
A COURSE ON ADVANCED CALCULUS

JASON MURPHY

Introduction. The basic purpose of an ‘advanced calculus’ course is to put the
concepts of differential and integral calculus on a firm mathematical footing. To
give context for such an undertaking, let us briefly attempt to put ourselves in the
setting of mathematics in the early 1800s. At this point, the techniques of calcu-
lus (introduced largely in the late 1600s) had proven to be enormously effective in
solving both physical and mathematical problems. At the same time, it was clear
that many of the basic notions of calculus were rather shakily defined; accordingly,
attempts at proofs of various results (known ‘intuitively’ to be correct) often con-
tained serious gaps. In addition, the aggressive application of calculus techniques to
new physical problems had led to solutions that challenged mathematicians’ under-
standing, leading to serious disagreements over whether or not these solutions were
acceptable. Such challenges led mathematicians of the 1800s to revisit the basic
notions of calculus and to develop the subject anew in such a way that they were
able not only to establish rigorously all of the essential results in calculus, but also
to discover many mathematical phenomena that had never been imagined before.
In fact, this program ultimately led to an investigation of the very foundations of
mathematics, including our understanding of the real number system and of the
infinite in general. The first semester of this course is a rigorous presentation of
differential and integral calculus in the setting of real-valued functions on the line;
the presentation is inspired by the historical development of the relevant ideas. The
second semester of this course primarily concerns the extension of differential and
integral calculus to the higher-dimensional setting.

These notes were prepared using several different sources. For the first semester
content, the biggest influence was ‘A Radical Approach to Real Analysis’ by D.
Bressoud; for the second semester content, the biggest influence was ‘Advanced
Calculus of Several Variables’ by C. H. Edwards, Jr.
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1. Techniques of calculus and some motivating examples

The techniques of calculus (e.g. derivatives, antiderivatives, and series expan-
sions) were developed in the late 1600s to address a range of problems, includ-
ing the computation of instantaneous velocities; optimization problems; computing
tangents to curves; and the computation of lengths, areas, volumes, and centers
of gravity. Such problems had wide applicability in areas such as optics and as-
tronomy. In the century that followed, the techniques of calculus continued to be
developed and applied to a wide range of mathematical and physical problems. In
this section, we will look at several representative applications of calculus tech-
niques that bring to light some of the mathematical issues that were ultimately
resolved through the work of Cauchy and others throughout the 19th century.

1.1. Original notions of derivatives and integrals. As students of calculus
know, the definition of the derivative depends on the notion of a limit. Calculus
students may at least be shown the formal definition of a limit (the ‘ε-δ definition’),
although it typically plays no real role in a first calculus course. In fact, this
definition was not introduced until the work of Cauchy in the 1820s. So, what did
Newton and Leibniz think a derivative was?

Newton and Leibniz used different language and had somewhat different perspec-
tives, but ultimately they were both trying to get at the notion of an instantaneous
rate of change of one quantity with respect to another. Newton used the language of
fluents, fluxions, moments, and ultimate ratios, while Leibniz worked with infinites-
imals and differentials. Neither was able to write down fully satisfactory definitions,
but between the two of them they succeeded in establishing the algebraic rules of
calculus, developing the important connection between areas and antiderivatives,
and applying the techniques of calculus to many important mathematical and phys-
ical problems.

It is not our goal in this course to try to understand the original works of Newton
and Leibniz. Nonetheless, it may be interesting to consider a few simple examples
that demonstrate some of the early thinking about concepts in calculus. For exam-
ple, here is an argument ‘in the style of Newton’ that if y = x2, then dy

dx = 2x.

Example 1.1. Let y = x2. Now let x ‘flow’ to x+ o. Then

(x+ o)2 = x2 + 2ox+ o2.

Thus, the increases of x and y are to one another as

o to 2ox+ o2, or equivalently 1 to 2x+ o.

Thus, letting the increment vanish, the last proportion will be 1 to 2x. Hence the
‘fluxion’ of x is to the ‘fluxion’ of x2 as 1 to 2x.

Here is an abbreviated presentation of what amounts to the product rule, as
given in Book 2, Section 2, Lemma 2 of Newton’s Principia:

Example 1.2. Suppose A and B are increasing or decreasing by continual motion,
and that their ‘moments’ (that is, their ‘instantaneous increment or decrement’)
are given by a and b, respectively. Then the moment of the generated rectangle
AB is aB + bA.
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Proof. When the halves of the moments (i.e. 1
2a and 1

2b) are lacking from the sides
of A and B, the rectangle is given by

(A− 1
2a)(B − 1

2b) = AB − 1
2aB −

1
2bA+ 1

4ab.

As soon as the sides A and B have been increased by the other halves of the
moments, we obtain

(A+ 1
2a)(B + 1

2b) = AB + 1
2aB + 1

2bA+ 1
4ab.

Subtracting the first rectangle from the second, there remains an excess of aB+bA.
That is, a total increment of a and b to the sides generates an increment of aB+bA
of the rectangle. �

Along with derivatives, the other central topic of any calculus sequence is that
of integration. In the early development of calculus, integration was essentially
identified with antidifferentiation. That is,∫ x

a

f(t) dt (1.1)

simply meant a function whose derivative was f(x). At the same time, as men-
tioned above, mathematicians appreciated the fact that the antiderivative (1.1) also
represented the area under the curve of f for t ∈ [a, x] (this is essentially the ‘Fun-
damental Theorem of Calculus’). The fact that a given function might not have
an antiderivative seemed to be no real bother. For example, to evaluate (1.1) one
could simply write a power series expansion for f and integrate term by term (we
will return to this below). It was not until the work of Cauchy and Riemann in the
1800s that the integral came to be defined to represent the area under the curve.

1.2. Geometric series and the Archimedean notion of convergence. The
following simple example serves to introduce several key concepts. We consider the
problem of computing the area under the inverted parabola y = 1 − x2, as shown
in the following figure:

We follow an argument of Archimedes (from the 200s BC) (which is similar to
arguments of Eudoxos from the 300s BC) to approximate this area by inscribing
triangles under this curve, as follows:

First, inscribe the triangle with vertices at (−1, 0), (0, 1), and (1, 0):
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We readily compute the area of this triangle to be A0 = 1. We take this as our first
‘approximation’ to the area under the curve.

Next, fill in two more triangles by placing x coordinates at x = ± 1
2 , as follows:

Some basic geometry reveals that the total area under these two triangles is 1/4,
so that our second approximation to the area is

A1 = 1 + 1
4 .

The next step is to fill in four more triangles, placing x coordinates at x = ± 1
4

and x = ± 3
4 . Some more geometry will show that the total area added is 1

16 , giving
a new approximation to the area of

A2 = 1 + 1
4 + 1

16 .

If we continue this process, then we can demonstrate that at each stage we
will add an area equal to 1

4 of the area added in the previous stage. (This is not
supposed to be obvious, but it is true and it can be justified using geometry.) We
can therefore arrive at a sequence of approximations to the total area, given by

An = 1 + 1
4 + 1

16 + · · ·+ 1
4n , also written An =

n∑
j=0

1
4j .

Now, one can show that

An =

n∑
j=0

1
4j = 4

3 −
1

3·4n for any n (1.2)

(see Exercise 1.1). From our modern viewpoint, it now seems perfectly reasonable
to ‘send n→∞’ and declare that the area under the curve is given by the infinite
series

∞∑
j=0

1
4j , which equals 4

3 . (1.3)
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However, this was not the approach of Archimedes. Instead, he argued as follows:
writing A for the area under the curve, he showed that neither A < 4

3 nor A > 4
3

is possible. To do this, he showed by geometric arguments that the process of
adding additional triangles as above always reduces the uncovered area by at least
half. Thus if A > 4

3 , we can eventually inscribe enough triangles so that An >
4
3 ;

however, this contradicts (1.2), which clearly shows An < 4
3 for each n. On the

other hand, if A < 4
3 , then we can find an n large enough that An > A (again

by (1.2)); however, this contradicts that we always have An ≤ A by construction
(since we are inscribing triangles under the curve).

In the particular case of the ‘geometric’ series (1.3), it is relatively straightforward
to give an interpretation of the ‘value’ of this infinite series, motivated by the
approach just described. In particular, we may make the following definition:

Definition 1.1 (Value of an infinite series). Let aj be a sequence of real numbers.
We say that the infinite series

∑∞
j=0 aj equals L if for any L0 < L < L1, there

exists an N such that

n ≥ N =⇒ L0 <

n∑
j=0

aj < L1.

As we will see, this definition states that the value of an infinite series is equal
to the limit of the partial sums of the series (provided that the limit exists).

Early works on calculus concerning the calculation of areas could be viewed
(or defended) as merely providing a short-hand for a complicated Archimedean
argument of the type above. The techniques of calculus do indeed greatly simplify
the problem above (and lead to the correct answer): Supposing we know that (i)∫
xk = xk+1

k+1 and (ii) integrals represent areas under curves, then the desired area
is given by

A =

∫ 1

−1
(1− x2) dx = [x− 1

3x
3]

∣∣∣∣1
x=−1

= 4
3 .

1.3. Newton’s binomial series and applications. The coefficients appearing
in the expansion of expressions such as

(a+ b)n (1.4)

are known as the binomial coefficients. They arise frequently in mathematical
problems arising in algebra, combinatorics, probability theory, and other areas.
These coefficients may be read off from the following diagram, often called Pascal’s
triangle (although he was not actually the first to work out binomial coefficients or
even to write down such a diagram):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Thus, for example,

(a+ b)3 = a+ 3ab2 + 3a2b+ b3.
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Newton was interested in finding an analogous expansions for expressions such
as (1.4) in the case that n was not necessarily a positive integer. One reason for
doing this was an application to computing digits of π. For example, using the
geometric interpretation of the integral (see the figure below), we may write∫ 1

0

(1− t2)
1
2 dt = 1

4 · (area of the unit circle) = π
4 . (1.5)

One quarter of the unit circle is given by the curve y = (1− t2)1/2, with t ∈ [0, 1].

Thus, if we had a representation of the function (1 − t2)
1
2 in powers of t, we

could integrate as many terms of the series as desired in order to construct series
approximations to the value of π.

We are therefore led to the problem of constructing a power series representation
for the function (1−t2)

1
2 . As a matter of fact, Newton was able to derive something

even more general:

Proposition 1.1 (Newton’s binomial series). For any a ∈ R and x ∈ R with
|x| < 1,

(1 + x)a = 1 + ax+ a(a−1)
2! x2 + a(a−1)(a−2)

3! x3 + · · ·

In particular, when a is an integer, the right-hand side reduces to a finite sum
and we recover the usual binomial expansion. However, when a is not an integer,
the right-hand side becomes an infinite series of functions of x, which at this point
is not something we understand particularly well.

At any rate, we can use this expansion (with a = 1
2 and x = −t2) to approximate

π. Integrating term by term, we have:

π
4 =

∫ 1

0

(1− t2)
1
2 dt

=

∫ 1

0

1− 1
2 t

2 − 1
22·2! t

4 − 3
23·3! t

6 − 3·5
24·4! t

8 − · · · dt

= 1− 1
2·3 −

1
22·2!·5 −

3
23·3!·7 −

3·5
24·4!·9 − . . .

In particular, this yields the following sequence of (crude) approximations to π
(where we keep the first four decimals only):

4, 3.3333, 3.2333, 3.1976, 3.1803, 3.1703, 3.1640, 3.1597, 3.1566, 3.1543, . . .

Using enough terms of the series, we should in theory be able to approximate
π as accurately as we wish. In fact, although this approximation is very crude,
Newton had much more sophisticated versions of this approach that yielded much
better series approximations to π. However, this simple example hopefully suffices
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to illustrate the general idea. This example also leads us to some fundamental
questions:

(i) How can we compute the power series that represents a given function?
(ii) Given a power series representation for a given function, is it actually per-

mitted to integrate the series term by term in order to integrate the given
function? What about the other operations in algebra and calculus (like
taking sums, products, derivatives, and so on)?

Students of calculus already know the answer to some of these questions, for
example, the fact that we compute the coefficients of the power series expansion of
a function in terms of the higher order derivatives of the function (Taylor series).
Similarly, mathematicians working in the early days of calculus understood the
general procedure for computing such expansions. The other questions, however,
proved to be quite subtle and were not settled until well into the 1800s.

1.4. An infinitely differentiable function with no power series expansion.
In the early history of calculus, there was basically no distinction between the notion
of a ‘function’ and that of an ‘analytic function’ (that is, one admitting a power
series representation). That is to say, functions were implicitly assumed to admit
power series representations. The general prescription for computing such power
series was first put in print by Taylor in 1715 (although the derivation was based
on an interpolation formula found before by both Newton and Gregory). This is
the familiar ‘Taylor series’ formula:

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + f ′′′(a)

3! (x− a)3 + · · · , (1.6)

where ‘primes’ denote derivatives (still somewhat murkily defined at this point). In
fact, if any series expansion of the form

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · ·

should hold, one can see fairly quickly that the coefficients should be given by

ck = f(k)(a)
k! (see Exercise 1.2).

Understanding the sense in which the identity (1.6) holds and the notion of
convergence in general is a subtle problem that mathematicians did consider in
the 1700s. Of particular interest was the problem of establishing bounds on the
difference between a function and its Taylor polynomial approximations. In the
meantime, however, mathematicians were happy to use series expansions freely to
solve a wide variety of problems (for example, by constructing power series solutions
to differential equations arising in physics).

Unfortunately, the following example of Cauchy shows that one must give up
the hope that all functions (even ‘nice’ or ‘continuous’ ones) actually admit power
series representations. This was a big problem for those (like Lagrange) who had
hoped to base their very definition of derivatives on the power series expansion.

Example 1.3. Define the function

f(x) =

{
e−1/x

2

x 6= 0

0 x = 0,

as pictured below:
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In general, one finds that any derivative of f is of the form e−1/x
2

P (1/x) for some
polynomial P . In particular, by using L’Hospital’s rule, we can establish that all
derivatives of f exist and equal zero at x = 0. However, this means that f cannot
admit a power series representation at x = 0, for every coefficient of the series
would equal zero!

1.5. Trigonometric series solutions. In addition to the power series solutions
mentioned above, mathematicians began to introduce other series solutions to phys-
ical problems, including trigonometric series involving sums of sines and cosines
of higher and higher frequencies. One such problem was that of heat propagation
through a thin metal sheet, which was investigated by Fourier in the early 1800s.
He considered a problem in which the temperature was held equal to zero on two
sides of a sheet (at x = ±1, say) and equal to one at one base of the sheet (on
the interval [−1, 1], say). The general solution to the underlying physical model
involved products of exponentially decaying functions and (in this case) cosines.
In particular, to produce a solution in this particular case required that Fourier
express the constant function 1 as an infinite series of cosines. Remarkably, he
arrived at the solution

1 = 4
π

[
cos(πx2 )− 1

3 cos( 3πx
2 ) + 1

5 cos( 5πx
2 ) + · · ·

]
, x ∈ (−1, 1), (1.7)

and he even provided a general method for computing the coefficients in such series
expansions. In fact, (1.7) looks like it works reasonably well:

Approximations to the constant function 1 using (1.7) with 25, 75, and 125 terms.

Originally, however, (1.7) was not accepted as a legitimate solution to Fourier’s
problem. In fact, there are several potential objections to this solution (beyond just
a general unwillingness to even consider an infinite sum of cosines). First, observing
that the general term of the series is

4
π

(−1)n−1

2n−1 cos
[ (2n−1)πx

2

]
, (1.8)
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we can see that the general term is roughly of size 1/n. However (as we will see in
the next section), the infinite series with general term 1/n is divergent! Second, if
this series is meant to represent the constant function 1, then its derivative should
certainly equal zero. Using (1.8), we should therefore have

0 = 2

∞∑
n=1

(−1)n sin
[ (2n−1)πx

2

]
, x ∈ (−1, 1).

However, here the general coefficients do not decay at all, so how can the series
possibly converge? In fact, if we imagine trying to evaluate at or near the endpoint
x = −1 (say), then all of the summands tend to one and it seems that the series
should diverge.

Nonetheless, Fourier’s ideas ultimately won out. Before this could happen, how-
ever, many fundamental concepts of calculus had to be completely reimagined.
Indeed, the controversy surrounding Fourier’s trigonometric series was a catalyst
for much of the progress that was to be made throughout the 1800s.

1.6. The harmonic series and the existence of limits. The final example we
will consider in this section is the harmonic series

1 + 1
2 + 1

3 + · · ·+ 1
n + · · · ,

which we already mentioned in the previous section. Although the individual sum-
mands tend to zero, we can show that the partial sums

Sn = 1 + 1
2 + · · ·+ 1

n , also written

n∑
j=1

1
j

do not converge to any finite value in the sense of Definition 1.1. One quick way to
see this is due to the 17th century mathematician Mengoli: Since

1
3j−1 + 1

3j + 1
3j+1 = 27j2−1

27j3−3j >
1
j ,

we see that

1 +
[
1
2 + 1

3 + 1
4

]
+ · · ·+

[
1

3n−1 + 1
3n + 1

3n+1

]
> 1 + [1] + · · ·+ [ 1n ].

Thus, we deduce that

S3n+1 > 1 + Sn, (1.9)

which one can check is incompatible with the notion of convergence in Definition 1.1.
In fact, (1.9) actually shows that the partial sums Sn ‘increase without bound’.

Indeed, noting that S4n > S3n+1, we can use (1.9) to obtain the lower bound

S4m ≥ m for m ≥ 1.

This leads to the following definition:

Definition 1.2 (Divergent series). A series of positive terms aj diverges if for any
M > 0, there exists N such that

n ≥ N =⇒
n∑
j=1

aj > M.

We may write
∑∞
j=1 aj =∞.
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It is worth thinking for a moment about whether there could be any other alter-
natives beyond convergence in the sense of Definition 1.1 or divergence in the sense
of Definition 1.2, at least for the case of positive series. We may equivalently ask
the following: Suppose a series of positive terms aj does not diverge, so that there
exists some fixed M > 0 that bounds all of the partial sums Sn. Is the infinite
series then guaranteed to have some value (in the sense of Definition 1.1)?

This turns out to be a tricky question. If we believe that the series converges,
then we need to find a way to identify its value. We may attempt to do so as
follows: Let Sn denote the partial sums, and suppose Sn < M for each n.

We first observe that there must exist some integer N0 large enough that

n ≥ N0 =⇒ Sn < SN0
+ 1.

Indeed, if this were false, then we could find a sequence of partial sums that increase
by at least 1 between subsequent terms. In this case, however, there would be no
way that the partial sums remain bounded by M .

