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References. These lecture notes are based off of the material from Rudin,
Principles of Mathematical Analysis, Chapter 7, and Wheeden–Zygmund,
Measure and Integral, Chapters 2–8. Exercises have been drawn from a
variety of sources.

Prerequisites. The prerequisite for this class is Math 4209, Advanced Cal-
culus I. The catalog description for that course is as follows:

Completeness of the set of real numbers, sequences and series
of real numbers, limits, continuity and differentiability, uni-
form convergence, Taylor series, Heine-Borel theorem, Rie-
mann integral, fundamental theorem of calculus, Cauchy-
Riemann integral.

Familiarity with these topics will be assumed.

Exercises for prerequisite material.

Exercise 0.1. Suppose a, b ∈ R. Show that if a < b+ ε for every ε > 0, then
a ≤ b.

Exercise 0.2. Show that every open set in R can be written as a countable
union of disjoint open intervals.

Exercise 0.3. Show that every open set in Rn (with n ≥ 1) can be written
as a countable union of nonoverlapping closed cubes.
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Exercise 0.4. Show that
∑∞

n=0 ar
n = a

1−r for a ∈ R and r ∈ (0, 1).

Exercise 0.5. Let f : R→ R be continuous. Show that show that f−1(G) is
open whenever G ⊂ R is open. [Recall f−1(G) = {x ∈ R : f(x) ∈ G}.]

Exercise 0.6. Show that (f ◦ g)−1(G) = g−1(f−1(G)).

Exercise 0.7. Suppose Kn ⊂ R are a collection of nonempty compact sets
such that Kn ⊃ Kn+1. Show that ∩∞n=1Kn is nonempty.

1. Sequences and series of functions

Reference: Rudin Chapter 7

1.1. Pointwise convergence. Suppose {fn}∞n=1 is a sequence of real-valued
functions defined on some subset E ⊂ R. That is, for each n, we have

fn : E → R.

Suppose that for each x ∈ E, the sequence {fn(x)}∞n=1 ⊂ R converges.
We can then define

f : E → R via f(x) := lim
n→∞

fn(x) for each x ∈ E.

In this case, we say {fn} converges (pointwise) on E and that the func-
tion f is the limit of the sequence {fn}. We may write fn → f pointwise.

Remark 1.1. We focus on the case of real-valued functions on E ⊂ R;
however, one can also consider arbitrary metric spaces E and complex-valued
functions.

Similarly, suppose the infinite sum

∞∑
n=1

fn(x)

converges for each x ∈ E. Then we can define the function

f : E → R via f(x) :=
∞∑
n=1

fn(x) for each x ∈ E.

In this case, we call f the sum of the series
∑
fn.

Question. Which properties of {fn} are ‘inherited’ by the limit functions
introduced above?

For example, suppose {fn} is a sequence of continuous functions on E
that converges pointwise to f . Is the limit f continuous on E? This is
equivalent to asking if

lim
y→x

f(y) = f(x) for all x ∈ E.
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Recalling that f(x) = limn→∞ fn(x) and that each {fn} is continuous, this
is equivalent to asking whether

lim
y→x

lim
n→∞

fn(y) = lim
n→∞

lim
y→x

fn(y)

for each x ∈ E. In particular, we are led to the question of the interchange
of limit operations.

Let us work through several examples to see that in general, we cannot
freely exchange the order of limits.

Example 1.1. Let

sm,n =
m

m+ n
, m, n ∈ N.

Then
lim
n→∞

lim
m→∞

sm,n = lim
n→∞

1 = 1,

while
lim
m→∞

lim
n→∞

sm,n = lim
m→∞

0 = 0.

Example 1.2. Let fn : R→ R be given by

fn(x) =
x2

(1 + x2)n
.

Each fn is continuous. Now define

f(x) =

∞∑
n=0

fn(x) =

∞∑
n=0

x2

(1 + x2)n
.

Since fn(0) = 0, we have f(0) = 0.

For x 6= 0, this is a geometric series that sums to 1 + x2 (cf.
∑∞

n=0 ar
n =

a
1−r ).

Thus

f(x) =

{
0 x = 0

1 + x2 x 6= 0.

We conclude that a convergent series of continuous functions may be dis-
continuous.

Example 1.3. Define fm : R→ R by

fm(x) = lim
n→∞

[cos(m!πx)]2n

for m ∈ N. Note that

fm(x) =

{
1 if m!x is an integer

0 otherwise.
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Note that fm is continuous except at countably many points.

Now define the limit function

f(x) = lim
m→∞

fm(x).

We claim that

f(x) = lim
m→∞

lim
n→∞

[cos(m!πx)]2n =

{
1 if x is rational,

0 if x is irrational.

Indeed, if x is irrational then m!x is never an integer, so that f(x) = 0. On
the other hand, if x = p/q ∈ Q then m!x is an integer whenever m ≥ q, so
that f(x) = 1.

The limit function is everywhere discontinuous and not Riemann inte-
grable.

Example 1.4. Let fn : R→ R be defined by

fn(x) = sin(nx)√
n

for n ∈ N. Each fn is differentiable on R, with

f ′n(x) =
√
n cos(nx).

The limit function f satisfies

f(x) = lim
n→∞

fn(x) = 0 for every x ∈ R.

In particular, f is also differentiable on R, with f ′ ≡ 0 on R.

In particular we deduce

lim
n→∞

d
dxfn 6=

d
dx lim

n→∞
fn.

For example, f ′n(0) =
√
n→∞ as n→∞

Example 1.5. Let fn : [0, 1]→ R be defined by

fn(x) = nx(1− x2)n.

The limit function f : [0, 1]→ R satisfies

f(x) = lim
n→∞

fn(x) = 0 for all x ∈ [0, 1].

In particular, ∫ 1

0
f(x) dx = 0.

On the other hand, a simple substitution (e.g. u = 1− x2) reveals∫ 1

0
fn(x) dx = n

2(n+1) →
1
2 as n→∞.
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Thus ∫ 1

0
lim
n→∞

f(x) dx 6= lim
n→∞

∫ 1

0
fn(x) dx.

In fact, considering the example fn(x) = n2x(1 − x2)n shows that we may
even have

lim
n→∞

∫ 1

0
fn(x) dx =∞ while

∫ 1

0
lim
n→∞

fn(x) dx = 0.

The takeaway of these examples is that one cannot always freely inter-
change limit operations.

At least, we have seen that pointwise convergence is too weak to allow us
to make such interchanges.

1.2. Uniform convergence. We first revisit the definition of pointwise
convergence: a sequence of functions fn : E → R converges pointwise to
f : E → R if

for all x ∈ E and for all ε > 0 there exists N = N(x, ε)

such that n ≥ N =⇒ |fn(x)− f(x)| < ε.

We now introduce a stronger notion of convergence, namely uniform con-
vergence.

Definition 1.2. Let {fn} be a sequence of functions fn : E → R. We say
fn converges uniformly to f : E → R if

for all ε > 0 there exists N = N(ε) such that for all x ∈ E,
n ≥ N =⇒ |fn(x)− f(x)| < ε.

We write fn → f uniformly on E.

This convergence is uniform in the sense that a single choice of N = N(ε)
works uniformly over all choices of x ∈ E.

Uniform convergence is stronger than pointwise convergence (that is, uni-
form convergence implies pointwise convergence).

Example 1.6. Let fn : (0, 1)→ R be given by fn(x) = xn.

Then fn → 0 pointwise on (0, 1) but not uniformly.

However, fn → 0 uniformly on any interval of the form (0, δ) with δ < 1.

Definition 1.3. Let {fn} be a sequence of functions fn : E → R. A series
of functions

∑∞
n=1 fn(x) converges uniformly on E if the sequence of partial

sums

sn : E → R defined by sn(x) =
n∑
i=1

fi(x)
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converges uniformly on E.

A sequence of functions that is ‘uniformly Cauchy’ converges uniformly.

Theorem 1.4 (Cauchy criterion for uniform convergence). A sequence of
functions fn : E → R converges uniformly on E if and only if the following
holds:

for every ε > 0 there exists N = N(ε) such that for all x ∈ E,
m, n ≥ N =⇒ |fn(x)− fm(x)| < ε.

(1.1)

Proof. =⇒ : Suppose {fn} converges uniformly to f . Then for any ε > 0
there exists N = N(ε) so that

|fn(x)− f(x)| < 1
2ε for any n ≥ N, x ∈ E.

Then for n,m ≥ N we have

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ε

for any x ∈ E. This implies the uniform Cauchy condition.

⇐=: Suppose the Cauchy condition holds. In particular, for each x ∈ E,
the sequence {fn(x)} is a Cauchy sequence in R.

Consequently, the sequence fn converges pointwise to a function f : E →
R.

Now let ε > 0 and choose N as in (1.1). Fix n ≥ N and x ∈ E. Then for
any m, we may write

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|.
Taking the limsup as m → ∞ and using (1.1) and pointwise convergence
now yields

|fn(x)− f(x)| < ε+ 0.

This completes the proof. �

The following result follows from the definition of uniform convergence:

Theorem 1.5. Suppose fn → f pointwise on a set E. Define

Mn := sup
x∈E
|fn(x)− f(x)|.

Then fn → f uniformly on E if and only if limn→∞Mn = 0.

The following test for uniform convergence is due to Weierstrass.

Theorem 1.6. Suppose fn : E → R is a sequence of functions satisfying

sup
x∈E
|fn(x)| ≤Mn

for some {Mn} ⊂ R.

If
∑
n

Mn converges, then
∑
n

fn converges uniformly.
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Proof. Suppose
∑

nMn converges and let ε > 0. Then for n ≥ m sufficiently
large, we have ∣∣∣∣ n∑

i=m

fi(x)

∣∣∣∣ ≤ n∑
i=m

Mi < ε

for any x ∈ E. Using Theorem 1.5, this implies that
∑
fn converges uni-

formly. �

Uniform limits inherit continuity. This will be a consequence of the fol-
lowing theorem.

Theorem 1.7. Suppose fn → f uniformly on an open set E. Suppose x ∈ E
and

lim
y→x

fn(y) = An.

Then {An} converges, with

lim
n→∞

An = lim
y→x

f(y).

That is,
lim
n→∞

lim
y→x

fn(y) = lim
y→x

lim
n→∞

fn(y).

Proof. Let ε > 0. By uniform convergence, there exists N = N(ε) so that

n,m ≥ N and y ∈ E =⇒ |fn(y)− fm(y)| < ε.

Taking the limsup as y → x yields

|An −Am| < ε.

Thus {An} is Cauchy, and hence convergent. Denote A = limn→∞An.

Next, for any n and y ∈ E, we have

|f(y)−A| ≤ |f(y)− fn(y)|+ |fn(y)−An|+ |An −A|.
Given ε > 0, we may choose n large enough that

|f(y)− fn(y)| < 1
3ε for all y ∈ E.

Choosing n possibly larger, we may also guarantee

|An −A| < 1
3ε.

Finally, for this (fixed) n, we choose a neighborhood U 3 x so that

|fn(y)−An| < 1
3ε for y ∈ U.

Continuing from above, we have

|fn(y)−A| < ε for y ∈ U,
which completes the proof. �

This implies the following:

Theorem 1.8. If {fn} is a sequence of continuous functions on E and
fn → f uniformly on E, then f is continuous on E.
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Proof. Let x ∈ E be a limit point of E. Then by the previous theorem and
continuity of the {fn}, we have

lim
y→x

f(y) = lim
y→x

lim
n→∞

fn(y) = lim
n→∞

lim
y→x

fn(y) = lim
n→∞

fn(x) = f(x).

This implies f is continuous at each x ∈ E. �

Remark 1.9. The limit function may be continuous, even if the convergence
is not uniform. See Example 1.5.

There is a case when the converse is true:

Theorem 1.10. Let K ⊂ R be compact. Suppose

• {fn} are continuous functions on K,
• fn → f pointwise on K, with f continuous,
• fn(x) ≥ fn+1(x) for x ∈ K and n ≥ 1.

Then fn → f uniformly.

Proof. The functions gn = fn − f are continuous, gn → 0 pointwise, and
gn ≥ gn+1.

Let ε > 0 and define

Kn = {x ∈ K : gn(x) ≥ ε}.
As gn is continuous, we have that Kn is closed and hence compact.

As gn ≥ gn+1, we have Kn ⊃ Kn+1.

Now consider any x ∈ K. Since gn(x) → 0, we have x /∈ Kn for n large
enough.

As x was arbitrary, we conclude that ∩∞n=1Kn = ∅.
As Kn ⊃ Kn+1, this implies KN = ∅ for some N (and hence for all n ≥ N).

This implies 0 ≤ gn(x) < ε for all x ∈ K and n ≥ N .

This implies gn → 0 uniformly, which completes the proof. �

Compactness is necessary. Indeed, fn(x) = 1
nx+1 converges to zero mono-

tonically for x ∈ (0, 1), but not uniformly.

We next introduce the space C(X).

Definition 1.11. Let X ⊂ R. We let C(X) denote the set of all real-valued,
continuous, bounded functions on X.

For f ∈ C(X), we define the supremum norm by

‖f‖ = sup
x∈X
|f(x)|.

Note that ‖f‖ <∞ for all f ∈ C(X).
The quantity ‖ · ‖ satisfies the definitions of a norm, namely:

• ‖f‖ = 0 implies f ≡ 0,
• ‖f + g‖ ≤ ‖f‖+ ‖g‖,



10 JASON MURPHY

• ‖cf‖ = |c|‖f‖ for c ∈ R.

Furthermore, (f, g) 7→ ‖f − g‖ defines a metric on C(X).

Remark 1.12.

(i) This definition makes sense for an arbitrary metric space X (and
complex-valued functions).

(ii) If X is compact, then the boundedness assumption is redundant.

(iii) Theorem 1.5 may be restated as follows: fn → f uniformly on X if
and only if fn → f in the metric of C(X).

We close this section with the following result:

Theorem 1.13. The space C(X) is a complete metric space.

Proof. Let {fn} be a Cauchy sequence in C(X). Then for any ε > 0, there
exists N such that ‖fn − fm‖ < ε for all n,m > N .

Then by Theorem 1.4, fn converges uniformly to some f : X → R.

Moreover, by Theorem 1.8, f is continuous.

Finally, since each fn is bounded and there exists n such that

|fn(x)− f(x)| < 1 for all x ∈ X,
we deduce f is bounded. Thus f ∈ C(X) and ‖fn − f‖ → 0 as n→∞. �

1.3. Uniform convergence and integration/differentiation. We recall
the definition of Riemann integration, including upper and lower sums (with

respect to a given partition), and upper and lower integrals (denoted by
∫̄

and
∫

).

Theorem 1.14. Suppose fn are Riemann integrable functions on an interval
[a, b] and fn → f uniformly on [a, b]. Then f is Riemann integrable and

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
f(x) dx.

Proof. Define
εn = sup

x∈[a,b]
|fn(x)− f(x)|.

In particular,
fn − εn ≤ f ≤ fn + εn,

so that∫ b

a
[fn(x)− εn] dx ≤

∫
f(x) dx ≤

∫
f(x) dx ≤

∫ b

a
[fn(x) + εn] dx.

In particular,

0 ≤
∫
f(x) dx−

∫
f(x) dx ≤ 2εn[b− a].
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Uniform convergence implies εn → 0 as n → ∞, and hence the upper and
lower integrals of f are equal.

Therefore f is Riemann integrable, and∣∣∣∣∫ b

a
f(x) dx−

∫ b

a
fn(x) dx

∣∣∣∣ ≤ εn[b− a]→ 0 as n→∞.

This completes the proof. �

Corollary 1.15. Suppose fn are Riemann integrable on [a, b] and the series

f(x) =

∞∑
n=1

fn(x)

converges uniformly on [a, b]. Then∫ b

a
f(x) dx =

∞∑
n=1

∫ b

a
fn(x) dx.

That is, the series may be integrated term-by-term.

We turn to the question of differentiation.

Theorem 1.16. Let fn be differentiable functions on an interval [a, b]. Sup-
pose fn(x0) converges for some x0 ∈ [a, b]. Suppose further that f ′n converges
uniformly on [a, b]. Then fn converges to a function f on [a, b], and f ′n → f ′.

Proof. Let ε > 0 and choose N so that

m,n ≥ N =⇒ |fn(x0)− fm(x0)| < 1
2ε and |f ′n(t)− f ′m(t)| < 1

2(b−a)ε

for all t ∈ [a, b].

By the mean value theorem (applied to fn − fm),

|fn(x)− fm(x)− [fn(t)− fm(t)]| < ε
2(b−a) |x− t| <

1
2ε (1.2)

for any x, t ∈ [a, b] and n,m ≥ N .

Thus, by the triangle inequality,

|fn(x)− fm(x)|
≤ |fn(x)− fm(x)− [fn(x0)− fm(x0)]|+ |fn(x0)− fm(x0)| < ε.

for any x ∈ [a, b] and n,m ≥ N .

Therefore fn → f converges uniformly on [a, b] for some function f .

We now show f ′n → f ′. Fix x ∈ [a, b] and define

φn(t) =
fn(t)− fn(x)

t− x
for t ∈ [a, b]\{x}. We have

lim
t→x

φn(t) = f ′n(x).
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By (1.2),
|φn(t)− φm(t)| < 1

2(b−a)ε for n,m ≥ N,
which shows that {φn} converges uniformly for any t 6= x.

Since fn → f , we see that the (uniform) limit of φn(t) must be

f(t)− f(x)

t− x
.

We now apply Theorem 1.7 to {φn} to deduce

f ′(x) = lim
t→x

f(t)−f(x)
t−x = lim

t→x
lim
n→∞

φn(t) = lim
n→∞

lim
t→x

φn(t) = lim
n→∞

f ′n(x),

as desired. �

If one assumes the f ′n are continuous, there is a much simpler proof using
the fundamental theorem of calculus. [See homework.]

We close this section with the following interesting construction.

Proposition 1.17. There exists a real-valued continuous function that is
nowhere differentiable.

Proof. Let φ(x) = |x| for x ∈ [−1, 1]. Extend φ to x ∈ R by imposing

φ(x+ 2) = φ(x).

For all s, t ∈ R, we have |φ(s) − φ(t)| ≤ |s − t|, which shows that φ is
continuous.

Let

f(x) =

∞∑
n=0

(3
4)nφ(4nx).

Using 0 ≤ φ ≤ 1, Theorem 1.6 implies that the series converges uniformly
on R, and hence f is continuous on R.

Let x ∈ R and for m ∈ N define

δm = ±1
2 · 4

−m,

where the sign is chosen to that

(4mx, 4m(x+ δm)) ∩ Z = ∅. (1.3)

(That this is possible follows from the fact that 4m|δm| = 1
2).

Next define

γn =
φ(4n(x+ δm))− φ(4nx)

δm
.

When n > m, 4nδm is an even integer, and hence γn = 0.

On the other hand, when 0 ≤ n ≤ m, we have |γn| ≤ 4n.

Finally, note that (1.3) implies

|γm| =
∣∣∣∣φ(4mx± 1

2)− φ(4mx)

±1
24−m

∣∣∣∣ = 4m.
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Thus∣∣∣∣f(x+ δm)− f(x)

δm

∣∣∣∣ =

∣∣∣∣ m∑
n=0

(3
4)nγn

∣∣∣∣ ≥ 3m −
m−1∑
n=0

3n = 1
2(3m + 1).

Noting that δm → 0 but 3m →∞, we deduce that f is not differentiable
at x. �

1.4. Equicontinuous families of functions.

Definition 1.18. Let {fn} be a sequence of functions on E ⊂ R.

We call {fn} pointwise bounded if {fn(x)} is a bounded sequence for
each x ∈ E, that is, if there exists φ : E → R so that

|fn(x)| ≤ φ(x) for all x ∈ E and n ≥ 1.

We call {fn} uniformly bounded if there exists M so that

|fn(x)| ≤M for all x ∈ E and n ≥ 1.

Theorem 1.19. If {fn} is a pointwise bounded sequence on a countable set
E, then {fn} has a subsequence {fnk

} that converges on E.

Proof. Write E = {xj}∞j=1.

As {fn(x1)} is bounded, there exists a subsequence denoted {f1,k} so that
f1,k(x1) converges.

Similarly, the sequence {f1,k(x2)} is bounded, and hence there exists a
further subsequence denoted {f2,k} so that {f2,k(xj)} converges for j = 1, 2.

Proceeding in this way yields subsequences {fn,k} such that {fn,k(xj)}
converges for each j = 1, 2, . . . , n.

Now consider the subsequence {fk,k}. This sequence satisfies that {fk,k(xj)}
converges for each j. �

Definition 1.20. A family F of functions f defined on a set E ⊂ R is
equicontinuous on E if

for all ε > 0 there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε for all f ∈ F .

Remark 1.21. Every element of an equicontinuous family is uniformly con-
tinuous.

Theorem 1.22. If K ⊂ R is compact, {fn} ⊂ C(K), and {fn} converges
uniformly on K, then {fn} is equicontinuous on K.

Proof. Let ε > 0. By uniform convergence, there exists N so that

n ≥ N =⇒ ‖fn − fN‖ < 1
3ε.
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As continuous functions on compact sets are uniformly continuous, there
exists δ > 0 so that

|x− y| < δ =⇒ |fi(x)− fi(y)| < 1
3ε for all 1 ≤ i ≤ N.

This gives equicontinuity for {fi}Ni=1, while if n > N and |x− y| < δ, then

|fn(x)− fn(y)| ≤ |fn(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− fn(y)| < ε.

The result follows. �

The following result is known as the Arzelá–Ascoli theorem.

Theorem 1.23. Let K ⊂ R be compact and {fn} ⊂ C(K). If {fn} is
pointwise bounded and equicontinuous on K, then:

• {fn} is uniformly bounded on K,
• {fn} has a uniformly convergent subsequence.

Proof. Let ε > 0 and choose δ > 0 so that

|x− y| < δ =⇒ |fn(x)− fn(y)| < 1
3ε for all n.

By compactness of K, there exist {pi}ri=1 ⊂ K so that

K ⊂ ∪ri=1(pi − δ, pi + δ).

As {fn} is pointwise bounded, for each i there exist Mi so that |fn(pi)| < Mi

for all n.

Writing M = max{Mi}, we deduce

|f(x)| < M + ε for all x ∈ K,

giving uniform boundedness.

Next, let E be a countable dense subset ofK. Then by Theorem 1.19, {fn}
has a subsequence (which we also denote by fn) such that fn(x) converges
for every x ∈ E.

We will show (the subsequence) fn converges uniformly on K.

Let ε > 0 and pick δ > 0 as above. For x ∈ E, let

V (x, δ) = {y ∈ K : |x− y| < δ}.

As E is dense in K and K is compact, there exist {xi}mi=1 ⊂ E so that

K ⊂ ∪mi=1V (xi, δ).

As {fn(x)} converges for x ∈ E, there exists N so that

|fi(xk)− fj(xk)| < 1
3ε for i, j ≥ N and 1 ≤ k ≤ m.

Now let x ∈ K. Then x ∈ V (xk, δ) for some k, so that for i, j ≥ N , we have

|fi(x)− fj(x)| ≤ |fi(x)− fi(xk)|+ |fi(xk)− fj(xk)|+ |fj(xk)− fj(x)| < ε,

which completes the proof. �
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1.5. The Stone–Weierstrass theorem. For this section we will consider
complex-valued functions.

We begin with the following approximation theorem.

Theorem 1.24 (Weierstrass theorem). Let f : [a, b] → C be continuous.
Then there exists a sequence of polynomials so that Pn → f uniformly on
[a, b].

Remark 1.25. This result holds for real-valued functions (with real poly-
nomials) as well.

Proof. Without loss of generality, take [a, b] = [0, 1]. We may also assume
f(0) = f(1) = 0, for then we may apply the result to

g(x) = f(x)− f(0)− x[f(1)− f(0)].

We set f ≡ 0 for x /∈ [0, 1], making f uniformly continuous on R.

For n ≥ 1, define

Qn(x) = cn(1− x2)n, where cn =
1∫ 1

−1(1− x2)n dx
,

so that ∫ 1

−1
Qn(x) dx ≡ 1.

Note that ∫ 1

−1
(1− x2)n dx ≥ 2

∫ 1√
n

0
(1− x2)n dx

≥ 2

∫ 1√
n

0
(1− nx2) dx = 4

3
√
n
,

which implies cn <
√
n. Here we used (1− x2)n ≥ 1− nx2 on (0, 1).

We deduce that for δ > 0 and |δ| < |x| ≤ 1,

Qn(x) ≤
√
n(1− δ2)n,

so that Qn → 0 uniformly for δ ≤ |x| ≤ 1.

Now define

Pn(x) =

∫ 1

−1
f(x+ t)Qn(t) dt, x ∈ [0, 1].

In particular, since f = 0 outside [0, 1],

Pn(x) =

∫ 1−x

−x
f(x+ t)Qn(t) dt =

∫ 1

0
f(t)Qn(t− x) dt.

which shows that Pn is a polynomial in x. (Furthermore, Pn ∈ R if f ∈ R.)

We now claim that Pn → f uniformly. To this end, we let ε > 0 and
choose δ > 0 so that

|x− y| < δ =⇒ |f(x)− f(y)| < 1
2ε.
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Let M = sup |f |. Using Qn ≥ 0 and
∫
Qn = 1, we have for x ∈ [0, 1]:

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣
≤
∫ 1

−1
|f(x+ t)− f(x)|Qn(t) dx

≤ 2M

∫ −δ
−1

Qn(t) dt+ 2M

∫ 1

δ
Qn(t) dt+ 1

2ε

∫ δ

−δ
Qn(t) dt

≤ 4M
√
n(1− δ2)n + ε

2 ,

so that

|Pn(x)− f(x)| < ε for all x ∈ [−1, 1] and n large enough.

This completes the proof. �

Corollary 1.26. For any a > 0, there exists a sequence of real polynomials
Pn so that Pn(0) = 0 and Pn(x)→ |x| uniformly on [−a, a].

Proof. Let P ∗n be the polynomials given by Theorem 1.24, and set Pn(x) =
P ∗n(x)− P ∗n(0). �

This approximation theorem can be generalized.

Definition 1.27. A family A of complex functions on a set E is an algebra
if for all f, g ∈ A and c ∈ C,

• f + g ∈ A,
• fg ∈ A,
• cf ∈ A.

We can also consider algebras of real-valued functions (in which we only
consider c ∈ R).

If A is closed under uniform convergence, then we call A uniformly
closed.

The uniform closure of A is the set of all uniform limits of sequences
in A.

The Weierstrass theorem states that the set of continuous functions on
[a, b] is the uniform closure of the algebra of polynomials on [a, b].

The following is left as an exercise:

Theorem 1.28. Let B be the uniform closure of an algebra A of bounded
functions. Then B is a uniformly closed algebra.

Definition 1.29. A family of functions A defined on a set E is said to
separate points if for every x1 6= x2 ∈ E there exists f ∈ A so that
f(x1) 6= f(x2).

