. However, one does have
uniqueness if the set {¢r} is complete. Indeed, if f and g have the same
Fourier coefficients then f — ¢ is perpendicular to each ¢.

We have the following related result:

Theorem 6.21. An orthonormal system {¢} is complete if and only if
Parseval’s formula holds for every f € L2.

Proof. If {¢x} is complete and f € L2, then Bessel’s inequality implies that
the Fourier coefficients {c;} are in ¢2. Thus (by Riesz-Fischer) there exists
g € L? with S[g] = Y cxor and ||g||*> = > |cx|>. Because f,g have the
same Fourier coefficients and {¢y} is complete, we get f = g a.e. Thus

A2 = llgl® = 32 lexl?.

Conversely, if (f, ¢x) = 0 for all k and || f]|* = 32 [(f, éx)|?, then [ f]| =0
which shows that the {¢y} are complete. O
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Suppose {¢y} is a complete orthonormal set in L? and f,g € L?. Let
{fr} and {gr} be the Fourier coefficients of f, g. A consequence of Parseval’s
theorem is the following;:

k
[Exercise.]

Two metric spaces (X1,d1) and (X3, ds) are (linearly) isometric if there
exists a surjective linear map 7T : X7 — X3 such that

di(f,9) = d2(T f,Tg)
for all f,g € X;.

Theorem 6.22. All spaces L?(E) are linearly isometric with {* (and hence
with each other).

Proof. Let {¢;} be a complete orthonormal set in L?(E). Define T : L?>(E) —
2 by Tf = {(f,#x)}. This maps into £2 by Bessel’s inequality and onto ¢2
by Riesz—Fischer. Furthermore it is an isometry by Parseval’s formula. O

6.7. Hilbert spaces. A Hilbert space over C is a vector space over C
with an inner product that is complete with respect to the metric induced
by the inner product.

That is, if (f,g) denotes the inner product, then the norm is defined by
£l = /(f, f) and the metric is defined by d(f,g) = ||f — gl

Recall that the Cauchy—Schwarz inequality holds for any inner product
space:

(ol < gl for all  f,g € H.
This is clear for ¢ = 0, while for g # 0 we find A\ = —(f,9)|lg/|"? and
rearrange the inequality

0<(f+Ag, f+Ag).
Note that any Hilbert space is also a Banach space.

A Hilbert space is infinite dimensional if it cannot be spanned by a finite
number of elements. Two fundamental examples of Hilbert spaces are L?
and /2. In fact:

Theorem 6.23. All separable infinite dimensional Hilbert spaces are lin-
early isometric with £2 (and hence with each other).

Proof. Given a separable Hilbert space H, we may (by Gram—Schmidt) find
an infinite orthonormal set {ex} whose span is dense in H. In fact, {e} is
complete, since if (f,ex) = 0 then

N
lr-Yua
k=1

2

N
= 12+ D lal® > 117117
k=1
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In particular if f were non-zero, the span of {ex} could not be dense.

Bessel’s inequality and the Riesz—Fischer theorem hold for {ej}. Indeed,
for f € H we set ¢, = (f, ex) and have

N
0< Hf - chek
k=1

which yields Bessel’s inequality upon sending N — oco. Thus {c;} € £2. The
Riesz-Fischer theorem is proved essentially like it was for L? and relies on
the fact that H is complete.

2 N

=17 = lewl?,

k=1

Finally, the mapping f + {(f, ex)} yields a linear isometry from H to £2
(for all the same reasons as before, namely Bessel’s inequality, Riesz—Fischer,
and Parseval). O

6.8. Exercises.

Ezercise 6.1. Show that the set {f,} defined by f,(x) = sinnz is a closed,
bounded set in L?([—n,7]) that is not compact.

Ezercise 6.2. Show that for any f € L'(0,27), we have
2
lim f(x)sin(nz) dz = 0.

n—oo 0

FEzercise 6.3. Let E be a subset of (—m, ) with positive measure. For any
0 > 0, show that there are at most finitely many integers n with sinnz > §
for all x € E.

Ezercise 6.4. Show that for any set X C R of finite measure we have
L*(X) C L'(X). However, show that this fails if we allow X to have infinite
measure.