With this observation in mind, let us change our assumptions slightly and just
assume that 0 < Sn < 1 for all n (this just amounts to fixing the sum up to SN0

and only considering the rest of the series). Now let us argue as follows. Because
the partial sums can only increase, either all of the partial sums are contained in
(0, 12 ), or eventually the partial sums are all contained the interval [ 12 , 1). In the first
case, we can repeat this argument to see that either all of the sums are contained
in (0, 14 ), or eventually they reach [ 14 ,

1
2 ). Similarly, in the second case, we see that

eventually the partial sums are all contained in ( 1
2 ,

3
4 ) or [ 34 , 1). Repeating this

argument, we can deduce the following: there exists a nested sequence of intervals
of the form Ij = [kj2

−j , (kj + 1)2−j ], where 0 ≤ kj < 2−j , and an increasing
sequence of integers Nj such that Sn ∈ Ij for all n > Nj . Here nested refers to the
fact that Ij+1 is a subset of Ij . The first few steps in a typical situation are depicted
in the following figure (where the darkened intervals show where the partial sums
are eventually ‘trapped’):

It now seems pretty clear that the partial sums Sn must be getting ‘squeezed’
towards some particular value. But how do we prove it? As it turns out, this relies
on a fundamental property of the real numbers called completeness. To show that
this property holds actually requires that we stop and think about how we really
define the real numbers in the first place. It was not until the late 1800s that
mathematicians such as Dedekind and Cantor provided rigorous constructions of
the real number system that guaranteed this completeness property.

To drive this point home, let us end with a simple example that shows how
completeness may fail.

Example 1.4 (The rational numbers are not complete). We construct a sequence
of numbers of the form a

b , where the first term has a = b = 1 and subsequent terms
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are defined via
a
b 7→

3a+4b
2a+3b . (1.10)

In particular, each term in this sequence is a rational number. We can also show
that this sequence is increasing and bounded. Boundedness is straightforward, since

3a+4b
2a+3b = 3a+(9/2)b

2a+3b − (1/2)b
2a+3b <

3
2 for all a, b > 0.

To see that the sequence is increasing, we need to show
3a+4b
2a+3b >

a
b , which requires 2b2 > a2.

For this, we observe that this property is initially true (when a = b = 1), and we
show that it is preserved under the rule (1.10). Indeed, since

2(2a+ 3b)2 = 8a2 + 18b2 + 24ab, while (3a+ 4b)2 = 9a2 + 16b2 + 24ab,

we may observe that

2b2 > a2 =⇒ 2(2a+ 3b)2 > (3a+ 4b)2.

Now we are in a similar position to the discussion above, that is, we have a bounded,
increasing sequence whose limiting value we would like to identify.

To this end, let us write the sequence in the form an
bn

and suppose this sequence

converges to a limit L. Then, the shifted sequence an+1

bn+1
also converges to L. How-

ever,
an+1

bn+1
=

3an + 4bn
2an + 3bn

=
3anbn + 4

2anbn + 3
must converge to

3L+ 4

2L+ 3
.

Thus we must have

L = 3L+4
2L+3 , which requires L2 = 2.

However it has been known since the time of the ancient Greeks that there is
no rational number satisfying L2 = 2 (see Exercise 1.3). In particular, we have
demonstrated a bounded, increasing sequence of rational numbers with no rational
limit.

1.7. Exercises.

Exercise 1.1. Let a > 0. Derive a formula for the sum

1 + a+ a2 + · · ·+ an, also denoted

n∑
j=0

aj .

Exercise 1.2. Suppose that

f(x) = c0f(a) + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

Show that ck = f(k)(a)
k! , where f (k) denotes the kth derivative of f .

Exercise 1.3. Show that
√

2 is irrational. (Hint: Suppose
√

2 = p/q where p and
q are relatively prime integers, with q > 0. Then show that p and q must be even,
contradicting that they were chosen to be relatively prime.)
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2. Differentiability and continuity

2.1. Limits and differentiability. Our starting point for the rigorous develop-
ment of calculus is to introduce Cauchy’s definition of the derivative. This definition
relies on the notion of a limit, which is similar to the ‘Archimedean’ notion of the
value of an infinite series (see Definition 1.1).

Before stating the definition, let us introduce one convenient technical term: we
call an interval with one point removed a punctured interval. We denote this by
I\{a}, where a is the missing point.

Definition 2.1 (Limit, function version). Let f be a real-valued function defined
on some punctured interval I\{a}. We say that f(x) has limit ` as x approaches
a, written

lim
x→a

f(x) = `, (2.1)

if for any `1 < ` < `2, we have

`1 < f(x) < `2 for all x sufficiently close to a.

A few remarks are in order. First, note that we only require f to be defined
on the punctured interval, not at the point a itself. Next, there are many ways to
denote (2.1). For example we may write

f(x)→ ` as x→ a, or f(x)
x→a−−−→ `.

Finally, it is sufficient to take `1 = `−ε and `2 = `+ε for some ε > 0, and it is also
convenient to quantify what we mean by ‘sufficiently close’ by introducing another
parameter δ > 0. In particular, we have the alternate version of Definition 2.1
above, which is the the version that we will really use in what follows:

Definition 2.2 (Limit, alternate version). We say that

lim
x→a

f(x) = `

if for any ε > 0, there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− `| < ε.

There is a related notion of the limit of a sequence of numbers, which we will
discuss below. In the exercises, you will work out some standard algebraic ‘limit
laws’, which should help you get used to working with this ‘ε-δ’ definition. You
may find the following theorem convenient to use, as well:

Theorem 2.1 (The ‘Cε’ Theorem). Suppose that there exists C > 0 so that for all
ε > 0, there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− `| < Cε.

Then limx→a f(x) = `.

Proof. Let C be as in the statement of the theorem. Now choose any ε > 0. By
assumption, we may choose a δ > 0 (corresponding to the positive number ε

C ) so
that

0 < |x− a| < δ =⇒ |f(x)− `| < C · εC = ε.

As ε > 0 was arbitrary, we have satisfied the condition required by Definition 2.2.
�
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Let us finally introduce the formal definition of the derivative. It is defined as
the limit of the slopes of the secant lines to a curve at a given point (as depicted
in the following figure):

Definition 2.3. Let f be a real-valued function defined on an interval I containing
a point a. We say that f is differentiable at x = a with derivative ` if

lim
x→a

f(x)− f(a)

x− a
= ` (2.2)

We write ` = f ′(a), or alternately ` = df
dx

∣∣
x=a

.

Note that the ratio in (2.2) is defined in the punctured interval I\{a}, and hence
it makes sense to speak of its limit as x → a. We may equivalently express the
limit in (2.2) as

lim
h→0

f(a+ h)− f(a)

h
= `.

With these definitions in mind, let us revisit the two examples originally pre-
sented in the style of Newton in Section 1.1.

Example 2.1. Let f(x) = x2. Then

(x+ h)2 = x2 + 2xh+ h2,

which yields.
(x+ h)2 − x2

h
= 2x+ h for all h 6= 0.

Thus

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim
h→0

(2x+ h) = 2x for each x ∈ R.

Example 2.2. Suppose f and g are both differentiable at x = a. Then the product
fg is differentiable at x = a, with

d(fg)
dx

∣∣
x=a

= f ′(a)g(a) + g′(a)f(a).

Proof. Let us define the functions Ef (h) and Eg(h) via

f(a+ h) = f(a) + hf ′(a) +Ef (h) and g(a+ h) = g(a) + hg′(a) +Eg(h), (2.3)

respectively. By definition of differentiability, we then have

lim
h→0

Ef (h)
h = 0 and lim

h→0

Eg(h)
h = 0.
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We can then expand

f(a+ h)g(a+ h) = [f(a) + hf ′(a) + Ef (h)][g(a) + hg′(b) + Eg(h)]

= f(a)g(a) + h[f ′(a)g(a) + f(a)g′(a)] +R(h),

where

R(h) := f(a)Eg(h) + g(a)Ef (h) + h[g′(a)Ef (h)

+ f ′(a)Eg(h)] + Ef (h)Eg(h) + h2f ′(a)g′(b).

Now, using (2.3) and the algebraic limit laws (see Exercise 2.2), we can see that

lim
h→0

R(h)
h = 0.

Thus, we deduce

lim
h→0

f(a+ h)g(a+ h)− f(a)g(a)

h
= f ′(a)g(a) + f(a)g′(a),

as desired. �

In the exercises, you will work out some of the other basic rules for derivatives
(see Exercise 2.3). For example, the sum of two differentiable functions f and g is
again differentiable, with (f+g)′ = f ′+g′. This immediately implies that any finite
sum of any finite collection of differentiable functions f1, . . . , fN is differentiable,
with ( N∑

n=1

fn

)′
=

N∑
n=1

f ′n.

Whether or not we can extend this to the case of infinite series is a question we
will study later.

Using the definition of the derivative (as in Example 2.1), it is straightforward
to compute derivatives of some simple functions, for example:

d
dx [1] = 0, d

dx [x] = 1, d
dx [x2] = 2x.

More generally, utilizing the product rule (see Example 2.2) and proof by induction,
we can establish the power rule

d
dx [xn] = nxn−1 for any n = 1, 2, 3, . . . (2.4)

as follows:

Proof of (2.4). We know the result holds for n = 1. Now suppose we know
d
dx [xm] = mxm−1 for some integer m. Then, by the product rule,

d
dx [xm+1] = x d

dx [xm] + xm d
dx [x] = x · [mxm−1] + xm · [1] = (m+ 1)xm.

Therefore (by induction) the result holds for all positive integers. �

By applying the product rule, we may also compute the derivative of negative
powers. Indeed, if f(x) = x−n, then we have xnf(x) = 1, and we can then apply
the product rule and solve for f ′(x). In order to compute derivatives of fractional
powers (like

√
x, x1/3, and so on), we will need to introduce technique known as

the chain rule, which tells us how to compute the derivative of the composition of
two functions.
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Definition 2.4. The composition of two functions f and g is given by

(f ◦ g)(x) = f(g(x)).

It is defined on the domain of g, provided the range of g is a subset of the domain
of f .

Theorem 2.2 (Chain rule). Suppose g′(a) and f ′(g(a)) both exist. Then f ◦ g is
differentiable at x = a and

(f ◦ g)′(a) = f ′(g(a))g′(a).

Remark 2.3. One way to discover this formula is to suppose that g(a + h) =
g(a) + hg′(a) + Ch2 + . . . and f(b + k) = f(b) + kf ′(b) + Ck2 + . . . and to work
out the term in f(g(a + h)) that is linear in h. Once we have the right candidate
for the derivative, we can prove the equality as follows:

Proof. Proceeding as in (2.2), let us define the function Eg(h) via

g(a+ h) = g(a) + hg′(a) + Eg(h), so that lim
h→0

Eg(h)
h = 0.

We now let ε > 0 and choose δ1 > 0 small enough that

0 < |k| < δ1 =⇒
∣∣f(g(a) + k)− f(g(a))− kf ′(g(a))

∣∣ < |k|ε.
Now, for h sufficiently small (say 0 < |h| < δ2 for suitable δ2 > 0), we may guarantee

|hg′(a) + Eg(h)| < δ1. (2.5)

In this case, we may obtain (adding and subtracting Eg(h) · f ′(g(a))) and using
(2.5)): ∣∣f(g(a+ h))− f(g(a))− hf ′(g(a))g′(a)

∣∣
≤
∣∣f(g(a) + hg′(a) + Eg(h))− f(g(a))− [hg′(a) + Eg(h)]f ′(g(a))

∣∣
+ |Eg(h)f ′(g(a))|
≤ [|h| |g′(a)|+ |Eg(h)|]ε+ |Eg(h)| |f ′(g(a))|.

Rearranging, this implies∣∣∣∣f(g(a+ h))− f(g(a))

h
− f ′(g(a))g′(a)

∣∣∣∣ ≤ |g′(a)|ε+ |Eg(h)h |ε+ |Eg(h)h | |f ′(g(a))|.

Choosing h possibly even smaller (than some δ3 > 0, say), we can therefore guar-
antee that

0 < |h| < δ3 =⇒
∣∣∣∣f(g(a+ h))− f(g(a))

h
− f ′(g(a))g′(a)

∣∣∣∣ ≤ Cε
for some C > 0. By the ‘Cε Theorem’, we deduce that f ◦ g is differentiable at
x = a, with (f ◦ g)′(a) = f ′(g(a))g′(a). �

With the chain rule in hand, we can compute the derivative of any rational power
of x:

Example 2.3. Suppose f(x) = xp/q for some integers p, q. Then f(xq) = xp, and
so

pxp−1 = f ′(xq) · qxq−1 =⇒ f ′(xq) = p
qx

p−q =⇒ f ′(x) = p
qx

p
q−1,

extending our ‘power rule’ to the case of rational powers.
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We will extend this ‘power rule’ to arbitrary powers later, when we discuss
exponential functions and logarithms.

Up to this point, we have established some useful rules for computing derivatives,
including integer powers (and hence arbitrary polynomials). However, it is not so
clear how to compute derivatives of other special functions. As a simple example,
let us give a geometric derivation of the fact that d

dx sinx = cosx (when x is given
in radians).

Example 2.4. To find the derivative of sinx, we first rely on the following trigono-
metric identity (which can be derived geometrically):

sin(a+ b) = sin a cos b+ sin b cos a.

We can therefore write

sin(x+ h) = sinx cosh+ sinh cosx,

which rearranges to

sin(x+h)−sin(x)
h = sinx · cosh−1h + sinh

h cosx, h 6= 0. (2.6)

We now claim that

lim
h→0

sinh
h = 1. (2.7)

To see this, consider the following diagram:

Comparing the heights of the two vertical line segments and the length of the arc,
we can read off the inequality

sinh ≤ h ≤ sinh
cosh =⇒ cosh ≤ sinh

h ≤ 1 (2.8)

for non-zero h within (−π2 ,
π
2 ). Using the fact that cosh→ 1 as h→ 0, we therefore

derive (2.7).
Next, we claim that

lim
h→0

cosh−1
h = 0. (2.9)

To see this, let us rely on another trigonometric identity (derived from sum formulas
for sine and cosine), namely

cosh− 1 = − sin2(h/2)
1/2 .

Indeed, from this identity, (2.7), the fact that limh→0 sin(h/2) = 0, and the product
law for limits, we obtain (2.9).

Returning to (2.6), we now take the limit as h→ 0 to obtain d
dx sinx = cosx.
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A few remarks are in order. First, you may have derived (2.7) in a calculus
course by applying L’Hospital’s rule and the fact that the derivative of sinh is
cosh. However, here we are using (2.7) to determine the derivative of sinh, so
we needed a different argument. Second, the claim (2.8) was essentially based off
of looking at a diagram. By first computing areas, it is possible to establish this
inequality more rigorously. We will also consider a different approach later in these
notes, which entails defining sinx as a suitable power series and using that series
to determine the derivative.

Let us consider one last example in which we cannot simply apply derivative
rules to find the correct answer.

Example 2.5. Let

f(x) =

{
x2 sin( 1

x2 ) x 6= 0

0 x = 0.

The graph of this function is given in the following figure:

To compute f ′(x), we apply the product rule, chain rule, power rule, and the
result of the previous example. This leads to

f ′(x) = 2x sin( 1
x2 )− 1

x cos( 1
x2 ) for any x 6= 0.

If we try to evaluate this at x = 0, we run into a problem, since the first term tends
to zero x approaches zero but the second term becomes unbounded. Nonetheless,
if we look at the graph, the function seems to be flat at x = 0, suggesting that
perhaps we have f ′(0) = 0. In fact,∣∣∣∣f(h)− f(0)

h

∣∣∣∣ = |h sin( 1
h2 )| ≤ |h|,

which implies that

f ′(0) = lim
h→0

f(h)− f(0)

h
= 0.

We turn now to one of the most important applications of derivatives, namely
polynomial approximations of functions. This is closely related to the idea of power
series (or Taylor series) representations, which was mentioned in Section 1.4. To
get the discussion started, we first need to introduce the notion of higher order
derivatives. The idea is straightforward.

Definition 2.5 (Higher order derivatives). Suppose f is a function defined on an
open interval I such that f ′(x) exists for all x ∈ I. Then f ′ defines a function on
I. If f ′ is differentiable at a point a, then we call f ′′(a) the second derivative of f
at x = a. Higher order derivatives are defined the same way. We write f ′, f ′′, f ′′′,
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but eventually switch to notation such as f (4) or f (k) to denote the fourth or kth

derivative, respectively.

The idea of Taylor polynomial approximation is to use the polynomials

Pn(x) = f(a) + f ′(a)(x− a) + 1
2!f
′′(a)(x− a)2 + · · ·+ 1

n!f
(n)(a)(x− a)n

as approximations to f , at least in some interval around the point x = a. We may
also make the notation more compact and write

Pn(x) =

n∑
k=0

1
k!f

(k)(a)(x− a)k.

The precise coefficients in these polynomials are chosen precisely so that the poly-
nomials Pn satisfy

P (k)
n (a) = f (k)(a) for k = 0, . . . , n.

To understand approximation properties of Taylor polynomials (and eventually
power series), we will endeavor to prove the following Lagrange remainder theorem.

Theorem 2.4 (Lagrange Remainder Theorem). Suppose f is a function that is n
times differentiable on an open interval I. For any a, x ∈ I, there exists c between
a and x such that

f(x) =

n−1∑
k=0

1
k!f

(k)(a)(x− a)k + 1
n!f

(n)(c)(x− a)n.

This theorem shows that the degree to which the polynomial Pn−1 approximates
f depends on the size of the nth order of derivatives of f . Note that in the special
case n = 1, we obtain the statement that there exists c between x and a so that

f(x) = f(a) + f ′(c)(x− a), or f(x)−f(a)
x−a = f ′(c).

This is the well-known Mean Value Theorem, asserting that there exists c so that
the slope of the tangent line at x = c agrees with the slope of the line joining
(a, f(a)) and (x, f(x)) (see the graph on the left in the figure below). Perhaps you
remember from your calculus course that the Mean Value Theorem can be deduced
from a result known as Rolle’s Lemma. This will be our approach, as well. We
state the result we will use as follows.

Lemma 2.5 (Rolle’s lemma). Suppose f is differentiable on an open interval I.
Suppose a, x ∈ I are such that f(a) = f(x). Then there exists c between a and x
such that f ′(c) = 0.

We depict the Mean Value Theorem and Rolle’s Lemma in the following figure:

The Mean Value Theorem Rolle’s Lemma
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Rolle’s Lemma is one of those results that just seems intuitively obvious once you
draw the picture. Alas, such results can be the most dangerous of all! Indeed, to
prove this result, we will ultimately be forced to introduce several completely new
and fundamental concepts beyond differentiability. In this section, our approach
will be to use Lemma 2.5 to prove Theorem 2.4 (which, as mentioned above, includes
the Mean Value Theorem as a special case). We will then see exactly what a proof
of Rolle’s Lemma might require of us, and we will develop the necessary concepts
in the next section.

Proof of Theorem 2.4, assuming Lemma 2.5. Let us first prove the case n = 1,
which (as stated above) corresponds to the Mean Value Theorem. The idea is
to reduce the Mean Value Theorem to Rolle’s theorem basically by subtracting the
appropriate line from the function (essentially tilting our heads until the graph on
the left above looks like the graph on the right).