If for each x ∈ E there exists g ∈ A so that g(x) 6= 0, we say A vanishes
at no point of E.
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For example, the algebra of polynomials has these properties on R. How-
ever, the algebra of even polynomials on [−1, 1] does not separate points
(since f(x) = f(−x) for every f in this algebra).

The following is also left as an exercise:

Theorem 1.30. Suppose A is an algebra of functions on E that separates
points and vanishes at no point of E. For any x1 6= x2 ∈ E and c1, c2 ∈ C,
there exists f ∈ A so that

f(x1) = c1 and f(x2) = c2.

If A is real, then this holds for c1, c2 ∈ R.

We can now state the generalization of Weierstrass’s theorem. It gives
conditions for an algebra of functions on a compact set K to be dense in
C(K).

Theorem 1.31 (Stone–Weierstrass, real version). Let A be an algebra of
real-valued continuous functions on a compact set K. If A separates points
on K and vanishes at no point of K, then the uniform closure B of A
consists of all real continuous functions on K.

Proof. The proof proceeds in four steps.
1. If f ∈ B then |f | ∈ B.

Let a = supx∈K |f(x)| and ε > 0. By the corollary above, there exist
{ci}ni=1 so that ∣∣∣∣ n∑

i=1

ciy
i − |y|

∣∣∣∣ < ε for y ∈ [−a, a].

As B is an algebra, the function

g =

n∑
i=1

cif
i

belongs to B. Thus ∣∣|g(x)− |f(x)|
∣∣ < ε for x ∈ K.

This implies that we may find gn ∈ B so that gn → |f | uniformly. As B is
uniformly closed, this implies that |f | ∈ B.

2. If f ∈ B and g ∈ B, then max{f, g} and min{f, g} belong to B.

This follows from Step 1 and the fact that

max{f, g} = 1
2(f + g) + 1

2 |f − g|, min{f, g} = 1
2(f + g)− 1

2 |f − g|.

By iterating this, we can extend Step 2 to any finite collection of functions
in B.

3. For f ∈ C(K), x ∈ K, and ε > 0, there exists gx ∈ B so that

gx(x) = f(x) and gx(t) > f(t)− ε for t ∈ K.
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As A ⊂ B and A satisfies the hypotheses of the preceding theorem, so
does B. Thus for y ∈ K we may find hy ∈ B so that

hy(x) = f(x) and hy(y) = f(y).

By continuity of hy, there exists open Uy 3 y so that

hy(t) > f(t)− ε for t ∈ Uy.
As K is compact, there exists {y1, . . . , yn} so that

K ⊂ ∪nj=1Uyj .

Now the function gx = max{hyj} ∈ B has the desired properties.

4. For f ∈ C(K) and ε > 0, there exists h ∈ B so that ‖h− f‖ < ε.
This implies that we may find hn ∈ B so that hn → f uniformly. As B is

uniformly closed, this implies the theorem.

Let ε > 0 and for each x ∈ K define gx ∈ B as in Step 3. By continuity,
there exist open sets Ux 3 x so that

gx(t) < f(t) + ε for t ∈ Ux.
By compactness of K, there exists {xi}mi=1 so that

K ⊂ ∪mi=1Uxi .

Now set h = min{gxi} ∈ B. Then by Step 3, we have h(t) > f(t)− ε on K,
while by construction h(t) < f(t) + ε on K. This implies the result. �

The analogue of Theorem 1.31 for complex-valued functions requires an
additional assumption, namely that the algebra is self-adjoint. This means
that the algebra is closed under complex conjugation.

We leave the complex version of Theorem 1.31 as an exercise. It can be
deduced from Theorem 1.31.

Theorem 1.32 (Stone–Weierstrass, complex version). Let A be a self-
adjoint algebra of complex-valued continuous functions on a compact set K.
If A separates points on K and vanishes at no point of K, then the uniform
closure B of A consists of all complex continuous functions on K.

1.6. Exercises.

Exercise 1.1. Show that the functions fn(x) = 1
nx+1 converge to zero mono-

tonically for x ∈ (0, 1) but not uniformly.

Exercise 1.2. Suppose that fn are differentiable functions on an interval
[a, b], with f ′n continuous on [a, b]. Suppose {fn(x0)} converge for some
x0 ∈ [a, b]. Finally, suppose f ′n converges uniformly on [a, b]. Then fn
converges uniformly to some f and f ′n → f ′.

Exercise 1.3. (i) Show that if {fn} and {gn} are bounded sequences that
converge uniformly, then {fngn} converges uniformly. (ii) Find {fn} and
{gn} that converge uniformly but {fngn} does not converge uniformly.
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Exercise 1.4. Let fn(x) = sin2(π/x) for 1
n+1 ≤ x ≤ 1

n and fn(x) = 0

otherwise. (i) Show that fn converges to a continuous function but not
uniformly. (ii) Show that

∑
fn converges absolutely for all x, but does not

converge uniformly.

Exercise 1.5. Show that
∑

(−1)n x
2+n
n2 converges uniformly on any bounded

interval, but does not converge absolutely at any point.

Exercise 1.6. Let fn(x) = x
1+nx2

. (i) Show that fn converges uniformly to

some f . (ii) Show that f ′n(x)→ f ′(x) everywhere but x = 0.

Exercise 1.7. Suppose
∑
|cn| <∞ and {xn} is a sequence of distinct points

in an interval [a, b]. Show that the series
∑
cnH(x−xn) converges uniformly

and is continuous off of the set {xn}, where H(x) = 1 for x > 0 and H(x) = 0
otherwise.

Exercise 1.8. Suppose fn are continuous and converge uniformly to f on a
set S. (i) Show fn(xn) → f(x) whenever E 3 xn → x ∈ E. (ii) Prove or
disprove the converse.

Exercise 1.9. Suppose fn are monotonically increasing functions on R taking
values in [0, 1]. (i) Show that there exists a function f and a sequence nk
such that fnk

→ f on R. (ii) If f is continuous, show that the convergence
is uniform.

Exercise 1.10. Show that if an equicontinuous family of functions converges
on a compact set, then the convergence is necessarily uniform.

Exercise 1.11. Classify all real-valued continuous functions f on R such that
{f(nx)}∞n=1 forms an equicontinuous family for x ∈ [0, 1].

Exercise 1.12. Suppose {fn} are uniformly bounded and Riemann integrable
on [a, b]. Show that Fn(x) :=

∫ x
a fn(t) dt converges uniformly along a subse-

quence.

Exercise 1.13. Suppose f is continuous on [0, 1] and satisfies
∫ 1

0 f(x)xn dx =
0 for all integers n ≥ 0. Show that f ≡ 0.

Exercise 1.14. Let S be the unit circle in the plane. Let A be the algebra of
functions of the form f(eiθ) =

∑N
n=0 cne

inθ. Show that A separates points
on S, A vanishes at no points of S, but that there are continuous functions
on S that are not in the uniform closure of A.

Exercise 1.15. Let B be the uniform closure of an algebra A of bounded
functions. Then B is a uniformly closed algebra.

Exercise 1.16. Suppose A is an algebra of functions on E that separates
points and vanishes at no point of E. For any x1 6= x2 ∈ E and c1, c2 ∈ C,
there exists f ∈ A so that

f(x1) = c1 and f(x2) = c2.

If A is real, then this holds for c1, c2 ∈ R.
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Exercise 1.17. Let φ be a continuous, bounded, real-valued function on
[0, 1]× R. Show that the initial-value problem

y′ = φ(x, y), y(0) = c

has a solution for any c ∈ R by carrying out the following scheme: let
xi = i/n and take fn to be continuous on [0, 1] with fn(0) = c and f ′n(t) =
φ(xi, fn(xi)) on (xi, xi+1). Then define ∆n(t) in such a way that

fn(x) = c+

∫ x

0
[φ(t, fn(t)) + ∆n(t)] dt.

Now show that {fn} converges uniformly on [0, 1] and ∆n → 0 uniformly on
[0, 1] to deduce that the limit f obeys

f(x) = c+

∫ x

0
φ(t, f(t)) dt.

2. Functions of bounded variation

Reference: Wheeden–Zygmund Chapter 2

2.1. Functions of bounded variation.

Definition 2.1. Let f : [a, b]→ R, and let

Γ = {x0, . . . , xm}
be a partition of [a, b]. Define

SΓ = SΓ[f ; a, b] =

m∑
i=1

|f(xi)− f(xi−1)|.

The variation of f over [a, b] is defined by

V = V [f ; a, b] = sup
Γ
SΓ.

As 0 ≤ SΓ < ∞, we have V ∈ [0,∞]. If V < ∞, we say f is of bounded
variation. We may write f ∈ BV ([a, b]) and V = ‖f‖BV . Otherwise, we
say f is of unbounded variation.

If we simply write SΓ, V , etc., then we assume that we are working with
some real-valued function f defined on an interval [a, b].

Example 2.1. If f is monotone on [a, b], then SΓ ≡ |f(b)− f(a)| and hence
V = |f(b)− f(a)|.

Example 2.2. If we can write [a, b] = ∪ki=1[ai, ai+1] with f monotone on each
subinterval, then

V =
k∑
i=1

|f(ai+1)− f(ai)|
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(see below).

Example 2.3. Let f(x) = 0 when x 6= 0 and f(0) = 1. Let [a, b] be any
interval with 0 ∈ (a, b). Then SΓ ∈ {0, 2}, depending on whether or not
0 ∈ Γ. Thus V [a, b] = 2.

If Γ = {x0, . . . , xm} is a partition of [a, b], then we define the norm of Γ
to be

|Γ| = max
i

[xi − xi−1].

If f is continuous on [a, b] and |Γj | → 0, then we will see that

V = lim
j→∞

SΓj .

The previous example shows that this may fail if there is even a single
discontinuity.

Example 2.4. Let f be the Dirichlet function: f(x) = 1 for x ∈ Q and
f(x) = 0 for x ∈ R\Q. Then V [a, b] =∞ for any interval.

Example 2.5. Continuity does not imply bounded variation:

Let {aj} and {dj} be decreasing sequences in (0, 1] with a1 = 1, aj , dj → 0,
and

∑
dj =∞.

Construct f as follows. On each [aj+1, aj ], the graph of f consists of the
sides of the isosceles triangle with base [aj+1, aj ] and height dj .

Then f(aj) = 0 and f(mj) = dj , where mj is the midpoint of aj+1 and
aj .

Setting f(0) = 0, we have that f is continuous on [0, 1].

Let Γk be the partition defined by 0, {aj}k+1
j=1 , and {mj}kj=1. Then SΓk

=

2
∑k

j=1 dj , whence V [f ; 0, 1] =∞.

Example 2.6. A function f : [a, b] → R is Lipschitz if there exists C > 0
such that

|f(x)− f(y)| ≤ C|x− y|, x, y ∈ [a, b].

Lipschitz implies bounded variation, with V [f ; a, b] ≤ C(b− a).

If f has a continuous derivative on [a, b], it is Lipschitz by the mean value
theorem (C can be taken to be the maximum of f ′).

The following theorem is left as an exercise:
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Theorem 2.2.

• If f is of bounded variation on [a, b], then f is bounded on [a, b].
• The family of bounded variation functions on [a, b] is an algebra.
• If f and g are of bounded variation and there exists ε > 0 so that
|g| > ε, then f/g is of bounded variation.

Definition 2.3. Let Γ be a partition. Another partition Γ̄ is a refinement
of Γ if Γ ⊂ Γ̄.

Note that if Γ̄ is a refinement of Γ, then (by the triangle inequality)
SΓ ≤ SΓ̄.

Theorem 2.4.

• If [a′, b′] ⊂ [a, b], then V [a′, b′] ≤ V [a, b].
• Variation is additive on adjacent intervals: V [a, b] = V [a, c]+V [c, b]

whenever a < b < c.

Proof. If Γ′ is any partition of [a′, b′], then Γ = Γ′ ∪ {a, b} is a partition of
[a, b] and

SΓ′ [a
′, b′] ≤ SΓ[a, b] ≤ V [a, b].

This implies V [a′, b′] ≤ V [a, b].

Write I = [a, b], I1 = [a, c], and I2 = [b, c]. Let V = V [a, b], Vj = V [Ij ].

If Γ1,Γ2 are partitions of I1, I2, then Γ = Γ1 ∪Γ2 is a partition of I, with

SΓ[I] = SΓ1 [I1] + SΓ2 [I2] ≤ V.

Taking the supremum over Γ1 and Γ2 yields V1 + V2 ≤ V .

On the other hand, suppose Γ is a partition of I. Let Γ̄ = Γ ∪ {c}. Then

SΓ[I] ≤ SΓ̄[I].

Note Γ̄ splits into partitions Γ1 of I1 and Γ2 of I2 (e.g. take Γ1 = Γ̄ ∩ I1).
Thus

SΓ[I] ≤ SΓ̄[I] = SΓ1 [I1] + SΓ2 [I2] ≤ V1 + V2.

Taking the supremum over all partitions Γ yields V ≤ V1 + V2. Thus V =
V1 + V2. �

Given x ∈ R, let

x+ =

{
x x > 0

0 x ≤ 0
and x− =

{
0 x > 0

−x x ≤ 0.

These are called the positive and negative parts of x. They satisfy

x+, x− ≥ 0, |x| = x+ + x−, x = x+ − x−.
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For a function f and a partition Γ = {xi}mi=0 of [a, b], let

PΓ = PΓ[f ; a, b] =
m∑
i=1

[f(xi)− f(xi−1)]+,

NΓ = NΓ[f ; a, b] =
m∑
i=1

[f(xi)− f(xi−1)]−.

Thus PΓ, NΓ ≥ 0, with

SΓ = PΓ +NΓ, PΓ −NΓ = f(b)− f(a).

The positive variation and negative variation are defined by

P = P [f ; a, b] = sup
Γ
PΓ, N = N [f ; a, b] = sup

Γ
NΓ.

Then P,N ∈ [0,∞].

Theorem 2.5. If any one of P , N, or V are finite, then all three are finite,
with

P +N = V and P −N = f(b)− f(a).

Equivalently,

P = 1
2 [V + f(b)− f(a)], N = 1

2 [V − (f(b)− f(a))].

Proof. As PΓ +NΓ = SΓ for any partition Γ, we have

PΓ +NΓ ≤ V.

Because PΓ, NΓ ≥ 0, this implies P ≤ V and N ≤ V . Thus, finiteness of V
implies finiteness of P,N .

Using PΓ+NΓ = SΓ again, we see that SΓ ≤ P+N and hence V ≤ P+N .

On the other hand, since PΓ − NΓ = f(b) − f(a), we see that finiteness
of P or N implies finiteness of the other, and hence finiteness of V . This
completes the first part of the theorem.

Now assume PΓk
→ P . Then NΓk

→ N (since PΓ − NΓ is constant for
any partition). Sending k →∞, we deduce

P −N = f(b)− f(a), P +N ≤ V.

Recalling V ≤ P +N , the theorem follows. �

Corollary 2.6 (Jordan’s theorem). A function is of bounded variation on
[a, b] if and only if it can be written as the difference of two bounded increas-
ing functions on [a, b].

Proof. ⇐= Bounded monotone functions are of bounded variation, and dif-
ferences of bounded variation functions are of bounded variation.

=⇒ Suppose f is of bounded variation on [a, b]. Then f is of bounded
variation on every [a, x] for x ∈ [a, b].
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Let P (x) and N(x) denote the positive and negative variations of f on
[a, x].

Noting that P,N also increase on increasing intervals (like V ), we have
that P,N are bounded and increasing on [a, b]. By the previous theorem,

f(x) = [P (x) + f(a)]−N(x) for x ∈ [a, b].

The corollary follows. �

We can rephrase the corollary by saying that f is the sum of a bounded
increasing function and a bounded decreasing function.

We turn to a continuity property of bounded variation functions. We
say that a discontinuity is of the first kind if it is a jump or removable
discontinuity.

Theorem 2.7. Every function of bounded variation has at most a countable
number of discontinuities, all of which are of the first kind.

Proof. Let f be of bounded variation on [a, b]. Using Jordan’s theorem, we
may assume f is bounded and increasing on [a, b]. Then the only disconti-
nuities of f are of the first kind; in fact, they are all jump discontinuities.
However, each jump continuity defines a distinct interval, which contains a
rational number; thus there can be at most countably many. �

Theorem 2.8. If f is continuous on [a, b], then

V = lim
|Γ|→0

SΓ.

That is, for M < V , there exists δ > 0 so that |Γ| < δ =⇒ SΓ > M .

Proof. Let M < V and let µ > 0 so that M + µ < V . Choose Γ̄ = {x̄j}kj=0

so that

SΓ̄ > M + µ.

By uniform continuity of f on [a, b], choose η > 0 so that

|x− y| < η =⇒ |f(x)− f(y)| < µ
2(k+1) .

Now take a partition Γ = {xi}mi=0 satisfying

|Γ| < η and |Γ| < min{x̄j − x̄j−1}.
We will show that SΓ > M , which will complete the proof.

We have

SΓ =

m∑
i=1

|f(xi)− f(xi−1)| = Σ1 + Σ2,

where Σ2 is the sum over i such that (xi−1, xi) ∩ Γ̄ 6= ∅.
By construction, (xi−1, xi) can contain at most the point x̄j from Γ̄. Thus

Σ2 has at most k + 1 summands.
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Now, we may write
SΓ∪Γ̄ = Σ1 + Σ3,

where Σ3 is obtained from Σ2 by replacing each term by

|f(xi)− f(x̄j)|+ |f(x̄j)− f(xi−1)|.
By uniform continuity, each of these is less than µ

2(k+1) , and thus

Σ3 < µ.

Therefore

SΓ = Σ1 + Σ2 ≥ Σ1 = SΓ∪Γ̄ − Σ3 > SΓ∪Γ̄ − µ ≥ SΓ̄ − µ > M,

as desired. �

Corollary 2.9. If f has a continuous derivative f ′ on [a, b], then

V =

∫ b

a
|f ′(x)| dx, P =

∫ b

a
{f ′(x)}+ dx, N =

∫ b

a
{f ′(x)}− dx.

Proof. Using the mean-value theorem,

SΓ =
m∑
i=1

|f ′(ξi)|(xi − xi−1)

for some ξi ∈ (xi−1, xi). Thus, by the definition of the Riemann integral,

V = lim
|Γ|→0

SΓ = lim
|Γ|→0

m∑
i=1

|f ′(ξi)|(xi − xi−1) =

∫ b

a
|f ′(x)| dx.

Moreover, using 1
2(|y|+ y) = y+,

P = 1
2 [V + f(b)− f(a)] = 1

2

[∫ b

a
|f ′(x)| dx+

∫ b

a
f ′(x) dx

]
=

∫ b

a
[f ′(x)]+ dx.

A similar argument yields the formula for N . �

The notion of bounded variation makes sense in the setting of open inter-
vals, infinite intervals, half-open intervals, complex-valued functions, etc.

2.2. Rectifiable curves. A curve C in the plane is two parametric equa-
tions

x = φ(t), y = ψ(t), t ∈ [a, b].

The graph of C is

{(x, y) : x = φ(t), y = ψ(t), t ∈ [a, b]}.

For a partition Γ = {ti}mi=0 of [a, b], we define

`(Γ) =

m∑
i=1

√
[φ(ti)− φ(ti−1)]2 + [ψ(ti)− ψ(ti−1)]2.

The length of C is defined by

L = L(C) = sup
Γ
`(Γ).
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We call C rectifiable if L <∞.

Theorem 2.10. A curve C is rectifiable if and only if φ and ψ are of
bounded variation. Moreover,

V (φ), V (ψ) ≤ L ≤ V (φ) + V (ψ).

Proof. We will use

|x|, |y| ≤
√
x2 + y2 ≤ |x|+ |y| for x, y ∈ R.

As

`(Γ) =
∑√

[φ(ti)− φ(ti−1)]2 + [ψ(ti)− ψ(ti−1)]2 ≤ L,
we have ∑

|φ(ti)− φ(ti−1)| ≤ L and
∑
|ψ(ti)− ψ(ti−1)| ≤ L.

This implies

V (φ), V (ψ) ≤ L.
Conversely,

`(Γ) ≤
∑
|φ(ti)− φ(ti−1)|+

∑
|ψ(ti)− ψ(ti−1)| ≤ V (φ) + V (ψ),

and hence L ≤ V (ψ) + V (ψ). �

If φ is a bounded function that is not of bounded variation, the the curve
x = y = φ(t) is not rectificable. However, the graph lies in a finite segment
of the line y = x.

Thus the length of the graph of a curve is not necessarily equal to the
length of the curve.

If C is given by y = f(x), then the theorem reduces to the statement that
C is rectifiable if and only if f is of bounded variation.

These ideas generalize to curves in Rn as well.

2.3. The Riemann–Stieltjes Integral.

Definition 2.11. Let f, φ : [a, b] → R. Let Γ = {xi}mi=0 be a partition of
[a, b] and let {ξi}mi=1 satisfy

xi−1 ≤ ξi ≤ xi for each i.

The quantity

RΓ :=

m∑
i=1

f(ξi)[φ(xi)− φ(xi−1)]

is called a Riemann–Stieltjes sum for Γ.

If

I = lim
|Γ|→0

RΓ (2.1)
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exists and is finite, then I is called the Riemann–Stieltjes integral of f
with respect to φ on [a, b], denoted

I =

∫ b

a
f(x) dφ(x) =

∫ b

a
f dφ.

The condition (2.1) means that for any ε > 0, there exists δ > 0 so that

|Γ| < δ =⇒ |I −RΓ| < ε

(for any choice of ξi). Equivalently, the integral exists if and only if for any
ε > 0, there exists δ > 0

|Γ|, |Γ′| < δ =⇒ |RΓ −RΓ′ | < ε.

Here are some properties of the integral:

• If φ(x) = x, then the Riemann–Stieltjes integral is simply the Rie-
mann integral.
• If f is continuous on [a, b] and φ is continuously differentiable on

[a, b], then ∫ b

a
f dφ =

∫ b

a
fφ′ dx.

Indeed, the essential fact is the mean value theorem:∑
f(ξi)[φ(xi)− φ(xi−1)] =

∑
f(ξi)φ

′(ηi)(xi − xi−1)

• Suppose φ is a step function, that is, there exists partition {αi}mi=0
of [a, b] such that φ is constant on each (αi−1, αi). Define the left
and right limits at αi by

φαi+ = lim
x→αi+

φ(x) for i = 0, . . . ,m− 1,

φαi− = lim
x→αi−

φ(x) for i = 1, . . . ,m.

Define the jumps of φ by

di =


φ(αi+)− φ(αi−), i = 1, . . . ,m− 1

φ(α0+)− φ(α0), i = 0

φ(αm)− φ(αm−), i = m.

For f ∈ C([a, b]), one can check that∫ b

a
f dφ =

m∑
i=0

f(αi)di.

• The most important cases occur when φ is monotone (or of bounded
variation).

• If
∫ b
a f dφ exists, then f and φ have no common points of disconti-

nuity.



28 JASON MURPHY

Proof. Suppose f, φ are both discontinuous at x̄ ∈ (a, b).

Suppose the discontinuity of φ is not removable.

Then there exists ε0 > 0 so that for any δ > 0 there exist x̄1, x̄2 with

x̄− 1
2δ < x̄1 < x̄ < x̄2 < x̄+ 1

2δ and |φ(x̄2)− φ(x̄1)| > ε0.

Given δ > 0, take a partition Γ = {xi} of [a, b] so that |Γ| < δ, with
xi0−1 = x̄1 and xi0 = x̄2 for some i0.

Let ξi ∈ [xi−1, xi] for i 6= i0 and ξi0 6= ξ′i0 ∈ [xi0−1, xi0 ]

Let RΓ be the Riemann–Stieltjes sum using ξi in [xi−1, xi] and ξi0 ∈
[xi0−1, xi0 ], and define RΓ′ similarly but using ξ′i0 ∈ [xi0−1, xi0 ]. Then

|RΓ −RΓ′ | > ε0|f(ξi0)− f(ξ′i0)|.

As f is discontinuous at x̄, we can choose ξi0 , ξ
′
i0

so that

|f(ξi0)− f(ξ′i0)| > µ

for some µ (independent of ε). It follows that

RΓ −RΓ′ 6→ 0 as |Γ|, |Γ′| → 0.

Similar arguments treat the case of a removable discontinuity at x̄,
or with x̄ ∈ {a, b}. �

The following theorem follows from the definition of the integral and is
left as an exercise.

Theorem 2.12 (Linearity).

(i) If
∫ b
a f dφ exists, then for any c ∈ R∫ b

a
cf dφ =

∫ b

a
fd(cφ) = c

∫ b

a
f dφ.

(In particular, the first two integrals exist.)

(ii) If
∫ b
a f1 dφ and

∫ b
a f2 dφ exist then∫ b

a
(f1 + f2) dφ =

∫ b

a
f1 dφ+

∫ b

a
f2 dφ.

(In particular, the integral exists.)

(iii) If
∫ b
a f dφ1 and

∫ b
a f dφ2 exist, then∫ b

a
f d(φ1 + φ2) =

∫ b

a
f dφ1 +

∫ b

a
f dφ2.

(In particular, the integral exists.)

We also have the following:
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Theorem 2.13 (Additivity). If
∫ b
a f dφ exists and c ∈ (a, b), then∫ b

a
f dφ =

∫ c

a
f dφ+

∫ b

c
f dφ.

(In particular, the latter two integrals exist.)

Proof. Denote a sum corresponding to a partition of [a, b] by RΓ[a, b], and
similarly with other intervals.

Let ε > 0. Choose δ > 0 so that for any partitions Γ′1 and Γ′2 of [a, b] with
|Γ′1|, |Γ′2| < δ, we have

|RΓ′1
[a, b]−RΓ′2

[a, b]| < ε. (2.2)

Now let Γ1,Γ2 be partitions of [a, c] and let Γ′ be a partition of [c, b]. Let

Γ′1 = Γ1 ∪ Γ′, Γ′2 = Γ2 ∪ Γ′.

Then
RΓ′1

[a, b] = RΓ1 [a, c] +RΓ′ [c, b],

RΓ′2
[a, b] = RΓ2 [a, c] +RΓ′ [c, b].

(2.3)

Now assume |Γ1|, |Γ2| < δ and choose Γ′ with |Γ′| < δ. Then |Γ′1|, |Γ′2| < δ
and (2.2) implies

|RΓ1 [a, c]−RΓ2 [a, c]| < ε.

This gives existence of
∫ c
a f dφ. Existence of

∫ b
c f dφ follows similarly. More-

over, (2.3) implies ∫ b

a
f dφ =

∫ c

a
f dφ+

∫ b

c
f dφ.

�

We turn to an integration by parts formula.

Theorem 2.14. If
∫ b
a f dφ exists, then so does

∫ b
a φdf , and∫ b

a
f dφ = [f(b)φ(b)− f(a)φ(a)]−

∫ b

a
φdf.