Ezercise 6.5. Show that L is complete.

FEzercise 6.6. Show that when 0 < p < 1, the neighborhoods {f : || f]|, < e}
of zero in LP(0,1) are not convex.

FEzercise 6.7. Show that L°°(F) is not separable for any E with |E| > 0.

Ezxercise 6.8. Show that if f — f in LP for some 1 < p < oo and g — ¢
pointwise (with ||gx|lcc < M for all k), then frgr — fg in LP.

Ezercise 6.9. Let fi,f € LP, 1 < p < oo. (i) If ||fx — fll, — O then
[/xlly = I fllp- (i) Show that if fy — f a.e. and [fil, = [If]l, then

If = frllp = 0.

Ezercise 6.10. Suppose f, f € L? and f), converges weakly to f (that is,
for any g € L? we have [ frg — [ fg). Show that if || fx||2 — || f[l2, then fx
converges to f in L?-norm.
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Ezercise 6.11. We say {fx} C LP converges weakly to f € LP (written
fo — f)if

(i) Show that if fr — f in the LP norm (1 < p < 00), then fr — f weakly
in LP. (ii) Show that the converse is false.

7. REPEATED INTEGRATION
Reference: Wheeden—Zygmund Chapter 6

We return to the theory of Lebesgue integration and consider the question
of repeated integration.

For a continuous function f on an interval I = [a,b] X [c,d], one has

//If@,y)da:dy:/ab[/cdf(x,y)dy] dr,

with similar formulas in higher dimensions. We first consider extensions of
this to the case of Lebesgue integration.

7.1. Fubini’s theorem. We write © = (z1,---,z,) for an element of an
n-dimensional interval Iy = [, [a;, b;], and similarly let y be a point of an
m-dimensional interval Ir = [[",[c;, di].

We may have Iy = R™ or I = R™.

The product [ = I; x I is an (n + m)-dimensional interval containing
points of the form (z,y).

A function f on I will be written f(z,y), and its integral [; f denoted by
JJ; f(z,y) dz dy.

Theorem 7.1 (Fubini’s theorem). Let f(x,y) € L(I), with I = I; x Is.

(i) For a.e. x € Iy, y > f(z,y) is measurable and integrable on Is.
(i1) The function x fb f(z,y) dy is measurable and integrable on I,

with
| //If(x,y)dxdy:/h[ sz(:v,y)dy] dr.

It is enough to consider the case I1 = R"™ and Is = R™ [for otherwise we
may set f = 0 outside I|. We drop I1, 2, I from the notation. We write
L(dx), L(dy), L(dx dy), and so on.

The strategy of proof is to build up an increasing class of functions for
which the result holds.

We say a function f € L(dxdy) for which Fubini’s theorem is true has
property F.
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Lemma 7.2. Any finite linear combination of functions with property F
has property F.

Proof. This follows from the fact that measurability /integrability are pre-
served under finite linear combinations. ([

Lemma 7.3. Let {fi} have property F. If fr /* f or fr N\ f and f €
L(dx dy), then f has property f.

Proof. Let us treat the case fr 7 f.

By assumption, for each k there exists Z; C R™ with |Z|gn = 0 and such
that fi(z,y) € L(dy) for x ¢ Zj.

Let Z = UpZg, so that |Z|gn = 0. Then for = ¢ Z, we have by the
monotone convergence theorem (in ¥)

/fwcydy/h /f:vy

By assumption, we have hy € L(dx) and fy € L(dx dy), with

//kaydxdy—/hk )dx.

Thus, again using the monotone convergence theorem we have

/ f(z,y) dxdyz/h(x) dz.

As f € L(dxdy) (by assumption), we have that h € L(dx), giving that h
is finite a.e. (i.e. y — f(x,y) is integrable for a.e. z). This completes the
proof. (I

Now let us prove some special cases of Fubini’s theorem.

Lemma 7.4. If E = N2,G C R*™™™ 4s G5 and |G1| < oo, then xg has
property F.

Proof. We proceed in several cases.

Case 1. Let E = J; x J3 be a product of bounded open intervals in R™
and R™. Then |E| = |J1||J2|.