To this end, we define

g(y) = [f(x)− f(y)]− x−y
x−a [f(x)− f(a)]

for y between a and x. Then we have

g(a) = 0 and g(x) = 0,

so that by Rolle’s Lemma we may find c between a and x satisfying g′(c) = 0.
Observing that

g′(c) = −f ′(c) + f(x)−f(a)
x−a ,

we obtain the result in the case n = 1 (that is, the Mean Value Theorem).
The general case can also be reduced to Rolle’s Lemma. Let us define the

remainder Rn(x, y) by

Rn(x, y) = f(x)−
n−1∑
k=0

f(k)(y)
k! (x− y)k.

Our goal is then to prove that there exists c between a and x so that

Rn(x, a) = f(n)(c)
n! (x− a)n.

First, by the product rule, we can compute

d
dyRn(x, y) = −

[n−1∑
k=0

f(k+1)(y)
k! (x− y)k −

n−1∑
k=1

f(k)(y)
(k−1)! (x− y)k−1

]
= − f

(n)(y)
(n−1)! (x− y)n−1

(2.10)

(see Exercise 2.4).
We now define the function

g(y) = Rn(x, y)− (x−y)n
(x−a)nRn(x, a).

(In fact, when n = 1, this is exactly the same construction as above.) We then have

g(a) = Rn(x, a)−Rn(x, a) = 0, while g(x) = Rn(x, x) = 0,

so that by Rolle’s Lemma we may find c between a and x so that g′(c) = 0. Using
(2.10), this becomes

0 = g′(c) = − f
(n)(c)

(n−1)! (x− c)
n−1 + n(x−c)n−1

(x−a)n Rn(x, a),
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which rearranges to yield

Rn(x, a) = f(n)(c)
n! (x− a)n,

as desired. �

The proof above relies on Rolle’s Lemma, to which we now turn.

First attempt at proving Rolle’s Lemma. Let’s recall the setup of Rolle’s Lemma.
We let f be a differentiable function on an interval I, and we let a < x be two
points in I satisfying f(a) = f(x). Why must there be a point c so that f ′(c) = 0?

We could try to argue as follows: Imagine connecting f(a) to f(x) with some
‘continuous’ curve. The most trivial case is a horizontal line, but in this case the
derivative is always zero, so we’re done. Otherwise, to get back to the same value,
the curve will have to go up and come back down again (or vice versa). However,
at any moment when the function changes from being increasing to decreasing (or
vice versa), it will have a horizontal tangent line, that is, its derivative will equal
zero. This argument seems to rest on several ‘obvious’ facts:

Obvious Fact #1. A differentiable function on an interval must be ‘continuous’.

Obvious Fact #2. A non-constant ‘continuous’ function on will obtain some
maximum or minimum on an interval.

Obvious Fact #3. The derivative at a maximum or minimum will equal zero.

Of course, the use of the word ‘obvious’ above is meant to be a bit facetious.
What is really meant is that our intuition strongly suggests that these things are
true. In fact, we will need to develop some new ideas to be able to write down rig-
orous proofs of these facts. The key new concept that we need is that of continuity,
which is the topic of our next section. �

2.2. Continuity. The main goal of this section is to introduce the concept of
continuity. In particular, we will use this concept to complete the proof of Rolle’s
Lemma from the previous section. We will also explore several other important
consequences of continuity.

We should take a moment to ponder what the right definition of continuity even
ought to be. Historically, the notion of continuity arose much later than the notion
of differentiability, and indeed it turns out to be a much more general concept that
extends to far more abstract settings.

A reasonable candidate for what ‘continuity’ might mean is the following ‘inter-
mediate value property’:

Definition 2.6 (Intermediate value property). Let f be a function defined on
an interval [a, b]. We say that f has the intermediate value property if for any
x1, x2 ∈ [a, b] and any m satisfying

f(x1) < m < f(x2) or f(x2) < m < f(x1),

there exists c between x1 and x2 such that f(c) = m.

This definition seems reminiscent of the old expression that ‘a continuous func-
tion is one you can draw without picking up your pencil’. As we will see, this
property alone does not constitute an acceptable definition of continuity. For one
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thing, we can find functions satisfying the intermediate value property that we
would never consider to be continuous. Consider, for example:

f(x) =

{
sin( 1

x ) x ∈ (0, 1]

0 x = 0,
(2.11)

depicted (as best we can) in the following figure:

In particular, this function satisfies the intermediate value property (indeed, it takes
on on every value between −1 and 1 infinitely many times as x→ 0), but there is
no way we could call this function continuous at x = 0.

Another defect of the intermediate value property is that it is not preserved
under simple operations like addition! Indeed, we can basically re-use the same
example above, defining a second function

g(x) =

{
− sin( 1

x ) x ∈ (0, 1]

1 x = 0.

Then g satisfies the intermediate value property for the same reasons f does, but

(f + g)(x) =

{
0 x ∈ (0, 1]

1 x = 0,

which certainly fails to have the intermediate value property.
We will instead define continuity as follows.

Definition 2.7 (Continuity). We say that a function f is continuous at a point
x = a if

(i) f is defined in an interval containing a, and
(ii) limx→a f(x) exists and equals f(a).

In particular continuity at a point x = a means that the function has a limiting
value as x approaches a, and that that limiting value agrees with the value of the
function at x = a. Note that in item (i), it is permitted that a be the endpoint
of the interval on which f is defined; in such cases, we only need to consider a
‘one-sided’ limit in part (ii).

In the case of (2.11), we see that continuity fails because the function has no
limit as x→ 0.

Using the standard limit laws (see Exercise 2.2), we can immediately see that
continuity is a property that is preserved under scalar multiplication, finite sums,
products, and quotients (provided the function in the denominator is nonzero).
Whether or not continuity is preserved under infinite sums will be addressed later.

As with differentiability, continuity is preserved under the composition of func-
tions.
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Proposition 2.6. Suppose the composition f ◦g is defined in an interval containing
x = a. Suppose that g is continuous at a and f is continuous at g(a). Then f ◦ g
is continuous at a.

Proof. Let ε > 0. By continuity of f at g(a), there exists δ > 0 so that

0 < |y − g(a)| < δ =⇒ |f(y)− f(g(a))| < ε.

By continuity of g at a, there exists η > 0 so that

0 < |x− a| < η =⇒ |g(a)− g(x)| < δ.

Thus, for 0 < |x− a| < η, we have

|f(g(x))− f(g(a))| < ε.

As ε > 0 was arbitrary, we deduce limx→a f(g(x)) = f(g(a)). �

Using this definition of continuity, we would now like to show that (i) continuous
functions satisfy the intermediate value property and (ii) differentiable functions
are continuous.

Our first main goal is therefore the following:

Theorem 2.7 (Intermediate Value Theorem). Suppose f is a continuous function
on an interval [a, b]. Then f has the intermediate value property on [a, b].

It is convenient at this point to formally introduce the notion of sequences of real
numbers and their limits. A sequence of numbers is really a function mapping the
natural numbers {1, 2, 3, . . . } into the real numbers. We typically denote sequences
by {xk}, where k = 1, 2, . . . (as opposed to the usual functional notation x(k), say).
Informally, we may say that we have an ‘infinite, ordered list of numbers’.

We will jump straight to the formal definition of limits (the ε-N definition). It
once again corresponds to the ‘Archimedean’ notion of limits.

Definition 2.8 (Limit, sequence version). We say

lim
n→∞

an = `

if for any ε > 0, there exists N such that

n ≥ N =⇒ |an − `| < ε.

We may also write an → ` as n→∞.

In particular, we can now observe that the statement that an infinite series has
value ` (in the sense of Definition 1.1) is equivalent to the statement that the limit
of the sequence of partial sums exists and equals `.

In the exercises, you will prove an analogue of the ‘Cε Theorem’ (Theorem 2.1)
for sequences of real numbers, as well as the standard algebraic ‘limit laws’. You
will also prove the following handy lemma:

Lemma 2.8 (Sequential version of continuity). The following are equivalent:

• f is continuous at a point x = a.
• If {xk} is a sequence such that limk→∞ xk = a, then limk→∞ f(xk) exists

and equals f(a).

We are now in a position to start the proof of the Intermediate Value Theorem.
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Proof of Theorem 2.7. Fix any x1, y1 ∈ [a, b] with x1 < y1 and suppose that M is
between f(x1) and f(y1).

Let m1 be the midpoint of x1 and y1. If f(m1) = M , then we are done. Other-
wise, f(m1) will be on the same side of M as either f(x1) or f(y1).

• If f(m1) is on the same side as f(y1), let x2 = x1 and y2 = m1.
• If f(m1) is on the same side as f(x1), let x2 = m1 and and y2 = y1.

Then we have

x1 ≤ x2 < y2 ≤ y1, y2 − x2 = 1
2 (y1 − x1),

and M is between f(x2) and f(y2).
Now we repeat this step: We let m2 be the midpoint of x2 and y2. If f(m2) = M ,

we are done. Otherwise, we define x3 and y3 according to the same criterion above,
and we obtain

x1 ≤ x2 ≤ x3 < y3 ≤ y2 ≤ y1, y3 − x3 = 1
2 (y2 − x2) = 1

4 (y1 − x1),

and M is between f(x3) and f(y3). Proceeding in this way, we construct sequences
{xk} and {yk} so that

x1 ≤ · · · ≤ xk < yk ≤ · · · ≤ y1, yk+1 − xk+1 = 1
2k

(y1 − x1),

and M is always between f(xk) and f(yk).
Now, if one of the midpoints ever satisfies f(mk) = c, then we stop this process

and the proof is done. Otherwise, this process constructs infinite sequences xk, yk
such that the intervals (xk, yk) are getting ‘squeezed down’ and appear to be col-
lapsing down to some point (similar to the situation discussed in Section 1.6). In
this case, we hold our breath and posit that

there exists c ∈ R so that c ∈ (xk, yk) for every k,

and that

lim
k→∞

xk = c and lim
k→∞

yk = c. (2.12)

Taking this for granted for the moment, we see that by the continuity of f (in
the form of Lemma 2.8) then implies

lim
k→∞

f(xk) = f(c) and lim
k→∞

f(yk) = f(c). (2.13)

We now claim that we must have f(c) = M , which will complete the proof
(modulo the claim in (2.12), which we return to below). To see this, suppose first
that f(c) < M . Then, by (2.13), we would have that f(xk) < M and f(yk) < M for
all k sufficiently large. However, this contradicts the fact that M is always between
f(xk) and f(yk). The assumption that f(c) > M leads to a similar contradiction,
and hence we conclude that f(c) = M , as desired. �

We now have a proof of the intermediate value property for continuous functions,
but it rests on the condition (2.12). As we will see, this condition ultimately follows
from the completeness property of the real numbers that was mentioned briefly
in Section 1.6. Indeed, the following example shows that the intermediate value
theorem could fail without this property!

Example 2.6. Let f be defined on the rational numbers by f(x) = x2. Then f is
continuous (this is clear from the sequential version of compactness in Lemma 2.8),
f(0) = 0, f(2) = 4, but there is no x such that f(x) = 2.
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Rigorous justification for the claim made in (2.12) was not given until the late
1800s in work of mathematicians such as Dedekind and Cantor. We will consider
this foundational work in a later section. For the time being, let us state the precise
fact about the real numbers that we need, and show how it implies (2.12).

To formally state the completeness property of R, we need a new definition. It
refers to sequences whose terms get closer and closer to one another.

Definition 2.9 (Cauchy sequence). A sequence xn of real numbers is said to be
Cauchy if for all ε > 0, there exists N such that

n,m ≥ N =⇒ |xn − xm| < ε.

For example, every convergent sequence is Cauchy (see Exercise 2.10). So is the
sequence constructed in Example 1.4.

The completeness property of R is now straightforward to state. We have the
following:

Proposition 2.9 (Completeness). The real numbers, R, are complete.

Example 1.4, on the other hand, shows that the rational numbers Q are not
complete. We will discuss this proposition in a later section. For now, let us use it
to prove (2.12).

Proof of (2.12), assuming Proposition 2.9. We let ε > 0. By construction, we may
find N so that |yN − xN | < ε. Again by construction, we have that xn ∈ [xN , yN ]
for all n ≥ N , and so |xn − xm| < ε for all n,m ≥ N . Similarly, |yn − ym| < ε for
all n,m ≥ N . Thus {xn} and {yn} are both Cauchy and hence converge to some
limits cx and cy. Using

lim
n→∞

|xn − yn| = 0,

we can quickly deduce that cx = cy, so that we may drop the subscript and denote
the common limit by c. We now observe that c ≤ yk for every k, for if we had c > yk
then we would obtain xn > yk for large enough n (contradicting the construction
of these sequences). Similarly, c ≥ xk for every k. This completes the proof of all
of the claims made in the proof above. �

Next, let us demonstrate that differentiable functions are continuous. (This was
one of the ‘obvious facts’ that we needed with when trying to construct a proof of
Rolle’s Lemma.)

Proposition 2.10 (Differentiability implies continuity). Suppose f is differentiable
on an open interval I. Then f is continuous at each point a ∈ I.

Proof. Let a ∈ I. By assumption,

lim
x→a

f(x)− f(a)

x− a
= f ′(a).

Thus, by limit laws,

lim
x→a

[f(x)− f(a)] = lim
x→a

[x− a] · lim
x→a

f(x)− f(a)

x− a
= 0 · f ′(a) = 0,

so that limx→a f(x) = f(a). �
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The converse to Proposition 2.10 is false. That is, continuity does not imply
differentiability. A simple example is f(x) = |x|, which is continuous but not
differentiable at x = 0 (see Exercise 2.1). In fact, there are much weirder examples
than this (e.g. functions that are continuous but nowhere differentiable), but one
needs to have an understanding of infinite series of functions before it is really
possible to discuss them.

Similarly, the derivative of a differentiable function need not be continuous. We
saw such an example in Example 2.5, where (with f(x) = x2 sin(x−2)) we had
f ′(0) = 0 but limx→0 f

′(x) did not exist. Despite this possibility, we will see
later that any function that arises as a derivative is still guaranteed to have the
intermediate value property (a result known as Darboux’s Theorem).

In fact, there are some bizarre examples that already challenge our intuitive
understanding of ‘continuity’.

Example 2.7 (Dirichlet function). The function

f(x) =

{
x if x is rational,

0 if x is irrational

is continuous at x = 0 but discontinuous for all x 6= 0. The proof relies on the fact
that the rational numbers are dense in the real numbers, which means for any real
number x and any ε > 0, there exists a rational number y such that |x− y| < ε.

Example 2.8. In the following, we write nonzero rational numbers uniquely as
x = p/q, with q > 0 and p and q relatively prime. If we then define

g(x) =


1 x = 0,

1/q if x = p/q is a rational number,

0 if x is irrational,

then g is continuous precisely at the irrational numbers.

At the same time, our original thoughts about ‘continuity’ (namely, that it should
be closely linked to the intermediate value property), are not so far off. Indeed,
combined with one additional property, the intermediate value property does guar-
antee continuity. The additional property is that of monotonicity.

Definition 2.10 (Monotone function). A function f is monotone increasing if

x1 < x2 =⇒ f(x1) ≤ f(x2).

It is monotone decreasing if

x1 < x2 =⇒ f(x1) ≥ f(x2).

Theorem 2.11. Suppose f is monotonic and satisfies the intermediate value prop-
erty on an interval [a, b]. Then f is continuous at every c ∈ (a, b).

Proof. Without loss of generality, let’s suppose f is increasing. We let c ∈ (a, b)
and ε > 0. We let

ε′ = min{ε, f(c)− f(a), f(b)− f(c)} > 0.

By the intermediate value property and the fact that f is increasing, we may find
c1 < c < c2 so that

f(c1) = f(c)− 1
2ε
′ and f(c2) = f(c) + 1

2ε
′.
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Using the monotonicity of f again, it follows that

x ∈ (c1, c2) =⇒ |f(x)− f(c)| < ε′ ≤ ε,

which implies continuity. �

Our next goal is to establish two crucial properties of continuous functions on
closed, bounded intervals. In particular, we will show that such functions are
bounded and that they achieve their extreme values.

Theorem 2.12 (Continuity implies boundedness). If f is continuous on [a, b], then
f is bounded: that is, there exists M1,M2 so that

M1 ≤ f(x) ≤M2 for all x ∈ [a, b].

The hypotheses of this theorem are all necessary: First, we need continuity
here, as opposed to just the intermediate value property, say. To see this, consider
the function f(x) = 1

x sin( 1
x ) for x ∈ (0, 1], with f(0) = 0. This satisfies the

intermediate value property but is unbounded. We also need the interval to be
closed (otherwise, consider the continuous function f(x) = 1

x on (0, 1]) and bounded
(otherwise, consider f(x) = x on [0,∞)).

Proof of Theorem 2.12. Suppose f is not bounded. Let x1 = a, y1 = b, and m1 =
1
2 (x1 + y1). Then f must be unbounded on either [x1,m1] or [m1, y1] (or both).
Choose one of these intervals on which f is unbounded and denote this interval by
[x2, y2]. Then we have

x1 ≤ x2 < y2 ≤ y1 and y2 − x2 = 1
2 (y1 − x1).

Now repeat the process, defining the midpoint m2 of [x2, y2] and choosing one of
the resulting halves [x3, y3] on which f is unbounded. Proceeding in this way we
construct sequences {xk} and {yk} so that

x1 ≤ x2 ≤ · · · ≤ xk < yk ≤ · · · ≤ y2 ≤ y1, yk+1 − xk+1 = 1
2k

(y1 − x1),

and f is unbounded on each interval [xk, yk]. Arguing as we did on page 26, we
deduce that there exists c ∈ (xk, yk) for all k such that xk → c and yk → c as
k →∞. By continuity, we have f(xk)→ f(c) and f(yk)→ f(c).

Now, by continuity, there exists δ > 0 so that

|z − c| < δ =⇒ |f(z)− f(c)| < 1. (2.14)

However, for large enough k, we have |yk−xk| < δ, while f is unbounded on [xk, yk].
In particular, we may find z ∈ [xk, yk] (so that |z − c| < δ) such that

f(z) > f(c) + 1 or f(z) < f(c)− 1,

contradicting (2.14). �

Next, we would like to show that continuous functions achieve maximum and
minimum values on closed, bounded intervals. Here we once again stumble into
some subtleties that must be resolved using the completeness of the real numbers.
There are actually two questions we must answer. First, given that f is bounded
on the interval [a, b], what do we even mean by the ‘extreme values’ or the ‘best
possible bounds’ for f? Second, how can we show that f attains these values?

For the first question, we need to introduce the notion of least upper bounds and
greatest lower bounds, also called suprema and infima, respectively.
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Definition 2.11 (Least upper bound, greatest lower bound). Suppose S is a
bounded set of real numbers. We say that m is a least upper bound of S if

• m is an upper bound for S, that is, x ∈ S =⇒ x ≤ m, and
• if y is any upper bound for S, then m ≤ y.

We say that b is a greatest lower bound of S if

• b is a lower bound for S, that is, x ∈ S =⇒ x ≥ b, and
• if z is any lower bound for S, then z ≤ b.