Proof. Let Γ = {xi}mi=1 be a partition of [a, b] and ξi ∈ [xi−1, xi]. Then

RΓ =

m∑
i=1

f(ξi)[φ(xi)− φ(xi−1)]

=

m∑
i=1

f(ξi)φ(xi)−
m∑
i=1

f(ξi)φ(xi−1)

=

m∑
i=1

f(ξi)φ(xi)−
m−1∑
i=0

f(ξi+1)φ(xi)

= −
m−1∑
i=1

φ(xi)[f(ξi+1)− f(ξi)] + f(ξm)φ(b)− f(ξ1)φ(a).
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Now add and subtract

φ(a)[f(ξ1)− f(a)] + φ(b)[f(b)− f(ξm)]

on the right-hand side. This yields

RΓ = −TR + [f(b)φ(b)− f(a)φ(a)],

where

TR =

m−1∑
i=1

φ(xi)[f(ξi+1)− f(ξi)] + φ(a)[f(ξ1)− f(a)] + φ(b)[f(b)− f(ξm)].

This is in fact a Riemann–Stieltjes sum for
∫ b
a φdf .

From this we deduce
∫ b
a f dφ exists if and only if

∫ b
a φdf exists.

Moreover, ∫ b

a
f dφ = [f(b)φ(b)− f(a)φ(a)]−

∫ b

a
φdf,

as desired. �

Next, suppose f is bounded and φ is increasing on [a, b]. For a partition
Γ = {xi}mi=0 of [a, b], define

mi = inf
x∈[xi−1,xi]

f(x),

Mi = sup
x∈[xi−1,xi]

f(x),

LΓ =
m∑
i=1

mi[φ(xi)− φ(xi−1)],

UΓ =
m∑
i=1

Mi[φ(xi)− φ(xi−1)].

Note that

LΓ ≤ RΓ ≤ UΓ.

We call LΓ and UΓ the lower and upper Riemann–Stieltjes sums for
Γ.

Lemma 2.15. Let f be bounded and φ be increasing on [a, b].

(i) If Γ′ is a refinement of Γ (that is, Γ ⊂ Γ′), then

LΓ′ ≥ LΓ and UΓ′ ≤ UΓ.

(ii) For any partitions Γ1 and Γ2,

LΓ1 ≤ UΓ2 .
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Proof. For (i), it is enough to check the case that Γ′ = Γ∪{x′}. In this case,
if x′ ∈ (xi−1, xi) (where Γ = {xk}), then

sup
[xi−1,x′]

f(x) ≤Mi and sup
[x′,xi]

f(x) ≤Mi,

so

sup
[xi−1,x′]

f(x)[φ(x′)−φ(xi−1)]+ sup
[x′,xi]

f(x)[φ(xi)−φ(x′)] ≤Mi[φ(xi)−φ(xi−1)],

giving UΓ′ ≤ UΓ. A similar argument handles lower sums.

For (ii), note that Γ1 ∪ Γ2 is a refinement of both Γ1 and Γ2, and hence

LΓ1 ≤ LΓ1∪Γ2 ≤ UΓ1∪Γ2 ≤ UΓ2 ,

as desired. �

The following result gives sufficient conditions for the existence of
∫
f dφ.

Theorem 2.16. Suppose f ∈ C([a, b]) and φ ∈ BV ([a, b]). Then
∫ b
a f dφ

exists, and ∣∣∣∣∫ b

a
f dφ

∣∣∣∣ ≤ ‖f‖ ‖φ‖BV =
[
sup
[a,b]
|f |
]
· V [φ; a, b].

Proof. It suffices to consider the case that φ is increasing (and non-constant).

In this case,

LΓ ≤ RΓ ≤ UΓ,

and hence it suffices to show

lim
|Γ|→0

LΓ = lim
|Γ|→0

UΓ.

Let Γ = {xi} be a partition of [a, b]. By uniform continuity of f , for any
ε > 0 there exists δ > 0 such that

|Γ| < δ =⇒ Mi −mi <
ε

φ(b)−φ(a) .

Thus

0 ≤ UΓ − LΓ =
∑

[Mi −mi](φ(xi)− φ(xi−1) < ε,

and so

lim
|Γ|→0

[UΓ − LΓ] = 0.

It remains to prove that lim|Γ|→0 UΓ exists. If not, there would exist
ε0 > 0 and sequences of partitions {Γk}, {Γ′k} such that

|Γk|, |Γ′k| → 0 but UΓk
− UΓ′k

> ε0.

However, this means that for large enough k,

LΓk
− UΓ′k

> 0,

contradicting that LΓ ≤ UΓ′ for any partitions.
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The desired bound, i.e. ∣∣∣∣∫ b

a
f dφ

∣∣∣∣ ≤ ‖f‖‖φ‖BV
follows from an analogous bound on RΓ and taking the limit. �

Combining this result with the ‘integration by parts’ formula, we see that∫
f dφ exists if either f or φ is continuous and the other is of bounded

variation.

We turn to the following mean value theorem for Riemann–Stieltjes inte-
grals.

Theorem 2.17 (Mean value theorem). Let f ∈ C([a, b]) and φ be a bounded
increasing function on [a, b]. Then there exists ξ ∈ [a, b] so that∫ b

a
f dφ = f(ξ)[φ(b)− φ(a)].

Proof. We have

(min f)[φ(b)− φ(a)] ≤ RΓ ≤ (max f)[φ(b)− φ(a)]

for any partition Γ. Since
∫ b
a f dφ exists, we therefore have

min f ≤
∫ b
a f dφ

φ(b)− φ(a)
≤ max f.

The result now follows from the intermediate value theorem. �

We can define Riemann–Stieltjes integrals on open intervals, half-open
intervals, infinite intervals, etc. For example, for (a, b) we would set∫ b

a
f dφ = lim

a′→a, b′→b

∫ b′

a′
f dφ,

where the right-hand side has integrals over [a′, b′].

2.4. Further results. Suppose f is bounded and φ is increasing. Then we
always have

sup
Γ
LΓ ≤ inf

Γ
UΓ.

Question. If

sup
Γ
LΓ = inf

Γ
UΓ, (2.4)

then does
∫ b
a f dφ exist? [This is the case, for example, for Riemann inte-

grals.]
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Answer. No. Let [a, b] = [−1, 1] and define

f(x) =

{
0 x ∈ [−1, 0)

1 x ∈ [0, 1],

φ(x) =

{
0 x ∈ [−1, 0]

1 x ∈ (0, 1].

As f and φ have a common discontinuity,
∫ b
a f dφ does not exist. Depending

on whether or not a partition Γ straddles 0, we have RΓ ∈ {0, 1} and in
particular does not have a limit.

However, UΓ ≡ 1, while LΓ ∈ {0, 1}. Thus (2.4) holds.

We do have the following results, the proofs of which we leave as exercises.

Theorem 2.18. Let f be bounded and φ increasing on [a, b]. If
∫ b
a f dφ

exists, then

lim
|Γ|→0

LΓ = lim
|Γ|→0

UΓ = sup
Γ
LΓ = inf

Γ
UΓ =

∫ b

a
f dφ.

[Hint: given ε > 0, take a sufficiently fine partition and refine it in two ways,
first picking points that almost attain the infimum, and second picking points
that almost attain the supremum. This will give you good approximations
to UΓ and LΓ that are close to the value of the integral.]

Theorem 2.19. Let f be bounded and φ increasing and continuous on [a, b].
Then

lim
|Γ|→0

LΓ = sup
Γ
LΓ, lim

|Γ|→0
UΓ = inf

Γ
UΓ.

Moreover, if (2.4) holds, then
∫ b
a f dφ exists and

sup
Γ
LΓ = inf

Γ
UΓ =

∫ b

a
f dφ.

[Hint: the proof is similar in spirit to that of Theorem 2.8.]

2.5. Exercises.

Exercise 2.1. Show that if f and g are of bounded variation on [a, b], then
so is the pointwise product fg. [Hint: First show f, g are bounded.]

Exercise 2.2. Show that f(x) = x sin(1/x) (with f(0) := 0) is bounded and
continuous on [0, 1] but has infinite variation.

Exercise 2.3. Show that if f is of bounded variation and continuous on [a, b],
then V (x), P (x), N(x) are also continuous.

Exercise 2.4. Construct a continuous function on [0, 1] that is not BV on
any subinterval.
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Exercise 2.5. (i) Suppose fk is a sequence of BV functions with variation
uniformly bounded on an interval [a, b]. Show that if fk → f pointwise on
[a, b], then f is BV and V [f ] ≤ lim supk→∞ V [fk]. (ii) Find an example of a
convergent sequence of BV functions whose limit is not BV.

Exercise 2.6. Let φ = 0 for x < 0, φ = 1 for x > 0, and φ(0) = 1
2 . Show

that the Riemann–Stieltjes integral of f with respect to φ exists if and only
if f is continuous at x = 0.

Exercise 2.7. Suppose f and g are Riemann–Stieltjes integrable with respect
to φ on [a, b]. Show that∣∣∣∣∫ b

a
fg dφ

∣∣∣∣ ≤ (∫ b

a
|f |pdφ

) 1
p
(∫ b

a
|g|qdφ

) 1
q

whenever p, q are positive real numbers such that 1
p+ 1

q = 1. [Hint. Combine

the fact that uv ≤ 1
pu

p + 1
qv
q for u, v ≥ 0 and the fact that

∫ b
a fg dφ ≤ 1

whenever f, g ≥ 0 and
∫ b
a f

pdφ =
∫ b
a g

qdφ = 1.]

Exercise 2.8. If λ1 < λ2 < · · · < λm is a finite sequence and s ∈ R, write∑
k ake

−sλk as a Riemann–Stieltjes integral.

Exercise 2.9. Show that
∫ b
a f dφ exists if and only if for any ε > 0 there

exists δ > 0 so that |RΓ −RΓ′ | < ε whenever |Γ|, |Γ′| < δ.

Exercise 2.10. Show that if
∫ b
a f1 dφ and

∫ b
a f2 dφ exist, then

∫ b
a [f1 + f2]dφ

exists and equals the sum of
∫ b
a f1 dφ and

∫ b
a f2 dφ.

Exercise 2.11. Suppose f is continuous and φ is BV on some interval [a, b].
(i) Show that ψ(x) :=

∫ x
a f dφ is BV on [a, b]. (ii) Show that for continuous

g, we have
∫ b
a g dψ =

∫ b
a gf dφ.

Exercise 2.12. Suppose φ is BV on [a, b] and that f is bounded and continu-
ous except for finitely many jump discontinuities on [a, b]. If φ is continuous

at each discontinuity of f , show that
∫ b
a f dφ exists.

Exercise 2.13. Suppose f is continuous on R with f → 0 as |x| → ∞, and
that φ is BV on R. Show that

∫
R f dφ exists.

Exercise 2.14. Let γ1(t) = eit, γ2(t) = e2it, and γ3(t) = e2πit sin(1/t), with
t ∈ [0, 2π]. Show that these three curves have the same range, that the
length of γ1 is 2π, that the length of γ2 is 4π, and that γ3 is not rectifiable.

Exercise 2.15. Let C be a curve with parametric equations x = φ(t) and
y = ψ(t) for t ∈ [a, b]. Show that if φ, ψ are continuously differentiable when
the length of the curve is∫ b

a

(
[φ′(t)]2 + [ψ′(t)]2

) 1
2 dt.
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3. Lebesgue measure and outer measure

Reference: Wheeden–Zygmund Chapter 3

3.1. Lebesgue outer measure; the Cantor set. Given ak ≤ bk (k =
1, . . . , n), we define the n-dimensional intervals

I = {x ∈ Rn : ak ≤ xk ≤ bk, k = 1, . . . , n}
and their volumes

v(I) =
n∏
k=1

[bk − ak].

Definition 3.1. Any set E ⊂ Rn may be covered by a countable collection
S of intervals Ik (that is, E ⊂ ∪kIk). For each such cover S, define

σ(S) =
∑
Ik∈S

v(Ik).

The outer measure of a set E ⊂ Rn is defined by

|E|e = inf σ(S) ∈ [0,∞]

where the infimimum is taken over all such covers S.

Theorem 3.2. If I is an interval, then |I|e = v(I).

Proof. Since I is a cover of itself, we have

|I|e ≤ v(I).

Conversely, let S = {Ik} be a cover of I and let ε > 0. Denote by I∗k and
interval containing Ik in its interior, with

v(I∗k) < (1 + ε)v(Ik).

Since I ⊂ ∪k(I∗k)◦ (where ◦ denotes interior) and I is compact, it follows
that

I ⊂ ∪Nk=1I
∗
k for some N.

Thus

v(I) ≤
N∑
k=1

v(I∗k) ≤ (1 + ε)
N∑
k=1

v(Ik) ≤ (1 + ε)σ(S).

This implies
v(I) ≤ σ(S),

and hence upon taking the infimum that

v(I) ≤ |I|e.
This completes the proof. �

One can check that the boundary of any interval has outer measure zero.

We record a few other properties of outer measure.
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Theorem 3.3. If E1 ⊂ E2 then |E1|e ≤ |E2|e.

Proof. This follows from the fact that any cover of E2 is a cover of E1. �

Theorem 3.4. If E = ∪kEk is a countable union, then

|E|e ≤
∑
k

|Ek|e.

Proof. It suffices to assume |Ek|e <∞ for each k.

Let ε > 0 and for each k choose intervals Ikj so that

Ek ⊂ ∪jIkj and
∑
j

v(Ikj ) ≤ |Ek|+ ε2−k.

Then
E ⊂ ∪j,kIkj ,

and so

|E|e ≤
∑
k

∑
j

v(Ikj ) ≤
∑
k

[|Ek|e + ε2−k] ≤
∑
k

|Ek|e + ε.

As ε > 0 was arbitrary, the result follows. �

Remark 3.5. Any subset of a set with outer measure zero has outer measure
zero, and the countable union of sets of outer measure zero has outer measure
zero. In particular, since a point has outer measure zero, any countable
subset of Rn has outer measure zero.

On the other hand, there are uncountable subsets with outer measure zero.

Before presenting an example, we introduce the notion of a perfect set.

Definition 3.6. A set C is perfect if C is closed and every point in C is a
limit point of C. That is, for any x ∈ C, there exists {xk} ⊂ C\{x} so that
xk → x.

We leave the following as an exercise.

Proposition 3.7. A perfect set is uncountable.

Example 3.1 (Cantor set). For a closed interval [a, b], define

F ([a, b]) = [a, 2
3a+ 1

3b] ∪ [1
3a+ 2

3b, b].

Note {a, b} ⊂ F ([a, b]) ⊂ [a, b]. We extend this to disjoint closed intervals
{Ij}nj=1 via

F (∪nj=1Ij) = ∪nj=1F (Ij).

Note that F (Ij) are also disjoint, and that F (∪Ij) contains the endpoints
of all the Ij .

Now define a sequence of sets {Ck} via

C0 = [0, 1], Ck+1 = F (Ck) ⊂ Ck.
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By construction, Ck is the union of 2k closed disjoint intervals of length (1
3)k.

The set

C :=

∞⋂
k=0

Ck

is called the Cantor set (or the Cantor 1
3 set). Note that C is a closed

subset of [0, 1] that contains the endpoints of all of the intervals in each Ck.

As C is covered by the intervals in each Ck, we deduce

|C|e ≤ 2k3−k for any k, so that |C|e = 0.

Moreover, we claim C is perfect (and hence uncountable). Indeed, if
x ∈ C then x belongs to some interval in Ck for each k. Thus, since the
length of these intervals approaches 0, x is the limit of the endpoints of these
intervals (which belong to C by construction).

We will next construct a function related to the Cantor set that we will
use in later sections.

Example 3.2 (Cantor–Lebesgue function). Let Ck be as in the Cantor set
construction, and define

Dk = [0, 1]\Ck.
Then Dk consists of 2k − 1 intervals Ikj (ordered from left to right) removed
in the first k stages of the Cantor set construction.

Let fk be the continuous function on [0, 1] satisfying

• fk(0) = fk(1) = 1,
• fk(x) = j2−k on Ikj , j = 1, . . . , 2k − 1,
• fk is linear on each interval of Ck.

Each fk is increasing, with

fk+1 = fk on Ikj , j = 1, . . . , 2k − 1.

Furthermore

|fk − fk+1| < 2−k.

Thus ∑
k

[fk − fk+1]

converges uniformly on [0, 1], and hence {fk} converges uniformly on [0, 1].

Let f = limk→∞ fk. Then

• f(0) = f(1) = 1,
• f is increasing and continuous on [0, 1],
• f is constant on every interval removed in the Cantor set construc-

tion.
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The function f is called the Cantor–Lebesgue function.

We next consider the question of approximating the outer measure of sets.

Theorem 3.8. Let E ⊂ Rn. For any ε > 0, there exists an open set G so
that

E ⊂ G and |G|e ≤ |E|e + ε.

In particular,

|E|e = inf{|G|e : E ⊂ G, G open}.

Proof. Let ε > 0. Choose intervals Ik with

E ⊂
∞⋃
k=1

Ik and

∞∑
k=1

v(Ik) ≤ |E|e + 1
2ε.

Let I∗k be an interval with Ik ⊂ (I∗k)◦ and

v(I∗k) ≤ v(Ik) + ε2−(k+1).

The set

G = ∪(I∗k)◦

is open, contains E, and satisfies

|G|e ≤
∞∑
k=1

v(I∗k) ≤
∞∑
k=1

[v(Ik) + ε2−(k+1)] ≤ |E|e + ε,

which completes the proof. �

We next need the concept of a Gδ set.

Definition 3.9. A set is called a Gδ set if it is the countable intersection
of open sets.

Theorem 3.10. If E ⊂ Rn, then there exists a Gδ set H such that

E ⊂ H and |E|e = |H|e.

Proof. By the previous theorem, for each k we may find Gk ⊃ E so that

|Gk|e ≤ |E|e + 1
k .

Now set

H = ∩∞k=1Gk.

Then H is Gδ, contains E, and for each k we have

|E|e ≤ |H|e ≤ |Gk|e ≤ |E|e + 1
k .

This implies |E|e = |H|e. �
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The notion of outer measure is not tied to our choice to define intervals
relative to the standard coordinate axes.

Suppose we rotate to new coordinates x′, and write I ′ for an interval
with edges parallel to the new coordinate axes. The volume of an interval
is invariant under rotation.

Then we may define

|E|′e = inf
∑

v(I ′k),

with the infimum taken over all coverings of E by rotated intervals I ′.

Theorem 3.11. We have |E|e = |E|′e for all E ⊂ Rn.

Proof. First, given any I ′ and ε > 0, let I ′1 be an interval with I ′ ⊂ (I ′1)◦

and
v(I ′1) ≤ v(I ′) + ε.

We may write I ′1 as a countable union of nonoverlapping intervals I`. In
particular, for each N

N∑
`=1

v(I`) ≤ v(I ′1), whence
∞∑
`=1

v(I`) ≤ v(I ′1) ≤ v(I ′) + ε.

Now let E ⊂ Rn. Given ε > 0, choose {Ik}∞k=1 so that

E ⊂ ∪Ik and
∑

v(Ik) ≤ |E|e + 1
2ε.

For each k, we may (by the argument above) choose {Ik, `′} so that

Ik ⊂ ∪`I ′k,` and
∑
`

v(I ′k,`) ≤ v(Ik) + ε2−(k+1).

Thus E ⊂ ∪k,`I ′k,` and∑
k,`

v(I ′k,`) ≤
∑
k

v(Ik) + 1
2ε ≤ |E|e + ε,

which implies |E|′e ≤ |E|e + ε. As ε was arbitrary, we have |E|′e ≤ |E|e.
A similar argument proves the reverse inequality. �

3.2. Lebesgue measurable sets. Recall the notations

A\B = A ∩Bc, Bc = {x : x /∈ B}.

Definition 3.12. A set E ⊂ Rn is (Lebesgue) measurable if for every
ε > 0, there exists an open set G such that

E ⊂ G and |G\E|e < ε.

If E is measurable, its outer measure is called its (Lebesgue) measure
and is denoted by |E|. That is,

|E| = |E|e for measurable E.
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Remark 3.13. Compare carefully with Theorem 3.8. It is always true that
there exists open G ⊃ E with

|G|e ≤ |E|e + ε.

However, when E ⊂ G, we have

G ⊂ E ∪G\E,
which only implies

|G|e ≤ |E|e + |G\E|e.
In particular, we cannot deduce |G\E|e < ε.

Example 3.3. Every open set is measurable. Indeed, if E is open and we
take G = E, then |G\E|e = |∅|e = 0.

Example 3.4. If |E|e = 0, then E is measurable. Indeed given ε > 0, by
Theorem 3.8 we may find G so that

|G| < ε.

As G\E ⊂ G, we have
|G\E|e < ε,

giving the claim.

Theorem 3.14. Let {Ek} be a countable collection of measurable sets. Then
E := ∪Ek is measurable, with

|E| ≤
∑
|Ek|.

Proof. Let ε > 0. For each k, let Gk be an open set so that

Ek ⊂ Gk and |Gk\Ek|e < ε2−k.

Then G = ∪Gk is open and E ⊂ G.

Moreover,

G\E ⊂
⋃

[Gk\Ek],
so that

|G\E|e ≤ |
⋃
Gk\Ek|e ≤

∑
|Gk − Ek|e < ε.

Thus E is measurable. The subadditivity follows from the analogous prop-
erty for outer measure. �

Corollary 3.15. An interval I is measurable, with |I| = v(I).

Proof. Write I as the union of its (open) interior and its boundary. As the
boundary has measure zero, the result follows. �
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Our next result is the following:

Theorem 3.16. Closed sets are measurable.

We need a few lemmas.

Lemma 3.17. If {Ik}Nk=1 is a finite collection of nonoverlapping intervals,
then ∪Ik is measurable and

| ∪ Ik| =
∑
|Ik|.

Proof. Measurability follows from the previous theorem. The equality is left
as an exercise (cf. Theorem 3.2). �

Recall that the distance between two sets E1 and E2 is defined by

d(E1, E2) = inf
{
|x1 − x2| : x1 ∈ E1, x2 ∈ E2

}
.

We then have the following lemma.

Lemma 3.18. If d(E1, E2) > 0 then |E1 ∪ E2|e = |E1|e + |E2|e.

Proof. It suffices to prove that

|E1|e + |E2|e ≤ |E1 ∪ E2|e.
To this end, let ε > 0 and choose intervals {Ik} so that

E1 ∪ E2 ⊂
⋃
Ik and

∑
|Ik| ≤ |E1 ∪ E2|e + ε.

We may assume that each Ik has diameter less than d(E1, E2), for otherwise
we may divide each Ik into a finite number of subintervals with this property.

In particular, {Ik} splits into {I1
k} and {I2

k}, where {Ijk}k covers Ej .

Then

|E1|e + |E2|e ≤
∑
k

|I1
k |+

∑
k

|I2
k | =

∑
|Ik| ≤ |E1 ∪ E2|e + ε.

As ε > 0 was arbitrary, this gives the desired inequality. �

We will use this along with the following fact (which is left as an exercise):
if E1 and E2 are compact and disjoint, then d(E1, E2) > 0.

Proof of Theorem 3.16. Suppose F is a compact set.

Given ε > 0, let G be an open set with

F ⊂ G and |G| < |F |e + ε.

As G\F is open, there exist nonoverlapping closed intervals Ik so that

G\F = ∪Ik
(exercise).

Now since
G = F ∪

[
∪kIk

]
⊃ F ∪

[
∪Nk=1Ik

]
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for every N , and F and ∪Nk=1Ik are disjoint and compact, we deduce

|G| ≥
∣∣∣∣F ∪ [∪Nk=1Ik

]∣∣∣∣
e

= |F |e +

∣∣∣∣ N∑
k=1

Ik

∣∣∣∣
e

,

and hence
N∑
k=1

|Ik| =
∣∣∣∣ N⋃
k=1

Ik

∣∣∣∣ ≤ |G| − |F |e ≤ ε
for any N . We conclude

|G\F |e ≤
∑
|Ik| < ε,

which implies that F is measurable.
Finally, for arbitrary closed F we may write F as a countable union of

compact sets:

F =
⋃
k

[
F ∩ {|x| ≤ k}

]
,

which implies the result. �

Next, we prove:

Theorem 3.19. If E is measurable then Ec is measurable.

Proof. For each k, let Gk ⊃ E be open with |Gk\E|e < 1
k .

Since Gck is closed, it is measurable.

Now set H = ∪kGck, which is measurable and satisfies H ⊂ Ec.
We may now write Ec = H ∪ Z, with Z = Ec\H.

Then
Z ⊂ Ec\Gck = Gk\E,

so that |Z|e < 1
k for every k. In particular, |Z|e = 0 and hence is measurable.

Thus Ec = H∪Z is the union of measurable sets, and hence measurable. �

We record some corollaries:

Theorem 3.20. The countable intersection of measurable sets is measur-
able.

Proof. Indeed, its complement is the countable union of measurable sets. �

Theorem 3.21. If E1, E2 are measurable, then E1\E2 is measurable.

Proof. Indeed, E1\E2 = E1 ∩ Ec2. �

The previous results show that the class of measurable subsets contains
the emptyset and is closed under (i) complements, (ii) countable unions, and
(iii) countable intersections. Such a class is called a σ-algebra.

For example, note that if {Ek} are measurable, then

lim supEk = ∩∞j=1 ∪∞k=j Ek and lim inf Ek = ∪∞j=1 ∩∞k=j Ek
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are both measurable.

If C1, C2 are two collections of sets, we say C1 is contained in C2 if

S ∈ C1 =⇒ S ∈ C2.

If F is a family of σ-algebras Σ, we define

∩Σ∈FΣ

to be the collection of all sets E that belong to every Σ in F . Then ∩Σ∈FΣ
is a σ-algebra that is contained in every Σ in F .

Given a collection C of sets in Rn, consider the family F of all σ-algebras
that contain C, and let

E = ∩Σ∈FΣ.

Then E is the smallest σ-algebra containing C. [That is, any σ-algebra
containing C contains E .]

The smallest σ-algebra of subsets of Rn containing all of the open subsets
of Rn is called the Borel σ-algebra of Rn, denoted B. The sets in B are
called Borel subsets of Rn [they include open sets, closed sets, Gδ sets...].

Theorem 3.22. Every Borel set is measurable.

Proof. The collection M of measurable subsets is a σ-algebra that contains
the open sets. �

3.3. A nonmeasurable set. Not every set is measurable, as we now show.

We present a construction due to Vitali in the setting of R.

The construction relies on the axiom of choice: let {Eα : α ∈ A} be a
collection of nonempty disjoint sets, where A is an index set. There exists a
set consisting of exactly one element from each Eα (α ∈ A).

We also need the following lemma:

Lemma 3.23. Let E ⊂ R be measurable, with |E| > 0. Then the set

D = {x− y : x, y ∈ E}
contains an interval centered at 0.