For each z, y — xg(z,y) is measurable, and

h(z) := /XE(:L" y)dy = h(z) = {|J2| x e

0 otherwise.
Thus

[ #wde =101,
while

//mx,y) dzdy = |E| = | 71| | 72,

giving the lemma in case 1.
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Case 2. If E is a subset of the boundary of an interval in R*™™, then
for a.e. x the set {y: (x,y) € F} has R™-measure zero.

Thus h(z) = [ xg(x,y)dy satisfies h = 0 a.e. and so [h(z)dz = 0. As
[[ xe(z,y) dzdy = 0, the result follows in the case.

Case 3. If E is a partly open interval then cases 1 and 2 imply xg has
property F.

Case 4. Let E C R"™ be open and finite measure. Write £ = U},
where I; are disjoint partly open intervals.

Writing Fy, = Ué‘?:llj, we have xg, = Z?Zl X1, so that x g, has property
F by case 3 and the first lemma above.

As xg, /" XE, we deduce that xg has property F' by the second lemma.

Case 5. Now let F = N2,Gj, be G5. We may assume Gy \, £ (by
redefining Gy, = ﬂé?zlGj, say), so that xg, \( xg. Now the lemma follows
from case 4 and the second lemma above. ([l

Lemma 7.5. If Z C R"™™ has measure zero, then xz has property F. Thus
for a.e. x € R", the set {y: (z,y) € Z} has R™-measure zero.

Proof. Let H D Z be a Gs set with |H| = 0. Writing H = NGy, we may
assume (1 has finite measure. Thus, by the previous lemma

/[/XH(:v,y) dy] da«“://XH(w,y) dx dy = 0.
Thus implies

Hy:(z,y) € H}| = /XH(x,y) dy=0 fora.e. =z

As Z C H, this implies [{y : (z,y) € Z}| =0 for a.e. x.
It follows that for a.e. x, y — xz(z,y) is measurable and [ xz(z,y)dy =

/[/XZ(fc,y) dy] dr =0,

which gives the lemma, since [[ xz(z,y)dzdy =|Z| = 0. 0]

0.
Thus

Lemma 7.6. If E C R™™™ js measurable with finite measure, then xg has
property F.

Proof. We write E = H\Z with H G5 and |Z| = 0. If H = NG}, then we
may assume |G| < co. As xg = xg — Xz, the lemma follows from the
results above. ([

Now we can complete the proof of Fubini’s theorem.
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Proof of Fubini’s theorem. Let f € L(dx dy). We will show that f has prop-
erty F.

Writing f = f* — f~, we may assume by the lemma above that f > 0.
For f > 0, there exist measurable simple functions fi 7 f with fi > 0.

As each f; € L(dxdy), by the second lemma above it suffices to show
that each f has property F'.

However, each fi has the form f =" ; ViXE, for some finite measure sets
E;, and hence the result follows. O

Fubini’s theorem shows that for f € L(R™™™), the function y — f(z,y)
is measurable for almost every x € R". In fact, we don’t need f € L(R™*™):

Theorem 7.7. Let f = f(x,y) be measurable on R"™™. Then for a.e.
r € R, y — f(x,y) is measurable on R™. In particular, if E C R"™™ js
measurable then

E, = {y : (Ji,y) € E}

is measurable in R™ for a.e. x € R™.
Proof. The two statements are equivalent if f = xp for some measurable
E c Rv™,

In the case that f = xg write E = HUZ where H € F,, and |E|,+m = 0.

Then E, = H, U Z, where H, € F, (in R™) and |Z,|,, = 0 for a.e. = by
the results above.

Thus E, is measurable for a.e. x.

Now for f measurable function on R"*™ and a € R, define E(a) = {(z,y) :
f(z,y) > a}. Then since F(a) is measurable in R"*™  we have

E(a)e ={y: f(z,y) € E(a)}
is measurable for a.e. . The exceptional set depends on a € R.

The union Z of all exceptional sets over a € Q still has R”-measure zero.
For z ¢ Z, we have

{y: flz,y) > a}
is measurable for all rational a, and hence for all a € R. O

The following can be deduced from the results above by extending func-
tions by zero. It is left as an exercise.