This definition suggests two questions: First, do least upper bounds always exist?
Second, if they do, are they unique?

The uniqueness question is straightforward, if m1 and m2 are both ‘least upper
bounds’ for S, then the second condition means we must have m1 ≤ m2 and
m2 ≤ m1, so that m1 = m2. The situation is similar for greatest lower bounds. We
may speak of the least upper bound or greatest lower bound, if they exist. We also
call these the supremum and infimum, respectively, denoted by sup and inf.

If a set has a maximal element, this element is necessarily the supremum. How-
ever, in general the question of existence is more subtle. In fact, existence can fail
for sets of rational numbers:

Example 2.9. Let S be the set of positive rational numbers x such that x2 < 2.
This set is bounded above (e.g. 3

2 is an upper bound). However, it has no least
upper bound within the set of rational numbers. Indeed, suppose m > 0 were a
(rational) least upper bound for S. Then either m2 > 2 or m2 < 2 (since there is no
rational number whose square equals 2). If m2 < 2, then we may use the sequence
constructed in Example 1.4 to find a rational number x > 0 such that x2 > m2

(and so which yields x > m). In particular, m cannot not be an upper bound for
S. On the other hand, if m2 > 2, for n sufficiently large we have (m − 1

n )2 > 2,

which implies that m − 1
n is an upper bound for the set S for large enough n. In

particular, m cannot be the least upper bound. We conclude that S has no least
upper bound.

If we consider the set of real numbers x such that x2 < 2, then the supremum is
simply given by

√
2. The fact that something goes wrong for the rationals but not

the reals suggests that the existence of suprema is connected to the completeness
property of the real numbers. In fact, we have the following theorem, the proof of
which relies on the completeness of the real numbers (Proposition 2.9):

Theorem 2.13 (Least upper bound property). If S is a set of real numbers with
an upper bound, then S has a least upper bound. (A similar statement holds for
greatest lower bounds.)

Proof. We’ll use the nested interval trick that we’ve seen a few times by now. We
let x1 be any number that is not an upper bound for S, and let y1 be any upper
bound for S. Then take the midpoint m1 = 1

2 (x1 + y1), and:

• If m1 is an upper bound for S, we let x2 = x1 and y2 = m1.
• If m1 is not an upper bound for S, we let x2 = m1 and y2 = y1.

This yields

x1 ≤ x2 < y2 ≤ y1 and y2 − y1 = 1
2 (x2 − x1).



30 JASON MURPHY

Now repeat the process, using the midpoint m2 = 1
2 (x2 + y2). In this way, we

construct sequences xk and yk satisfying

x1 ≤ x2 ≤ · · ·xk < yk ≤ · · · ≤ y2 ≤ y1, yk+1 − xk+1 = 1
2k

(y1 − x1),

with xk not an upper bound for S and yk an upper bound for S.
Now, as we have argued before, there must exist c ∈ R satisfying c ∈ (xk, yk) for

all k and xk, yk → c as k →∞. We claim that c is the least upper bound of S.
First we show that c is an upper bound. Indeed, if x > c, then there exists k

such that yk < x. As yk is an upper bound for S, this means x 6∈ S. Stated in the
contrapositive, we have just shown x ∈ S =⇒ x ≤ c.

Next, if y < c, then there exists k such that xk > y. As xk is not an upper
bound for S, y cannot be an upper bound either. Stated in the contrapositive, we
have just shown that if y is an upper bound for S, then y ≥ c. �

We are now in a position to show that continuous functions achieve their extreme
values on on closed, bounded intervals. (This is another one of the ‘obvious facts’
that we needed for the proof of Rolle’s Lemma.)

Theorem 2.14 (Extreme value theorem). Let f be a continuous function on an
interval [a, b]. Then there exists x ∈ [a, b] such that

f(x) = M := sup{f(y) : y ∈ [a, b]}.
(Similarly, f attains its minimal value.)

Proof. We’ll use our nested interval trick again. Let x1 = a, y1 = b, and m1 =
1
2 (x1 + y1). Then M must be the supremum of f over either [x1,m1] or [m1, y1] (or
both). If it is the supremum over [x1,m1], we let x2 = x1 and y2 = m1; if not, we
let x2 = m1 and y2 = y1.

We now repeat this process, always choosing the subinterval on which M is the
supremum. This leads to sequences obeying

x1 ≤ x2 ≤ · · ·xk < yk ≤ · · · ≤ y2 ≤ y1, yk+1 − xk+1 = 1
2k

(y1 − x1),

and such that sup[xk,yk]
f = M for all k. We then let c be the common point of all

of these intervals, that is, the common limit of the sequences xk and yk.
We now show f(c) = M . By construction, the only other option is f(c) < M .

Now, if f(c) < M , then we can find ε so that 0 < ε < M − f(c). By continuity of
f , we can therefore choose δ > 0 so that

|x− c| < δ =⇒ |f(x)− f(c)| < ε.

For k sufficiently large, we have that |z − c| < δ for all z ∈ [xk, yk]. In this case,

f(z) < f(c) + ε < M for all z ∈ [xk, yk].

That is, f(c) + ε is an upper bound for f on [xk, yk] that is strictly less than M ,
contradicting that sup[xk,yk]

f = M . We therefore conclude that f(c) = M , as
desired. �

We are finally almost in a position to complete the proof of Rolle’s Lemma from
the previous section. The final ‘obvious fact’ that we needed is the following:

Theorem 2.15 (Fermat’s theorem on max/min). Suppose f is a differentiable
function on (a, b) that attains a maximum or minimum at c ∈ (a, b). Then f ′(c) =
0.
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Proof. We will show that if f ′(c) 6= 0, then there exists x1, x2 ∈ (a, b) so that

f(x1) < f(c) < f(x2).

In particular, f ′(c) 6= 0 implies that f(c) is neither a maximum or minimum.
Without loss of generality, suppose f ′(c) > 0. It follows (by definition of the

derivative) that for all x sufficiently close to c, we have

f(x)− f(c)

x− c
> 0.

In particular, we can find x1 < c so that f(x1) < c and x2 > c so that f(x2) > c. �

Finally, we can prove Rolle’s Lemma. Let us state it again carefully.

Lemma 2.16 (Rolle’s Lemma). Suppose f is a continuous function on [a, b] that is
differentiable on (a, b). If f(a) = f(b), then there exists c ∈ (a, b) so that f ′(c) = 0.

Proof. If f(x) = f(a) for all x ∈ [a, b], then f is constant and f ′(x) = 0 for all x.
Otherwise, f attains a maximum or minimum at some point c ∈ (a, b), at which its
derivative necessarily vanishes. �

With Rolle’s Lemma in place, the arguments of the previous section also yield
the Mean Value Theorem and the Lagrange Remainder Theorem.

Using Rolle’s Lemma, we can also establish the ever-useful ‘L’Hospital’s Rules’
(which are actually due to Johann Bernoulli!).

Theorem 2.17 (L’Hospital’s 0
0 Rule). Suppose that f and g are differentiable on

an open interval I containing a. Suppose further that

lim
x→a

f(x) = lim
x→a

g(x) = 0.

Finally, suppose that g, g′ are nonzero on I\{a}. Then

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
,

provided this latter limit exists.

Proof. First note that differentiability of f and g implies continuity, and hence we
must have f(a) = g(a) = 0.

Now let ε > 0 and denote

` = lim
x→a

f ′(x)
g′(x) .

We may then choose δ > 0 so that

0 < |x− a| < δ =⇒ | f
′(x)
g′(x) − `| < ε.

Now fix x obeying 0 < |x− a| < δ and define the function

F (y) = [f(y)− f(a)][g(x)− g(a)]− [g(y)− g(a)][f(x)− f(a)].

Then F (a) = F (x) = 0, and hence by Rolle’s Lemma there exists a c between a
and x so that F ′(c) = 0. Using the definition of F , that means

f ′(c)[g(x)− g(a)] = g′(c)[f(x)− f(a)], or f ′(c)
g′(c) = f(x)−f(a)

g(x)−g(a) = f(x)
g(x) ,
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where we have used that f(a) = g(a) = 0 and the fact that g′, g are nonzero.
Collecting the above and observing that 0 < |x− a| < δ guarantees 0 < |c− a| < δ,
we have just established that for 0 < |x− a| < δ,

| f(x)g(x) − `| < ε,

which completes the proof. �

There is also an “∞∞” version of L’Hospital’s Rule. You may try to work out its
statement and proof, or perhaps you could pay somebody else to do it for you!

In the rest of this section, we will establish a few more results and also discuss an
alternate approach to proving Rolle’s Lemma. This not only serves to demonstrate
the interconnectedness of many of these results, but also to warn how easily one
can stumble into circular reasoning.

We first establish Darboux’s theorem. There is an approach to proving this
result that relies on the Mean Value Theorem, but since we would like to use this
theorem to provide an alternate proof of Rolle’s Lemma, we will present a proof
that relies only on the Extreme Value Theorem and Fermat’s Theorem.

Theorem 2.18 (Darboux’s Theorem). If f is differentiable on [a, b], then f ′ has
the intermediate value property on [a, b].

Proof. Without loss of generality, we suppose f ′(b) < m < f ′(a) and seek a point
c such that f ′(c) = m. We define the auxiliary function g(x) = f(x) −mx, which
is continuous on [a, b] and hence attains a maximum at some c ∈ [a, b]. Since
g′(a) = f ′(a)−m > 0, the maximum cannot occur at a, and similarly since g′(b) < 0
the maximum cannot occur at b. Thus c ∈ (a, b) and g′(c) = 0, which yields
f ′(c) = m. �

The next result we’ll prove is another one of these ‘obvious’ facts that turns out
to be surprisingly subtle.

Lemma 2.19. If f ′(x) > 0 for all x ∈ [a, b], then f is increasing over [a, b].
(Similarly, if f ′ < 0 then f is decreasing.)

Note that we must interpret f ′(a) and f ′(b) as one-sided limits in this context.

Proof. First, observe the Mean Value Theorem provides a very slick proof: If f is
not increasing over [a, b], then we may find a ≤ x1 < x2 ≤ b so that f(x1) ≥ f(x2).
Then by the Mean Value Theorem, there exists c ∈ (x1, x2) so that

f ′(c) = f(x2)−f(x1)
x2−x1

≤ 0,

contradicting the assumption that f ′ > 0.
However, as we would like to use this result to give an alternate proof of Rolle’s

Lemma, let us also give a proof of this result that does not use the Mean Value
Theorem. We argue as follows:

Fix x2 ∈ (a, b] and let

S = {x : x ∈ [a, x2) and f(x) ≥ f(x2)}.
We need to show that S is empty. Suppose instead that S is non-empty. As S is
bounded, it has a least upper bound m, which satisfies m ≤ x2.

We first claim that f(m) ≥ f(x2). To see this, observe that for any n, the
number m − 1

n is not an upper bound for S, and so there exists yn ∈ [m − 1
n ,m]
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such that yn ∈ S, that is, f(yn) ≥ f(x2). As yn → m, we deduce f(yn)→ f(m) by
continuity of f , and hence it follows that f(m) ≥ f(x2), as claimed.

We next claim that m < x2. Suppose instead that m = x2. Then, in particular,
m /∈ S, and (as above) we may find a sequence yn ∈ [x2− 1

n , x2) such that f(yn) ≥
f(x2) for all n. However, along this sequence we have

f(x2)− f(yn)

x2 − yn
→ f ′(x2) > 0,

which implies f(x2) > f(yn) for all n sufficiently large. This is a contradiction, and
so we must have m < x2.

Finally, we claim that there exists y > m such that y ∈ S, contradicting that
m = supS. This is equivalent to finding m < y < x2 so that f(y) ≥ f(x2). Suppose
instead that f(y) < f(x2) for all y ∈ (m,x2). Then, we may find a sequence yn > m
with yn → m such that f(yn) < f(x2). Recalling f(x2) ≤ f(m), this implies

f(yn)− f(m)

yn −m
< 0 for all n.

However, along this sequence we have

f(yn)− f(m)

yn −m
→ f ′(m) > 0,

and thus we obtain a contradiction for all sufficiently large n.
We conclude that S is empty, and hence for all a ≤ x1 < x2 ≤ b, we obtain

f(x1) < f(x2), as desired. �

Let us now give another proof of Rolle’s Lemma, this time relying on the last
two results proven. Again, this is why we insisted on giving proofs of the previous
results that did not rely on the mean value theorem! Indeed, using the Mean Value
Theorem on the way to proving Rolle’s Lemma would be completely circular, given
that we use Rolle’s Lemma to prove the Mean Value Theorem!

Another proof of Rolle’s Lemma. Suppose f(a) = f(b), with a < b. As before, we
assume f is not constant (otherwise the result follows immediately). Now pick
y ∈ (a, b). If f ′(y) = 0, we are done, so suppose instead that f ′(y) > 0 (say). Now,
if f ′ > 0 for all other points in [a, b], then by the previous lemma we have that
f is increasing on [a, b], which is incompatible with the fact that f(a) = f(b). In
particular, there must be some point z ∈ (a, b) so that f ′(z) ≤ 0. If f ′(z) = 0, then
we are done. If f ′(z) < 0, then by Darboux’s Theorem there must be some point c
between y and z such that f ′(c) = 0, and again we are done. �

To close this section, let us make the simple observation that with Darboux’s
Theorem in hand, it becomes clear that identifying integrals with antiderivatives
cannot give a satisfactory theory of integration. Indeed, any function with a jump
discontinuity cannot be the derivative of a function, while it can still be straight-
foward to interpret the integral of such a function as an area under a curve.

2.3. Exercises.

Exercise 2.1. (i) Define the function f by

f(x) =

{
1 x ≥ 0

−1 x < 0.
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Show that
lim
x→0

f(x) does not exist.

(ii) Show that the function f(x) = |x| is not differentiable at x = 0.

Exercise 2.2. Prove the following limit laws:

• If limx→a f(x) = ` and limx→a g(x) = m, then

lim
x→a

[f(x) + g(x)] = `+m.

• If limx→a f(x) = ` and c is a real number, then

lim
x→a

c · f(x) = c`.

• If limx→a f(x) = ` and limx→a g(x) = m, then

lim
x→a

f(x)g(x) = `m.

• If limx→a f(x) = ` and ` 6= 0, then

lim
x→a

1
f(x) = 1

` .

(Part of this problem requires that you show f 6= 0 in some punctured
interval around x = a.)

Exercise 2.3. Prove the following derivative laws:

• If f ′(a) = ` and g′(a) = m, then [f + g]′(a) = `+m.
• If f ′(a) = ` and c is a real number, then [c · f ]′(a) = c`.
• If f ′(a) = `, g′(a) = m, and g is nonzero in an interval containing a, then

( fg )′(a) = g(a)`−f(a)m
[g(a)]2 .

Exercise 2.4. Work out the details of (2.10). Try working out the cases n = 2, 3,
to see the pattern.

Exercise 2.5. Let f be defined on an open interval I, with a ∈ I. Show that f is
differentiable at x = a if and only if there exists ` ∈ R such that the function

g(x) =

{
f(x)−f(a)

x−a x ∈ I\{a}
` x = a

is continuous at x = a. In this case, show that ` = f ′(a).

Exercise 2.6. Prove an analogue of the ‘Cε Theorem’ (Theorem 2.1) for sequences
of real numbers.

Exercise 2.7. Prove the following limit laws for sequences:

• If an → a and bn → b as n→∞, then

can → ac, an + bn → a+ b, anbn → ab, and an
bn
→ a

b

as n → ∞. Here c is an arbitrary real number, and for the final limit we
require that b 6= 0.

Exercise 2.8. Show that limits of convergent sequences are unique. That is, if
xn → ` and xn → m as n → ∞, then ` = m. (Hint: Argue that it is enough to
show that for any ε > 0, |`−m| < 2ε. Then show that this holds.)

Exercise 2.9. Prove Lemma 2.8.
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Exercise 2.10. Show that any convergent sequence of real numbers is a Cauchy
sequence.

Exercise 2.11. Prove the continuity properties claimed in Examples 2.7 and 2.8.

Exercise 2.12. Show that if limx→a f
′(x) exists, then in fact f is differentiable at

x = a and limx→a f
′(x) = f ′(a).

Exercise 2.13. Use the Mean Value Theorem to show that if f is a function on
an open interval with f ′ = 0 at each point, then f is constant.



36 JASON MURPHY

3. Infinite series and integration

In the preceding sections, we have encountered the concept of infinite series (both
of numbers and of functions) at several points. In this section, we will put these
concepts on firm mathematical footing. We will then discuss how the study of
infinite series of functions provided the motivation for the theories of integration
introduced by Cauchy and Riemann, which will be the final topic of this section.

3.1. Infinite series. Let us first recall the definition of a convergent infinite series.

Definition 3.1 (Convergent series). Suppose ak is a sequence of real numbers. We
say that the infinite series

∑∞
k=0 ak converges to the value ` if

for any ε > 0, there exists N such that n ≥ N =⇒
∣∣∣∣ n∑
k=0

ak − `
∣∣∣∣ < ε.

That is,
∑
ak = ` if the sequence of partial sums

∑n
k=0 ak converges to `. If the

sequence of partial sums does not converge, then we say the series diverges.

The notion of convergence of series can be subtle. For example, we saw in
Section 1.6 that the harmonic series (given by an = 1

n ) has its individual terms tend
to zero, but the series itself diverges. On the other hand, if instead of considering

1 + 1
2 + 1

3 + 1
4 + · · ·

we take

1− 1
2 + 1

3 −
1
4 + · · · , (3.1)

then, even though the summands are the same size, this latter series converges to
ln 2 (we’ll show this later).

To get started, we can at least show that if there is any hope for convergence, the
individual summands must tend to zero. This is the ‘divergence test’ from calculus.

Proposition 3.1 (Divergence Test). If
∑
ak converges, then limk→∞ ak → 0.

Proof. Let ε > 0 and choose N > 0 so that

n ≥ N =⇒ |Sn − `| < ε,

where Sn =
∑n
k=0 ak and ` is the value of the infinite series. Then since

an = Sn+1 − Sn,

we obtain

n ≥ N =⇒ |an| ≤ |Sn+1 − `|+ |Sn − `| < 2ε.

�

To check our definition of convergence currently requires that we know the value
of the infinite series. This is rather inconvenient. Fortunately, there is a very useful
criterion due to Cauchy (around 1820) that allows us to check whether or not a
series converges.

Theorem 3.2 (Cauchy criterion for convergence). Let an be a sequence of real
numbers and Sn the corresponding partial sums. Then the series

∑
an converges if

and only if for any ε > 0, there exists N so that

n,m ≥ N =⇒ |Sn − Sm| < ε.
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Proof. The condition described in the theorem is just the statement that the partial
sums form a Cauchy sequence (in the sense of Definition 2.9). Thus the convergence
follows from the completeness of the real numbers, Proposition 2.9. On the other
hand, convergence of the partial sums implies that the partial sums are Cauchy via
Exercise 2.10. �

The Cauchy criterion implies the useful fact that if a series converges ‘absolutely’,
then the series converges.