Proof. Let ε > 0 to be chosen below, and let G ⊃ E be an open set with
|G| < (1 + ε)|E|.

Write G as a union of nonoverlapping intervals: G = ∪Ik.
Defining Ek = E ∩ Ik, we have that E = ∪kEk and that each Ek is

measurable.

Furthermore, #(Ek ∩ Ej) ≤ 1 for j 6= k.

Now, we have

|G| =
∑
|Ik| and |E| =

∑
|Ek|.
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As |G| < (1 + ε)|E|, we must have

|Ik0 | < (1 + ε)|Ek0 | for some k0.

Choose ε = 1
3 and denote I0 = Ik0 , E0 = Ek0 . Then we have

E0 ⊂ I0 with |E0| > 3
4 |I0|.

Now, let d satisfy |d| < 1
2 |I0| and consider the set E0 + d. We claim that

E0 ∩ [E0 + d] 6= ∅.
Indeed, if E0 and [E0 + d] are disjoint, then

3
2 |I0| < 2|E0| = |E0|+ |[E0 + d]| = |E0 ∪ [E0 + d]| ≤ |I0|+ |d|,

contradicting |d| < 1
2 |I0|.

This implies that for any |d| < 1
2 |I0|, there exist x, y ∈ E0 so that x−y = d.

Thus
D0 = {x− y : x, y ∈ E0}

contains an interval of length |12 |I0| centered at the origin, and hence the
same is true for D ⊃ D0. �

Theorem 3.24. There exist nonmeasurable sets.

Proof. Define an equivalence relation on R as follows:

x ∼ y if and only if x− y ∈ Q.
An equivalence class has the form

[x] = {x+ r : r ∈ Q}.
For any x, y we have either [x] = [y] or [x] ∩ [y] = ∅.

In particular, [0] = Q and all other classes are disjoint sets in R\Q.

The number of distinct classes is uncountable, as each [x] is countable but⋃
x∈R

[x] = R

is uncountable.

Using the axiom of choice, let E be a set with exactly one element from
each equivalence class.

Any two points of E must differ by an irrational number, and thus

D = {x− y : x, y ∈ E}
cannot contain an interval.

Using the lemma, either E is not measurable or |E| = 0.

Suppose |E| = 0. Then since E has an element from every class and
[x] = {x+ r : r ∈ Q}, we have⋃

r∈Q
[E + r] =

⋃
x∈R

[x] = R.
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Thus

|R| =
∣∣∣∣⋃
r∈Q

[E + r]

∣∣∣∣ ≤∑
r∈Q
|E + r| ≤

∑
r∈Q
|E| = 0,

giving a contradiction. We conclude that E is not measurable. �

Corollary 3.25. If A ⊂ R has |A|e > 0, then A contains a nonmeasurable
set.

Proof. Let E be the nonmeasurable set constructed above and set Er =
E + r. Then {Er}r∈Q are disjoint sets with⋃

r∈Q
Er = R.

Hence

A =
⋃
r∈Q

[A ∩ Er] and |A|e ≤
∑
r

|A ∩ Er|e.

If A∩Er is measurable, then by the lemma above we must have |A∩Er| = 0
(since the set of differences of elements in Er cannot contain an interval).

As |A|e > 0, it follows that there exists r ∈ Q such that A ∩ Er is not
measurable. �

3.4. Properties of Lebesgue measure. We turn to general properties of
Lebesgue measure.

The definition of measurable concerns approximation by open sets ‘from
without’. We next consider approximation by closed sets ‘from within’.

Lemma 3.26. A set E ⊂ Rn is measurable if and only if for every ε > 0,
there exists closed F ⊂ E such that

|E\F |e < ε.

Proof. Exercise: use the fact that E is measurable if and only if Ec is mea-
surable, along with the definition of measurable. �

Theorem 3.27. If {Ek} is a countable collection of disjoint measurable
sets, then ∣∣∣∣⋃

k

Ek

∣∣∣∣ =
∑
k

|Ek|.

Proof. First consider the case that each Ek is bounded.

Let ε > 0 and for each k, let Fk ⊂ Ek be closed with |Ek\Fk| < ε2−k.

Then Ek = Fk ∪ [Ek\Fk], so

|Ek| ≤ |Fk|+ ε2−k.
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Since the Ek are bounded and disjoint, the Fk are compact and disjoint.
Thus, by Lemma 3.18, we have∣∣∣∣ m⋃

k=1

Fk

∣∣∣∣ =
m∑
k=1

|Fk| for each m.

As
∪mk=1Fk ⊂ ∪mk=1Ek,

we deduce
m∑
k=1

|Fk| ≤
∣∣∣∣ ∞⋃
k=1

Ek

∣∣∣∣ for any m.

Thus ∣∣∣∣ ∞⋃
k=1

Ek

∣∣∣∣ ≥ ∞∑
k=1

|Fk| ≥
∞∑
k=1

[
|Ek| − ε2−k

]
=
∞∑
k=1

|Ek| − ε.

We conclude ∣∣∣∣ ∞⋃
k=1

Ek

∣∣∣∣ ≥ ∞∑
k=1

|Ek|.

As the reverse inequality is always true, the theorem holds in this case.
For the general case, let Ij be an increasing sequence of intervals with

∪Ij = Rn. Define

S1 = I1, Sj = Ij\Ij−1 for j ≥ 2.

The sets
Ejk = Ek ∩ Sj

are bounded, disjoint, and measurable, with

Ek =
⋃
j

Ejk and
⋃
k

Ek =
⋃
k,j

Ejk.

By the case above,∣∣∣∣⋃
k

Ek

∣∣∣∣ =

∣∣∣∣⋃
k,j

Ejk

∣∣∣∣ =
∑
k,j

|Ejk| =
∑
k

(∑
j

|Ejk|
)

=
∑
k

|Ek|,

as desired. �

We have the following corollaries:

Corollary 3.28. If {Ik} is a sequence of nonoverlapping intervals, then∣∣∪Ik∣∣ =
∑
|Ik|.

Proof. As the I◦k are disjoint, we have

| ∪ Ik| ≥ | ∪ I◦k | =
∑
|I◦k | =

∑
|Ik|.

As the reverse inequality is always true, this completes the proof. �

Corollary 3.29. If E2 ⊂ E1 (both measurable) and |E2| <∞, then

|E1\E2| = |E1| − |E2|.
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Proof. Write E1 = E2 ∪ E1\E2. �

We turn to the next property of Lebesgue measure.

Theorem 3.30. Let {Ek} be a sequence of measurable sets.

(i) If Ek ↗ E then limk→∞ |Ek| = |E|.
(ii) If Ek ↘ E and |Ek| <∞ for some k, then limk→∞ |Ek| = |E|.

Proof. (i) Without loss of generality we may assume |Ek| <∞ for all k.

We write

E =
⋃
k

Sk, where S1 = E1, Sk = Ek\Ek−1 (k ≥ 2).

Then

|E| =
∣∣∪Sk∣∣ = |E1|+

∑
k≥2

|Ek\Ek−1| = |E1|+
∑
k≥2

(
|Ek|− |Ek−1|

)
= lim

k→∞
|Ek|,

proving (i).

(ii) Without loss of generality, |E1| <∞. Now write

E1 = E ∪
[
∪k≥1Ek\Ek+1

]
.

Then

|E1| = |E|+
∑
k≥1

[|Ek| − |Ek+1|] = |E|+ |E1| − lim
k→∞

|Ek|,

which implies the desired result. �

Remark 3.31. We need to assume |Ek| < ∞ for some k. Indeed, suppose
Ek = {|x| > k}. Then |Ek| = +∞ for each k, but Ek ↘ ∅.

We close this section with an analogous result about outer measure, which
we leave as an exercise.

Theorem 3.32. If Ek ↗ E then limk→∞ |Ek|e = |E|e.

Hint. Approximate by a measurable set and apply the previous theorem.

3.5. Characteriziations of measurability. Measurability was defined in
terms of approximation ‘from without’ by an open set. We also saw that
measurability is equivalent to a statement about approximation ‘from within’
by a closed set.

Here we give some other characterizations. Recall that a Gδ set is a
countable intersection of open sets, and an Fσ set is a countable union of
closed sets.

Theorem 3.33.

(i) A set E is measurable if and only if E = H\Z, where H is Gδ and
|Z| = 0.

(ii) A set E is measurable if and only if E = H ∪Z, where H is Fσ and
|Z| = 0.
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Proof. It suffices to prove the =⇒ directions.

Suppose E is measurable. For each k, let Gk ⊃ E be an open set with

|Gk\E| < 1
k .

Then H = ∩kGk is Gδ, with

E ⊂ H and |H\E| ≤ inf
k
|Gk\E| = 0.

Thus (i) follows with Z = H\E.
The result in (ii) follows either from taking complements in (i), or by

using approximation from within by closed sets. [The details are left as an
exercise.] �

The following characterization is also left as an exercise.

Theorem 3.34. Suppose |E|e < ∞. Then E is measurable if and only if
for any ε > 0 we may write

E = [S ∪N1]\N2,

where S is a finite union of nonoverlapping intervals and |N1|e, |N2|e < ε.

Finally, the following characterization becomes important when one wants
to introduce abstract measure theory. We rely on Theorem 3.10.

Theorem 3.35 (Carathéodory). A set E is measurable if and only if for
every A,

|A|e = |A ∩ E|e + |A\E|e.

Proof. =⇒ Suppose E is measurable and let A ⊂ Rn.

Let H ⊃ A be Gδ with |A|e = |H|. Write H as the disjoint union of
measurable sets

H = [H ∩ E] ∪ [H\E], so that |H| = |H ∩ E|+ |H\E|.
Then

|A|e = |H ∩ E|+ |H\E| ≥ |A ∩ E|e + |A\E|e.
As the reverse inequality always holds, we deduce

|A|e = |A ∩ E|e + |A\E|e.

⇐= Suppose E satisfies the ‘splitting’ condition above.

First consider the case |E|e < ∞. Then choose a Gδ set H ⊃ E with
|H| = |E|e. Then

H = E ∪ [H\E]

and by hypothesis

|H| = |H ∩ E|e + |H\E|e = |E|e + |H\E|e.
Thus |H\E|e = 0, so that writing

E = H\[H\E]
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(H Gδ and H\E measure zero) shows that E is measurable.

If |E|e =∞, then we let Bk = {|x| ≤ k} and Ek = E ∩Bk.
Each Ek has finite outer measure, and E = ∪kEk.
Let Hk ⊃ Ek be a Gδ set with |Hk| = |Ek|e. By hypothesis,

|Hk| = |Hk ∩ E|e + |Hk\E|e ≥ |Ek|e + |Hk\E|e.
Thus |Hk\E| = 0.

Now H = ∪Hk is measurable, H ⊃ E, and H\E = ∪Hk\E.
Thus |H\E| = 0, and so (writing E = H\[H\E]) we conclude that E is

measurable. �

Corollary 3.36. If E is a measurable subset of A, then

|A|e = |E|+ |A\E|e.
Thus if |E| <∞, then |A\E|e = |A|e − |E|.

We conclude with a strengthening of Theorem 3.10.

Theorem 3.37. Let E ⊂ Rn. There exists a Gδ set H ⊃ E such that for
any measurable M ,

|E ∩M |e = |H ∩M |.

Proof. Suppose |E|e <∞ and let H ⊃ E be a Gδ set with |E|e = |H|.
If M is measurable, then by Carathéodory,

|E|e = |E ∩M |e + |E\M |e and |H| = |H ∩M |+ |H\M |.
Because all of these terms are finite and E\M ⊂ H\M , we deduce

|E ∩M |e ≥ |H ∩M |.
However, the reverse inequality is true because E ⊂ H. Thus |E ∩M |e =
|H ∩M |.

If |E|e =∞, then write E = ∪Ek with |Ek|e <∞ and Ek ↗ E.

By the case above, for each k there is a Gδ set Uk ⊃ Ek such that

|Ek ∩M |e ≡ |Uk ∩M | for measurable M.

Set Hk = ∩∞m=kUm, which is measurable and satisfies Hk ↗ H := ∪Hk.

Note that Ek ⊂ Hk ⊂ Uk, so that

|Ek ∩M |e ≡ |Hk ∩M | for measurable M.

Now, since Ek ↗ E and Hk ↗ H, we have

Ek ∩M ↗ E ∩M and Hk ∩M ↗ H ∩M.

Thus, by Theorem 3.32, we have

|E ∩M |e ≡ |H ∩M | for measurable M.
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The set H is not Gσ (it is “Gσδ”). To obtain a Gδ set, write

H = H1\Z, H1 Gδ, |Z| = 0.

Then E ⊂ H1, and since

H1 ∩M = (H ∩M) ∪ (Z ∩M),

we have

|H1 ∩M | = |H ∩M | = |E ∩M |e.
This completes the proof. �

3.6. Lipschitz transformations of Rn. This proofs in this section were
skipped in lecture.

Recall the following:

Definition 3.38. A function T : Rn → Rn is called Lipschitz if there exists
c > 0 so that

for all x, y ∈ Rn, |T (x)− T (y)| ≤ c|x− y|.

Lipschitz functions are automatically continuous.

Theorem 3.39. Lipschitz maps preserve measurability.

Proof. (i) We first show that Lipschitz maps preserve the class of Fσ sets.
Indeed, since any closed set is a countable union of compact sets, and con-
tinuous functions preserve compact sets, we have that T maps closed sets
into Fσ sets (cf. T (∪Ek) = ∪T (Ek)). The result follows.

(ii) We next show that Lipschitz maps preseve measure zero sets. Indeed,
the image of a set with diameter d has diameter at most cd. Thus, there
exists c′ > 0 so that

|T (I)| ≤ c′|I|
for any interval I (note T (I) is Fσ and hence measurable). Now cover any
measure zero set by intervals of arbitrarily small measure to conclude the
result.

Now if E is measurable, we may write E = H ∪ Z where H is Fσ and
|Z| = 0. Then measurability of T (E) follows from (i) and (ii). �

Suppose T : Rn → Rn is a linear transformation (and hence represented
by an n× n matrix, also denoted T ).

A parallelepiped

P =

{ n∑
k=1

tkek, tk ∈ [0, 1]

}
satisfies |P | = v(P ) (exercise), and hence |P | is the absolute value of the
n× n determinant of the matrix whose rows are {e1, . . . , en}.
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Theorem 3.40. A linear transformation T : Rn → Rn satisfies

|T (E)| = |detT | · |E|

for any measurable set E.

Proof. It is a fact of linear algebra that |T (I)| = | detT | · |I| when I is an
interval.

Now for E ⊂ Rn and ε > 0, choose intervals {Ik} covering E with∑
|Ik| < |E|e + ε.

Then

|T (E)|e ≤
∑
|T (Ik)| = |detT |

∑
|Ik| < δ(|E|e + ε).

It follows that

|T (E)|e ≤ |detT | · |E|e. (3.1)

We wish to show that |T (E)| = |detT | · |E|. It suffices to consider
|detT | > 0.

Now choose open G ⊃ E with |G\E| < ε.

Write G as a union of nonoverlapping intervals {Ik}. Since the T (Ik) are
non-overlapping parallelipipeds, we have

|T (G)| =
∑
|T (Ik)| = |detT |

∑
|Ik| = | detT | · |G|.

Using E ⊂ G and (3.1),

|detT | · |E| ≤ |detT | · |G| = |T (G)| ≤ |T (E)|+ |T (G\E)| ≤ |T (E)|+ δε,

and hence

|detT | · |E| ≤ |T (E)|.
Combining with (3.1), we conclude |T (E)| = |detT | · |E|. �

3.7. Exercises.

Exercise 3.1. Show that the boundary of an interval has outer measure zero.

Exercise 3.2. Show that any perfect subset of R is uncountable.

Exercise 3.3. Show that E ⊂ Rn is measurable if and if for every ε > 0 there
exists a closed set F ⊂ E so that |E\F |e < ε.

Exercise 3.4. Show that if E1 and E2 are compact and disjoint then d(E1, E2) >
0.

Exercise 3.5. Show that if Ek ↗ E then limk→∞ |Ek|e = |E|e.

Exercise 3.6. Construct a subset of [0, 1] similar to the Cantor set, obtained
by removing from each remaining interval a subinterval of relative length
θ ∈ (0, 1). Show that the resulting set is perfect and has measure zero.
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Exercise 3.7. (i) If b is an integer larger than one and 0 < x < 1, show that
there exist integer coefficients 0 ≤ ck < b such that x =

∑∞
k=1 ckb

−k. Show

that this expansion is unique unless x = cb−k, in which case there are two
expansions. (ii) When b = 3 in part (i), we call the expansion the ternary
expansion. Show that the Cantor set consists of all x such that x has a
ternary expansion in which ck ∈ {0, 2} for all x.

Exercise 3.8. Construct a subset of [0, 1] similar to the Cantor set, where
at the kth stage each interval removed has length δ3−k for some δ ∈ (0, 1).
Show that the resulting set is perfect, has measure 1 − δ, and contains no
intervals.

Exercise 3.9. Prove that outer measure is translation invariant.

Exercise 3.10. Let {Ej} be disjoint measurable sets and let A be any set.
Show that |A ∩ ∪jEj |e =

∑
j |A ∩ Ej |e.

Exercise 3.11. Find disjoint sets {Ej} so that | ∪Ej |e <
∑
|Ej |e with strict

inequality.

Exercise 3.12. Show that there exist sets Ek with Ek ↘ E, |Ek|e <∞, and
lim |Ek|e > |E|e (with strict inequality).

Exercise 3.13. Suppose |E|e <∞. Show that E is measurable if and only if
for any ε > 0 we may write

E = [S ∪N1]\N2,

where S is a finite union of nonoverlapping intervals and |N1|e, |N2|e < ε.

Exercise 3.14. Show that if
∑
|Ek|e <∞ then lim supk→∞Ek has measure

zero.

Exercise 3.15. Let Z ⊂ R have measure zero. Show that {x2 : x ∈ Z} also
has measure zero.

4. Lebesgue measurable functions

Reference: Wheeden–Zygmund Chapter 4

4.1. Properties of measurable functions, I.

Definition 4.1. Let f : E → R ∪ {±∞} for some E ⊂ Rn. We call f
Lebesgue measurable (on E) if

∀a ∈ R {x ∈ E : f(x) > a} is measurable.

We abbreviate the set appearing above by {f > a}. Note that

E = {f = −∞} ∪
[ ∞⋃
k=1

{f > −k}
]
,

so that if f is measurable then measurability of E is equivalent to measur-
ability of {f = −∞}.
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We shall always assume {f = −∞} is measurable, so that we only consider
measurable functions defined on measurable sets.

Example 4.1. If E = Rn and f is continuous, note that {f > a} is always
open. Thus continuous functions are measurable.

If E is Borel and {f > a} is Borel for every a, then f is measurable. In
fact, we call f Borel measurable.

Theorem 4.2. Let f : E → R ∪ {±∞} for some measurable E. Then f
is measurable if and only if any of the following statements hold for every
a ∈ R:

(i) {f ≥ a} is measurable.
(ii) {f < a} is measurable.
(iii) {f ≤ a} is measurable.

Proof. To see that measurability implies (i), write

{f ≥ a} =
∞⋂
k=1

{f > a− 1
k}.

To see (i) implies (ii), note {f < a} = {f ≥ a}c.
To see (ii) implies (iii), write

{f ≤ a} = ∩∞k=1{f < a+ 1
k}.

Finally, to see (iii) implies measurability, write {f > a} = {f ≤ a}c. �

The following corollary is left as an exercise:

Corollary 4.3. If f is measurable then {f > −∞}, {f < ∞}, {f = ∞},
{a ≤ f ≤ b}, {f = a}, and so on, are all measurable.

Definition 4.4. For f : E → R and S ⊂ R, we define

f−1(S) = {x ∈ E : f(x) ∈ S}.
We call this set the inverse image of S under f .

Theorem 4.5. A function f is measurable if and only if f−1(G) is measur-
able for every open G ⊂ R.

Proof. ⇐=: If G = (a,∞), then f−1(G) = {f > a}. Thus if f−1(G) is
measurable for every open G, we have that f is measurable.

=⇒ : Suppose f is measurable and G ⊂ R is open. Then G can be
written in the form G = ∪k(ak, bk).

As f−1((ak, bk)) = {ak < f < bk}, we have that f−1((ak, bk)) is measur-
able for each k. Thus, using f−1(G) = ∪kf−1((ak, bk)), we conclude that
f−1(G) is measurable. �
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Remark 4.6. The proof above also shows that f is Borel measurable if and
only if f−1(G) is Borel measurable for every open G ⊂ R.

We also have the following characterization:

Theorem 4.7. Let A ⊂ R be dense. Then f is measurable if {f > a} is
measurable for all a ∈ A.

Proof. Let a ∈ R and choose {ak} ⊂ A so that ak ↘ a. Then

{f > a} = ∪k{f > ak},
and hence the theorem follows. �

Definition 4.8. A property P (x) (for x ∈ E) is said to hold almost ev-
erywhere in E if the set

{x ∈ E : P (x) does not hold}
has measure zero. We write P (x) holds a.e.

For example, if we say f = 0 a.e. in E then we mean

|{x : f(x) 6= 0}| = 0.

Theorem 4.9. If f is measurable and g = f a.e., then g is measurable and

|{g > a}| = |{f > a}|
for all a ∈ R.

Proof. Let Z = {f 6= g}. Note that |Z| = 0 and

{g > a} ∪ Z = {f > a} ∪ Z
Thus {g > a} ∪ Z is measurable, and hence (since Z has measure zero) we
have {g > a} is measurable. This shows that g is measurable, as well as the
desired equality of measures. �

Using the previous theorem, we can extend the definition of measurable
functions to include those functions that are only defined almost everywhere.

The composition of measurable functions need not be measurable (see the
homework). However, we do have the following:

Theorem 4.10. Let φ : R → R be continuous and let f be finite a.e. on
E ⊂ Rn. If f is measurable, then so is φ ◦ f .

Proof. Let us assume that f is finite everywhere in E.

By Theorem 4.5, it is enough to show that

{x : φ(f(x)) ∈ G}
is measurable for every open G ⊂ R.

To see this, note that

{x : φ(f(x)) ∈ G} = [φ ◦ f ]−1(G) = f−1 ◦ φ−1(G).
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As φ is continuous, we have φ−1(G) is open. As f is measurable, we therefore
have f−1 ◦ φ−1(G) is measurable. The result follows. �

Example 4.2. For a measurable function f , we have that |f |, |f |p (p > 0),
ecf , and so on, are measurable. In fact, this does not require f to be finite
a.e.

One also has that f+ = max{f, 0} and f− = −min{f, 0} are measurable
whenever f is.

Theorem 4.11. If f and g are measurable, then {f > g} is measurable.

Proof. Write Q = {rk}, so that

{f > g} = ∪k{f > rk > g} = ∪k
[
{f > rk} ∩ {g < rk}

]
.

This implies the result. �

The following is left as an exercise:

Theorem 4.12. If f is measurable and λ ∈ R, then f + λ and λf are
measurable.

We next consider sums of measurable functions, say f + g. Sums are not
well-defined if they are of the form ∞ + (−∞) or (−∞) +∞, so we will
consider the simpler case that f + g is well-defined everywhere.

Theorem 4.13. If f and g are measurable and f + g is well-defined every-
where, then f + g is measurable.

Proof. By the previous resut, a− g is measurable for any a ∈ R. As

{f + g > a} = {f > a− g},
the result follows from Theorem 4.11. �

The previous two theorems show us that the set of measurable functions
on a set E forms a vector space.

In the following, we adopt the convention 0 · ±∞ = ±∞ · 0 = 0.

Theorem 4.14. If f and g are measurable, then so is fg. If g 6= 0 a.e.,
then f/g is measurable.

Proof. Recall that F 2 is measurable whenever F is. Thus, if f and g are
measurable and finite, so is

fg = 1
4 [(f + g)2 − (f − g)2].

We leave the case of infinite f, g as an exercise, along with the second part
of the theorem. �

We turn to the question of taking limit operations.

Theorem 4.15. If {fk} is a sequence of measurable functions, then supk fk
and infk fk are measurable.
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Proof. It suffices to prove the result for supk fk, as infk fk = − supk(−fk).
To prove measurability of supk fk, we note

{sup
k
fk > a} = ∪k{fk > a},

which completes the proof. �

Theorem 4.16. If {fk} is a sequence of measurable functions, then lim sup fk
and lim inf fk are measurable.

In particular, if lim fk exists a.e., then it is measurable.

Proof. This follows from the previous result, since

lim sup
k→∞

fk = inf
j

sup
k≥j

fk, lim inf fk = sup
j

inf
k≥j

fk.

This completes the proof. �

Notation. Given a set E, we define the characteristic function of E
(also called the indicator function of E) by

χE(x) =

{
1 if x ∈ E,
0 if x /∈ E.

We remark that E is measurable if and only if χE is.

A simple function is a function of the form

f(x) =
N∑
k=1

akχEk
(x)

for some distinct {ak} and disjoint {Ek}.
A simple function is measurable if and only if each Ek is. [Exercise.]

Simple functions play an important role in the theory of measurable func-
tions.

Theorem 4.17.

(i) Every function can be written as the limit of a sequence of simple
functions.

(ii) Every nonnegative function can be written as the increasing limit of
a sequence of simple functions.

(iii) A measurable function can be written as the limit of a sequence of
measurable simple functions.

Proof. We begin with (ii) and suppose f ≥ 0.

Let k ∈ N. We partition [0, k] as follows:

[0, k] =
k2k⋃
j=1

[(j − 1)2−k, j2−k].



REAL ANALYSIS 57

Let

fk(x) =

{
j−1
2k

f(x) ∈ [(j − 1)2−k, j2−k), j = 1, . . . , k2k,

k f(x) ≥ k.
Each fk is a simple function, defined where f is.

By passing from fk to fk+1, each subinterval

[(j − 1)2−k, j2−k]

is divided in half. It follows that fk ≤ fk+1.

Note also that fk → f . Indeed, wherever f is finite, we have

0 ≤ f − fk ≤ 2−k,

and fk →∞ wherever f =∞. This proves (ii).

To prove (i), we write f = f+ − f− and apply part (ii) to f+ and f−.

Finally for (iii) we may assume f ≥ 0 (otherwise, write f = f+ − f−).

In this case, the sets {f ∈ [(j − 1)2−k, j2−k)} and {f ≥ k} are all mea-
surable, and the result follows. �

Remark 4.18. If f is bounded, the simple functions converge to f uniformly
(exercise).

4.2. Semicontinuous functions.

Definition 4.19. Let f : E → R and let x0 ∈ E be a limit point of E. The
function f is upper semicontinuous at x0 if

lim sup
x→x0

f(x) ≤ f(x0).

We write this as f is usc at x0.

Similarly, f is lower semicontinuous at x0 (written lsc) if

lim inf
x→x0

f(x) ≥ f(x0).