Theorem 7.8. Let f be measurable on E C R"™. Let E, = {y : (z,y) €
(i) For a.e. x € R"™, y— f(x,y) is measurable on E,.
(ii) If f € L(FE) then for a.e. = € R"™, the function y — f(x,y) is
integrable on E,. Moreover, x sz f(z,y) dy is integrabile and

//Ef(m,y)dydyz/n[ wa(x,y)dy} dz.
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7.2. Tonelli’s theorem. Fubini’s theorem says finiteness of a multiple in-
tegral implies finiteness of the iterated integrals. The converse is false.

Example 7.1. Let I be the unit square in Ryo. Let I; be the square of
sidelength 1/2 in the lower left corner of I. Let Is be the cube of sidelength
% touching the top right corner of I;. Let I3 be the cube of sidelength %
touching the top right corner of I5, and so on.

Subdivide each Iy into for equal subsquares, I Iz, labeled by starting in the
bottom left quadrant and proceeding counterclockwise.

For each k, let f = |I;]™! on the interiors of I} and I} and f = —|I;|™?
on the interiors of I? and I{. Let f =0 on the rest of I.

By construction,

1
/ f(x,y)de =0 forall y
0
and
1
/)ﬂxwdyzo for all .
0

However,

//I|f(x,y)!dxdy:zk://lk oy = 1 =

Thus finiteness of the iterated integral does not imply finiteness of the mul-
tiple integral.

For nonnegative f, we do have the following:

Theorem 7.9 (Tonelli’s theorem). Let f(x,y) be nonnegative and measur-
able on an interval I = Iy x Is. Then for almost every x € I, y — f(z,y)
is measurable on Iy. Moreover, x — fb f(z,y) dy is measurable on I and

/ /1 f(z,y) dudy = /1 [ RLY dy] dz.

Proof. We will use Fubini’s theorem.

For k = 1,2,... define fr(z,y) = 0 if |(z,y)] > k and fi(z,y) =
min{k, f(z,y)} if |(z,y)| < k.

Then fr > 0 and f;  f on I. Moreover f € L(I) (since fi is bounded
and compactly supported).

Thus Fubini’s theorem applies to each fy.

Measurability of [ I f(x,y) dy follows from its analogue for fx.

Further, by monotone convergence, f12 fe(z,y)dy N flz f(z,y)dy. (Mea-
surability follows from Theorem 7.8.)
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Using monotone convergence once again, we have

/ /I filwg)dedy - [ /1 f(z,y) dz dy,

/ [ Ji(,y) dy] dz — / [ [l y) dy] da.
I I I I
As fi € L, the result follows. O

Remark 7.10. Note that the roles of x and y may be interchanged, so that
for f > 0 measurable we have

//If(;r,y)d;rdyZ/I1 sz(:v,y)dydyc:/I2 Ilf(:c,y)dxdy.

In particular, finiteness of any one of the three integrals implies that of the
other two.

Thus, finiteness of one of these integrals for | f| implies that f is integrable
and all of these integrals are equal.

Tonelli’s theorem implies that

//If(:c,y)d:cdy:/h[ I2f(x,y)dy],dx

even if [[; f =400 (i.e. if [[; f merely exists). This follows from consider-
ing f* and applying Tonelli’s theorem [exercise].

We record one application of Fubini’s theorem:

Theorem 7.11. Let f > 0 be defined on a measurable set E C R™. If
R(f,E) (the region under f over E) is measurable in R"*1, then f is mea-
surable.

Proof. For y € [0, 00),

{reE: flz) >y} ={x:(x,y) € R(f, E)}.

As R(f, F) is measurable, it follows that {x € E : f(z) > y} is measurable
(in R™) for almost all such y (as measured in R!).

Thus {f(z) > y} is measurable for all y in a dense subset of (0, c0). For
y < 0, we simply have {z € E : f(z) > y} = E, which is measurable. Thus
f is measurable. O

7.3. Exercises.

Ezercise 7.1. Show that if f and g are measurable on R", then h(x,y) =
f(z)g(y) is measurable on R™ x R™. Conclude that if F, Ey are measurable
in R™, then their Cartesian product is measurable in R x R"™.