Definition 3.2 (Absolute Convergence). Let an be a sequence of real numbers. If∑
|an| converges, then we say that

∑
an converges absolutely.

Corollary 3.3 (Absolute Convergence Theorem). If a series converges absolutely,
then it converges (in the usual sense).

Proof. Let Sn be the partial sums of the an and Tn be the partial sums of the |an|.
Then

|Sn − Sm| =
∣∣∣∣ n∑
k=m+1

ak

∣∣∣∣ ≤ n∑
k=m+1

|ak| = Tn − Tm.

Thus if {Tn} is a Cauchy sequence, so is {Sn}. �

The converse to this theorem, of course, is false, as shown by the series in (3.1).
Thus we need one more definition:

Definition 3.3 (Conditional Convergence). A series converges conditionally if it
converges but does not converge absolutely.

We can produce many conditionally convergent series using the following:

Corollary 3.4 (Alternating series test). Let an be a nonnegative, decreasing se-
quence. Then the alternating series

∞∑
n=1

(−1)nan

converges if and only if limn→∞ an = 0.

Proof. The hypotheses guarantee that for any m ≥ n,

Sn ≤ Sm ≤ Sn+1 or Sn+1 ≤ Sm ≤ Sn
(depending on the parity of n). Thus

|Sm − Sn| ≤ |Sn+1 − Sn| = |an|,
which yields convergence provided an → 0. The converse follows from the diver-
gence test. �

Example 3.1. The alternating series test guarantees convergence of the series in
(3.1) (although it does not identify the value).

Example 3.2. The series

1− 1
2 + 1

2 −
1
4 + 1

3 −
1
8 + · · ·+ 1

n −
1
2n + · · ·

has alternating summands that tend to zero. However, this series diverges. In-
deed, the positive terms yield the harmonic series, while the negative terms yield
a convergent geometric series. This does not contradict the alternating series test,
because the absolute values of the terms are not strictly decreasing.
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Another useful way to determine convergence of series is to make comparisons
with known series. For example:

Theorem 3.5 (Comparison Test). Suppose an and bn are positive sequences such
that an ≤ bn for all n. If

∑
bn converges, then so does

∑
an. If

∑
an diverges, so

does
∑
bn.

Proof. Let Sn be the partial sums for the an and Tn the partial sums for the bn.
Since the partial sums are increasing and an ≤ bn, we have

0 ≤ Sn − Sm =

n∑
k=m+1

ak ≤
n∑

k=m+1

bk ≤ Tn − Tm.

Thus if {Tn} is Cauchy, so is {Sn}, that is, convergence of
∑
bn guarantees con-

vergence of
∑
an. Stated in the contrapositive, we see that divergence of

∑
an

guarantees divergence of
∑
bn (see also Exercise 3.1). �

Note that we need the sequences to be positive in Theorem 3.5 Indeed, just
consider bn ≡ 0 and an = − 1

n .
Other ‘comparison’ type tests rely on comparison with geometric series. Based

on (1.1), we can see that series of the form
∑
rn (called geometric series) will

converge if r < 1 and diverge if r ≥ 1. The ratio and root tests essentially allow us
to make use of this fact.

Theorem 3.6 (Ratio test). Let an be a sequence of nonzero real numbers and let

r(n) =

∣∣∣∣an+1

an

∣∣∣∣.
(i) If there exists c < 1 so that r(n) ≤ c for all n, then the series

∑
an

converges absolutely.
(ii) If r(n) ≥ 1 for all n, then the series

∑
an diverges.

Remark 3.7. Since convergence or divergence does not depend on the first N
terms of the sequence for any fixed N , we see that the conditions in Theorem 3.6
only need to hold for all n sufficiently large.

Proof of Theorem 3.6. Suppose (i) holds. Then

|an| ≤ cn|a1|,
and hence (since c < 1) we obtain convergence via the comparison test. On the
other hand, if (ii) holds then |an| ≥ |a1| for all n, and hence we cannot have an → 0.
Thus the series diverges. �

This result yields the following ‘limit ratio test’, which you will prove in Exer-
cise 3.2.

Corollary 3.8 (Limit ratio test). Suppose an is a sequence of nonzero real numbers
and r(n) =

∣∣an+1/an
∣∣. Suppose limn→∞ r(n) = L.

• If L < 1 then the series converges absolutely.
• If L > 1 then the series diverges.
• If L = 1 then the test is inconclusive.

We next state the root test and limit root test, which you will prove in Exer-
cise 3.3.



A COURSE ON ADVANCED CALCULUS 39

Theorem 3.9 (Root test, limit root test). Let an be a sequence of real numbers.
Let

ρ(n) = |an|1/n.
Then:

(i) If there exists c < 1 and N ≥ 1 so that ρ(n) ≤ c for all n ≥ N , then the
series

∑
an converges absolutely.

(ii) If there exist arbitrarily large n so that ρ(n) ≥ 1, then the series diverges.

Consequently, if ρ(n)→ L, then we obtain:

• If L < 1, then the series converges absolutely.
• If L > 1, then the series diverges.
• If L = 1, then the test is inconclusive.

In the exercises, you will work out a few examples. As a rule of thumb, we may
say that if the ratio test works for a series, the root test will too (e.g. if r(n) has a
limit, then so does ρ(n) and the limits are equal), but that the root test is a more
robust test. For example, if we consider an = 2(−1)

n−n, then we have

r(n) = |an+1

an
| = 1

2 · 2
−2(−1)n =

{
1
8 n odd,

2 n even
,

so that the ratio test cannot be applied. On the other hand,

ρ(n) = |an|
1
n = 2−1+(−1)n/n → 1

2 as n→∞,

so that the root test yields absolute convergence. Of course, sometimes neither test
works. For example, if an = 1/n then we have both r(n) → 1 and ρ(n) → 1, so
that both are inconclusive.

Cauchy devised one more test for convergence:

Theorem 3.10 (Cauchy’s condensation test). Let an be a positive, decreasing se-
quence of real numbers. Then

∑
an converges if and only if the series

a1 + 2a2 + 4a4 + · · ·+ 2ka2k + · · ·

converges.

Proof. Consider a term like 4a4. By assumption, we can obtain

4a4 = 2 · (a4 + a4) ≤ 2(a4 + a3).

Similarly,

8a8 = 2 · (a8 + a8 + a8 + a8) ≤ 2 · (a8 + a7 + a6 + a5),

and in general

2na2n ≤ 2

2n∑
k=2n−1+1

ak.

From this, we obtain

2n∑
k=1

2ka2k ≤ 2

∞∑
k=1

ak for all n.

On the other hand, by the assumptions we have

a2 + a3 ≤ 2a2, a4 + a5 + a6 + a7 ≤ 4a4,
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and more generally
2n+1−1∑
k=2n

ak ≤ 2nan,

which yields
m∑
k=1

ak ≤
∞∑
n=1

2na2n for all m.

The result follows. �

As an application, we can show that the series

∞∑
n=2

1
n lnn

diverges. Indeed, the convergence or divergence is equivalent to that of the series
with general term

2n

2n ln(2n) = 1
n ln 2 ,

which we know diverges. Another important application is the following:

Corollary 3.11 (p-test). The series

∞∑
n=1

1
np

converges for p > 1 and diverges for p ≤ 1.

Proof. We use Cauchy’s condensation test, which shows that convergence of
∑
n−p

is equivalent to the convergence of the series with general term 2n(2n)−p = 2−n(p−1).
This is a geometric series that converges if and only if p > 1. �

We will wait to discuss the last common test, namely, the integral test, until we
have properly introduced integrals below.

Before turning to the important topic of series of functions, we discuss some
additional questions related to summing infinite series.

There are a few simple observations that we can make immediately. For example,
if
∑
an = A and

∑
bn = B, then

∑
(an + bn) = A+B. Similarly,

∑
(can) = cA.

More interesting is the question of what happens if we start regrouping or rear-
ranging the terms of an infinite series? We start with a silly example, namely, what
happens when we try to sum the series 1− 1 + 1− 1 + · · · . If we group this as

1− 1 + (1− 1) + (1− 1) + · · ·

then we seem to get the answer zero, while if we group this as

1 + (−1 + 1) + (−1 + 1) + · · ·

then we seem to get the answer one. Of course, the problem here is that the series
does not converge! (This follows immediately from the divergence test.) If we start
with a convergent series, however, then regrouping is fine:

Theorem 3.12 (Regrouping of convergent series). If
∑
an converges to A, then

we can regroup summands without changing the value of the series.
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We leave the proof as an exercise (see Exercise 3.6).
A more interesting situation arises if we consider what happens if we rearrange

the terms of a convergent series. It was Riemann who ultimately figured out what
happens, with the results appearing posthumously in the late 1860s. As it turns
out, the situation is very different for absolutely convergent versus conditionally
convergent series.

For absolutely convergent series, there is no problem with rearrangements:

Theorem 3.13 (Rearranging Absolutely Convergent Series). Suppose
∑
an con-

verges absolutely, with value A. If {bn} is any rearrangement of the sequence {an},
then

∑
bn converges absolutely to A.

Proof. We first establish absolute convergence. In fact, this is straightforward, since

any partial sum
∑N
n=1 |bn| is bounded by some partial sum

∑M
n=1 |an|, which is in

turn uniformly bounded (by absolute convergence).
Next, let ε > 0 and let N > 0 to be determined below. We then consider a partial

sum Tn =
∑n
k=1 bk for some n ≥ N . Now, if we choose m large enough, then the

summands in the partial sum Sm =
∑m
k=1 ak include all of the terms {bk}nk=1. In

particular, any extra summands must correspond to some bk for k ≥ n ≥ N . Thus
we may write

Sm − Tn =
∑

k∈Xn,m

bk

for some set Xn,m ⊂ {N,N + 1, · · · }. Using convergence of Sm to A and abso-
lute convergence of

∑
bk, we can therefore choose N sufficiently large and then m

sufficiently large to obtain

|Tn −A| ≤ |Tn − Sm|+ |Sm −A| ≤
∑

k∈Xn,m

|bk|+ ε ≤ 2ε

for all n ≥ N . We conclude that
∑
bk = A. �

For conditionally convergent series, we instead have the following striking result,
which tells us that a conditionally convergent series can be rearranged to take on
any value we like!

Theorem 3.14 (Rearranging Conditionally Convergent Series). Suppose
∑
an

converges conditionally. Then for any L ∈ R, there exists a rearrangement {bn} of
the sequence {an} such that

∑
bn = L.

Proof. Let a+n be the positive terms in {an} and a−n the negative terms. We first
observe that the series

∑
a±n must both diverge. Indeed, suppose

∑
a+n converges.

Then since
∑
an converges, we deduce that

∑
a−n converges as well. However, this

implies ∑
a+n −

∑
a−n =

∑
n

|an|

converges, contradicting the hypotheses. Similarly,
∑
a−n must diverge. We also

note that we may assume without loss of generality that both of {a±n } are in de-
creasing order (in magnitude). By convergence of

∑
an, we have that a±n → 0 as

n→∞.
Now fix L ∈ R. Let’s suppose (without loss of generality) that L > 0. Since∑
a+n diverges and {a+n } is in decreasing order, we may choose the smallest m1 so
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that ∑
n≤m1

a+n ≥ L.

We take the first m1 terms of our rearrangement to be {a+n }n≤m1
. We then take

the smallest m2 so that ∑
n≤m1

a+n +
∑
n≤m2

a−n < L,

and take {a−n }n≤m2
to be the next m2 terms in our rearrangement. We now repeat

this, choosing the minimal m3 > m1 so that∑
n≤m1

a+n +
∑
n≤m2

a−n +
∑

m1<n≤m3

a+n ≥ L,

taking {a+n }m1<n≤m3
as the next terms in our rearrangement, and then choosing

minimal m4 > m2 so that∑
n≤m1

a+n +
∑
n≤m2

a−n +
∑

m1<n≤m3

a+n +
∑

m2<n≤m4

a−n < L.

The fact that
∑
a+n and

∑
a−n each diverge means that we can continue this process

indefinitely, thus building our rearrangement {bn}.
It remains to show that

∑
bn = L. To this end, we let ε > 0 and (recalling

an → 0 as n→∞) firstly choose N1 large enough that |bn| < ε for all n ≥ N1. We
then take N2 ≥ N1 to be the next index such that∑

n≤N2

bn ≥ L but
∑

n≤N2+1

bn < L. (3.2)

It follows that for all N ≥ N2, we have∣∣∣∣∑
n≤N

bn − L
∣∣∣∣ < ε.

Indeed, from (3.2) we see that L differs both from
∑
n≤N2

bn and
∑
n≤N2+1 bn by

less than ε. Each time we add a new summand, we either move closer to L or jump
across the value of L by an amount less than ε. �

3.2. Series of functions. Some of the most important applications of applications
involve taking infinite summations not just of numbers, but of functions. We have
seen two such classes of examples, namely, power series and trigonometric/Fourier
series.

We must first make precise the notion of convergence of an infinite series of
functions.

Definition 3.4 (Pointwise convergence). Let fn(x) be a sequence of real-valued
functions. Then we say the series

∑
fn(x) converges pointwise to a function F (x)

if for each x, we have
∑
fn(x) = F (x) in the sense of infinite series of real numbers.

That is:
For all x and for all ε > 0, there exists N so that

n ≥ N =⇒
∣∣∣∣F (x)−

n∑
k=1

fn(x)

∣∣∣∣ < ε.
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Remark 3.15. In general, we say that a sequence of functions Fn converges point-
wise to a function F if for all x we have Fn(x) → F (x) as n → ∞. Then the
definition above just says that the partial sums converge pointwise.

Given a series of functions, we would like to describe the values of x for which
the series converges. We first consider the important special case of power series,
in which case fn(x) = anx

n for some real coefficients an. One of our main motivat-
ing problems is that of finding power series representations for various functions.
Indeed, one of our first examples (in Proposition 1.1) was the following:

Example 3.3. Let a ∈ R and x ∈ R with |x| < 1. Then Newton tells us that

(1 + x)a = 1 + ax+ a(a−1)
2! x2 + a(a−1)(a−2)

3! x3 + · · · (3.3)

We expect this to hold because the coefficients appearing on the right-hand side
are precisely given by 1

n!
dn

dxn (1 +x)a
∣∣
x=0

. However, the first question we should ask
is whether the series on the right-hand side even converges. For this, we can use
the ratio test. We find that the radio of consecutive terms is given by

r(n) =
∣∣a−(n−1)

n

∣∣ |x| = [1− 1+a
n

]
|x|.

In particular, limn→∞ r(n) = |x|, and so we obtain convergence for |x| < 1 and
divergence for |x| > 1. The case |x| = 1 is unclear at this point.

Note that even if the series converges, this does not guarantee us the equality
claimed in (3.3). That is actually a more difficult question, which we may return
to later.

Example 3.4 (Exponential function). The infinite series

∞∑
n=0

1
n!x

n

is the power series for the exponential function ex (which we have not formally
introduced yet). In this case,

r(n) = lim
n→∞

|x|
n = 0 for all x ∈ R,

so that the series converges for all x ∈ R.

Both of the previous examples were centered around x = 0, although we can
readily speak of power series centered around other points (so that the terms xn

are replaced by (x− x0)n for some x0 ∈ R).
Power series (when they converge) have some very nice properties. The first

is the fact that when power series converge, they will do so in an interval that is
symmetric about the center point (although the situation at the endpoints typically
needs to be investigated separately). The definition we need is the following:

Definition 3.5 (Radius of convergence). Consider a power series of the form∑
an(x − x0)n. We call B the radius of convergence for the series if the series

converges for |x− x0| < B and diverges for |x− x0| > B.

To determine the radius of convergence, we can often rely on the root test. To
make this precise, we introduce one additional notion (basically due to Cauchy)
known as upper limits (or ‘lim sup’s).
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Definition 3.6 (Upper limit). Let {x1, x2, . . . } be a bounded sequence, and for
each k let Mk denote the supremum of {xk, xk+1, . . . }. Then the upper limit (or
lim sup) of the sequence {xk} is defined to be the infimum of the set {Mk}. We
denote this quantity by

lim sup
k→∞

xk.

There is a related notion of lower limits (or ‘lim inf’s). For example, for the
sequence

{xk} = {.9, 2.1, .99, 2.01, .999, 2.001, . . . }
to compute the upper limit we first consider the sequence of suprema

{Mk} = {2.1, 2.1, 2.01, 2.01, 2.001, 2.001, . . . },

the infimum of which is 2. Thus lim supxk = 2. Similarly, lim inf xk = 1. If a
sequence converges, then the lim sup and lim inf both equal the limit; the converse
of this is true as well.

Here are the essential facts we will need about the lim sup in a moment: If M >
lim supxk, then there exists N such that xn < M for all n ≥ N . If m < lim supxk,
then there are infinitely many n such that xn ≥ m.

Now consider some power series, say
∑
anx

n, and take the sequence

S =
{
|an|1/n

}
.

If S is unbounded above (in which case we say the upper limit is infinite), then
so is {|an|1/n|x|} so by the root test the series diverges for all x 6= 0. We say the
radius of convergence is zero. If S is bounded, then it has a finite upper limit. We
will prove the following:

Theorem 3.16 (Radius of convergence). Consider the power series
∑
anx

n and
define

R =
1

lim sup |an|1/n
.

Then the series converges absolutely for |x| < R and diverges for |x| > R.
If lim sup |an|1/n = 0, the series converges for all x ∈ R.
If lim sup |an|1/n =∞, then the series converges only at x = 0.

Proof. We write

` = lim sup
n→∞

|an|1/n.

(i) If |x| < 1
` , then we can find α < 1 and ε > 0 so that

|x| < α
`+ε .

Consequently,

|anxn|1/n < |an|1/n|x| < |an|1/n
`+ε α.

Now, by the first fact about lim sups above, we have that

|an|1/n < `+ ε for all n sufficiently large.

This implies

|anxn|1/n < α < 1 for all n sufficiently large,

which yields convergence by the root test.
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(ii) If |x| > 1
` , then we can find ε > 0 so that

|x| > 1
`−ε .

Then

|anxn|1/n = |an|1/n|x| > |an|1/n
`−ε .

By the second fact about lim sups above, there are infinitely many n such that
|an|1/n ≥ λ − ε. Thus there are infinitely many n so that |anxn|1/n ≥ 1. By the
root test, this yields divergence.

The remaining statements follow similarly, so we will end the proof here. (You
are encouraged to check the details!) �

The situation is basically the same for power series centered at some other x0 ∈ R.
We will not bother writing down everything in detail.

We have not so far considered the interesting question of what happens at the
endpoints of the interval of convergence. There are many possibilities, for exam-
ple: convergence or divergence at both endpoints, or convergence at just one of
the end points. When convergence holds, it could be absolute or conditional. In
practice, we basically have to proceed on a case by case basis, but there is at least
one special class of series that can be understood completely. These are so-called
hypergeometric series, for which the ratio of consecutive terms satisfies

an+1

an
= P (n)

Q(n) for some polynomials P,Q.