Remark 4.20. If f(x0) =∞, then f is automatically usc at x0. Similarly,
if f(x0) = −∞, then f is automatically lsc at x0.

Remark 4.21. For finite f , we have that f is usc at x0 if for any M > f(x0),
there exists δ > 0 so that

∀x ∈ E |x− x0| < δ =⇒ f(x) < M.

Similarly f is lsc at x0 if for any m < f(x0) there exists δ > 0 so that

∀x ∈ E |x− x0| < δ =⇒ f(x) > m.

Equivalently, f is lsc at x0 if and only if −f is usc at x0.

Remark 4.22. One can check that f is continuous at x0 if and only if
|f(x0)| <∞ and f is both usc and lsc at x0.

Remark 4.23. Usc functions ‘jump up’; lsc functions ‘jump down’.
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Example 4.3. The following functions are usc on R but not continuous at
x0 ∈ R:

u1 = χ[x0,∞), u2 = χ{x0}.

We call a function usc relative to E if it is usc at every limit point of
E that belongs to E (similarly for lsc or continuous).

We have the following characterizations. Recall that A ⊂ E is relatively
open (in E) if A = E ∩G for some open G ⊂ R (and similarly for relatively
closed).

Theorem 4.24.

(i) A function f is usc relative to E if and only if for all a ∈ R,

{x ∈ E : f(x) ≥ a}
is relatively closed; this is equivalent to

{x ∈ E : f(x) < a}
being relatively open.

(ii) A function f is lsc relative to E if and only if for all a ∈ R,

{x ∈ E : f(x) ≤ a}
is relatively closed; this is equivalent to

{x ∈ E : f(x) > a}
being relatively open.

Proof. It is enough to prove (i).

=⇒ : Suppose f is usc relative to E and let a ∈ R. Suppose x0 ∈ E is a
limit point of

Ea := {x ∈ E : f(x) ≥ a}.
Then there exist {xk} ⊂ Ea so that xk → x0.

As f is usc at x0, we have

f(x0) ≥ lim sup
k→∞

f(xk) ≥ a.

Thus x0 ∈ Ea, so that Ea is relatively closed.

⇐=: Suppose x0 ∈ E is a limit point of E and f is not usc at x0.

Then f(x0) <∞ and there exist M ∈ R and xk ∈ E with

|xk − x0| < 1
k , f(x0) < M ≤ f(xk).

Thus
{x ∈ E : f(x) ≥M}
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is not relatively closed in E: it does not contain all of its limit points that
belong to E. �

We have the following corollary, which we leave as an exercise:

Corollary 4.25. A finite function f is continuous relative to E if and only
if all sets of the form

{x ∈ E : f(x) ≥ a} and {x ∈ E : f(x) ≤ a}
are relatively closed (where a ∈ R). This is equivalent to all sets of the form

{x ∈ E : f(x) > a} and {x ∈ E : f(x) < a}
being relatively open.

We also have the following:

Corollary 4.26. If E is measurable and f : E → R is usc relative to E,
then f is measurable. (Similarly if f is lsc or continuous relative to E).

Proof. Suppose f is usc relative to E. Since

Ea := {x ∈ E : f(x) ≥ a}
is relatively closed for a ∈ R, we may write Ea = E ∩ F for some closed
F . Thus Ea is measurable for all a ∈ R, and so the result follows from
Theorem 4.2. �

Remark 4.27. The previous results imply that if f is usc on Rn, then f is
Borel measurable (similarly for lsc or continuous). Indeed, we can write

{f > a} = ∪∞k=1{f ≥ a+ 1
k},

and hence {f > a} is Fσ (and in particular Borel) for every a ∈ R.

4.3. Properties of measurable functions, II. The following result is
known as Egorov’s theorem:

Theorem 4.28 (Egorov’s theorem). Let E ⊂ Rn be of finite measure.

Suppose {fk} are measurable functions on E that converge a.e. to a finite
limit f .

Then for any ε > 0, there exists a closed set F ⊂ E such that

|E\F | < ε and fk → f uniformly on F.

Roughly speaking: a convergent sequence of measurable functions actu-
ally converges uniformly, up to sets of arbitrarily small measure.

To see the necessity of the hypotheses, we consider the following example.

Example 4.4. Let E = Rn and fk = χ{|x|<k}. Then fk → 1 on Rn, but {fk}
does not converge uniformly outside of any bounded set.
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We begin with a lemma.

Lemma 4.29. Let E, {fk}, f be as in Theorem 4.28.

For any ε > 0 and η > 0, there exists a closed set E ⊂ F and K > 0 so that

|E\F | < η and |f(x)− fk(x)| < ε for x ∈ F and k > K.

Proof. Let ε, η > 0.

For each m, define

Em = {x : |f(x)− fk(x)| < ε for all k > m}.
That is,

Em =
⋂
k>m

{x : |f(x)− fk(x)| < ε},

so that Em is measurable.

By construction, Em ⊂ Em+1.

Moreover, since fk → f a.e. in E and f is finite, it follows that

Em ↗ (E\Z), where |Z| = 0.

Thus (by Theorem 3.30) we have

|Em| → |E\Z| = |E|.
Because |E| <∞, this implies |E\Em| → 0.

Now choose K so that |E\EK | < 1
2η, and let F ⊂ EK be closed and satisfy

|EK\F | < 1
2η.

It follows that |E\F | < η and |f − fk| < ε in F for any k > K.

This completes the proof. �

We can now prove Egorov’s theorem.

Proof of Egorov’s theorem. Let ε > 0.

Using Lemma 4.29, choose closed sets Fm ⊂ E and integers Km,ε such that

|E\Fm| < ε2−m and |f − fk| < 1
m in Fm for k > Km,ε.

The set

F =
∞⋂
m=1

Fm

is closed and satisfies

E\F = E\
[ ∞⋂
m=1

Fm

]
=
∞⋃
m=1

E\Fm.

Thus
|E\F | ≤

∑
m

|E\Fm| < ε.
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It remains to show that the {fk} converge uniformly on F .

To this end, let δ > 0. Then choose m0 > δ−1.

As F ⊂ Fm0 , we have

|f − fk| < 1
m0

< δ

on F , provided k > Km0,ε. This completes the proof. �

We next turn to a result known as Lusin’s theorem.

Definition 4.30. A function f defined on a measurable set E has property
C on E if for any ε > 0, there exists closed F ⊂ E so that

(i) |E\F | < ε,
(ii) f is continuous relative to F .

Theorem 4.31 (Lusin’s theorem). Let f be a finite function on a mea-
surable set E. Then f is measurable if and only if f has property C on
E.

Roughly speaking: measurable functions are actually continuous, up to
sets of arbitrarily small measure.

We begin with a lemma.

Lemma 4.32. A simple measurable function (on E) has property C (on
E).

Proof. Let

f =
N∑
i=1

aiχEi

be a simple measurable function on E.

Given ε > 0, choose closed Fj ⊂ Ej with

|Ej\Fj | < ε
N .

The set

F :=

N⋃
j=1

Fj

is closed, with

|E\F | = | ∪ Ej\ ∪ Fj | ≤ | ∪ Ej\Fj | < ε

(where we use ∪Ej\ ∪ Fj ⊂ ∪Ej\Fj).
We claim that f is continuous relative to F . To see this, suppose that
{xk} ⊂ F satisfies xk → x0 ∈ F . We need to prove that f(xk)→ f(x0).

Suppose x0 belongs to the set Fj . We claim that there exists k0 so that
for all k > k0, we have xk ∈ Fj .

If not, then we may find a subsequence {xk`} ⊂ F\Fj .
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By the pigeonhole principle, we may pass to a further subsequence and
assume {xk`} ⊂ Fj′ for some j′ 6= j.

However, we must have xk` → x0 (since the original sequence converges).

This gives a contradiction, because then (since F ′j is closed) we have

x0 ∈ Fj ∩ Fj′ = ∅.

Now since f is constant on Fj and xk ∈ Fj for k > k0, we can conclude
that f(xk)→ f(x0), as desired. This completes the proof. �

We can now prove Lusin’s theorem.

Proof of Lusin’s theorem.

=⇒ : Suppose f is measurable. By Theorem 4.17, there exist measurable
simple functions fk → f .

By Lemma 4.32, each fk has property C on E. Thus given ε > 0, we may
find closed sets Fk ⊂ E so that

|E\Fk| < ε2−(k+1) and fk is continuous relative to Fk.

We now break into two cases. First, suppose |E| <∞.

Then by Egorov’s theorem, there exists closed F0 ⊂ E so that

|E\F0| < 1
2ε and fk → f uniformly on F0.

Now let
F = F0 ∩

(
∩kFk

)
.

Then F is a closed set, each fk is continuous on F , and {fk} converges
uniformly to f on F . Thus (by Theorem 1.8), we have that f is continuous
on F . Moreover,

|E\F | ≤ |E\F0|+
∞∑
k=1

|E\Fk| < ε,

and hence (since ε was arbitrary) we conclude that f has property C on E.

Next, suppose |E| = +∞. Then we write

E = ∪∞k=1Ek, Ek = E ∩ {k − 1 ≤ |x| < k}.
By the above, we may select closed Fk ⊂ Ek so that

|Ek\Fk| < ε2−k and f is continuous on Fk.

Writing
F = ∪∞k=1Fk,

we have
|E\F | ≤

∑
k

|Ek\Fk| < ε,

with f continuous relative to F . In order to conclude that f has property
C on E, we need to verify that F is closed.
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To this end, suppose {xn} ⊂ F satisfies xn → x0. Then there exists N
and k so that

k − 1 < xn < k for all n ≥ N,
that is, the tail of the sequence belongs to Fk ∪ Fk−1 for some k. As this is
a closed set, it follows that x0 ∈ Fk ∪ Fk−1 ⊂ F , as was needed to show.

⇐= Suppose f has property C on E.

For each k, let Fk ⊂ E be a closed set such that

|E\Fk| < 1
k and f is continuous on Fk.

Set H = ∪∞k=1Fk. Then

H ⊂ E and Z = E\H satisfies |Z| = 0.

Now, for any a ∈ R, we have

{x ∈ E : f(x) > a} = {x ∈ H : f(x) > a} ∪ {x ∈ Z : f(x) > a}
= ∪k{x ∈ Fk : f(x) > a} ∪ {x ∈ Z : f(x) > a}.

As {x ∈ Z : f(x) > a} has measure zero, measurability of f follows from
that of {x ∈ Fk : f(x) > a}.

Indeed, f is continuous on Fk, and hence measurability of the latter set
follows from Corollary 4.26. This completes the proof. �

4.4. Convergence in measure.

Definition 4.33. Let {fk} and f be measurable functions on a set E that
are finite a.e. The sequence {fk} converges in measure on E to f if

∀ε > 0 lim
k→∞

|{x ∈ E : |f(x)− fk(x)| > ε}| = 0.

We write fk →m f .

Convergence in measure appears in many places throughout analysis. We
focus on a few fundamental results.

First, we see that pointwise convergence implies convergence in measure
(on sets of finite measure).

Theorem 4.34. Let f, fk be measurable and finite a.e. on E. If fk → f
a.e. on E and |E| <∞, then fk →m f on E.

Proof. Let ε, η > 0 and choose F and K as in Lemma 4.29, that is,

|E\F | < η and |f(x)− fk(x)| ≤ ε for x ∈ F and k > K.

Then for k > K, we have

{x ∈ E : |f(x)− fk(x)| > ε} ⊂ E\F.
Thus

lim sup
k→∞

|{x ∈ E : f(x)− fk(x)| > ε}| < η.

As η was arbitrary, the result follows. �
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Note that the conclusion may fail if |E| =∞. Indeed, we can once again
take the example fk = χ{|x|<k}.

Convergence in measure does not imply pointwise convergence a.e., even
on sets of finite measure.

Example 4.5. Let {Ik} be a sequence of subintervals of [0, 1] such that

• each point of [0, 1] belongs to infinitely many Ik,
• limk→∞ |Ik| = 0.

For example, we could take I1 = [0, 1], the next two intervals to be the
two halves of [0, 1], the next four intervals to be the four quarters of [0, 1],
and so on.

If fk = χIk then fk →m 0. However, {fk(x)} does not converge for any
x ∈ [0, 1].

In the direction of a converse to Theorem 4.34, we have the following.

Theorem 4.35. If fk →m f on E, then there exists a subsequence fkj such
that fkj → f a.e. in E.

Proof. By definition, for each j there exists kj so that

k ≥ kj =⇒ |{|f − fk| > 1
j }| < 2−j .

Without loss of generality, we may take kj to be increasing in j.

Define the sets

Ej = {|f − fkj | > 1
j } and Hm = ∪∞j=mEj .

By construction,

|Ej | < 2−j , and so |Hm| ≤ 2−m+1.

Furthermore,

|f − fkj | ≤ 1
j on E\Ej .

It follows that for j ≥ m, we have

|f − fkj | ≤ 1
j on E\Hm,

and so fkj → f pointwise on E\Hm for any m.

Since |Hm| → 0 as m→∞, we deduce that fk → f a.e. in E, as desired. �

Our last result is a Cauchy criterion for convergence in measure.

Theorem 4.36. A sequence {fk} converges in measure on E if and only if

∀ε > 0 lim
k,`→∞

|{x ∈ E : |fk(x)− f`(x)| > ε}| = 0.
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Proof. =⇒ : This direction follows from the fact that

{|fk − f`| > ε} ⊂ {|fk − f | > 1
2ε} ∪ {|f` − f | >

1
2ε},

which is perhaps best proved in the contrapositive.

⇐=: Choose an increasing sequence Nj so that k, ` ≥ Nj implies

|{|fk − f`| > 2−j}| < 2−j .

Then

|fNj+1 − fNj | ≤ 2−j

except for on a set Ej with |Ej | < 2−j .

We set Hi = ∪∞j=iEj , so that

|fNj+1(x)− fNj (x)| ≤ 2−j for j ≥ i and x /∈ Hi.

Thus ∑
j

[fNj+1 − fNj ]

converges uniformly outside Hi, and hence {fNj} converges uniformly out-
side Hi for each i.

As

|Hi| ≤
∑
j≥i

2−j = 2−i+1,

we have |Hi| → 0. Thus {fNj} converges a.e. on E to some f .

In fact, we have that |f − fNj | . 2−j outside of each Hi , which implies
that {fNj} converges in measure to f .

We wish to upgrade this to fk →m f on E. Thus we let ε > 0 and note
that

{|fk − f | > ε} ⊂ {|fk − fNj | > 1
2ε} ∪ {|fNj − f | > 1

2ε}

for any Nj . Now let η > 0 and (using the Cauchy criterion) select Nj large
enough that

|{|fk − fNj | > 1
2ε}| <

1
2η for all large k.

Using fNj →m f , we may also choose Nj large enough that

|{|fNj − f | > 1
2ε}| <

1
2η.

Thus

|{|fk − f | > ε}| < η for all k large enough.

As η was arbitrary, this completes the proof. �
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4.5. Exercises.

Exercise 4.1. Suppose {fn} is a sequence of measurable functions. Show
that the set of points at which fn converge is measurable.

Exercise 4.2. Show that a simple function f taking distinct values on disjoint
sets E1, . . . En is measurable if and only if each Ej is measurable.

Exercise 4.3. Let f be measurable on Rn and T a nonsingular linear trans-
formation of Rn. Show that x 7→ f(Tx) is measurable.

Exercise 4.4. Show that the image of a measurable set under a continuous
transformation need not be measurable.

Exercise 4.5. Show by example that φ ◦ f need not be measurable, even if
φ and f are measurable.

Exercise 4.6. Let D ⊂ R be a dense set. Suppose f is a real-valued function
on R so that {x : f(x) > a} is measurable for every a ∈ D. Show that f is
measurable.

Exercise 4.7. Let f be measurable and B a Borel set. Show that f−1(B) is
measurable.

Exercise 4.8. Show that if f is continuous at almost every point of an interval
[a, b], then f is measurable on [a, b].

Exercise 4.9. Show that if fk and gk converge in measure on a set E of finite
measure, then the product converges in measure as well.

Exercise 4.10. Suppose f = f(x, y) is defined on the square [0, 1]× [0, 1] and
is continuous in each variable separately. Show that f is measurable.

Exercise 4.11. Show that for any measurable function f on an interval [a, b]
and any ε > 0, there exists a continuous function g on [a, b] so that |{f 6=
g}| < ε.

Exercise 4.12. Suppose fk →m f and gk →m g on a set E with |E| < ∞,
then fkgk →m fg. If additionally gk → g on E and g 6= 0 a.e. then
fk/gk →m f/g. [Here →m denotes convergence in measure.]

Exercise 4.13. Construct a family {ft} of measurable functions on [0, 1]
(where t ∈ [0, 1]) such that for every x, we have limt→0 ft(x) = 0, but such
that there exists δ > 0 so that |{x : ft(x) > 1

2}| > δ for all t.

5. The Lebesgue integral

Reference: Wheeden–Zygmund Chapter 5
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5.1. The integral of a nonnegative function. Let f : E → R be a
nonnegative function on some measurable E ⊂ Rn. We define the graph of
f over E to be

Γ(f,E) = {(x, f(x)) ∈ Rn+1 : x ∈ E, f(x) <∞}.

We define the region under f over E to be

R(f,E) = {(x, y) ∈ Rn+1 : x ∈ E, 0 ≤ y ≤ f(x)}

where we understand the last interval to be [0,∞) if f(x) =∞.

If R(f,E) is measurable (as a subset of Rn+1), its measure |R(f,E)|n+1

is called the Lebesgue integral of f over E. We write

|R(f,E)|n+1 =

∫
E
f(x) dx.

We may also write ∫
E
f dx or

∫
E
f.

If one wishes to emphasize the dimensions, one can write∫
E
· · ·
∫
f(x1, · · · , xn) dx1 · · · dxn.

So far, we have only defined the integral for nonnegative functions. Exis-
tence of the integral is equivalent to measurability of R(f,E) and does not
require |R(f,E)|n+1 to be finite.

Here is a fundamental result about integrability.

Theorem 5.1. Let f be nonnegative on a measurable set E. Then
∫
E f

exists if and only if f is measurable.

In fact, we will only show the ⇐= direction, saving the other direction
for later.

We will need several lemmas.

Lemma 5.2. Let E ⊂ Rn and a ∈ [0,∞]. Set

Ea = {(x, y) : x ∈ E, y ∈ [0, a]}

(where we understand y ∈ [0, a) if a =∞).

If E ⊂ Rn is measurable, then Ea ⊂ Rn+1 is measurable, with

|Ea|n+1 = a|E|n.

Here and below we take 0 · ∞ = 0.
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Proof. First suppose a <∞. If E is any kind of interval, then the result is
immediate.

If E is an open set, then we may write it as a disjoint union of partly open
intervals, say E = ∪Ik. It follows that Ea = ∪Ik,a and hence is measurable.
In fact, the Ik,a are disjoint and so

|Ea| =
∑
|Ik,a| =

∑
a|Ik| = a|E|.

Next suppose E is Gδ, with E = ∩∞k=1Gk and |E| <∞.

We may assume |G1| < ∞ and Gk ↘ E (e.g. by writing E = G1 ∩ (G1 ∩
G2) ∩ · · · ).
By Theorem 3.30, we have |Gk| → |E| as k →∞. Moreover, by the above,
we have Gk,a is measurable with |Gk,a| = a|Gk|.
As Gk,a ↘ Ea, we deduce that Ea is measurable, with

|Ea| = lim
k→∞

|Gk,a| = a lim
k→∞

|Gk| = a|E|.

Now if E is any measurable set with |E| < ∞, then by Theorem 3.33 we
may write E = H\Z where |Z| = 0 and H is Gδ (and of finite measure).

Now Ea = Ha\Za, and hence Ea is measurable, with

|Ea| = |Ha| = a|H| = a|E|
using the above. This completes the proof of a ∈ R and |E| <∞.

If a ∈ R and |E| = ∞, then the result follows from writing E as a disjoint
countable union of finite measure sets.

Finally, if a = ∞, then choose {ak} ⊂ R with ak ↗ ∞. The result then
follows from the fact that Eak ↗ E∞. �

Lemma 5.3. If f is a nonnegative measurable function on a measurable set
E, then |Γ(f,E)| = 0.

Proof. Let ε > 0 and set

Ek = {kε ≤ f < (k + 1)ε}, k = 0, 1, 2, . . . .

The sets Ek are disjoint and measurable, with

∪kEk = {f <∞}.
Thus

Γ(f,E) = ∪kΓ(f,Ek).

By Lemma 5.2, we have

|Γ(f,Ek)| ≤ ε|Ek|,
and thus

|Γ(f,E)|e ≤
∑
|Γ(f,Ek)| ≤ ε

∑
|Ek| ≤ ε|E|.

When |E| <∞, this implies |Γ(f,E)|e = 0, giving the result.
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If |E| = ∞, we write E as the countable union of disjoint sets of finite
measure; then Γ(f,E) is the countable union of measure zero sets and hence
|Γ(f,E)| = 0. �

Proof of ⇐= direction of Theorem 5.1. Let f be nonnegative and measur-
able on E.

Let fk be simple measurable functions such that fk ↗ f (cf. Theo-
rem 4.17).

We then have

R(fk, E) ∪ Γ(f,E)↗ R(f,E),

and since Γ(f,E) has measure zero, it is enough to prove that each R(fk, E)
is measurable.

Fix k and suppose that

fk =
∑

ajχEj .

Then

R(fk, E) = ∪Nj=1Ej,aj .

Thus R(fk, E) is measurable (by Lemma 5.2), and the proof is complete. �

We record the following corollary:

Corollary 5.4. If f is a nonnegative measurable simple function of the form

f =

N∑
j=1

ajχEj ,

then ∫
∪Ej

f =
N∑
j=1

aj |Ej |.

Proof. First, note that R(f,E) = ∪Nj=1Ej,aj . As the Ej are measurable and
disjoint, so are Ej,aj . Thus by definition of the integral and Lemma 5.2,∫

∪Ej

f =

N∑
j=1

|Ej,aj | =
N∑
j=1

aj |Ej |.

This completes the proof. �

5.2. Properties of the integral. We turn to the following theorem.

Theorem 5.5.

(i) If f and g are measurable and 0 ≤ g ≤ f on E, then∫
E
g ≤

∫
E
f.

In particular,
∫
E inf f ≤

∫
E f.
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(ii) If f is nonnegative and measurable on E and
∫
E f is finite, then f

is finite a.e. on E.
(iii) Let E1 ⊂ E2 be measurable. If f is nonnegative and measurable on

E2, then ∫
E1

f ≤
∫
E2

f.

Proof. Items (i) and (iii) follow from the observations that

R(g,E) ⊂ R(f,E) and R(f,E1) ⊂ R(f,E2).

We turn to (ii). Without loss of generality, assume |E| > 0. Suppose f =∞
on some E1 ⊂ E with |E1| > 0.

Then, using (i) and (iii), we have∫
E
f ≥

∫
E1

f ≥
∫
E1

a = a|E1| for all a ∈ R,

which contradicts that
∫
E f is finite. �

We turn to the following convergence result.

Theorem 5.6 (Monotone convergence theorem for nonnegative functions).
Suppose {fk} is a sequence of nonnegative measurable functions such that
fk ↗ f on E. Then ∫

E
fk →

∫
E
f.

Proof. First observe that f is measurable (by Theorem 4.15).

Next, since R(fk, E) ∪ Γ(f,E)↗ R(f,E) and Γ(f,E) has measure zero,
we deduce

|R(fk, E)| → |R(f,E)|,
which gives the result. �

We next show countable additivity of the integral.

Theorem 5.7. Suppose f is nonnegative and measurable on E, where E is
the countable union of disjoint measurable sets Ej. Then∫

E
f =

∑
j

∫
Ej

f.

Proof. The sets R(f,Ej) are disjoint and measurable, and

R(f,E) = ∪jR(f,Ej).

Thus the result follows from Theorem 3.27. �

We now record some theorems that are corollaries of these results.

The first provides an alternate definition of the integral that is similar in
spirit to the definition of the Riemann integral.
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Theorem 5.8. Let f be nonnegative and measurable on E. Then∫
E
f = sup

(∑
j

[
inf
x∈Ej

f(x)
]
|Ej |

)
,

where the supremum is taken over all decompositions E = ∪jEj into the
disjoint union of finitely many measurable sets.

Proof. Consider such a decomposition E = ∪Nj=1Ej . Let

g =

N∑
j=1

ajχEj , aj := inf
y∈Ej

f(y).

Then by the results above,

N∑
j=1

aj |Ej | =
∫
E
g ≤

∫
E
f.

As this decomposition was arbitrary, we deduce

sup
∑
j

[inf
Ej

f ]|Ej | ≤
∫
E
f.

We turn to the reverse inequality.
As in the proof of Theorem 4.17, for each k ≥ 1 we introduce

{Ekj : j = 0, . . . , k2k}

by Ek0 = {f ≥ k} and

Ekj = {(j − 1)2−k ≤ f < j2−k} for j ≥ 1.

Then the simple functions

fk =
∑
j

[inf
Ek

j

f ]χEk
j

satisfy 0 ≤ fk ↗ f . Thus, by the monotone convergence theorem∑
j

[inf
Ek

j

f ]|Ekj | =
∫
E
fk →

∫
E
f.

Thus

sup
j

[inf
Ej

f ]|Ej | ≥
∫
E
f,

which completes the proof. �

This result immediately implies the following:

Theorem 5.9. If f is nonnegative on E and |E| = 0, then
∫
E f = 0.

We turn to an improvement of Theorem 5.5(i).
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Theorem 5.10. If f and g are measurable on E and 0 ≤ g ≤ f a.e. on E,
then

∫
E g ≤

∫
E f .

In particular, if f, g are nonnegative and measurable on E and f = g a.e.,
then

∫
E f =

∫
E g.

Proof. We can write E = A∪Z, where A and Z are disjoint and Z = {g > f}
has measure zero.

Thus, ∫
E
f =

∫
A
f +

∫
Z
f =

∫
A
f ≥

∫
A
g =

∫
E
g.

The result follows. �

In light of the previous result, we may consider integrals
∫
E f for measur-

able functions f that are only defined a.e. on E.

Theorem 5.11. Let f be nonnegative and measurable on E. Then∫
E
f = 0 ⇐⇒ f = 0 a.e. in E.

Proof. ⇐=: If f = 0 a.e. in E, then by Theorem 5.10 we have∫
E
f =

∫
E

0 = 0.

=⇒ : Suppose f ≥ 0 is measurable on E and
∫
E f = 0. Then for any α > 0,

α|{x ∈ E : f(x) > α}| =
∫
{f>α}

α ≤
∫
{f>α}

f ≤
∫
E
f = 0.

It follows that

|{f > α}| = 0 for all α > 0.

Writing

{f > 0} = ∪k{f > 1
k},

the result follows. �

The proof of the theorem above also establishes the following useful in-
equality:

Corollary 5.12 (Tchebyshev’s Inequality). Let f be nonnegative and mea-
surable on E. For any α > 0,

|{x ∈ E : f(x) > α}| ≤ 1
α

∫
E
f.