Ezercise 7.2. Use Fubini’s theorem to prove that fR" el dy = 73
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FExercise 7.3. Use Fubini’s theorem to show that
1 n—1
Uy, = 2vn_1/ (1-— t2)T dt,
0

where v,, denotes the volume of the unit ball in R".

8. DIFFERENTIATION

Reference: Wheeden—Zygmund Chapter 7

The main topic of this chapter is an analogue of the fundamental theorem
of calculus for the Lebesgue integral.

8.1. The indefinite integral. Let A C R™ be measurable. We define the
indefinite integral of f : A — R to be

F(E) = /E /,

where E C A is measurable. The function F' is a set function, i.e. a
real-valued function on a o-algebra 3 of measurable sets such that

(i) F(F) <ooforall EC X,
(ii) if E = UgE} is a union of disjoint Ej, € E then F(E) =), F(E})).

Recall that
diam (E) := sup{|z —y| : z,y € E}.
A set function F' is continuous if

Ve>0 36>0:diam(E) < = |F(E)| <e.

Ezample 8.1. Let F(E) = 1 whenever E is measurable and 0 € FE, and let
F(FE) = 0 otherwise. Then F' is not continuous.

A set function F' is absolutely continuous (with respect to Lebesgue
measure) if

Ve>0 39>0:|E|<d = |F(E)|<e.

Absolutely continuous set functions are automatically continuous; however,
the converse is false.

Ezample 8.2. Let A = [0,1] x [0,1] € R? and D = {(z,7) : = € [0,1]}.
Consider the g-algebra of measurable £ C A such that £ N D is ‘linearly’
measurable, and let F(E) be the linear measure of £ N D. Then F is
continuous, but not absolutely continuous: there are sets E containing a
fixed segment of D with arbitrarily small R?-measure.

Theorem 8.1. If f € L(A) then its indefinite integral is absolutely contin-
uous.
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Proof. Without loss of generality, assume f > 0 (otherwise consider f%).
For any k we may write f = g + h, where g = min{f, k}.
Now, let € > 0. Choose k large enough that [with h as above] we have

Og/h<%5,
A

and hence 0 < [ gph< %5 for every measurable £ C A.
[This uses the fact that ff>k[f — k] < ff>kf —0as k — oo/

As0< g<k,wehave 0< [pg <k|E| < %6 if | E| is small enough.
Thus
0< / f<e for |E| small enough.
E

O

In fact, if F(E) is an absolutely continuous set function, then there exists
an integrable function f such that F(E) = [}, f for measurable sets E. This
is known as the Radon—Nikodym theorem.

8.2. Lebesgue differentiation theorem. In this section we let () denote
an n-dimensional cube with edges parallel to the coordinate axes.

Theorem 8.2. Let f € L(R™). Then its indefinite integral is differentiable

with derivative f almost everywhere, in the following sense:

o /Q F(y) dy = £(2).

Here Q \, x means we take the limit over any sequence Qp of cubes con-
taining x with |Qg| — 0.

Remark 8.3. In the case of n = 1, this is equivalent to
L z+h
i g [ ) dy = fo)
which is essentially equivalent to % f: fly)dy = f(z).

Remark 8.4. If f is continuous, the theorem is proven as follows:

& [ s 10| =gy [ 116~ s

<sup|f(y) — f(2)] =0
yeQ

as Q \, .

The strategy will then be to approximate f € L(R™) by continuous func-
tions. We begin with the following:
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Lemma 8.5. For f € L(R"™), there exists a sequence Cy of continuous
functions with compact support so that

/|ka|dxH0 as k — oo.
R

Proof. Let A be the set of f € L(R™) such that the theorem holds.
To begin, note that (1) A is closed under finite linear combinations.

Next, we show that (2) if {fx} C A and [ |f— fx| — 0 then f € A. To see
this, note that f is necessarily integrable (by the triangle inequality). Now,
given € > 0, choose kg so that

/|f_fko| < %6'
Now choose a continuous function C' with compact support such that
15—l < de.