This special class, which includes many familiar examples, was studied in depth by
Gauss, who developed a comprehensive test for convergence around 1815. However,
this particular result will not be important for our applications, so we will not go
into it in any detail.

We briefly turn to another important class of infinite series of functions, namely,
Fourier or trigonometric series. As described in Section 1.5, these series were intro-
duced in order to solve certain physically-motivated problems. The basic premise
is to represent a function f(x) as a linear combination of sines and cosines of higher
and higher frequencies. Let us return to the specific example described in (1.5), i.e.
the claim that

π
4 = cos(πx2 )− 1

3 cos( 3πx
2 ) + 1

5 cos( 5πx
2 ) + · · · for x ∈ (−1, 1) (3.4)

None of the tests we have developed so far can say much about convergence of
this series. For x = 0, we get the alternating harmonic series (which we have seen
before), but in general we get a series with absolute values decaying like 1/n but
which does not alternate. Techniques for determining the convergence of series like
(3.4) were developed by the mathematicians Abel and Dirichlet (in the 1820s). For
example, we have:

Theorem 3.17 (Abel’s Lemma). Consider an infinite series of the form∑
akbk,

where the bk are positive and decreasing. Suppose there exists M > 0 so that∣∣∣∣ n∑
k=1

ak

∣∣∣∣ ≤M for all n.
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Then ∣∣∣∣ n∑
k=1

akbk

∣∣∣∣ ≤Mb1 for all n.

Corollary 3.18 (Dirichlet’s Test). Assume the same hypotheses as in Abel’s Lemma.
If in addition limn→∞ bn = 0, then the series

∑
akbk converges.

We will not prove these results here. Instead, let us just briefly show how Dirich-
let’s test may be applied to (3.4). We fix x ∈ (−1, 1) and view the terms in (3.4)
as akbk where bk = 1

2k−1 and ak = (−1)k+1 cos(kπx2 ). Now, to make sense of the

partial sums
∑
ak, one can derive the following trigonometric identity:
n∑
k=1

(−1)k−1 cos

[
(2k − 1)πx

2

]
=

1− (−1)n cos(πnx)

2 cos(πx/2)
.

This can be deduced by applying Euler’s formula eiy = cos y+i sin y and the formula
for summing a geometric series. Using this identity, we obtain the bound∣∣∣∣ n∑

k=1

(−1)k−1 cos

[
(2k − 1)πx

2

]∣∣∣∣ ≤ | sec(πx/2)| for any n.

In particular, for any x ∈ (−1, 1), we obtain the uniform bounds required by Abel’s
Lemma and Dirichlet’s Test, and so we conclude that this strange series in (3.4)
does in fact converge for x ∈ (−1, 1). Technically, we have not identified the
values the series converges to, but let us take for granted that the value is π

4 for
each x ∈ (−1, 1) (recall the graph plotted in Section 1.5). Now, at the endpoints,
x = ±1, our bound seems to blow up. However, if we plug in x = ±1, the summands
in the series (3.4) are identically zero. So something strange is happening here. In
particular, we are taking an infinite series of continuous functions and obtaining
the discontinuous limit

f(x) =

{
π
4 x ∈ (−1, 1)

0 x = ±1.
(3.5)

It seems that is is finally time to take a closer look at some questions mentioned
briefly above, namely, whether properties of functions (like continuity and differ-
entiability) are preserved under taking infinite sums. Often these are described as
questions of the interchange of limits. Let us first formally state the question of
continuity.

Question 3.1. Suppose the infinite series
∑
n fn(x) converges to the function F (x).

If each fn is continuous, is the limit F necessarily continuous?

Evidently, the answer to this question (as currently stated) is ‘no’, as the Fourier
series example (3.4) showed us. But let us at least see what this question has to do
with interchanging limits: Recall that continuity of F at a point x0 is the statement
that

lim
x→x0

F (x) = F (x0).

Writing F (x) = limn→∞ Sn(x), with Sn(x) =
∑n
k=1 fk(x), and recalling that each

fk is continuous (and hence so is each Sn), we see that

lim
x→x0

F (x) = lim
x→x0

lim
n→∞

Sn(x),

F (x0) = lim
n→∞

lim
x→x0

Sn(x),
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so that this question exactly boils down to whether or not we can interchange the
two limits.

Cauchy’s 1821 work on analysis actually included the statement (and proof) that
the infinite sum of continuous functions is a continuous function. The Fourier series
we just studied shows that this is wrong (although technically we did not prove that
the limit function is given by (3.5)). We can provide a simpler counterexample as
well:

Example 3.5. Consider the infinite series

S(x) =

∞∑
k=1

x2

(1 + kx2)(1 + (k − 1)x2)
,

whose summands are continuous and whose coefficients decay like 1
k2 (yielding

convergence). The partial sums can be computed explicitly:

Sn(x) = nx2

1+nx2 ,

which shows that the limit S(x) is the discontinuous function

S(x) =

{
1 x 6= 0,

0 x = 0.

The fact that Cauchy’s theorem was not correct as stated was observed by Abel
in 1826. It was around 25 years later that Cauchy finally corrected his error (after
some clarifying work by other mathematicians), with more clarification coming from
the work of Weierstrass in the 1860s. In particular, to conclude that the infinite
sum of continuous functions is again continuous, one needs a slightly stronger notion
than pointwise convergence (in the sense of Definition 3.4). The notion is that of
uniform convergence.

Definition 3.7 (Uniform convergence). Let fn(x) be a sequence of real-valued
functions. Then we say the series

∑
fn(x) converges uniformly to a function F (x)

if for all ε > 0, there exists N so that

n ≥ N =⇒
∣∣∣∣F (x)−

n∑
k=1

fk(x)

∣∣∣∣ < ε for all x.

Remark 3.19. In general, we say that a sequence of functions Fn converges uni-
formly to F if for all ε > 0, there exists N so that

n ≥ N =⇒ |F (x)− Fn(x)| < ε for all x.

Then the definition above just says that the partial sums converge uniformly.

The difference between this definition and Definition 3.4 is that for a given ε, we
must be able to find a single choice of N that works simultaneously for all choices
of x. In Definition 3.4, the choice of N was implicitly allowed to depend on both
ε > 0 and the choice of the point x.

Example 3.6. Let us return to the series in (3.5). In this case, the partial sums

Sn(x) = nx2

1+nx2
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do not converge uniformly to the limit

S(x) =

{
1 x 6= 0,

0 x = 0.

To see this consider

|S(x)− Sn(x)| =

{
1

1+nx2 x 6= 0,

0 x = 0.

In particular, for any fixed n, we have

lim
x→0
|S(x)− Sn(x)| = lim

x→0

1
1+nx2 = 1.

Thus for any ε ∈ (0, 1) and any N ≥ 0, we can x sufficiently close to zero that

|S(x)− SN (x)| > ε.

That is, given ε ∈ (0, 1), there is no single choice of N that can work simultaneously
for all choices of x.

On the other hand, uniform convergence is enough to establish continuity of the
limit.

Theorem 3.20 (Continuity for Infinite Series). Suppose fn is a sequence of con-
tinuous real-valued functions on an interval (a, b) and the infinite series

∑
n fn

converges uniformly to the function F on (a, b). Then F is continuous on (a, b).

Proof. Let x ∈ (a, b) and ε > 0. By uniform convergence, we may find N so that∣∣∣∣F (z)−
N∑
k=1

fk(z)

∣∣∣∣ < ε for all z ∈ (a, b).

By continuity of the finite sum
∑N
k=1 fk, we may find δ > 0 so that

|y − x| < δ =⇒
∣∣∣∣ N∑
k=1

[fk(x)− fk(y)]

∣∣∣∣ < ε.

Thus for |x− y| < δ, we have by the triangle inequality that

|F (x)− F (y)|

≤
∣∣∣∣F (x)−

N∑
k=1

fk(x)

∣∣∣∣+

∣∣∣∣ N∑
k=1

[fk(x)− fk(y)]

∣∣∣∣+

∣∣∣∣ N∑
k=1

fk(y)− F (y)

∣∣∣∣
≤ 3ε.

(3.6)

�

If we return to the series in Example 3.5, this proof would break down precisely
because we cannot find a single choice fo N that works simultaneously for all values
of y in (3.6).

Uniform convergence is a natural condition to check that suffices to establish
continuity of the limit. Although, as it turns out, it is not a necessary condition.
In particular, there are examples of series of continuous functions that converge
non-uniformly to a continuous limit. See Exercise 3.11.

We turn to the question of differentiating infinite series. Let us state the question
formally:



A COURSE ON ADVANCED CALCULUS 49

Question 3.2. Suppose the infinite series
∑
n fn(x) converges to the function F (x).

If each fn is differentiable, is the limit F necessarily differentiable, with F ′(x) =∑
n f
′
n(x)?

This is once again a question of the interchange of limits. Indeed, we are asking
whether

d
dx

∑
n

fn =
∑
n

d
dxfn,

where both of d
dx and

∑
n are defined via limits. Given the subtleties involved

with understanding continuity, it should not be surprising that the answer to Ques-
tion 3.2 (as stated) is ‘no’. Let’s see what can go wrong with a few examples.

Example 3.7. Let’s return to our favorite Fourier series (3.4). Taking for granted
that

π
4 = cos(πx2 )− 1

3 cos( 3πx
2 ) + 1

5 cos( 5πx
2 ) + · · · for x ∈ (−1, 1),

we differentiate term by term and arrive at the claim

0 = −2[sin(πx2 )− sin( 3πx
2 ) + sin( 5πx

2 )− · · · ] for x ∈ (−1, 1).

Well, this is embarrassing. Unless x is an even integer, these coefficients do not
tend to zero. Thus, by the divergence test, the series on the right-hand side does
not even converge! Whoops...

Example 3.8. Let

fk(x) =
x3

(1 + kx2)(1 + (k − 1)x2)
=

kx3

1 + kx2
− (k − 1)x3

1 + (k − 1)x2
,

which satisfy
f ′k(0) = 0 for all k.

The series
∑
fk converges for each x (the coefficients decay like 1

k2 ). In fact, the
partial sums are given by

Sn(x) = nx3

1+nx2 , which converges to S(x) = x.

In particular, S′(x) ≡ 1, and so we have

d
dx

∞∑
k=1

fk = 1, while

∞∑
k=1

d
dxfk = 0 at x = 0.

As with continuity, requiring uniform convergence is enough to obtain a positive
result. This time, we need uniform convergence of the series of derivatives.

Theorem 3.21 (Term-by-term differentiation). Let fk be a sequence of functions so
that

∑
fk converges at x = a and the series of derivatives

∑
f ′k converges uniformly

on an open interval I containing a. Then:

• The series F (x) :=
∑∞
k=1 fk(x) converges uniformly on I,

• The function F is differentiable on I, and

• F ′(x) =
∑∞
k=1 f

′
k(x) for x ∈ I.

Proof. We define

gk(x) =

{
fk(x)−fk(a)

x−a x ∈ I\{a},
f ′k(a) x = a,

which are continuous on I by Exercise 2.5.
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We let Fn(x) =
∑∞
k=1 fk(x) denote the partial sums of the fk. Then each Fn is

differentiable on I, with F ′n(x) =
∑∞
k=1 f

′
k(x).

We will first show that the series
∑
k gk is uniformly Cauchy on I. To see this,

note that by applying the definition of gk and the Mean Value Theorem (to the
function Fn − Fm), a difference of partial sums at some x 6= a is of the form

n∑
k=m+1

gk(x) = Fn(x)−Fn(a)
x−a − Fm(x)−Fm(a)

x−a

= Fn(x)−Fm(x)−[Fn(a)−Fm(a)]
x−a

= F ′n(t)− F ′m(t)

=

n∑
k=m+1

f ′k(t)

for some t between x and a. At x = a we simply have the sum
∑n
k=m+1 f

′
k(a). In

particular, using uniform convergence of
∑
f ′k, we deduce that for any ε > 0 there

exists N so that

m,n ≥ N =⇒
∣∣∣∣ n∑
k=m+1

gk(x)

∣∣∣∣ < ε for any x ∈ I.

This means that the series
∑
k gk is ‘uniformly Cauchy’. By Exercise 3.10, this

implies that
∑
k gk converges uniformly.

The uniform convergence of
∑
gk now implies uniform convergence of

∑
fk on

the entire interval I, since

fk(x) = gk(x)[x− a] + fk(a).

We write the limit of the series
∑
fk(x) as F (x). In particular, we have that

∞∑
k=1

gk(x) =
F (x)− F (a)

x− a
for x ∈ I\{a}.

We will now show that F ′(a) exists and equals
∑
f ′k(a). (In fact, this will

actually be enough to conclude that F ′(x) =
∑
f ′k(x) for all x ∈ I, since we have

now established convergence of
∑
fk at each x ∈ I.) For any x ∈ I\{a} and any

n, we write∣∣∣∣F (x)− F (a)

x− a
−
∞∑
k=1

f ′k(a)

∣∣∣∣
≤
∣∣∣∣F (x)− F (a)

x− a
− Fn(x)− Fn(a)

x− a

∣∣∣∣
+

∣∣∣∣Fn(x)− Fn(a)

x− a
− F ′n(a)

∣∣∣∣+

∣∣∣∣F ′n(a)−
∞∑
k=1

f ′k(a)

∣∣∣∣
≤
∣∣∣∣ ∞∑
k=n+1

gk(x)

∣∣∣∣+

∣∣∣∣Fn(x)− Fn(a)

x− a
− F ′n(a)

∣∣∣∣+

∣∣∣∣ ∞∑
k=n+1

f ′k(a)

∣∣∣∣.
Now let ε > 0. By the (uniform) convergence of the series

∑
gk and

∑
f ′k, we

may choose n sufficiently large that the first and third terms above are less than ε,
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uniformly in the choice of x. Given this fixed value of n, we may then choose δ > 0
so that

0 < |x− a| < δ =⇒
∣∣∣∣Fn(x)− Fn(a)

x− a
− F ′n(a)

∣∣∣∣ < ε.

Putting this all together, we find that

0 < |x− a| < δ =⇒
∣∣∣∣F (x)− F (a)

x− a
−
∞∑
k=1

f ′k(a)

∣∣∣∣ < 3ε,

yielding F ′(a) =
∑
k f
′
k(a), as desired. �

If we return to Example 3.8, then we can see that the issue is that the partial
sums of the derivatives, namely,

S′n(x) = 3nx2+n2x4

n2x4+2nx2+1

do not converge uniformly (see Exercise 3.12).
We have seen that the notion of uniform convergence is important if we wish

to understand properties of convergent series. In general, this fact was not fully
appreciated until around the 1860s. We will discuss a test for uniform convergence
due to Weierstrass in 1880 known as the ‘Weierstrass M -test’, which we will then
apply in the setting of power series.

Theorem 3.22 (Weierstrass M -test). Suppose fk(x) is a sequence of functions on
an interval I and Mk is a sequence of real numbers such that

|fk(x)| ≤Mk for all x ∈ I and k ≥ 1. (3.7)

If
∑
kMk converges, then

∑
fk converges uniformly on I.

Proof. We use the Cauchy criterion for uniform convergence (see Exercise 3.10).
We let ε > 0 and choose N sufficiently large that

n,m ≥ N =⇒
n∑

k=m+1

Mk < ε.

Then for n,m ≥ N , we obtain∣∣∣∣ n∑
k=m+1

fk(x)

∣∣∣∣ ≤ n∑
k=m+1

|fk(x)| ≤
n∑

k=m+1

Mk < ε

for all x ∈ I. This implies that the series is ‘uniformly Cauchy’ on I, and hence
uniformly convergent on I. �

It is a straightforward extension to see that (3.7) only needs to hold for all k
sufficiently large. Let’s see what this result says about power series.

Corollary 3.23 (Uniform convergence for power series). Suppose
∑∞
n=0 anx

n is a
power series with a radius of convergence R.

(i) If 0 < α < R, then the series converges uniformly on [−α, α].
(ii) If R is finite and the series converges at x = R, then it converges uniformly

on [0, R].

We will only prove part (i) of this result. Part (ii) relies on Abel’s Lemma
(Theorem 3.17), which we did not actually prove.



52 JASON MURPHY

Proof of (i). We will focus on the case R < ∞, leaving the details for R = ∞ to
you. By definition of the radius of convergence, we have

lim sup
k→∞

|ak|1/k = 1
R .

We fix 0 < α < R. We then take |x| < α and set ε := (α − |x|)/|x|. We may find
N so that

k ≥ N =⇒ |ak|1/k < 1+ε
R = α

R|x| .

In particular,

|akxk| ≤ ( αR )k.

Since α
R < 1, we may apply the Weierstrass M -test to deduce uniform convergence

on (−α, α). Combining this with convergence at the endpoints, we obtain uniform
convergence on [−α, α] (see Exercise 3.13). �

The last question we will pose in this section about infinite series and interchange
of limit operations is the following:

Question 3.3. Suppose the infinite series
∑
n fn(x) converges on an interval [a, b].

Does it follow that ∫ b

a

∑
n

fn(x) dx =
∑
n

∫ b

a

fn(x) dx ?

Considering we have not even given a proper definition of integration yet, we will
not try to answer this question right now. However, let us see why it is an important
question. It has to do with the formula derived by Fourier for trigonometric series.
Suppose f is an even function on (−1, 1) that we would like to expand in a cosine
series of the form

f(x) =

∞∑
k=1

ak cos
[ (2k−1)πx

2

]
. (3.8)

If we accept that such a decomposition exists, then we can determine what the
coefficients ak must be. It is based on the fact that∫ 1

−1
cos
[ (2k−1)πx

2

]
cos
[ (2m−1)πx

2

]
dx =

{
1 k = m,

0 k 6= m,

which can be derived using Euler’s formula, as long as you are comfortable taking
integrals of complex-valued functions. Then, if (3.8) holds and we are allowed to
interchange intergration and summation, we must have∫ 1

−1
f(x) cos

[ (2m−1)πx
2

]
dx

=

∫ 1

−1

∞∑
k=1

ak cos
[ (2k−1)πx

2

]
cos
[ (2m−1)πx

2

]
dx

=

∞∑
k=1

ak ·

{
1 k = m

0 k 6= m
= am,

providing a formula for computing the coefficients.
At this point we see that a better understanding of integration (including ques-

tions related to interchange of limits) is going to be necessary in order to resolve



A COURSE ON ADVANCED CALCULUS 53

issues related to the existence/convergence of Fourier series. This will be the topic
of our next section.

3.3. Integration. Up until the 1820s, integration was essentially identified with
antidifferentiation. This is already unsatisfactory if we wish to integrate functions
that are not the derivative of some other function (e.g. functions with jump dis-
continuities). Many questions that arise in the study of convergence of Fourier
series also demand a better theory of integration. In this section, we introduce
the theories of integration developed by Cauchy in the 1820s and Riemann in the
1850s. (In fact, an even more robust theory of integration was later introduced
by Lebesgue in 1904; however, we will focus our attention here primarily on the
theory of Riemann integration, which is the one we encounter in calculus courses.)
In all of these theories of integration, the idea is to make precise the notion that

the integral
∫ b
a
f dx should represent the ‘area under the curve f for x between a

and b’.
We first present Cauchy’s definition of the integral.