We turn to linearity properties of the integral.

Theorem 5.13 (Linearity, I). If f ≥ 0 is measurable on E and c ≥ 0, then∫
E
cf = c

∫
E
f.
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Proof. If f is a simple function, then so is cf and hence the result follows
from the formula for integrating simple functions.

For general f , choose simple measurable 0 ≤ fk ↗ f . Then cfk ↗ cf and∫
E
cf = lim

k→∞

∫
E
cfk = lim

k→∞
c

∫
E
fk = c

∫
E
f,

giving the result. �

Theorem 5.14 (Linearity, II). If f and g are nonnegative and measurable
on E then ∫

E
(f + g) =

∫
E
f +

∫
E
g.

Proof. Suppose

f =
N∑
i=1

aiχAi and g =
M∑
j=1

bjχBj

are simple functions. Then

f + g =
∑
i,j

(ai + bj)χAi∩Bj

is simple and∫
E

(f + g) =
∑
i

ai
∑
j

|Ai ∩Bj |+
∑
j

bj
∑
i

|Ai ∩Bj |

=
∑
i

ai|Ai|+
∑
j

bj |Bj | =
∫
E
f +

∫
E
g.

Now for general f, g, we choose simple measurable fk ↗ f and gk ↗ g.
Then fk + gk are simple and fk + gk ↗ f + g. Thus∫

E
(f + g) = lim

∫
E

(fk + gk) = lim
k

(∫
E
fk +

∫
E
gk

)
=

∫
E
f +

∫
E
g,

giving the result. �

Corollary 5.15. Suppose f and g are measurable on E with 0 ≤ f ≤ g. If∫
E f is finite, then ∫

E
(g − f) =

∫
E
g −

∫
E
f.

Proof. We have ∫
E
f +

∫
E

(g − f) =

∫
E
g,

and hence (since
∫
E f is finite) the result follows from subtraction. �

We turn to the following additivity result:
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Theorem 5.16. Suppose fk are nonnegative and measurable on E. Then∫
E

∞∑
k=1

fk =

∞∑
k=1

∫
E
fk.

Proof. The functions FN =
∑N

k=1 fk are nonnegative, measurable, and in-
crease to

∑∞
k=1 fk. Thus (by the monotone convergence theorem and finite

linearity) ∫
E

∞∑
k=1

fk = lim
N→∞

∫
E
FN = lim

N→∞

N∑
k=1

∫
E
fk =

∞∑
k=1

∫
E
fk,

which implies the result. �

Monotone convergence allows us to interchange integration and passage
to a limit.

We consider other situations in which we can make this interchange. Mere
convergence of fk to f is not enough:

Example 5.1. Let E = [0, 1]. For k ≥ 1 let fk be defined as follows:

For x ∈ [0, 1
k ], the graph of fk consists of the isosceles triangle with height

k and base [0, 1
k ].

For x ∈ [ 1
k , 1], fk(x) = 0.

Then fk → 0 on [0, 1], but∫ 1

0
fk = 1

2k ·
1
k = 1

2

for all k. Thus lim
∫ 1

0 fk 6=
∫ 1

0 lim fk.

In the positive direction, we have the following convergence results.

Theorem 5.17 (Fatou’s lemma). If {fk} is a sequence of nonnegative func-
tions on E, then ∫

E
lim inf
k→∞

fk ≤ lim inf
k→∞

∫
E
fk.

Proof. The integral on the left exists, since the integrand is nonnegative and
measurable.

Define the functions

gk = inf
n≥k

fn.

Then gk ↗ lim inf fk and 0 ≤ gk ≤ fk.
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Therefore by Theorem 5.6 (monotone convergence) and Theorem 5.10, we
have ∫

E
gk →

∫
E

lim inf fk and

∫
E
gk ≤

∫
E
fk,

so that ∫
E

lim inf fk = lim

∫
E
gk ≤ lim inf

∫
E
fk,

which gives the result. �

Corollary 5.18. Suppose fk are nonnegative and measurable on E and
fk → f a.e. on E. If

∫
E fk ≤M for all k, then

∫
E f ≤M .

Proof. By Fatou’s lemma,∫
E

lim inf fk ≤ lim inf

∫
E
fk ≤M.

Since lim inf fk = f a.e. in E, the result follows. �

Finally, we have the following:

Theorem 5.19 (Lebesgue dominated convergence theorem for nonnegative
functions).

Let {fk} be nonnegative measurable functions on E such that fk → f a.e.
on E.

Suppose there exists a measurable function φ such that fk ≤ φ a.e. for all
k and

∫
E φ is finite. Then ∫

E
fk →

∫
E
f.

Proof. By Fatou’s lemma,∫
E
f =

∫
E

lim inf fk ≤ lim inf

∫
E
fk.

Thus, it suffices to prove ∫
E
f ≥ lim sup

∫
E
fk.

For this, we apply Fatou’s lemma to the nonnegative function φ− fk, which
yields ∫

E
lim inf(φ− fk) ≤ lim inf

∫
E

(φ− fk).

As fk → f a.e., the integrand on the left equals φ−f a.e. Thus, by linearity,∫
E

lim inf(φ− fk) =

∫
E
φ−

∫
E
f.

On the other hand,

lim inf

∫
E

(φ− fk) =

∫
E
φ− lim sup

∫
E
fk.
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Hence

−
∫
E
f ≤ − lim sup

∫
E
fk,

giving the desired inequality. �

5.3. The integral of arbitrary measurable functions. To define the
integral of an arbitrary measurable function f on a set E, we break into
positive and negative parts:

f = f+ − f−,
each of which are measurable. We then define∫

E
f =

∫
E
f+ −

∫
E
f−,

provided at least one of these integrals is finite. In this case we say that the
integral

∫
E f exists.

This agrees with the original definition in the case that f = f+.

As before, we can make sense of this definition even when f is only defined
a.e.

If
∫
E f exists and is finite, we say that f is Lebesgue integrable, or

simply integrable. We write f ∈ L(E), or f ∈ L1(E). That is,

L(E) =

{
f :

∫
E
f is finite

}
.

We have the following triangle inequality: if
∫
E f exists, then∣∣∣∣∫

E
f

∣∣∣∣ ≤ ∫
E
f+ +

∫
E
f− =

∫
E

(f+ + f−) =

∫
E
|f |.

Theorem 5.20. Let f be measurable on E. Then f is integrable if and only
if |f | is.

Proof. By the triangle inequality, |f | ∈ L(E) =⇒ f ∈ L(E).

Suppose f ∈ L(E). Then ∫
E
f+ −

∫
E
f−

is finite, and hence (since at least one is finite by definition) both are finite.
Thus ∫

E
|f | =

∫
E
f+ +

∫
E
f−

is finite, i.e. |f | ∈ L(E). �

Many properties of
∫
E f follow from results already established for non-

negative f .

Theorem 5.21. If f ∈ L(E) then f is finite a.e. in E.

Proof. This follows from the fact that |f | ∈ L(E) (and Theorem 5.5(ii)). �
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Theorem 5.22.

(i) If both
∫
E f and

∫
E g exist and f ≤ g a.e. in E, then

∫
E f ≤

∫
E g.

In particular, if f = g a.e. in E then
∫
E f =

∫
E g.

(ii) If
∫
E2
f exists and E1 ⊂ E2 is measurable, then

∫
E1
f exists.

Proof. For (i), note that f ≤ g implies 0 ≤ f+ ≤ g+ and 0 ≤ g− ≤ f−.
Thus ∫

E
f+ ≤

∫
E
g+ and

∫
E
f− ≥

∫
E
g−.

The desired inequality follows from subtraction of these two inequalities.

For (ii), we note that at least one of
∫
E2
f+ or

∫
E2
f− is finite. Thus at

least one of
∫
E1
f+ or

∫
E1
f− is finite, and hence

∫
E1
f exists. �

Theorem 5.23. If
∫
E f exists and E = ∪kEk is a disjoint union of mea-

surable sets, then ∫
E
f =

∑
k

∫
Ek

f.

Proof. Each
∫
Ek
f exists by the previous theorem.

We write f = f+ − f− and use countable additivity for nonnegative
functions to write ∫

E
f =

∑∫
Ek

f+ −
∑∫

Ek

f−.

At least one of these sums is finite, and hence∫
E
f =

∑(∫
Ek

f+ −
∫
Ek

f−
)

=
∑∫

Ek

f,

which completes the proof. �

We leave the following as exercises:

Theorem 5.24. If |E| = 0 or if f = 0 a.e. in E, then
∫
E f = 0.

Theorem 5.25. If
∫
E f is defined, then so is

∫
E(−f), and∫

E
(−f) = −

∫
E
f.

Theorem 5.26. If
∫
E f exists and c ∈ R, then

∫
E(cf) exists, and∫

E
(cf) = c

∫
E
f.

Theorem 5.27. If f, g ∈ L(E), then f + g ∈ L(E), and∫
E

(f + g) =

∫
E
f +

∫
E
g.
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Remark 5.28. It is not difficult to prove f + g ∈ L(E) [it follows from the
triangle inequality]. To prove the equality, one must consider all the possible
sign combinations of f, g.

Remark 5.29. The preceding show that for fk ∈ L(E) and ak ∈ R,∫
E

N∑
k=1

akfk =

N∑
k=1

ak

∫
E
fk.

Corollary 5.30. Let f, φ be measurable on E, with f ≥ φ and φ ∈ L(E).
Then ∫

E
[f − φ] =

∫
E
f −

∫
E
φ.

Proof. Note that
∫
E f exists, since f− < φ− (and hence

∫
E f
− is finite).

Since f − φ ≥ 0, we have that
∫
E(f − φ) exists.

If f ∈ L(E), then the result follows by linearity.

If f /∈ L(E), then we must have
∫
E f = +∞.

As φ ∈ L(E), we also have f − φ /∈ L(E), and hence (since f − φ ≥ 0)∫
E f − φ = +∞. Thus the result follows in this case as well. �

It is an interesting question to ask when fg ∈ L(E). For now, we give
only a simple sufficient condition.

Theorem 5.31. Let f ∈ L(E) and let g be a measurable function on g such
that |g| ≤M <∞ a.e. on E. Then fg ∈ L(E).

Proof. Since |fg| ≤M |f | a.e., it follows that∫
E
|fg| ≤

∫
E
M |f | = M

∫
E
|f |.

Thus fg ∈ L(E). �

Similarly, we have the following:

Corollary 5.32. If f ∈ L(E) and f ≥ 0 and there exist α, β ∈ R so that
α ≤ g ≤ β a.e. in E, then

α

∫
E
f ≤

∫
E
fg ≤ β

∫
E
f.

As before, we will be interested in conditions that guarantee∫
E
fk →

∫
E
f

in the case that fk → f . In particular, we can prove extensions of the results
we established in the case of nonnegative functions.

Theorem 5.33 (Monotone convergence theorem). Let {fk} be a sequence
of measurable functions on E.
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(i) If fk ↗ f a.e. on E and there exists φ ∈ L(E) so that fk ≥ φ on E
for all k, then

∫
E fk →

∫
E f .

(ii) If fk ↘ f a.e. on E and there exists φ ∈ L(E) so that fk ≤ φ on E
for all k, then

∫
E fk →

∫
E f .

Proof. We focus on (i), leaving (ii) as an exercise.

We may assume that fk ↗ f everywhere on E. Thus

0 ≤ fk − φ↗ f − φ

on E, so that by the monotone convergence theorem for nonnegative func-
tions we have ∫

E
(fk − φ)→

∫
E

(f − φ).

Thus, using Corollary 5.30, we deduce∫
E
fk −

∫
E
φ→

∫
E
f −

∫
E
φ,

and since φ ∈ L(E) the result follows. �

Theorem 5.34 (Uniform convergence theorem). Let fk ∈ L(E) and let
fk → f uniformly on E, where |E| <∞. Then f ∈ L(E) and∫

E
fk →

∫
E
f.

Proof. As

|f | ≤ |fk|+ |f − fk|
and fk → f uniformly on E, we have

|f | ≤ |fk|+ 1

on E for all large k, and hence (since |E| <∞) f ∈ L(E). Thus∣∣∣∣∫
E
f −

∫
E
fk

∣∣∣∣ =

∣∣∣∣∫
E

(f − fk)
∣∣∣∣ ≤ ∫

E
|f − fk|

≤ |E| · sup
x∈E
|f(x)− fk(x)| → 0 as k →∞,

which completes the proof. �

Theorem 5.35 (Fatou’s lemma). Let {fk} be a sequence of measurable
functions on E. If there exists φ ∈ L(E) such that fk ≥ φ on E for all k,
then ∫

E
lim inf
k→∞

fk ≤ lim inf
k→∞

∫
E
fk.

Proof. Apply Fatou’s lemma for nonnegative functions to the sequence fk−
φ. �
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Corollary 5.36. Let {fk} be a sequence of measurable functions on E. If
there exists φ ∈ L(E) such that fk ≤ φ on E for all k, then∫

E
lim sup
k→∞

fk ≥ lim sup
k→∞

∫
E
fk.

Proof. Use Fatou’s lemma and the fact that lim inf(−fk) = − lim sup fk. �

Theorem 5.37 (Lebesgue’s dominated convergence theorem). Let {fk} be a
sequence of measurable functions on E such that fk → f a.e. on E. If there
exists φ ∈ L(E) such that |fk| ≤ φ a.e. in E for all k, then

∫
E fk →

∫
E f .

Proof. We have −φ ≤ fk ≤ φ, and hence

0 ≤ fk + φ ≤ 2φ

a.e. in E. As 2φ ∈ L(E), we have by the dominated convergence theorem
for nonnegative functions that∫

E
fk + φ→

∫
E
f + φ.

The result follows. �

Corollary 5.38 (Bounded convergence theorem). Let {fk} be a sequence
of measurable functions such that fk → f a.e. in E. If |E| < ∞ and
|fk| ≤M <∞ a.e. in E, then

∫
E fk →

∫
E f .

Proof. Take φ ≡M and use the dominated convergence theorem. �

Remark 5.39. To extend the notion of Lebesgue integrability to complex-
valued functions, we define∫

f1 + if2 =

∫
f1 + i

∫
f2.

5.4. Riemann–Stieltjes and Lebesgue integrals. This section will be
mostly skipped in lecture.

Let f be a measurable function on a set E. We define the distribution
function of f by

ω(α) = ωf,E(α) = |{x ∈ E : f(x) > α}|.

Here α ∈ R. This is a decreasing function of α. Note that if we assume that
f is finite a.e. and |E| <∞, then

lim
α→∞

{f > α} = {f =∞}, so that lim
α→∞

ω(α) = 0

and

lim
α→−∞

ω(α) = |E| <∞.

Thus ω is bounded, and furthermore ω is of bounded variation with variation
equal to |E|.
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In what follows, we let f denote a measurable function, finite a.e. on E,
with |E| <∞. We write

ω(α) = ωf,E(α), {f > α},

and so on.

Lemma 5.40. If α < β then |{α < f ≤ β}| = ω(α)− ω(β).

Proof. This follows from the facts that

{f > β} ⊂ {f > α}, {α < f ≤ β} = {f > α}\{f > β},

and |{f > β}| <∞ (cf. Corollary 3.29). �

We denote

ω(α+) = lim
ε↘0

ω(α+ ε) and ω(α−) = lim
ε↘0

ω(α− ε).

Lemma 5.41. The following hold:

• ω(α+) = ω(α) (i.e. ω is continuous from the right)
• ω(α−) = |{f ≥ α}|.

Proof. For εn ↘ 0, we get that

{f > α+ εn} ↗ {f > α} and {f > α− εn} ↘ {f ≥ α}.

As these sets have finite measure, we deduce

ω(α+ εn)→ ω(α) and ω(α− εn)→ |{f ≥ α}|.

This completes the proof. �

Thus ω is a decreasing function that is continuous from the right. It may
have jumps ω(α−) − ω(α) or intervals of constancy. We can characterize
these situations as follows.

Corollary 5.42. The following hold:

(a) ω(α−) − ω(α) = |{f = α}|. Thus ω is continuous at α if and only
if |{f = α}| = 0.

(b) ω is constant on (α, β) if and only if

|{α < f < β}| = 0.

Proof. (a) follows from the fact that

|{f ≥ α}| = |{f > α}|+ |{f = α}|.

For (b), we use

ω(α)− ω(β−) = |{f > α}| − |{f ≥ β}| = |{α < f < β}|.

This is zero if and only if ω is constant on [α, β); using right continuity, this
is equivalent to being constant on (α, β). �

We now relate the Lebesgue integral to a Riemann–Stieltjes integral:
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Theorem 5.43. If a < f ≤ b on E (with a, b, |E| finite), then∫
E
f = −

∫ b

a
αdω(α).

Proof. The integral on the left exists because a, b, |E| <∞. The integral on
the right exists because α 7→ α is continuous and ω ∈ BV .

Now partition [a, b] as {αj}kj=0 and set

Ej = {αj−1 < f ≤ αj}.
Note E is the disjoint union of the Ej . Thus∫

E
f =

k∑
j=1

∫
Ej

f,

and
k∑
j=1

αj−1|Ej | ≤
∫
E
f ≤

∫ k

j=1
αj |Ej |.

However, we have just seen that

|Ej | = ω(αj−1)− ω(αj),

and hence the sums above are Rieman–Stieltjes sums for −
∫ b
a αdω(α). Send-

ing the mesh of the partition to zero now yields the claim. �

More generally, if f is measurable on E, then∫
{a<f≤b}

f = −
∫ b

a
αdω(α).

In fact, if either
∫
E f or

∫∞
−∞ αdω(α) are finite, then∫
E
f = −

∫ ∞
−∞

αdω(α).

We leave the proof as an exercise.

We call two measurable functions f, g on a set E equidistributed (or
equimeasurable) if

ωf,E(α) = ωg,E(α) for all α.

We may think of f, g as being rearrangements of eachother. We have the
following:

Corollary 5.44. If f, g are equimeasurable on E and f ∈ L(E), then g ∈
L(E) with ∫

E
f =

∫
E
g.

Remark 5.45. We now see the difference between Riemann and Lebesgue
integration: The Riemann integral is defined using partitioning of the do-
main, while the Lebesgue integral uses partitioning of the range.
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In fact, let f ≥ 0 be measurable and finite a.e. on E, with |E| <∞. Let
Γ = {αj} be a partition of [0,∞) by a countable number of points αj →∞.

Let Ek = {αk ≤ f < αk+1} and Z = {f = +∞}. Then

|Z| =∞ and |E| =
∑
|Ek|.

Define
sΓ =

∑
αk|Ek| and SΓ :=

∑
αk+1|Ek|.

We have the following:

Theorem 5.46. Let f ≥ 0 be measurable and finite a.e. on E, with |E| <
∞. Then ∫

E
f = lim

|Γ|→0
sΓ = lim

|Γ|→0
SΓ.

Proof. Without loss of generality, suppose f is finite everywhere.

Given Γ, let φΓ and ψΓ be defined by φΓ = αk in Ek and ψΓ = αk+1 in
Ek. Then

0 ≤ φΓ ≤ f ≤ ψΓ,

and so

sΓ =

∫
E
φΓ ≤

∫
f ≤

∫
E
ψΓ = SΓ.

If sΓ <∞, then we have

0 ≤ SΓ − sΓ =
∑

(αk+1 − αk)|Ek| ≤ |Γ||E|,

so that SΓ <∞ and SΓ − sΓ → 0 as |Γ| → ∞. This implies the result when∫
f <∞.

If
∫
f = ∞ then we deduce SΓ = ∞ (and sΓ = ∞), which gives the

result. �

Next, we turn to the following result:

Theorem 5.47. If a < f ≤ b on E (with |E| <∞) and φ is continuous on
[a, b], then ∫

E
φ(f) = −

∫ b

a
φ(α)dω(α).

Proof. First note that φ(f) ∈ L(E), and that (as φ is continuous) the
Rieman–Stieltjes integral exists.

We write f = lim fk, where a < fk ≤ b is simple;. In particular, we form
partitions {αkj } of [a, b] with mesh size tending to zero and set

fk(x) = αkj for αkj−1 < f(x) ≤ αkj .
Then φ(fk)→ φ(f) ∈ E. As the φ(fk) are uniformly bounded and |E| <∞,
the bounded convergence theorem implies∫

E
φ(fk)→

∫
E
φ(f).
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However, using that φ(fk) is simple, we use Lemma 5.40 to deduce∫
E
φ(fk) = −

∑
j

φ(αkj )[ω(αkj )− ω(αkj−1)],

giving ∫
E
φ(fk)→ −

∫ b

a
φ(α) dω(α).

This completes the proof. �

We also have the following extension: if φ(f) ∈ L(E) then∫
E
φ(f) = −

∫ ∞
−∞

φ(α) dω,

which we leave as an exercise.

In fact if φ is continuous and nonnegative then we can write∫
E
φ(f) = −

∫ ∞
−∞

φ(α) dω(α)

without restricting either side to be finite.

In particular, for any continuous φ,∫
E
|φ(f)| = −

∫ ∞
−∞
|φ(α)| dω(α).

We apply this to the special class of functions φ(α) = |α|p, 0 < p < ∞,
which gives ∫

E
|f |p = −

∫ ∞
−∞
|α|pdω(α).

For nonnegative f , this yields∫
E
fp = −

∫ ∞
0

αpdω(α), (5.1)

and in general ∫
E
|f |p = −

∫ ∞
0

αpdω|f |(α).

For φ ≥ 0, we may denote by Lφ(E) the class of measurable functions f
such that φ(f) ∈ L(E). When φ(α) = |α|p (p ∈ (0,∞)), we write Lφ(E) =
Lp(E). In particular, L(E) = L1(E).

To complete this section, we continue from (5.1) above. First observe the
Lp version of Tchebyshev’s inequality (which we leave as an exercise):

ω(α) ≤ 1
αp

∫
{f>α}

fp, α > 0.

Thus for f ∈ Lp we have αpω(α) bounded. In fact:

Lemma 5.48. For f ∈ Lp, αpω(α)→ 0 as α→∞.
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Proof. This will follow from Tchebyshev’s inequality, once we prove

lim
α→∞

∫
{f>α}

fp = 0.

To this end, let αk →∞ and define fk = f when f > αk, fk = 0 elsewhere.

Then ∫
{f>αk}

fp =

∫
E
fpk .

Since f is finite a.e., we have fk → 0 a.e.

Moreover, 0 ≤ fpk ≤ |f |
p ∈ L(E). Thus, the result follows from the

dominated convergence theorem. �

Finally, we have the following:

Theorem 5.49. If f ≥ 0 and f ∈ Lp, then∫
E
fp = p

∫ ∞
0

αp−1ω(α) dα.

Proof. First let 0 < a < b < ∞. Using the integration by parts formula
for Riemann–Stieltjes integrals and the fact that α 7→ αp is continuously
differentiable on [a, b], we find

−
∫ b

a
αp dω(α) = −bpω(b) + apω(a) + p

∫ b

a
αp−1ω(α) dα.

By the lemma above, bpω(b)→ 0 as b→∞, while αpω(a)→ 0 follows from
|E| <∞. Thus the result follows from sending a→ 0 and b→∞. �

5.5. Riemann and Lebesgue integrals. This section will be mostly skipped
in lecture.

In the following, we denote the Riemann integral by (R)
∫

and the Lebesgue
integral by

∫
.

Theorem 5.50. If f is bounded and Riemann integrable on [a, b], then
f ∈ L([a, b]) and ∫ b

a
f = (R)

∫ b

a
f.

Proof. Let Γk be a sequence of partitions of [a, b] with mesh size tending to
zero.

For each k, define two simple functions `k, uk on [a, b) by taking the lower
and upper bounds on each semi-open interval [xki , x

k
i+1] (where Γk = {xki }).

The functions `k, uk are bounded and measurable on [a, b). If Lk, Uk
denote the lower/upper Riemann sums of f , then∫ b

a
`k = Lk,

∫ b

a
uk = Uk.
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We have `k ≤ f ≤ −K, and if we let Γk+1 be a refinement of Γk then `k
is increasing and uk decreasing.

Writing ` = lim `k and u = limuk, we have `, u measurable and ` ≤ f ≤ u.

By the bounded convergence theorem,

Lk →
∫ b

a
` and Uk →

∫ b

a
u.

However, because f is Riemann integrable we have

Lk, Uk → (R)

∫ b

a
f.

Thus

(R)

∫ b

a
f =

∫ b

a
` =

∫ b

a
u.

Using that u−` ≥ 0, we deduce l = f = u a.e. in [a, b]. Thus f is measurable
and

∫
f = (R)

∫
f . �

Compare this with the Dirichlet function f(x) = 1 for x ∈ Q ∩ [0, 1]
and f(x) = 0 otherwise. This function is bounded, Lebesgue integrable
(
∫
f = 0), but not Riemann integrable.

Here is a useful result:

Theorem 5.51. Let f ≥ 0 on [a, b] and Riemann integrable (hence bounded)
on each interval [a+ ε, b], where ε > 0. If

I := lim
ε→0

(R)

∫ b

a+ε
f

exists and is finite, then f ∈ L[a, b] and
∫ b
a f = I.

Proof. The result follows from the monotone convergence theorem, since∫ b
a+ε f = (R)

∫ b
a+ε f for each ε > 0. �

On the other hand, one can construct a function f whose improper Rie-
mann integral exists and is finite, but which is not integrable. (The function
must not be nonnegative...)

We conclude with the following characterization of Riemann integrable
functions:

Theorem 5.52. A bounded function is Riemann integrable on [a, b] if and
only if it is continuous a.e. on [a, b].

Proof. =⇒ : Let f be bounded and Riemann integrable.

Let Γk, `k, uk be as above. Let Z be the set of measure zero outside of
which ` = f = u.

We will show that if x is not a partitioning point of any Γk and x /∈ Z,
then f is continuous at x.
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If not, then there exists ε > 0 depending on x (but not k) so that uk(x)−
`(k) ≥ ε. This implies u(x)− `(x) ≥ ε, which contradicts x /∈ Z.

⇐=: Let f be bounded and continuous a.e. on [a, b]. Let {Γ′k} be a
sequence of partitions with mesh size tending to zero and define `′k, u

′
k, L

′
k, U

′
k

as above.

Because Γ′k+1 need not be a refinement of Γ′k, `
′
k and u′k may not be

monotone. However, by continuity, `′k → f and u′k → f a.e.

Thus, by the bounded convergence theorem,∫ b

a
`′k,

∫ b

a
u′k →

∫ b

a
f.

Since L′k =
∫ b
a `
′
k and Uk =

∫ b
a u
′
k, it follows that f is Riemann integrable. �

5.6. Exercises.

Exercise 5.1. If f ≥ 0 and
∫
E f dx = 0, show that f = 0 almost everywhere

on E.

Exercise 5.2. Let E be measurable. If
∫
A f dx = 0 for every measurable

subset A ⊂ E then f = 0 almost everywhere on E.