Thus [|f — C| <e. It follows that f € A.

Now we prove the lemma (i.e. L(R™) C A). Writing f = f*— f~, we can
use (1) to reduce to the case f > 0.

Thus there exist nonnegative simple functions fr  f. In particular,

fr € L(R™) and
[15-51=0

Thus, by (2), we may assume that f € L(R") is a nonnegative simple func-
tion.

Using (1) again, we can reduce to f = xyp with |E| < oo.
Let € > 0 and choose open G D E with |G\ E| < . Then

[ Ixe = xel = 16\E| <,
and hence we may assume that f = yg for some open G with |G| < co.
Now write G = Ul where [j, are disjoint partly open intervals.

Set f]v = Xnglfk' Then

[e.e]

Jlr=tvl= 3 1l =0 as N,

k=N+1
since Y o x| = |G| < 0.

Therefore by (2) it is enough to show that each fy € A. But by (1), this
reduces to proving that x; € A for any interval I.
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Indeed, if I* is an interval contaniing I in its interior, with |I*\I| < ¢,
then we define C' to be a continuous function taking values in [0, 1], equal
to 1 on I and 0 outside I*. Then

/Wm—cwsuﬂﬂ<a

showing that y; € A. This completes the proof. U

Another natural object of study will be the Hardy—Littlewood maxi-
mal function

fr(x) = Supéﬂ/Qf(y) dy,
where the supremum is over all Q with center x.
Note that:
° 0< f(x) <0
e (f+g9)=f"+g
o (cf)" = lelf".
If f*(zp) > « for some xp € R"™ and o > 0 then because indefinite integrals

are absolutely continuous, we have that f*(x) > a for x near z¢. This proves
lower semicontinuity (and hence measurability) of f*.

We leave as an exercise that f* is not integrable unless f = 0 a.e. However,
we will be able to show that f* is in “weak L(R™)”, which means

3C>0:|{|f| >a} <€ forall a>0.
(Any function in L(R") is in weak L(R™) by Tchebyshev’s inequality. The
function |xz|™™ is in weak L(R™) but not L(R"™).)

Lemma 8.6 (HardyLittlewood). If f € L(R™), then f* is in weak L(R™).
In fact, there exists ¢ (independent of f,a) so that

rr>af<g [ iflde
for all a > 0.

To prove this, we need the following simple form of the Vitali covering
lemma:

Lemma 8.7 (Vitali). Let E C R™ with |E| < co. Let K be a collection of
(open) cubes covering E. There exists B = f(n) > 0 and {Q; ;\le C K so
that

N
> 1 = BIE.
j=1

Proof. Without loss of generality, we may assume F is compact (e.g. by
approximating from within by a closed set).

By compactness, we may assume K7 := K is a finite collection of cubes.
Let @1 be a cube of largest sidelength.
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Write K7 = Ko U K, where Ko contains the cubes in K; disjoint from
Q1. Let Q7 be the cube concentric with ()1 with thrice the sidelength. Then
every cube in K} is contained in Q1.

Let Q2 be the largest cube in Kj, and repeat this construction (writing
Ky = K3 U K3 and defining Q5.

This process terminates after finitely many steps (once Ky = ) and
yields {Q; ;\le C K and {Q;‘}é\le such that
N
EC szle-.
Thus

N N
B[ <> 1Q51 =3">1Q,l.
i=1 i=1

The result follows.
O

Remark 8.8. One can prove Lemma 8.7 without assuming that F is mea-
surable, but the proof is more complicated. There are also more refined
versions of Vitali covering lemmas that have many interesting applications
in analysis (e.g. proving a.e. differentiability of monotone and BV functions;
see below).

Proof of Lemma 8.6. Suppose f € L(R™) and f has compact support.

Using the definition of f*, we can show that there exists ¢; = ¢1(f) such
that
ff(x) < cp|z|™™  for large enough |z
Indeed, suppose f = 0 for |z| > R. Then for |z| > 2R, any cube that

contains x that intersects {|z| < R} must have radius at least |z|— R > |z|.
Thus

£1(@) < clel ™ [ 171y < alel
This proves that {f* > a} has finite measure for every o > 0.
Now let o > 0 and define
E={f">a}.