Definition 3.8 (Cauchy integral). A real-valued function f is Cauchy integrable
on an interval [a, b] with value V , denoted∫ b

a

f(x) dx = V,

if the following holds: for any ε > 0, there exists δ > 0 so that for any partition

a = x0 < x1 < · · · < xn = b

of [a, b] satisfying

|xj − xj−1| < δ for all j,

we have ∣∣∣∣ n∑
j=1

f(xj−1) · (xj − xj−1)− V
∣∣∣∣ < ε.

The situation is depicted in the following figure.

The Riemann definition is very similar, but is a bit more flexible. In particular,
instead of evaluating f at the left endpoint of the interval [xj−1, xj ], it can be
evaluated at any point in this interval.
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Definition 3.9 (Riemann integral). A real-valued function f is (Riemann) inte-
grable on an interval [a, b] with value V , denoted∫ b

a

f(x) dx = V,

if the following holds: for any ε > 0, there exists δ > 0 so that for any partition

a = x0 < x1 < · · · < xn = b

of [a, b] satisfying
|xj − xj−1| < δ for all j, (3.9)

and any x∗j ∈ [xj−1, xj ], we have∣∣∣∣ n∑
j=1

f(x∗j ) · (xj − xj−1)− V
∣∣∣∣ < ε. (3.10)

It is straightforward to see that any Riemann integrable function is Cauchy
integrable (you should make sure that this is clear to you). In what follows, we will
focus on Riemann’s notion of integrability, since this is the theory of integration
that is most commonly used in the calculus setting.

You may recall from your calculus course that the sums appearing in (3.10) are
known as Riemann sums. We will use the same terminology here. We will write
S[f ] for a general Riemann sum adapted to a partition of [a, b]. If a partition obeys
(3.9), we say it has width < δ.

The Riemann integral satisfies many reasonable properties, which we list here
(and whose proofs we relegate to the exercises).

Theorem 3.24 (Properties of the Riemann integral). Suppose f, g are Riemann
integrable on [a, b] and c ∈ R. Then f + g is integrable and c · f is integrable, with∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

∫ b

a

cf(x) dx = c

∫ b

a

f(x).

Moreover, if f(x) ≥ 0 for all x ∈ [a, b], then∫ b

a

f(x) dx ≥ 0.

More generally, if m ≤ f(x) ≤M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a).

Our first question is how to determine whether a given function is Riemann
integrable. The definition seems to require that we already know the value of
the integral, so this is not particularly helpful in practice. Fortunately, there is a
relatively straightforward ‘Cauchy criterion’ for establishing Riemann integrability.
In particular, we have the following:

Lemma 3.25 (Cauchy criterion). A function f is Riemann integrable on an inter-
val [a, b] if and only if for any ε > 0, there exists δ > 0 so that

|S1[f ]− S2[f ]| < ε

whenever S1[f ] and S2[f ] are Riemann sums for f corresponding to partitions of
[a, b] of width < δ.
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Proof. =⇒ : If f is integrable and ε > 0 is given, then we may find a width δ > 0
so that ∣∣∣∣S[f ]−

∫ b

a

f(x) dx

∣∣∣∣ < ε/2

whenever S[f ] is a Riemann sum corresponding to a partition of width < δ. Then
if S1[f ], S2[f ] are any two such partitions, we immediately obtain∣∣∣∣S2[f ]− S1[f ]

∣∣∣∣ < ε

by the triangle inequality.
⇐=: Suppose the Cauchy criterion holds. For any n = 1, 2, 3, . . . , we let Sn[f ]

by a sequence of Riemann sums of f corresponding to partitions of width < 1/n.
It follows that {Sn[f ]} is a Cauchy sequence of real numbers, and hence has a limit

V . We will show that
∫ b
a
f(x) dx exists and equals V .

To this end, let ε > 0 and choose δ > 0 as in the Cauchy criterion. Now let S[f ]
be any Riemann sum corresponding to a partition of width < δ, and let n be large
enough that |Sn[f ]− V | < ε and 1/n < δ. Then

|S[f ]− V | ≤ |S[f ]− Sn[f ]|+ |Sn[f ]− V | < 2ε,

showing that f is integrable with
∫ b
a
f(x) dx = V . �

The Cauchy criterion, while convenient for use in proofs, still does not give any
real insight into what types of functions are integrable. Our next few results will
give some more insight in this direction.

Our first main result shows that a function f is integrable on [a, b] if and only if it
can be bounded from above and below by two step functions. Here a step function
is a function g such that there exists a partition x0, . . . , xN of [a, b] with g equal
to some constant ci on each (xi−1, xi). Note that in this definition, we don’t care
what happens at the endpoints xi. It is not difficult to show that step functions
are Riemann integrable. With g as just described, we have∫ b

a

g(x) dx =

N∑
i=1

ci(xi − xi−1).

See Exercise 3.16.

Proposition 3.26. A function f on [a, b] is integrable if and only if for any ε > 0,
there exist step functions f1 and f2 on [a, b] so that

f1(x) ≤ f(x) ≤ f2(x) for x ∈ [a, b], with

∫ b

a

[f2(x)− f1(x)] dx < ε

Proof. ⇐=: Let ε > 0, and select step functions f1, f2 as in the statement of the
proposition. By integrability of f1, f2, we may find δ > 0 so that any Riemann
sum corresponding to a partition of width < δ for f1, f2 differ from the value of the
integral by at most ε. Now consider a Riemann sum

S[f ] =

N∑
i=1

f(x∗i )(xi − xi−1), x∗i ∈ [xi−1, xi],
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corresponding to a partition of width < δ. By assumption,

N∑
i=1

f1(x∗i )(xi − xi−1) ≤ S[f ] ≤
N∑
k=1

f2(x∗i )(xi − xi−1).

This implies

S[f ] ∈
(∫ b

a

f1(x) dx− ε,
∫ b

a

f2(x) dx+ ε

)
.

By the assumptions on f1, f2, this is an interval of length 3ε.
In particular, we have just shown that any two Riemann sums for f correspond-

ing to partitions of width < δ belong to this interval, meaning their difference is
bounded by 3ε. By the Cauchy criterion, we conclude that f is integrable.

=⇒ : Now suppose that f is integrable and let ε > 0. Using the Cauchy
criterion, we find a partition x0 < x1 < · · · < xN so that∣∣∣∣ N∑

i=1

(f(x∗i )− f(x∗∗i ))(xi − xi−1)

∣∣∣∣ < ε

for any choice of x∗i , x
∗∗
i ∈ [xi−1, xi]. In particular, this implies (by suitable choice

of x∗i , x
∗∗
i ) that

|(f(x∗j )− f(xj))(xj − xj−1)| < ε for each j.

In particular, by the triangle inequality,

|f(x∗j )| < ε
xj−xj−1

+ |f(xj)| for all j and all x∗j ∈ [xj−1, xj ].

This shows that f is bounded on each [xj−1, xj ], and hence on [a, b]. We can
therefore define mi and Mi to be the infimum and supremum of f on each [xi−1, xi]
and define the step functions as follows:

First, f1 is equal tomi on (xi−1, xi). At the endpoints we set f1 = min{m1, . . . ,mN}.
Second, f2 is equal toMi on (xi−1, xi). At the endpoints we set f2 = min{M1, . . . ,MN}.
It follows that f1 ≤ f ≤ f2 on [a, b]. It remains to show that∫ b

a

[f2(x)− f1(x)] dx ≤ ε. (3.11)

To this end, we fix arbitrary η > 0 and (using the definition of infimum and supre-
mum) find choices of x∗i , x

∗∗
i ∈ [xi−1, xi] so that

f(x∗i ) < mi + η, f(x∗∗i ) > Mi − η.
It follows that

N∑
i=1

(f(x∗∗i )− f(x∗i ))(xi − xi−1) >

N∑
i=1

(Mi −mi − 2η)(xi − xi−1)

=

∫ b

a

(f2(x)− f1(x)) dx− 2η(b− a).

Since ∣∣∣∣ N∑
i=1

(f(x∗∗i )− f(x∗i ))(xi − xi−1)

∣∣∣∣ < ε,

we deduce ∫ b

a

(f2(x)− f1(x)) dx < ε+ 2η(b− a).
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As η was arbitrary, this implies (3.11), as desired. �

As a corollary, we deduce one necessary condition for Riemann integrability:

Corollary 3.27. If f is Riemann integrable on [a, b], then f is bounded on [a, b].

Proof. This was derived in the course of the proof of the preceding proposition. �

At this point, you might feel a bit confused, since you probably were able to do
computations like ∫ 1

−1
|x|− 1

2 dx = 4, (3.12)

even though |x|−1/2 is not bounded on [−1, 1] (or even defined at x = 0). To resolve
this confusion, one can introduce the notion of an improper integral. This refers
to an integral in which either the function or the interval is unbounded. Then, for
example, the integral (3.12) must be interpreted as the following limit:∫ 1

−1
|x|− 1

2 dx = lim
ε1→0−

∫ ε2

−1
|x|− 1

2 dx+ lim
ε2→0+

∫ 1

ε1

|x|− 1
2 dx = 4.

For improper integrals over unbounded intervals, see the exercises.
As another important consequence of Proposition 3.26, we can establish a very

useful sufficient condition for Riemann integrability, namely, that of continuity.
However, there is a subtlety here, similar to the subtlety we encountered when we
wanted to establish continuity for infinite series of continuous functions. In fact,
Cauchy again missed this subtlety when presenting a proof that continuous func-
tions were integrable. In particular, to establish integrability, we need something
slightly stronger than continuity, namely, uniform continuity.

Let us first review the definition of continuity in its complete ε-δ glory:

Definition 3.10 (Continuity). Let f be a real-valued function on an interval I.
Then f is continuous on [a, b] if for every x ∈ I and every ε > 0, there exists δ > 0
so that for any y ∈ I,

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Here is the definition of uniform continuity:

Definition 3.11 (Uniform continuity). Let f be a real-valued function on an in-
terval I. Then f is uniformly continuous if for every ε > 0, there exists δ > 0 so
that for any x, y ∈ I,

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Can you see the difference between these two definitions? If you look closely at
the statement of continuity, you’ll see that the ‘δ’ you pick could implicitly depend
on the choice of x ∈ [a, b] as well as ε > 0. On the other hand, for a uniformly
continuous function, we can find a single δ > 0 that works uniformly in x (that is,
for all choices of x simultaneously).

Example 3.9. Consider the function f(x) = 1
x on (0, 1). This function is con-

tinuous, but not uniformly continuous. If we instead consider f(x) = 1
x on the

interval (δ, 1) for any strictly positive δ > 0, the function is uniformly continuous.
See Exercise 3.18.
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The reason that Cauchy’s oversight was inconsequential in this particular case
is due to the following fact:

Theorem 3.28. If f is continuous on [a, b], then f is uniformly continuous on
[a, b].

Proof. We suppose f is continuous on [a, b] and fix ε > 0. For each x ∈ [a, b], we
then define the ‘modulus of continuity’ by

δ(x, ε) = sup{η > 0 : |x− y| < η =⇒ |f(x)− f(y)| < ε}. (3.13)

By pointwise continuity, we have δ(x) > 0 for each x ∈ [a, b]. To establish uniform
continuity, it suffices to show that

inf
x∈[a,b]

δ(x, ε) > 0.

Suppose instead that this infimum equals zero. This implies that there exists a
sequence {xn} ⊂ [a, b] so that δn := δ(xn, ε) → 0. Because the sequence {xn} is
stuck inside the closed, bounded interval [a, b], it must have a convergent ‘subse-
quence’. For convenience, we are still going to denote this subsequence by xn, and
we’ll denote the limit by x∗ ∈ [a, b]. We’ll return to this crucial point below. For
now, let us finish the argument.

We may also define the ‘modulus of continuity’ δ∗ := δ(x∗,
ε
2 ) > 0 as in (3.13)

above. Using the fact that xn → x∗ and δn → 0, we have that for all n sufficiently
large,

|xn − x∗| < 1
2δ∗ and δn <

1
4δ∗.

These together guarantee (by the triangle inequality) that

{y : |xn − y| < δn + 1
10δ∗} ⊂ {y : |x∗ − y| < δ∗}.

On the other hand, by continuity of f at x∗, we have that f(xn) → f(x∗). Thus,
choosing n possibly even larger, we may also guarantee that

|f(xn)− f(x∗)| < ε
2 .

Thus we find that for n sufficiently large and

|xn − y| < δn + 1
10δ∗, (3.14)

we have |x∗ − y| < δ∗, and hence

|f(xn)− f(y)| ≤ |f(xn)− f(x∗)|+ |f(x∗)− f(y)| < ε
2 + ε

2 = ε. (3.15)

In particular, (3.14)–(3.15) show that δn is not the supremum as in (3.13); indeed,
we have found a strictly larger choice of ‘η’ that does the job! Thus we derive our
desired contradiction. �

The proof above relied on the following important fact, sometimes called the
Bolzano–Weierstrass theorem:

Theorem 3.29 (Bolzano-Weierstrass). If {xn} is a sequence of real numbers con-
tained in a closed, bounded interval [a, b], then a subsequence of xn converges to
some limit in [a, b].

This is our first real encounter with the concept of ‘compactness’. Essentially,
the theorem says that closed, bounded intervals in R are ‘compact’. Note that
this result would not hold if the interval were either unbounded or open. Indeed,
the sequence 1, 2, 3, . . . in the interval (0,∞) has no convergent sequence; neither
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does the sequence 1, 1/2, 1/3, . . . in (0, 1). Actually, in the latter case, the sequence
converges to 0, but the point 0 is not contained in the interval.

I am not going to provide a proof of Theorem 3.29 at this point. I encourage
you to try to find one yourself (see Exercise 3.21)!

With Theorem 3.28 in place, we return to our discussion of integrability and
prove the following:

Theorem 3.30 (Continuity implies integrability). If f is continuous on [a, b], then
f is Riemann integrable on [a, b].

Proof. We have just shown that in fact, f must be uniformly continuous. We will
use the criterion in Proposition 3.26 to show integrability.

Let ε > 0 and, by uniform continuity, choose δ > 0 so that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Now let x0 < x1 < · · · < xN be a partition of [a, b] of width < δ. Write Mi and
mi for the maximum and minimum values of f on [xi−1, xi] (which are attained,
as shown in Theorem 2.14). By the uniform continuity, we have Mi −mi < ε for
each i.

Now define step functions f1, f2 that are equal to mi,Mi on each (xi−1, xi) and
equal to f(x) at the endpoints of the intervals. It follows that f1 ≤ f ≤ f2 on [a, b].
Moreover, we have∫ b

a

[f2(x)− f1(x)] dx =

N∑
i=1

[Mi −mi](xi − xi−1) < ε

N∑
i=1

(xi − xi−1) = ε(b− a).

The result follows. �

The preceding result gives a very natural condition (continuity) that can be used
to guarantee integrability. However, not every integrable function needs to be con-
tinuous. Indeed, we already saw that step functions are integrable. In fact, Riemann
produced an example of an integrable function with infinitely many discontinuities!

It is also possible to write down explicit functions that are not Riemann inte-
grable. The classic example is the Dirichlet function defined

f(x) =

{
1 if x is rational,

0 if x is irrational,

defined on [0, 1]. To prove this relies on a fact that we have not proven yet (but
will prove later):

• Any interval I ⊂ R contains both a rational and irrational number.

Now consider any partition of [0, 1] of width δ > 0. We build two Riemann sums
S1, S2 adapted to this partition, where in each subinterval we pick a rational point
to build S2 and an irrational point to build S1. Then we get∣∣S2 − S1

∣∣ =

N∑
j=1

[1− 0] · (xj − xj−1) = 1.

That is, no matter how small we take the width of partition, we can find two Rie-
mann sums that differ by 1. This shows that the Cauchy criterion for integrability
fails.
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Now that we have some understanding of Riemann integration, let us briefly
return to the motivating problem of the convergence of Fourier series. With a
reasonable theory of integration in place, Dirichlet was able to prove the following
result:

Theorem 3.31 (Dirichlet’s Theorem). Suppose F is a bounded, piecewise contin-
uous on [−π, π]. Suppose further that at any point x0 of discontinuity, F takes
on the value at the midpoint of limx→x+

0
F (x) and limx→x−0

F (x). If we define the

coefficients

a0 = 1
2π

∫ π

−π
F (x) dx,

ak = 1
π

∫ π

−π
F (x) cos(kx) dx, k ≥ 1,

bk = 1
π

∫ π

−π
F (x) sin(kx) dx, k ≥ 1,

then for every x ∈ (−π, π) we have

F (x) = a0 +

∞∑
k=1

[ak cos(kx) + bk sin(kx)].

We won’t prove this result here. In fact, this result is far from the end of the
story, as far as convergence of Fourier series goes. Really, one should proceed using
the theory of integration due to Lebesgue. If you’re interested, you will have to
sign up for more courses in analysis.

Instead, we will turn to some other important results related to Riemann inte-
gration. Specifically, we will work towards the important Fundamental Theorem of
Calculus. One of the forms of this theorem states that∫ b

a

f ′(x) dx = f(b)− f(a).

For the original ‘Newtonian’ notion of integration, this is not a theorem—it’s a
definition! For the Riemann integral, we will need a proof.

We start with the following:

Proposition 3.32. Let a < b < c and let f be a real-valued function on [a, c].
Then f is integrable on [a, c] if and only if f is integrable on [a, b] and [b, c], and in
this case we have ∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx.

Proof. We use the ‘step function’ criterion for integrability. Note that the result
we are trying to prove is immediate for step functions.

First suppose f is integrable on [a, b] and [b, c]. Then given ε > 0, we can find
step functions adapted to each of these intervals and patch them together to find
suitable step functions adapted to the entire interval adapted to [a, c].

Conversely, if f is integrable on [a, c], then given ε > 0 we may find step functions
as in Proposition 3.26. We can then split these step functions up to find that the
‘step function criterion’ holds on each of [a, b] and [b, c].



A COURSE ON ADVANCED CALCULUS 61

To show the equality, we note that if S1 and S2 are Riemann sums for f on [a, b]
and [b, c], then S1 + S2 is a Riemann sum for f on [a, c]. Using this, it is not hard
to show that the difference between∫ b

a

f(x) dx+

∫ c

b

f(x) dx and

∫ c

a

f(x) dx

may be made arbitrarily small. �

We turn to the the Fundamental Theorem of Calculus in its first form:

Theorem 3.33 (Fundamental Theorem of Calculus). Let f be a continuous, real-
valued function on [a, b]. Define F on [a, b] by

F (x) =

∫ x

a

f(t) dt.

Then F is differentiable and F ′ = f .

Proof. First note that by the continuity of f , the integral
∫ x
a
f(t) dt exists for any

x ∈ [a, b]. Here we use the convention that
∫ a
a
f dt = 0.