Exercise 5.3. Suppose {fk} is a sequence of nonnegative measurable func-
tions on E. If fk → f and fk ≤ f almost everywhere on E, show that∫
E fk →

∫
E f .

Exercise 5.4. Suppose f ∈ L(0, 1). Show that xkf(x) ∈ L(0, 1) for all k ≥ 1,

and that
∫ 1

0 x
kf(x) dx→ 0 as k →∞.

Exercise 5.5. Show that the bounded convergence theorem is a consequence
of Egorov’s theorem.

Exercise 5.6. Give an example of a function that is not Lebesgue integrable,
but has an improper Riemann integral that exists and is finite.

Exercise 5.7. Let p > 0. (i) Show that if
∫
|f − fk|p → 0 then fk converges

to f in measure. (ii) Show that if
∫
|f − fk|p → 0 and

∫
E |fk|

p ≤ M for all
k, then

∫
E |f |

p ≤M .

Exercise 5.8. Let f be nonnegative and measurable on E. Show that for
any α > 0,

|{x ∈ E : f(x) > α}| ≤ 1
α

∫
E
f.

Exercise 5.9. If
∫
E |f − fk| → 0 as k → ∞, show that there exists a subse-

quence fkj such that fkj → f a.e. in E.

Exercise 5.10. Find a bounded continuous function that tends to zero at
infinity but does not belong to any Lp for any p > 0.
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Exercise 5.11. Let f(x) = 0 if x is irrational and f(x) = 1 if x is rational.
Show that f has upper Riemann integral equal on [0, 1] equal to 1, but lower
integral equal to 0. On the other hand, show that there exists a sequence fn
of nonnegative Riemann-integrable functions such that fn increases mono-
tonically to f .

Exercise 5.12. Show that strict inequality may hold in Fatou’s lemma.

Exercise 5.13. Let f ≥ 0 be integrable. Show that F (x) :=
∫ x
−∞ f(y) dy is

continuous. Hint: Use monotone convergence.

Exercise 5.14. Show that if f is integrable on R, then
∫
R f(x) cos(nx) dx→ 0

as n→∞.

Exercise 5.15. Construct a sequence of functions fn : R → R such that (i)
fn → 0 uniformly on R, (ii) supn

∫
R |fn| dx <∞, but (iii)

∫
R fn dx does not

converge to zero.

Exercise 5.16. Let g be Lebesgue integrable on R and f : R→ R be bounded,
measurable, and continuous at x = 1. Compute the limit

lim
n→∞

∫ n

−n
f(1 + x

n2 )g(x) dx

and justify your answer.

Exercise 5.17. Find an example of a nonnegative sequence fn such that
fn → 0 and

∫
fn → 0, but such that there is no integrable g with fn ≤ g for

all n.

6. Lp classes

Reference: Wheeden–Zygmund Chapter 8

6.1. Definition of Lp. Let E be a measurable subset of Rn and 0 < p <∞.
We define

Lp(E) = {f :

∫
E
|f |p <∞}

and

‖f‖p = ‖f‖Lp(E) =

(∫
E
|f |p

) 1
p

.

We define L∞(E) as follows. We define

ess sup
E
f = inf{α : |{x ∈ E : f(x) > α}| = 0},

unless |{x ∈ E : f(x) > α}| > 0 for all α, in which case we set ess supE f =
∞.

The essential supremum is the smallest number M such that f(x) ≤M
a.e. in E.
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A function is essentially bounded (or bounded) on E if ess supE |f |
is finite. The set of essentially bounded functions on E is denoted L∞(E),
and we write

‖f‖∞ = ‖f‖L∞(E) = ess sup
E
|f |.

Theorem 6.1. If |E| <∞ then ‖f‖∞ = limp→∞ ‖f‖p.

Proof. Let M = ‖f‖∞. For M ′ < M , the set A := {|f | > M ′} has positive
measure. Moreover,

‖f‖p ≥
(∫

A
|f |p

)1/p

≥M ′|A|1/p.

As |A|1/p → 1 when p→∞, we find

lim inf
p→∞

‖f‖p ≥M ′,

which then implies

lim inf
p→∞

‖f‖p ≥M.

On the other hand,

‖f‖p ≤
(∫

E
Mp

)1/p

= M |E|1/p,

showing lim supp→∞ ‖f‖p ≤M . This completes the proof. �

This can fail for |E| =∞ (consider e.g. f(x) ≡ c).

Theorem 6.2. If 0 < p1 < p2 ≤ ∞ and |E| <∞, then Lp2 ⊂ Lp1.

Proof. Exercise. For p2 < ∞, split f into the sets where |f | ≤ 1 and
|f | > 1. �

This also can fail if |E| = ∞. Consider e.g. f(x) = x−1/p1 on (1,∞).
Then f ∈ Lp2\Lp1 for p1 < p2 <∞.

A function can belong to all Lp1 with p1 < p2 but not belong to Lp2 .
Consider e.g. x−1/p2 on (0, 1), which belongs to Lp1 for p1 < p2 but not to
Lp2 . Similarly, log(1/x) is in Lp1(0, 1) for p1 <∞ but not in L∞.

If f ∈ Lp1 ∩ L∞ then f ∈ Lp2 for all p2 > p1. [Exercise.]

The spaces Lp are vector spaces, i.e. closed under addition and scalar
multiplication. [Exercise.]
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6.2. Hölder and Minkowski inequalities.

Theorem 6.3 (Young’s inequality). Let y = φ(x) be continuous, real-
valued, and strictly increasing for x ≥ 0, with φ(0) = 0. Writing x = ψ(y)
for the inverse of φ, then for a, b > 0 we have

ab ≤
∫ a

0
φ(x) dx+

∫ b

0
ψ(y) dy.

Equality holds if and only if b = φ(a).

Proof. One can draw a picture, interpret the integrals as areas under curves,
and the result follows. �

Set φ(x) = xα for some α > 0, and hence ψ(y) = yα
−1

. Then Young’s
inequality says

ab ≤ 1

1 + α
a1+α +

1

1 + α−1
b1+α−1

.

Setting p = 1 + α and p′ = 1 + α−1, this yields

ab ≤ ap

p + bp
′

p′

for a, b ≥ 0, 1 < p <∞, and 1
p + 1

p′ = 1.

Two numbers p, p′ satisfying
1
p + 1

p′ = 1

and p, p′ > 1 are called conjugate exponent pairs. In particular, p′ = p
p−1

and 2′ = 2.

We write 1′ =∞ and ∞′ = 1.

Theorem 6.4 (Hölder’s inequality). For 1 ≤ p ≤ ∞,

‖fg‖L1 ≤ ‖f‖Lp‖gLp′ .

Proof. The case p ∈ {1,∞} is straightforward, so consider 1 < p <∞.

It suffices to consider the case 0 < ‖f‖p, ‖g‖p′ <∞. In this case, define

f̃ =
f

‖f‖p
and g̃ =

g

‖g‖p′
.

Then ∫
E
|f̃ g̃| ≤

∫
E

|f̃ |p
p + |g̃|p′

p′ = 1
p + 1

p′ = 1,

and rearranging yields the desired inequality. �

When p = p′ = 2, Hölder’s inequality is called the Cauchy–Schwarz in-
equality: ∫

E
|fg| ≤

(∫
|f |2

) 1
2
(∫
|g|2
) 1

2

.

In fact, one has the following ‘duality’ between Lp and Lp
′
.
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Theorem 6.5. Let f be real-valued and measurable on E and 1 ≤ p ≤ ∞.
Then

‖f‖p = sup

∫
E
fg,

where the supremum is taken over all real-valued g such that ‖g‖p′ ≤ 1 and∫
E fg exists.

Proof. Let us prove this result in the simple case of f ≥ 0, 1 < p < ∞ and
0 < ‖f‖p <∞, leaving other cases as exercises (or see Wheeden–Zygmund).

By dividing both sides of the equality by ‖f‖p, we may assume ‖f‖p = 1.

Now let g = fp/p
′
. Then one can verify ‖g‖p′ = 1 and

∫
E fg = 1, which

yields the result in this case. �

Another classical inequality for Lp functions is the following:

Theorem 6.6 (Minkowski’s inequality). For 1 ≤ p ≤ ∞,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The cases p ∈ {1,∞} are straightforward and left as an exercise.

For 1 < p <∞, we write

‖f + g‖pp =

∫
|f + g|p−1|f + g| ≤

∫
|f + g|p−1|f |+

∫
|f + g|p−1|g|.

Now, apply Hölder’s inequality (noting p′ = p
p−1) to get∫

|f + g|p−1|g| ≤ ‖f + g‖p−1
p ‖g‖p,

and similarly to get ∫
|f + g|p−1|f | ≤ ‖f + g‖p−1

p ‖f‖p.

Thus

‖f + g‖pp ≤ ‖f + g‖p−1
p (‖f‖p + ‖g‖p),

which implies the result. �

Remark 6.7. Minkowski’s inequality fails when p ∈ (0, 1): let f = χ(0, 1
2

)

and g = χ( 1
2
,1). Then ‖f + g‖p = 1 but ‖f‖p + ‖g‖p = 2 · 2−1/p < 1.

6.3. `p classes. A sequence a = {ak} belongs to `p if

‖a‖`p = ‖a‖p =

(∑
k

|ak|p
)1/p

<∞.

This is the definition for 0 < p <∞; for p =∞ we set

‖a‖`∞ = sup
k
|ak|.

For `p spaces we have `p1 ⊂ `p2 whenever 0 < p1 < p2 ≤ ∞. [Exercise.]
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One can also construct sequences belonging to `p2 but not `p1 for any
p1 < p2 [exercise].

One can also prove analogues of Hölder’s and Minkowski’s inequality, i.e.

‖ab‖1 ≤ ‖a‖p‖b‖p′ , ‖a+ b‖p ≤ ‖a‖p + ‖b‖p
for suitable ranges of exponents.

6.4. Banach and metric space properties. A Banach space is a normed
vector space such that the space is complete with respect to the metric in-
duced by the norm.

Theorem 6.8. For 1 ≤ p ≤ ∞, Lp is a Banach space with norm ‖f‖p =
‖f‖Lp.

Remark 6.9. Elements of Lp are identified as equivalence classes of func-
tions that are equal a.e.

Proof. The results we have established so far show that f 7→ ‖f‖p is a norm
and Lp is a vector space. It therefore remains to show that Lp is complete.

Let {fk} be Cauchy in Lp. If p =∞, then

|fk − fm| ≤ ‖fk − fm‖∞
a.e. and hence {fk} converges uniformly a.e. to a bounded limit f ; it follows
that fk → f in L∞.

If 1 ≤ p <∞, then Tchebyshev’s inequality implies

|{|fk − fm| > ε}| ≤ ε−p
∫
|fk − fm|p,

and hence {fk} is Cauchy in measure. Thus there exists f such that fk → f
a.e. (cf. Chapter 4). Now for any ε > 0, there exists K such that

‖fk − fj‖p < ε for k, j > K.

Sending j →∞, we obtain by Fatou’s lemma that ‖f − fk‖p < ε for k > K.
Noting that

‖f‖p ≤ ‖f − fk‖p + ‖fk‖p <∞,
it follows that f ∈ Lp(E), which completes the proof. �

A metric space is separable if it has a countable dense subset. Note
that L∞ is not separable, since there exist an uncountable set of functions
a distance one apart (e.g. ft = χ(0,t) in L∞((0, 1))).

Theorem 6.10. For 1 ≤ p <∞, Lp is separable.

Sketch of proof. First consider the case Lp(Rn).

Consider a class of dyadic cubes in Rn and let D be the set of all finite
linear combinations of characteristic functions of these cubes, wth rational
coefficients. This is a countable subset of Lp.
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To see that D is dense in Lp, we approximate more and more general
functions.

First, we can approximate characteristic functions of open sets (since
every open set is a countable union of nonoverlapping dyadic cubes).

We can then approximate characteristic functions of Gδ sets, and thus
measurable sets of finite measure.

This lets us reach simple functions whose supports have finite measure,
which in turn lets us reach nonnegative functions in Lp and finally arbitrary
functions in Lp.

To handle E ⊂ Rn, just work with the restrictions of functions in D to
E. �

Recall that we showed Minkowski’s inequality fails for p ∈ (0, 1), so that
‖ · ‖p fails to be a norm. Still we have the following:

Theorem 6.11. For 0 < p < 1, Lp is a complete separable metric space
with distance

d(f, g) = ‖f − g‖pLp .

Proof. To show that d is a metric, we need to verify the triangle inequality.
This follows from the inequality

(a+ b)p ≤ ap + bp for a, b ≥ 0, p ∈ (0, 1).

To see this, one can divide by a (say) and reduce the inequality to (1+ t)p ≤
1 + tp for t > 0, which can be proved with calculus.

Thus
|f − g|p ≤ |f − h|p + |h− g|p,

which gives the triangle inequality upon integrating. The proofs that Lp is
complete and separable are the same as those for p ≥ 1. �

We have analogous results for `p spaces:

Theorem 6.12. For p ∈ [1,∞], `p is a Banach space. For p ∈ [1,∞), `p is
separable, while `∞ is not separable.

For p ∈ (0, 1), `p is a complete separable metric space with distance
d(a, b) = ‖a− b‖pp.

The proofs are left to the reader. We only point out an example to
show that `∞ is not separable: consider the sequences a = {ak} such that
ak ∈ {0, 1}. The number of such sequences is uncountable and ‖a−a′‖`∞ = 1
for any two different such sequences.

We turn to the following continuity property:

Theorem 6.13 (Translations are continuous in Lp). For f ∈ Lp(Rn) with
1 ≤ p <∞, we have

lim
|h|→0

‖f(x+ h)− f(x)‖p = 0.
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Proof. Let Cp be the set of f ∈ Lp so that the conclusion of the theorem
holds.

We first note that (a) Cp is closed under finite linear combinations and
(b) Cp is closed under strong Lp limits. In fact, these are both consequences
of Minkowski’s inequality, e.g. if Cp 3 fk → f in Lp then we have

‖f(x+ h)− f(x)‖p
≤ ‖f(x+ h)− fk(x+ h)‖p + ‖fk(x+ h)− fk(x)‖p + ‖fk − f‖p
= ‖fk(x+ h)− fk(x)‖p + 2‖fk − f‖p,

which implies the result.
Now, the characteristic function of a cube belongs to Cp. As finite linear

combinations of characteristic functions of cubes are dense in Lp (cf. the
proof of separability of Lp), we have that (a) and (b) imply Lp ⊂ Cp. This
completes the proof. �

Remark 6.14. Translation is also continuous in Lp for p ∈ (0, 1), but it
fails for p =∞. Indeed, consider χ(0,∞).

6.5. L2 and orthogonality. We can define an inner product on L2(E)
by

〈f, g〉 =

∫
E
fḡ.

Indeed, by Cauchy–Schwarz,

|〈f, g〉| ≤ ‖f‖2‖g‖2.

In the following we often denote ‖f‖2 by ‖f‖ and omit reference to the set
E.

The product 〈·, ·〉 satisfies the properties of an inner product (e.g. linearity

in the first variable) and ‖f‖ =
√
〈f, f〉

If 〈f, g〉 = 0, then we call f and g orthogonal. A set {φα}α∈A is or-
thogonal if any two of its elements are orthogonal and orthonormal if it
is orthogonal and ‖φα‖ = 1 for all α ∈ A.

By convention, we always assume that orthogonal sets consist only of
nonzero elements.

Theorem 6.15. Any orthogonal system {φα} in L2 is countable.

Proof. Suppose {φα} is orthonormal. For α 6= β, we find (using orthogonal-
ity)

‖φα − φβ‖2 = ‖φα‖2 + ‖φβ‖2 = 2,

so that ‖φα − φβ‖ =
√

2. Because L2 is separable, this implies that {φα}
must be countable. [To see this, argue by contradiction.] �
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A collection {ψk}Nk=1 ⊂ L2 is linearly independent if

N∑
k=1

akψk = 0 =⇒ ak ≡ 0

An infinite collection of functions is linearly independent if each finite sub-
collection is.

Theorem 6.16. If {ψk} is orthogonal, then it is linearly independent.

Proof. If ∑
akψk = 0

then taking inner products with ψ` implies a` = 0. �

The span of a set {ψk} is the collection of all finite linear combinations
of the ψk.

The Gram-Schmidt algorithm takes as input a linearly independent set
of vectors and produces an orthogonal set of vectors with the same span as
the original vectors. It works by taking in {ψk} and defining

φ1 = ψ1,

φ2 = ψ2 −
〈ψ2, φ1〉
〈φ1, φ1〉

φ1,

φ3 = ψ3 −
〈ψ3, φ1〉
〈φ1, φ1〉

φ1 −
〈ψ3, φ2〉
〈φ2, φ2〉

φ2,

and so on.

An orthogonal system {φk} is complete if 〈f, φk〉 = 0 for all k implies
f = 0.

A set {ψk} is a basis for L2 if its span is dense in L2. Noting that any
countable dense set in L2 is a basis, we deduce that L2 has an orthogonal
basis (cf. Gram–Schmidt).

Theorem 6.17. Any orthogonal basis in L2 is complete. In particular, there
exists a complete orthonormal basis for L2.

Proof. Let {ψk} be an orthonormal basis for L2. Suppose now that 〈f, ψk〉 =
0 for all k. Then

〈f, f〉 = 〈f, f −
N∑
k=1

akψk〉 for all N and all ak.

By Cauchy–Schwarz,

|〈f, f〉| ≤ ‖f‖ · ‖f −
N∑
k=1

akψk‖.

As the term on the right-hand side can be made arbitrarily small, we deduce
f = 0. �



96 JASON MURPHY

6.6. Fourier series and Parseval’s formula. Let {φk} be an orthonormal
set in L2. For f ∈ L2, we define the Fourier coefficients of f (with respect
to {φk}) by

ck = 〈f, φk〉 =

∫
E
fφ̄k.

We define the Fourier series of f (with respect to {φk}) by

S[f ] =
∑
k

ckφk.

We abbreviate this by writing f ∼
∑

k ckφk. We define the partial Fourier
series by

sN =
N∑
k=1

ckφk.

Theorem 6.18. Let {φk} be an orthonormal set in L2 and f ∈ L2.

(i) Given N , the best L2 approximation to f using the φk is given by
the partial Fourier series.

(ii) (Bessel’s inequality) We have c := {ck} ∈ `2 and

‖c‖`2 ≤ ‖f‖L2 ,

where {ck} are the Fourier coefficients of f .

Proof. Fix N and γ := (γ1, · · · , γN ) and consider linear combinations of the
form

F = F (γ) =
N∑
k=1

γkφk.

By orthonormality,

‖F‖2 =

N∑
k=1

|γk|2.

Thus, recalling ck := 〈f, φk〉, we can write

‖f − F‖2 = 〈f −
∑

γkφk, f −
∑

γkφk〉

= ‖f‖2 −
N∑
k=1

[γ̄kck + γk c̄k] +

N∑
k=1

|γk|2

= ‖f‖2 +
N∑
k=1

|ck − γk|2 −
N∑
k=1

|ck|2.

It follows that

min
γ
‖f − F (γ)‖2 = ‖f‖2 −

N∑
k=1

|ck|2

and
argminγ‖f − F (γ)‖2 = (c1, · · · , cN ).
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This proves (i). Furthermore (evaluating at γ = (c1, . . . , cN )) we can deduce

N∑
k=1

|ck|2 = ‖f‖2 − ‖f − SN‖2,

which yields Bessel’s inequality upon sending N →∞. �

If equality holds in Bessel’s inequality (i.e. ‖c‖`2 = ‖f‖L2), we say f
satisfies Parseval’s formula. From the proof of Bessel’s inequality, we
deduce the following:

Theorem 6.19. Parseval’s formula holds if and only if S[f ] converges to f
in L2.

We can also use Fourier coefficients to define L2 functions.

Theorem 6.20 (Riesz–Fischer). Let {φk} be an orthonormal set in L2 and
{ck} ∈ `2. There exists an f ∈ L2 such that S[f ] =

∑
ckφk and f satisfies

Parseval’s formula.

Proof. Write tN =
∑N

k=1 ckφk. For M < N , orthonormality implies

‖tN − tM‖2 =
N∑

k=M+1

|ck|2.

Thus {ck} ∈ L2 implies {tN} is Cauchy and hence converges to some f ∈ L2.
Now observe for N ≥ k∫

fφ̄k =

∫
(f − tN )φ̄k +

∫
tN φ̄k =

∫
(f − tN )φ̄k + ck

which tends to ck as N →∞ by Cauchy–Schwarz and the fact that tN → f
in L2. Thus S[f ] =

∑
ckφk and tN = sN (f). In particular, Parseval’s

formula follows from the fact that tN → f in L2. �

This result does not guarantee uniqueness. However, one does have
uniqueness if the set {φk} is complete. Indeed, if f and g have the same
Fourier coefficients then f − g is perpendicular to each φk.

We have the following related result:

Theorem 6.21. An orthonormal system {φk} is complete if and only if
Parseval’s formula holds for every f ∈ L2.

Proof. If {φk} is complete and f ∈ L2, then Bessel’s inequality implies that
the Fourier coefficients {ck} are in `2. Thus (by Riesz–Fischer) there exists
g ∈ L2 with S[g] =

∑
ckφk and ‖g‖2 =

∑
|ck|2. Because f, g have the

same Fourier coefficients and {φk} is complete, we get f = g a.e. Thus
‖f‖2 = ‖g‖2 =

∑
|ck|2.

Conversely, if 〈f, φk〉 = 0 for all k and ‖f‖2 =
∑
|〈f, φk〉|2, then ‖f‖ = 0

which shows that the {φk} are complete. �
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Suppose {φk} is a complete orthonormal set in L2 and f, g ∈ L2. Let

{f̂k} and {ĝk} be the Fourier coefficients of f, g. A consequence of Parseval’s
theorem is the following:

〈f, g〉 =
∑
k

f̂kĝk.

[Exercise.]

Two metric spaces (X1, d1) and (X2, d2) are (linearly) isometric if there
exists a surjective linear map T : X1 → X2 such that

d1(f, g) = d2(Tf, Tg)

for all f, g ∈ X1.

Theorem 6.22. All spaces L2(E) are linearly isometric with `2 (and hence
with each other).

Proof. Let {φk} be a complete orthonormal set in L2(E). Define T : L2(E)→
`2 by Tf = {〈f, φk〉}. This maps into `2 by Bessel’s inequality and onto `2

by Riesz–Fischer. Furthermore it is an isometry by Parseval’s formula. �

6.7. Hilbert spaces. A Hilbert space over C is a vector space over C
with an inner product that is complete with respect to the metric induced
by the inner product.

That is, if (f, g) denotes the inner product, then the norm is defined by

‖f‖ =
√

(f, f) and the metric is defined by d(f, g) = ‖f − g‖.
Recall that the Cauchy–Schwarz inequality holds for any inner product

space:
|(f, g)| ≤ ‖f‖ ‖g‖ for all f, g ∈ H.

This is clear for g = 0, while for g 6= 0 we find λ = −(f, g)‖g‖−2 and
rearrange the inequality

0 ≤ (f + λg, f + λg).

Note that any Hilbert space is also a Banach space.

A Hilbert space is infinite dimensional if it cannot be spanned by a finite
number of elements. Two fundamental examples of Hilbert spaces are L2

and `2. In fact:

Theorem 6.23. All separable infinite dimensional Hilbert spaces are lin-
early isometric with `2 (and hence with each other).

Proof. Given a separable Hilbert space H, we may (by Gram–Schmidt) find
an infinite orthonormal set {ek} whose span is dense in H. In fact, {ek} is
complete, since if (f, ek) ≡ 0 then∥∥∥∥f − N∑

k=1

akek

∥∥∥∥2

= ‖f‖2 +
N∑
k=1

|ak|2 ≥ ‖f‖2.
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In particular if f were non-zero, the span of {ek} could not be dense.

Bessel’s inequality and the Riesz–Fischer theorem hold for {ek}. Indeed,
for f ∈ H we set ck = (f, ek) and have

0 ≤
∥∥∥∥f − N∑

k=1

ckek

∥∥∥∥2

= ‖f‖2 −
N∑
k=1

|ck|2,

which yields Bessel’s inequality upon sending N →∞. Thus {ck} ∈ `2. The
Riesz–Fischer theorem is proved essentially like it was for L2 and relies on
the fact that H is complete.

Finally, the mapping f 7→ {(f, ek)} yields a linear isometry from H to `2

(for all the same reasons as before, namely Bessel’s inequality, Riesz–Fischer,
and Parseval). �

6.8. Exercises.

Exercise 6.1. Show that the set {fn} defined by fn(x) = sinnx is a closed,
bounded set in L2([−π, π]) that is not compact.

Exercise 6.2. Show that for any f ∈ L1(0, 2π), we have

lim
n→∞

∫ 2π

0
f(x) sin(nx) dx = 0.

Exercise 6.3. Let E be a subset of (−π, π) with positive measure. For any
δ > 0, show that there are at most finitely many integers n with sinnx ≥ δ
for all x ∈ E.

Exercise 6.4. Show that for any set X ⊂ R of finite measure we have
L2(X) ⊂ L1(X). However, show that this fails if we allow X to have infinite
measure.

Exercise 6.5. Show that L∞ is complete.

Exercise 6.6. Show that when 0 < p < 1, the neighborhoods {f : ‖f‖p < ε}
of zero in Lp(0, 1) are not convex.

Exercise 6.7. Show that L∞(E) is not separable for any E with |E| > 0.

Exercise 6.8. Show that if fk → f in Lp for some 1 ≤ p < ∞ and gk → g
pointwise (with ‖gk‖∞ ≤M for all k), then fkgk → fg in Lp.

Exercise 6.9. Let fk, f ∈ Lp, 1 ≤ p < ∞. (i) If ‖fk − f‖p → 0 then
‖fk‖p → ‖f‖p. (ii) Show that if fk → f a.e. and ‖fk‖p → ‖f‖p then
‖f − fk‖p → 0.

Exercise 6.10. Suppose fk, f ∈ L2 and fk converges weakly to f (that is,
for any g ∈ L2 we have

∫
fkg →

∫
fg). Show that if ‖fk‖2 → ‖f‖2, then fk

converges to f in L2-norm.
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Exercise 6.11. We say {fk} ⊂ Lp converges weakly to f ∈ Lp (written
fk ⇀ f) if∫

fkg →
∫
fg for all g ∈ Lp′ , where 1

p + 1
p′ = 1.

(i) Show that if fk → f in the Lp norm (1 ≤ p ≤ ∞), then fk ⇀ f weakly
in Lp. (ii) Show that the converse is false.

7. Repeated integration

Reference: Wheeden–Zygmund Chapter 6

We return to the theory of Lebesgue integration and consider the question
of repeated integration.