For x € E, there exists a cube @), with center z such that

Qul < ;/Q £l

As the collection of {Q;}cr covers E, the Vitali lemma implies that there
exist 8 >0 and x1,...,xny € E so that Q,,...,Q., are disjoint and

N
Bl < 537100
j=1
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Thus
N
Bl<3Y4 [ <k fin
j=1 7@

This proves the result (with ¢ = f7!) in this case.

Now given arbitrary f € L(R™) we may assume f > 0 (since replacing f
with |f| does not change f*).

Let fr be a sequence of integrable functions with compact support such
that 0 < fi A f.

By the above, there exists a constant ¢ independent of k£ and « > 0 such
that

fwer: fiw>all<s [n<s [
As fi 7 f*, it follows that

o eR: f@) >l <& [ 1
which completes the proof. O

Finally we can prove the Lebesgue differentiation theorem.

Proof of Theorem 8.2. For f € L(R™) there exists a sequence of continuous,
integrable C}, so that

[1-ci—o
Write F(Q) = fQ f and Fi(Q) = fQ C}. For any k,

. Q) . Q) Fk(Q)‘
N T A e N e TTe]
+ lim sup (@) — Cr(2)| + |Cr(z) — f(z)].

Because CY, is continuous, the second term on the RHS tends to zero. More-
over,

M_Fk(Q) 1 _ _ "
‘ Q] Q] 'S QI/Q|f Cil < (f = Cr)*(z),

and thus for every k

tim sup| £ _ <x>] < (f — OO () + (@) - Cula).

Let ¢ > 0 and define E. to be the set on which the LHS of the above is
greater than . In particular, by the above,

E. C {(f ~ Co)*() > se} U{If — Ch(a)] > Le).
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By the maximal function estimate and Tchebyshev, we find
.| §c§/|f—0k|+§/]f—0k|—>0 as k- oo,

Here we use that c is independent of k. Thus |E.| = 0.
Now let E be the set where

F
lim sup Q) _ (z)'

is positive. Then E = Uy E, for some sequence ¢ \, 0, and hence |E| = 0.
Thus

. F(Q)

lim ——= = f(z) fora.e. =x,

A Q) )
which completes the proof. ([l

One can extend the Lebesgue differentiation theorem to functions that
are merely locally integrable — this means that the function is integrable
over any bounded measurable subset of R"”.

The Lebesgue differentiation theorem implies that any measurable set F,
almost every point of E' is a ‘point of density’ for £ — this means that
|ENnQl _

lim
Qe Q)

1

for a.e. x € E.

8.3. Further results. While we will not pursue these topics further, it is
worth mentioning some additional related results. The proofs can be found
in Wheeden—Zygmund. They rely on a stronger version of the Vitali covering
lemma.

e Finite monotone increasing functions are differentiable (with non-
negative derivative) almost everywhere.

e Functions of bounded variation are differentiable a.e. with integrable
derivatives.

o If V(2) = V(f;[a,z]) for some f € BV ([a,b]), then V'(z) = |f'(x)]
for a.e. x.

A function f is called absolutely continuous on [a, ] if for any € > 0,
there exists 0 > 0 such that for any collection {[a;,b;]} of nonoverlapping
subintervals of [a, b],

Y (b —ai) <6 = D |f(b) = flai)] <e.

We write f € AC([a,b]).
o If f € AC([a,b]) then f € BV ([a,b]).
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e A function f is absolutely continuous on [a, b] if and only if f” exists
a.e. in (a,b), f' € L(a,b), and

f(a:)—f(a)—/xf/ for a<ax<h.

8.4. Exercises.

Ezercise 8.1. Let f be measurable on R™ and nonzero on a set of positive
measure. Show that there exists ¢ > 0 so that f*(z) > c|z|™ for |z| > 1.

Ezercise 8.2. Let ¢ be a bounded measurable function on R™ so that ¢ =0
for || > 1 and [ ¢ = 1. For £ > 0, define ¢.(z) = e "¢(x/e). Show that

lim / f(z — y)oe(y) dy = f(x)

for all = in the Lebesgue set of f.
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