For a continuous function f on an interval I = [a, b]× [c, d], one has∫∫
I
f(x, y) dx dy =

∫ b

a

[∫ d

c
f(x, y) dy

]
dx,

with similar formulas in higher dimensions. We first consider extensions of
this to the case of Lebesgue integration.

7.1. Fubini’s theorem. We write x = (x1, · · · , xn) for an element of an
n-dimensional interval I1 =

∏n
i=1[ai, bi], and similarly let y be a point of an

m-dimensional interval I2 =
∏m
i=1[ci, di].

We may have I1 = Rn or I2 = Rm.

The product I = I1 × I2 is an (n + m)-dimensional interval containing
points of the form (x, y).

A function f on I will be written f(x, y), and its integral
∫
I f denoted by∫∫

I f(x, y) dx dy.

Theorem 7.1 (Fubini’s theorem). Let f(x, y) ∈ L(I), with I = I1 × I2.

(i) For a.e. x ∈ I1, y 7→ f(x, y) is measurable and integrable on I2.
(ii) The function x 7→

∫
I2
f(x, y) dy is measurable and integrable on I1,

with ∫∫
I
f(x, y) dx dy =

∫
I1

[∫
I2

f(x, y) dy

]
dx.

It is enough to consider the case I1 = Rn and I2 = Rm [for otherwise we
may set f = 0 outside I]. We drop I1, I2, I from the notation. We write
L(dx), L(dy), L( dx dy), and so on.

The strategy of proof is to build up an increasing class of functions for
which the result holds.

We say a function f ∈ L(dx dy) for which Fubini’s theorem is true has
property F .
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Lemma 7.2. Any finite linear combination of functions with property F
has property F .

Proof. This follows from the fact that measurability/integrability are pre-
served under finite linear combinations. �

Lemma 7.3. Let {fk} have property F . If fk ↗ f or fk ↘ f and f ∈
L(dx dy), then f has property f .

Proof. Let us treat the case fk ↗ f .

By assumption, for each k there exists Zk ⊂ Rn with |Zk|Rn = 0 and such
that fk(x, y) ∈ L(dy) for x /∈ Zk.

Let Z = ∪kZk, so that |Z|Rn = 0. Then for x /∈ Z, we have by the
monotone convergence theorem (in y)

hk(x) =

∫
fk(x, y) dy ↗ h(x) =

∫
f(x, y) dy.

By assumption, we have hk ∈ L(dx) and fk ∈ L(dx dy), with∫∫
fk(x, y) dx dy =

∫
hk(x) dx.

Thus, again using the monotone convergence theorem we have∫∫
f(x, y) dx dy =

∫
h(x) dx.

As f ∈ L(dx dy) (by assumption), we have that h ∈ L(dx), giving that h
is finite a.e. (i.e. y 7→ f(x, y) is integrable for a.e. x). This completes the
proof. �

Now let us prove some special cases of Fubini’s theorem.

Lemma 7.4. If E = ∩∞k=1Gk ⊂ Rn+m is Gδ and |G1| < ∞, then χE has
property F .

Proof. We proceed in several cases.

Case 1. Let E = J1 × J2 be a product of bounded open intervals in Rn
and Rm. Then |E| = |J1| |J2|.

For each x, y 7→ χE(x, y) is measurable, and

h(x) :=

∫
χE(x, y) dy =⇒ h(x) =

{
|J2| x ∈ J1

0 otherwise.

Thus ∫
h(x) dx = |J1| |J2|,

while ∫∫
χE(x, y) dx dy = |E| = |J1| |J2|,

giving the lemma in case 1.
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Case 2. If E is a subset of the boundary of an interval in Rn+m, then
for a.e. x the set {y : (x, y) ∈ E} has Rm-measure zero.

Thus h(x) =
∫
χE(x, y) dy satisfies h = 0 a.e. and so

∫
h(x) dx = 0. As∫∫

χE(x, y) dx dy = 0, the result follows in the case.

Case 3. If E is a partly open interval then cases 1 and 2 imply χE has
property F.

Case 4. Let E ⊂ Rn+m be open and finite measure. Write E = ∪Ij ,
where Ij are disjoint partly open intervals.

Writing Ek = ∪kj=1Ij , we have χEk
=
∑k

j=1 χIj , so that χEk
has property

F by case 3 and the first lemma above.

As χEk
↗ χE , we deduce that χE has property F by the second lemma.

Case 5. Now let E = ∩∞k=1Gk be Gδ. We may assume Gk ↘ E (by

redefining G̃k = ∩kj=1Gj , say), so that χGk
↘ χE . Now the lemma follows

from case 4 and the second lemma above. �

Lemma 7.5. If Z ⊂ Rn+m has measure zero, then χZ has property F . Thus
for a.e. x ∈ Rn, the set {y : (x, y) ∈ Z} has Rm-measure zero.

Proof. Let H ⊃ Z be a Gδ set with |H| = 0. Writing H = ∩Gk, we may
assume G1 has finite measure. Thus, by the previous lemma∫ [∫

χH(x, y) dy

]
dx =

∫∫
χH(x, y) dx dy = 0.

Thus implies

|{y : (x, y) ∈ H}| =
∫
χH(x, y) dy = 0 for a.e. x.

As Z ⊂ H, this implies |{y : (x, y) ∈ Z}| = 0 for a.e. x.

It follows that for a.e. x, y 7→ χZ(x, y) is measurable and
∫
χZ(x, y) dy =

0.

Thus ∫ [∫
χZ(x, y) dy

]
dx = 0,

which gives the lemma, since
∫∫

χZ(x, y) dx dy = |Z| = 0. �

Lemma 7.6. If E ⊂ Rn+m is measurable with finite measure, then χE has
property F .

Proof. We write E = H\Z with H Gδ and |Z| = 0. If H = ∩Gk then we
may assume |G1| < ∞. As χE = χH − χZ , the lemma follows from the
results above. �

Now we can complete the proof of Fubini’s theorem.



REAL ANALYSIS 103

Proof of Fubini’s theorem. Let f ∈ L(dx dy). We will show that f has prop-
erty F .

Writing f = f+ − f−, we may assume by the lemma above that f ≥ 0.

For f ≥ 0, there exist measurable simple functions fk ↗ f with fk ≥ 0.

As each fk ∈ L(dx dy), by the second lemma above it suffices to show
that each fk has property F .

However, each fk has the form f =
∑

j vjχEj for some finite measure sets
Ej , and hence the result follows. �

Fubini’s theorem shows that for f ∈ L(Rn+m), the function y 7→ f(x, y)
is measurable for almost every x ∈ Rn. In fact, we don’t need f ∈ L(Rn+m):

Theorem 7.7. Let f = f(x, y) be measurable on Rn+m. Then for a.e.
x ∈ Rn, y 7→ f(x, y) is measurable on Rm. In particular, if E ⊂ Rn+m is
measurable then

Ex := {y : (x, y) ∈ E}
is measurable in Rm for a.e. x ∈ Rn.

Proof. The two statements are equivalent if f = χE for some measurable
E ⊂ Rn+m.

In the case that f = χE write E = H ∪Z where H ∈ Fσ and |E|n+m = 0.

Then Ex = Hx ∪ Zx where Hx ∈ Fσ (in Rm) and |Zx|m = 0 for a.e. x by
the results above.

Thus Ex is measurable for a.e. x.

Now for f measurable function on Rn+m and a ∈ R, define E(a) = {(x, y) :
f(x, y) > a}. Then since E(a) is measurable in Rn+m, we have

E(a)x = {y : f(x, y) ∈ E(a)}
is measurable for a.e. x. The exceptional set depends on a ∈ R.

The union Z of all exceptional sets over a ∈ Q still has Rn-measure zero.
For x /∈ Z, we have

{y : f(x, y) > a}
is measurable for all rational a, and hence for all a ∈ R. �

The following can be deduced from the results above by extending func-
tions by zero. It is left as an exercise.

Theorem 7.8. Let f be measurable on E ⊂ Rn+m. Let Ex = {y : (x, y) ∈
E}.

(i) For a.e. x ∈ Rn, y 7→ f(x, y) is measurable on Ex.
(ii) If f ∈ L(E) then for a.e. x ∈ Rn, the function y 7→ f(x, y) is

integrable on Ex. Moreover, x 7→
∫
Ex
f(x, y) dy is integrabile and∫∫

E
f(x, y) dy dy =

∫
Rn

[∫
Ex

f(x, y) dy

]
dx.
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7.2. Tonelli’s theorem. Fubini’s theorem says finiteness of a multiple in-
tegral implies finiteness of the iterated integrals. The converse is false.

Example 7.1. Let I be the unit square in R2. Let I1 be the square of
sidelength 1/2 in the lower left corner of I. Let I2 be the cube of sidelength
1
4 touching the top right corner of I1. Let I3 be the cube of sidelength 1

8
touching the top right corner of I2, and so on.

Subdivide each Ik into for equal subsquares, Ijk, labeled by starting in the
bottom left quadrant and proceeding counterclockwise.

For each k, let f = |Ik|−1 on the interiors of I1
k and I3

k and f = −|Ik|−1

on the interiors of I2
k and I4

k . Let f = 0 on the rest of I.

By construction, ∫ 1

0
f(x, y) dx = 0 for all y

and ∫ 1

0
f(x, y) dy = 0 for all x.

However,∫∫
I
|f(x, y)| dx dy =

∑
k

∫∫
Ik

|f(x, y)| dx dy =
∑
k

1 =∞.

Thus finiteness of the iterated integral does not imply finiteness of the mul-
tiple integral.

For nonnegative f , we do have the following:

Theorem 7.9 (Tonelli’s theorem). Let f(x, y) be nonnegative and measur-
able on an interval I = I1 × I2. Then for almost every x ∈ I1, y 7→ f(x, y)
is measurable on I2. Moreover, x 7→

∫
I2
f(x, y) dy is measurable on I1 and∫∫

I
f(x, y) dx dy =

∫
I1

[∫
I2

f(x, y) dy

]
dx.

Proof. We will use Fubini’s theorem.

For k = 1, 2, . . . define fk(x, y) = 0 if |(x, y)| > k and fk(x, y) =
min{k, f(x, y)} if |(x, y)| ≤ k.

Then fk ≥ 0 and fk ↗ f on I. Moreover fk ∈ L(I) (since fk is bounded
and compactly supported).

Thus Fubini’s theorem applies to each fk.

Measurability of
∫
I2
f(x, y) dy follows from its analogue for fk.

Further, by monotone convergence,
∫
I2
fk(x, y) dy ↗

∫
I2
f(x, y) dy. (Mea-

surability follows from Theorem 7.8.)
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Using monotone convergence once again, we have∫∫
I
fk(x, y) dx dy →

∫∫
I
f(x, y) dx dy,∫

I1

[∫
I2

fk(x, y) dy

]
dx→

∫
I1

[∫
I2

f(x, y) dy

]
dx.

As fk ∈ L, the result follows. �

Remark 7.10. Note that the roles of x and y may be interchanged, so that
for f ≥ 0 measurable we have∫∫

I
f(x, y) dx dy =

∫
I1

∫
I2

f(x, y) dy dx =

∫
I2

∫
I1

f(x, y) dx dy.

In particular, finiteness of any one of the three integrals implies that of the
other two.

Thus, finiteness of one of these integrals for |f | implies that f is integrable
and all of these integrals are equal.

Tonelli’s theorem implies that∫∫
I
f(x, y) dx dy =

∫
I1

[∫
I2

f(x, y) dy

]
, dx

even if
∫∫
I f = ±∞ (i.e. if

∫∫
I f merely exists). This follows from consider-

ing f± and applying Tonelli’s theorem [exercise].

We record one application of Fubini’s theorem:

Theorem 7.11. Let f ≥ 0 be defined on a measurable set E ⊂ Rn. If
R(f,E) (the region under f over E) is measurable in Rn+1, then f is mea-
surable.

Proof. For y ∈ [0,∞),

{x ∈ E : f(x) ≥ y} = {x : (x, y) ∈ R(f,E)}.

As R(f,E) is measurable, it follows that {x ∈ E : f(x) ≥ y} is measurable
(in Rn) for almost all such y (as measured in R1).

Thus {f(x) ≥ y} is measurable for all y in a dense subset of (0,∞). For
y < 0, we simply have {x ∈ E : f(x) ≥ y} = E, which is measurable. Thus
f is measurable. �

7.3. Exercises.

Exercise 7.1. Show that if f and g are measurable on Rn, then h(x, y) =
f(x)g(y) is measurable on Rn×Rn. Conclude that if E1, E2 are measurable
in Rn, then their Cartesian product is measurable in Rn × Rn.

Exercise 7.2. Use Fubini’s theorem to prove that
∫
Rn e

−|x|2 dx = π
n
2 .
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Exercise 7.3. Use Fubini’s theorem to show that

vn = 2vn−1

∫ 1

0
(1− t2)

n−1
2 dt,

where vn denotes the volume of the unit ball in Rn.

8. Differentiation

Reference: Wheeden–Zygmund Chapter 7

The main topic of this chapter is an analogue of the fundamental theorem
of calculus for the Lebesgue integral.

8.1. The indefinite integral. Let A ⊂ Rn be measurable. We define the
indefinite integral of f : A→ R to be

F (E) =

∫
E
f,

where E ⊂ A is measurable. The function F is a set function, i.e. a
real-valued function on a σ-algebra Σ of measurable sets such that

(i) F (E) <∞ for all E ⊂ Σ,
(ii) if E = ∪kEk is a union of disjoint Ek ∈ E then F (E) =

∑
k F (Ek).

Recall that

diam (E) := sup{|x− y| : x, y ∈ E}.

A set function F is continuous if

∀ε > 0 ∃δ > 0 : diam (E) < δ =⇒ |F (E)| < ε.

Example 8.1. Let F (E) = 1 whenever E is measurable and 0 ∈ E, and let
F (E) = 0 otherwise. Then F is not continuous.

A set function F is absolutely continuous (with respect to Lebesgue
measure) if

∀ε > 0 ∃δ > 0 : |E| < δ =⇒ |F (E)| < ε.

Absolutely continuous set functions are automatically continuous; however,
the converse is false.

Example 8.2. Let A = [0, 1] × [0, 1] ⊂ R2 and D = {(x, x) : x ∈ [0, 1]}.
Consider the σ-algebra of measurable E ⊂ A such that E ∩ D is ‘linearly’
measurable, and let F (E) be the linear measure of E ∩ D. Then F is
continuous, but not absolutely continuous: there are sets E containing a
fixed segment of D with arbitrarily small R2-measure.

Theorem 8.1. If f ∈ L(A) then its indefinite integral is absolutely contin-
uous.
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Proof. Without loss of generality, assume f ≥ 0 (otherwise consider f±).

For any k we may write f = g + h, where g = min{f, k}.

Now, let ε > 0. Choose k large enough that [with h as above] we have

0 ≤
∫
A
h < 1

2ε,

and hence 0 ≤
∫
E h <

1
2ε for every measurable E ⊂ A.

[This uses the fact that
∫
f>k[f − k] ≤

∫
f>k f → 0 as k →∞.]

As 0 ≤ g ≤ k, we have 0 ≤
∫
E g ≤ k|E| <

1
2ε if |E| is small enough.

Thus

0 ≤
∫
E
f < ε for |E| small enough.

�

In fact, if F (E) is an absolutely continuous set function, then there exists
an integrable function f such that F (E) =

∫
E f for measurable sets E. This

is known as the Radon–Nikodym theorem.

8.2. Lebesgue differentiation theorem. In this section we let Q denote
an n-dimensional cube with edges parallel to the coordinate axes.

Theorem 8.2. Let f ∈ L(Rn). Then its indefinite integral is differentiable
with derivative f almost everywhere, in the following sense:

lim
Q↘x

1
|Q|

∫
Q
f(y) dy = f(x).

Here Q ↘ x means we take the limit over any sequence Qk of cubes con-
taining x with |Qk| → 0.

Remark 8.3. In the case of n = 1, this is equivalent to

lim
h→0

1
2h

∫ x+h

x−h
f(y) dy = f(x),

which is essentially equivalent to d
dx

∫ x
a f(y) dy = f(x).

Remark 8.4. If f is continuous, the theorem is proven as follows:∣∣∣∣ 1
|Q|

∫
Q
f(y) dy − f(x)

∣∣∣∣ =

∣∣∣∣ 1
|Q|

∫
Q

[f(y)− f(x)] dy

∣∣∣∣
≤ sup

y∈Q
|f(y)− f(x)| → 0

as Q↘ x.

The strategy will then be to approximate f ∈ L(Rn) by continuous func-
tions. We begin with the following:
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Lemma 8.5. For f ∈ L(Rn), there exists a sequence Ck of continuous
functions with compact support so that∫

Rn

|f − Ck| dx→ 0 as k →∞.

Proof. Let A be the set of f ∈ L(Rn) such that the theorem holds.

To begin, note that (1) A is closed under finite linear combinations.

Next, we show that (2) if {fk} ⊂ A and
∫
|f−fk| → 0 then f ∈ A. To see

this, note that f is necessarily integrable (by the triangle inequality). Now,
given ε > 0, choose k0 so that∫

|f − fk0 | < 1
2ε.

Now choose a continuous function C with compact support such that∫
|fk0 − C| < 1

2ε.

Thus
∫
|f − C| < ε. It follows that f ∈ A.

Now we prove the lemma (i.e. L(Rn) ⊂ A). Writing f = f+−f−, we can
use (1) to reduce to the case f ≥ 0.

Thus there exist nonnegative simple functions fk ↗ f . In particular,
fk ∈ L(Rn) and ∫

|f − fk| → 0.

Thus, by (2), we may assume that f ∈ L(Rn) is a nonnegative simple func-
tion.

Using (1) again, we can reduce to f = χE with |E| <∞.

Let ε > 0 and choose open G ⊃ E with |G\E| < ε. Then∫
|χG − χE | = |G\E| < ε,

and hence we may assume that f = χG for some open G with |G| <∞.

Now write G = ∪Ik where Ik are disjoint partly open intervals.

Set fN = χ∪Nk=1Ik
. Then∫
|f − fN | =

∞∑
k=N+1

|Ik| → 0 as N →∞,

since
∑∞

k=1 |Ik| = |G| <∞.

Therefore by (2) it is enough to show that each fN ∈ A. But by (1), this
reduces to proving that χI ∈ A for any interval I.



REAL ANALYSIS 109

Indeed, if I∗ is an interval contaniing I in its interior, with |I∗\I| < ε,
then we define C to be a continuous function taking values in [0, 1], equal
to 1 on I and 0 outside I∗. Then∫

|χI − C| ≤ |I∗\I| < ε,

showing that χI ∈ A. This completes the proof. �

Another natural object of study will be the Hardy–Littlewood maxi-
mal function

f∗(x) = sup 1
|Q|

∫
Q
f(y) dy,

where the supremum is over all Q with center x.
Note that:

• 0 ≤ f∗(x) ≤ ∞
• (f + g)∗ = f∗ + g∗

• (cf)∗ = |c|f∗.
If f∗(x0) > α for some x0 ∈ Rn and α > 0 then because indefinite integrals
are absolutely continuous, we have that f∗(x) > α for x near x0. This proves
lower semicontinuity (and hence measurability) of f∗.

We leave as an exercise that f∗ is not integrable unless f = 0 a.e. However,
we will be able to show that f∗ is in “weak L(Rn)”, which means

∃C > 0 : |{|f | > α}| ≤ C
α for all α > 0.

(Any function in L(Rn) is in weak L(Rn) by Tchebyshev’s inequality. The
function |x|−n is in weak L(Rn) but not L(Rn).)

Lemma 8.6 (Hardy–Littlewood). If f ∈ L(Rn), then f∗ is in weak L(Rn).
In fact, there exists c (independent of f, α) so that

|{f∗ > α}| ≤ c
α

∫
Rn

|f | dx.

for all α > 0.

To prove this, we need the following simple form of the Vitali covering
lemma:

Lemma 8.7 (Vitali). Let E ⊂ Rn with |E| < ∞. Let K be a collection of
(open) cubes covering E. There exists β = β(n) > 0 and {Qj}Nj=1 ⊂ K so
that

N∑
j=1

|Qj | ≥ β|E|.

Proof. Without loss of generality, we may assume E is compact (e.g. by
approximating from within by a closed set).

By compactness, we may assume K1 := K is a finite collection of cubes.
Let Q1 be a cube of largest sidelength.



110 JASON MURPHY

Write K1 = K2 ∪ K ′2, where K2 contains the cubes in K1 disjoint from
Q1. Let Q∗1 be the cube concentric with Q1 with thrice the sidelength. Then
every cube in K ′2 is contained in Q1.

Let Q2 be the largest cube in K2, and repeat this construction (writing
K2 = K3 ∪K ′3 and defining Q∗2.

This process terminates after finitely many steps (once KN = ∅) and
yields {Qj}Nj=1 ⊂ K and {Q∗j}Nj=1 such that

E ⊂ ∪Nj=1Q
∗
j .

Thus

|E| ≤
N∑
j=1

|Q∗j | = 3n
N∑
j=1

|Qj |.

The result follows.
�

Remark 8.8. One can prove Lemma 8.7 without assuming that E is mea-
surable, but the proof is more complicated. There are also more refined
versions of Vitali covering lemmas that have many interesting applications
in analysis (e.g. proving a.e. differentiability of monotone and BV functions;
see below).

Proof of Lemma 8.6. Suppose f ∈ L(Rn) and f has compact support.

Using the definition of f∗, we can show that there exists c1 = c1(f) such
that

f∗(x) ≤ c1|x|−n for large enough |x|.
Indeed, suppose f = 0 for |x| > R. Then for |x| > 2R, any cube that
contains x that intersects {|x| ≤ R} must have radius at least |x|−R ≥ 1

2 |x|.
Thus

f∗(x) ≤ c0|x|−n
∫
|f | dy ≤ c1|x|−n.

This proves that {f∗ > α} has finite measure for every α > 0.

Now let α > 0 and define

E = {f∗ > α}.

For x ∈ E, there exists a cube Qx with center x such that

|Qx| < 1
α

∫
Qx

|f |.

As the collection of {Qx}x∈E covers E, the Vitali lemma implies that there
exist β > 0 and x1, . . . , xN ∈ E so that Qx1 , . . . , QxN are disjoint and

|E| < 1
β

N∑
j=1

|Qxj |.
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Thus

|E| < 1
β

N∑
j=1

1
α

∫
Qxj

|f | ≤ 1
βα

∫
|f |.

This proves the result (with c = β−1) in this case.

Now given arbitrary f ∈ L(Rn) we may assume f ≥ 0 (since replacing f
with |f | does not change f∗).

Let fk be a sequence of integrable functions with compact support such
that 0 ≤ fk ↗ f .

By the above, there exists a constant c independent of k and α > 0 such
that

|{x ∈ Rn : f∗k (x) > α}| ≤ c
α

∫
fk ≤ c

α

∫
f.

As f∗k ↗ f∗, it follows that

|{x ∈ Rn : f∗(x) > α}| ≤ c
α

∫
f,

which completes the proof. �

Finally we can prove the Lebesgue differentiation theorem.

Proof of Theorem 8.2. For f ∈ L(Rn) there exists a sequence of continuous,
integrable Ck so that ∫

|f − Ck| → 0.

Write F (Q) =
∫
Q f and Fk(Q) =

∫
QCk. For any k,

lim sup
Q↘x

∣∣∣∣F (Q)

|Q|
− f(x)

∣∣∣∣ ≤ lim sup
Q↘x

∣∣∣∣F (Q)

|Q|
− Fk(Q)

|Q|

∣∣∣∣
+ lim sup

Q↘x

∣∣∣∣Fk(Q)

|Q|
− Ck(x)

∣∣∣∣+ |Ck(x)− f(x)|.

Because Ck is continuous, the second term on the RHS tends to zero. More-
over, ∣∣∣∣F (Q)

|Q|
− Fk(Q)

|Q|

∣∣∣∣ ≤ 1
|Q|

∫
Q
|f − Ck| ≤ (f − Ck)∗(x),

and thus for every k

lim sup
Q↘x

∣∣∣∣F (Q)

|Q|
− f(x)

∣∣∣∣ ≤ (f − Ck)∗(x) + |f(x)− Ck(x)|.

Let ε > 0 and define Eε to be the set on which the LHS of the above is
greater than ε. In particular, by the above,

Eε ⊂ {(f − Ck)∗(x) > 1
2ε} ∪ {|f − Ck(x)| > 1

2ε}.
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By the maximal function estimate and Tchebyshev, we find

|Eε| ≤ c2
ε

∫
|f − Ck|+ 2

ε

∫
|f − Ck| → 0 as k →∞.

Here we use that c is independent of k. Thus |Eε| = 0.

Now let E be the set where

lim sup
Q↘x

∣∣∣∣F (Q)

|Q|
− f(x)

∣∣∣∣
is positive. Then E = ∪kEεk for some sequence εk ↘ 0, and hence |E| = 0.
Thus

lim
Q↘x

F (Q)

|Q|
= f(x) for a.e. x,

which completes the proof. �

One can extend the Lebesgue differentiation theorem to functions that
are merely locally integrable — this means that the function is integrable
over any bounded measurable subset of Rn.

The Lebesgue differentiation theorem implies that any measurable set E,
almost every point of E is a ‘point of density’ for E — this means that

lim
Q↘x

|E ∩Q|
|Q|

= 1

for a.e. x ∈ E.

8.3. Further results. While we will not pursue these topics further, it is
worth mentioning some additional related results. The proofs can be found
in Wheeden–Zygmund. They rely on a stronger version of the Vitali covering
lemma.

• Finite monotone increasing functions are differentiable (with non-
negative derivative) almost everywhere.
• Functions of bounded variation are differentiable a.e. with integrable

derivatives.
• If V (x) = V (f ; [a, x]) for some f ∈ BV ([a, b]), then V ′(x) = |f ′(x)|

for a.e. x.

A function f is called absolutely continuous on [a, b] if for any ε > 0,
there exists δ > 0 such that for any collection {[ai, bi]} of nonoverlapping
subintervals of [a, b],∑

(bi − ai) < δ =⇒
∑
|f(bi)− f(ai)| < ε.

We write f ∈ AC([a, b]).

• If f ∈ AC([a, b]) then f ∈ BV ([a, b]).



REAL ANALYSIS 113

• A function f is absolutely continuous on [a, b] if and only if f ′ exists
a.e. in (a, b), f ′ ∈ L(a, b), and

f(x)− f(a) =

∫ x

a
f ′ for a ≤ x ≤ b.

8.4. Exercises.

Exercise 8.1. Let f be measurable on Rn and nonzero on a set of positive
measure. Show that there exists c > 0 so that f∗(x) ≥ c|x|−n for |x| ≥ 1.

Exercise 8.2. Let φ be a bounded measurable function on Rn so that φ = 0
for |x| ≥ 1 and

∫
φ = 1. For ε > 0, define φε(x) = ε−nφ(x/ε). Show that

lim
ε→0

∫
f(x− y)φε(y) dy = f(x)

for all x in the Lebesgue set of f .
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