For fixed x0 ∈ [a, b] and x ∈ [a, b]\{x0}, we write

F (x)− F (x0)

x− x0
− f(x0) =

∫ x
a
f(t) dt−

∫ x0

a
f(t) dt

x− x0
− f(x0)

=

∫ x
x0
f(t) dt−

∫ x
x0
f(x0) dt

x− x0

=

∫ x
x0

[f(t)− f(x0)] dt

x− x0
.

Now, given ε > 0, we choose δ > 0 so that

|t− x0| < δ =⇒ |f(t)− f(x0)| < ε.

In particular, we have |f(t)− f(x0)| < ε for all t in the interval between x0 and x.
Here we are using the convention that if a < b,∫ a

b

f(t) dt := −
∫ b

a

f(t) dt.

We next use the fact that if g is integrable on an interval I with |g| ≤M , then∣∣∣∣∫
I

g(x) dx

∣∣∣∣ ≤M · |I|,
where |I| is the length of the interval (see the last inequality in Theorem 3.24).

Continuing from above, we deduce that for |x− x0| < δ, we have∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ ∣∣∣∣
∫ x
x0

[f(t)− f(x0)] dt

x− x0

∣∣∣∣ ≤ ε · x−x0

x−x0
= ε.

It follows that

lim
x→x0

F (x)− F (x0)

x− x0
= f(x0).

�

As a corollary, we obtain the other form of the Fundamental Theorem of Calculus:
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Corollary 3.34 (Fundamental Theorem of Calculus). Suppose F is a real-valued
function on an interval I with continuous derivative f . Then for any a, b ∈ I,∫ b

a

f(t) dt = F (b)− F (a).

Proof. By the first form of the Fundamental Theorem of Calculus,

d
dx

[∫ x

a

f(t) dt− F (x)

]
= f(x)− f(x) = 0,

and hence the function

x 7→
∫ x

a

f(t) dt− F (x) is constant

(see Exercise 2.13). In particular,∫ x

a

f(t) dt = F (x) + c for some c ∈ R.

Evaluating at x = a, we obtain c = −F (a), and hence∫ x

a

f(t) dt = F (x)− F (a) for all x.

�

The Fundamental Theorem of Calculus is, of course, extremely useful. This is
how we evaluate integrals! We learned how this works in calculus, so let’s move on
to another application.

In particular, we are going to use the Riemann integral to give a very efficient
presentation of the logarithm and exponential functions. In contrast to much of
what we have presented above, this presentation decidedly does not follow the
historical development of these functions. The basic idea behind the development
of the logarithm was the search for a function satisfying f(xy) = f(x)+f(y), so that
large multiplication problems could be converted to simple addition problems. With
a sufficiently comprehensive table of values (x, f(x)), one could compute efficiently
in this way. The logarithm in the sense we understand it was introduced basically
in the early 1600s. Given that we are about to define the logarithm as a Riemann
integral, we are clearly deviating from the historical presentation at this point.

Definition 3.12. For x ∈ R and x > 0, define

lnx =

∫ x

1

dt
t .

The properties of this function are collected in the following proposition, whose
proof is left to you:

Proposition 3.35. The function x 7→ lnx on (0,∞) is differentiable with deriva-
tive 1

x . It is a strictly increasing function, its range equals R, and it satisfies:

• lnxy = lnx+ ln y,
• lnx/y = lnx− ln y,
• lnxn = n lnx for any integer n.

In particular, the properties of ln show that it has a well defined inverse:
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Definition 3.13. We define x 7→ exp(x) as the inverse of ln. That is,

exp(x) = y ⇐⇒ x = ln y.

Later we will write exp(x) = ex (see below).

The properties of the exponential function are collected in the following propo-
sition, whose proof is also left to you.

Proposition 3.36. The function x 7→ exp(x) is differentiable with d
dx exp(x) =

exp(x). It is strictly increasing, assumes all positive values, and satisfies:

• exp(x) · exp(y) = exp(x+ y),
• exp(x)/ exp(y) = exp(x− y),
• exp(nx) = (expx)n for any integer n.

Using the exponential and logarithm functions, we can finally precisely define
the meaning of xn for n not equal to an integer:

Definition 3.14. For x, n ∈ R with x > 0, we define xn = exp(n lnx).

Using this definition, you can readily check all of the usual properties of powers,
like

xn · xm = xn+m, (xy)n = xnyn,

and so on. In addition, the chain rule implies d
dxx

n = nxn−1.
We can also at this point introduce the number ‘e’:

e := exp(1).

Then the notation exp(x) = ex becomes consistent.
We end this discussion by remarking that it is possible to ‘go backwards’ in the

construction of exponential and logarithm functions. That is, one can start by
arguing for the existence of rational powers, obtaining irrational powers by limits,
and then discovering e as the unique value of a so that d

dx [ax] = ax. With the
exponential function in place, one can then define the logarithm.

To finish this section, we are going to return to two topics that were previously
skipped because we had not yet introduced any reasonable theory of integration.
The first is an integral test for convergence of series; the second is a result on
term-by-term integration.

Theorem 3.37 (Integral Test). Let f be a positive, decreasing, integrable function
on [1,∞]. The series

∞∑
k=1

f(k)

converges if and only if the improper integral∫ ∞
1

f(x) dx

converges.

Proof. As f is decreasing, we have

f(k + 1) ≤
∫ k+1

k

f(x) dx ≤ f(k).
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Thus
N∑
k=1

f(k + 1) ≤
N∑
k=1

∫ k+1

k

f(x) dx =

∫ N

1

f(x) dx ≤
N∑
k=1

f(k).

Using these inequalities, we see that the partial sums are bounded if and only if
the integral converges. �

Example 3.10. The integral test shows that
∞∑
k=2

1
k ln k diverges, while

∞∑
k=2

1
k[ln k]2 converges.

Indeed, 1
x ln x is the derivative of ln[lnx], which diverges as x→∞, while 1

x[ln x]2 is

the derivative of − 1
ln x , which tends to zero as x→∞.

Next, we turn to term-by-term integration. By now it should not be too surpris-
ing that things can go wrong in general, but that the situation can be remedied
with uniform convergence.

Example 3.11. Let Fn(x) be the function on [0, 1] whose graph is an isosceles
triangle whose base is [0, 1

n ] and whose height is 2n, as plotted in the following
figure:

The functions Fn for 3 ≤ n ≤ 9

In particular, ∫ 1

0

Fn(x) dx = 1 for all n.

Now define f1 = F1 and fn = Fn − Fn−1 for n ≥ 2, so that
n∑
k=1

fk(x) = Fn(x).

Now, for any x ∈ [0, 1], we have Fn(x)→ 0 as n→∞. Thus we have∫ 1

0

lim
n→∞

Fn(x) dx = 0, while lim
n→∞

∫ 1

0

Fn(x) = 1,

showing the failure of term-by-term integration in this case.

For the positive result, we have the following:
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Theorem 3.38 (Term-by-term integration). Let
∑
k fk converge uniformly on

[a, b]. If each fk is integrable over [a, b], then so is
∑
k fk, with∫ b

a

∞∑
k=1

fk(x) dx =

∞∑
k=1

∫ b

a

fk(x) dx.

Proof. Let

F (x) =

∞∑
k=1

fk(x) and Fn(x) =

n∑
k=1

fk(x).

Now let ε > 0. By uniform convergence, we may find n so that

Fn(x)− ε ≤ F (x) ≤ Fn(x) + ε.

Since Fn is integrable, we may (by Proposition 3.26) find step functions g1, g2 so
that g1 ≤ Fn ≤ g2 and ∫ b

a

[g2(x)− g1(x)] dx < ε.

Then g1 − ε and g2 + ε are step functions satisfying

g1(x)− ε ≤ F (x) ≤ g2(x) + ε for x ∈ [a, b]

and ∫ b

a

[g2(x) + ε]− [g1(x)− ε] dx < ε+ 2ε(b− a).

Using Proposition 3.26, we deduce that F is integrable.
To identify the value of

∫
F dx, we note that for any ε > 0 we may find N so

that

n ≥ N =⇒ |F (x)− Fn(x)| < ε for all x ∈ [a, b].

Then for n ≥ N , we have∣∣∣∣∫ b

a

[F (x)− Fn(x)] dx

∣∣∣∣ < ε(b− a).

Since ∫ b

a

Fn(x) =

n∑
k=1

∫ b

a

fk(x) dx

for any fixed n, we find that

n ≥ N =⇒
∣∣∣∣∫ b

a

∞∑
k=1

fk(x) dx−
n∑
k=1

∫ b

a

fk(x) dx

∣∣∣∣ < ε(b− a).

This implies that the series
∑
k

∫ b
a
fk dx converges, with value given by

∫ b
a

∑
k fk dx.

�

Example 3.12. We can now sketch the justification of the procedure for approx-
imating π given way back in Section 1.3. This required the series expansion for
the binomial series (1 + x)a, which we revisited in Example 3.3. Recall we apply
this series with x = −t2 and a = 1

2 . We previously showed convergence on (−1, 1);
here we need uniform convergence on [−1, 0]. It turns out at that at |x| = 1 we
can use a comparison with the p-series n−3/2 to obtain convergence. Hence by
Corollary 3.23 we have the desired uniform convergence to interchange integration
and summation.
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As for the fact that the series converges to (1 + x)a, there is a clever equation
using a uniqueness result about differential equations, which we won’t go into here.

So, it took about 200 years of work, but it seems as though Newton was justified
in his term-by-term integration after all! Of course, I am being intentionally glib
here. The rigorous theory of analysis was also essential in making sense of the
much more complicated ideas of Fourier analysis, which has had truly remarkable
impacts on our modern world. Indeed, just to give one example, this basic notion
of decomposing functions into the waves (and the mathematical theory needed to
make this precise) was central to the development of electromagnetism, which truly
did shape the nature of modern life.

On the other hand, the deeper investigation into the possible behaviors of func-
tions that was needed to understand concepts such as continuity and integrability
revealed all sorts of strange possibilities that mathematicians had never considered
before. This includes all sorts of bizarre functions introduced in the 1860s and later
(e.g. integrable functions with infinitely many continuities, continuous functions
with infinitely many points of non-differentiability, and so on). Research in this
general direction is connected to the development of subjects like topology and
measure theory (including the Lebesgue integral, which has become the dominant
theory of integration in the last 100+ years). However, this is not the direction we
will follow in this course.

Instead, we will turn to the work of mathematicians like Dedekind and Cantor
from the 1870s onward, who realized that the work of Cauchy and others had
uncovered some important questions about the very foundations of mathematics,
namely, the nature of the real number system. You may recall that at many points
above, we had to appeal to the ‘completeness’ of the real numbers, which so far we
have basically assumed to be true because our ‘intuition’ tells us so. Well, by now
you have hopefully also learned that intuition alone is not enough! It is time to
finally talk about what we really mean by ‘the real numbers’, and to figure out if
they really behave the way we think they do.

3.4. Exercises.

Exercise 3.1. Suppose an is a nonnegative sequence of real numbers. Show that∑
an either converges or diverges to infinity. Equivalently, show that if there exists

M > 0 so that
∑n
k=0 ak ≤M for all n, then the series

∑
an converges.

Exercise 3.2. Prove the limit ratio test, Corollary 3.8. This includes showing that
if L = 1, then the test is inconclusive. To do this, find two series that yield the
limit L = 1, one of which is convergent and one of which is divergent.

Exercise 3.3. Prove the root test and limit root test, Theorem 3.9.

Exercise 3.4. Let r(n) and ρ(n) be the quantities from the ratio test and root
test, respectively. Show that if r(n)→ L as n→∞, then ρ(n)→ L as n→∞.

Exercise 3.5. Determine convergence or divergence for the series whose general

term is n!(2n)!
(3n)! .

Exercise 3.6. Prove Theorem 3.12.

Exercise 3.7. Prove the ‘essential facts’ about lim sups stated on page 44.

Exercise 3.8. Determine the intervals of convergence for the following power series:
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Exercise 3.9. Prove power series expansion for... sine? Use Lagrange remainder.

Exercise 3.10. Show that a series is ‘uniformly Cauchy’ if and only if it is uniformly
convergent. Here we say that a series of functions

∑
n fn is uniformly Cauchy if for

any ε > 0, there exists N so that

n,m ≥ N =⇒
∣∣∣∣ n∑
k=m+1

fk(x)

∣∣∣∣ < ε for all x.

Exercise 3.11. Show that the series

S(x) =

∞∑
k=1

x+ x3(k − k2)

(1 + k2x2)(1 + (k − 1)2x2)

is a continuous, non-uniform limit of continuous partial sums.

Exercise 3.12. Show that the functions

fn(x) = 3nx2+n2x4

1+2nx2+n2x4

converge on the interval [−1, 1], but not uniformly.

Exercise 3.13. Show that if a series of functions converges uniformly on [0, α) and
converges at x = α, then the series converges uniformly on [0, α].

Exercise 3.14. Suppose a power series has infinite radius of convergence. Show
that for any α > 0, the series converges uniformly on [−α, α].

Exercise 3.15. Prove Theorem 3.24.

Exercise 3.16. Suppose a = x0 < x1 < · · · < xN = b is a partition of [a, b] and g
is a function satisfying

g(x) = ci for x ∈ (xi−1, xi).

Show that g is Riemann integrable, with∫ b

a

g(x) dx =

N∑
i=1

ci(xi − xi−1).

Exercise 3.17 (Improper integral on an unbounded interval). Show that∫ ∞
1

1
x2 dx = 1

in the following sense: For any ε > 0, there exists R0 > 0 so that for any R > R0,∣∣∣∣∫ R

1

1
x2 dx− 1

∣∣∣∣ < ε.

Exercise 3.18. Prove the claims made in Example 3.9.

Exercise 3.19. Prove the following claim or find a counterexample (but hopefully
not both): If f is continuous on (a, b) and bounded on (a, b), then f is uniformly
continuous on (a, b).

Exercise 3.20. Show that if f is continuous on [a, b] and uniformly continuous on
[a, c] and [c, b] for some c ∈ (a, b), then f is uniformly continuous on [a, b]. Describe
how to extend this to any division of [a, b] into finitely many subintervals.

Exercise 3.21. Prove Theorem 3.29.



68 JASON MURPHY

4. Foundations

In this section, our main goal will be to describe a rigorous ‘construction’ of
the real number system. The basic idea is to build the reals from simpler pieces.
We start with the natural numbers (or ‘counting numbers’) and integers. We then
move on to the rational numbers (given by ratios of integers), before constructing
the real numbers essentially as limits of sequences of rational numbers.

4.1. Natural numbers. The starting point is to posit the existence of the set
of natural numbers, denoted N. This corresponds to our usual notion of counting
numbers, so that

N = {0, 1, 2, 3, . . . }.
Now, it is important to stop at this moment and agree that what I just wrote down
is not a proper definition. For example, what do those dots mean? To be more
precise, we will follow an approach due to Peano, which appeared in the 1880s. In
particular, we will list several axioms that will completely characterize the natural
numbers, and then take as our central assumption that such a set exists. By the
way, nobody says you have to accept this assumption. In your heart, you may very
well be a ‘finitist’. However, rejecting the existence of the natural numbers is going
to make it somewhat different to participate in most of modern mathematics.

Let’s get to it. We will first list all of the axioms, and we will then briefly describe
the role played by each.

• Axiom 1. There exists a natural number called 0.
• Axiom 2. If n ∈ N, then n has a successor denoted S(n) ∈ N.
• Axiom 3. 0 6= S(n) for any n ∈ N.
• Axiom 4. If n,m ∈ N and S(n) = S(m), then n = m.
• Axiom 5. Let P (n) be a statement about n ∈ N. If P (0) is true, and

whenever P (n) holds, we have that P (S(n)) holds as well, then P (n) is
true for all n ∈ N.

Axiom 1 gets us started, while Axiom 2 lets us ‘keep going’. In particular, we
will define 1 = S(0), 2 = S(1), 3 = S(2), and so on. Axiom 3 prevents the natural
numbers from ‘wrapping around’, while Axiom 4 prevents the natural numbers from
‘settling’ at some finite value. Finally, Axiom 5 (which is technically not an axiom
but an ‘axiom schema’) is the important ‘principle of mathematical induction’.
The idea here is that the assumptions guarantee that P (0), P (1), P (2), and so
on, must all hold. This axiom also prevents the natural numbers from containing
any ‘extraneous’ elements. For example, the set {0, .5, 1, 1.5, 2, . . . } satisfies axioms
1–4 with the usual notion of ‘successor’ (namely, S(n) = n + 1), but not Axiom
5 (consider the statement P (n) =‘n is not a half-integer’). An analogy to keep in
mind is that of climbing a ladder: if you can get on the lowest rung of the ladder,
and you can always climb one rung higher, then you can climb all the way up the
ladder.

Our crucial assumption is thus:

Assumption: There exists a number system N satisfying Axioms 1–5.

One very convenient aspect of the natural numbers is the notion of an ‘inductive
definition’. For example, given m ∈ N, here’s how we define m+ n for n ∈ N:

(i) We define m+ 0 = m.
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(ii) Given a definition of m+ n, we define m+ S(n) = S(m+ n).

Now consider the statement P (n) =‘m + n is defined’. Then (i) says that P (0) is
true, and (ii) says that if P (n) is true, so is P (S(n)). So by induction, P (n) is
defined for all n ∈ N. (By the way, this is also how we actually define the symbol∑n
k=0 ak for a collection of real numbers {ak}. In particular,

0∑
k=0

ak := a0 and

n+1∑
k=0

ak :=

n∑
k=0

ak + an+1.

Do you see why this is a proper definition?)
Using this definition of addition, we can prove various ‘obvious things’ like

n+ 0 = n and n+ S(m) = S(n+m).

Try it—it’s fun! In particular, these facts together show us that

S(n) = n+ 1,

and so we can get rid of this clunky successor notation.
Other important, seemingly obvious facts include commutativity and associativ-

ity, i.e.

n+m = m+ n and (`+m) + n = `+ (m+ n).

We also have the important ‘cancellation law’: for a, b, c ∈ N,

a+ b = a+ c =⇒ b = c. (4.1)

Let’s prove this one.

Proof of (4.1). We use induction on a. If 0 + b = 0 + c, then b = c. Now, suppose
a+ b = a+ c implies b = c for some a ∈ N and for all b, c ∈ N. Then suppose that
S(a) + b = S(a) + c for some b, c ∈ N. Then we have

a+ S(b) = S(a) + b = S(a) + c = a+ S(c),

so that S(b) = S(c) by the inductive hypothesis. We thus obtain b = c. �

Our next step is to introduce the notion of positivity and order. We say n ∈ N
is positive if n 6= 0. We then say that n ≥ m if n = m+ a for some a ∈ N. We have
various basic properties of order, such as reflexivity (a ≥ a), transitivity (a ≥ b and
b ≥ c implies a ≥ c), and anti-symmetry (a ≥ b and b ≥ a implies a = b). We also
have that a ≥ b if and only if a+ c ≥ b+ c; a < b if and only if S(n) ≤ b; and a < b
if and only if b = a + d for some positive d ∈ N. Finally, we have the trichotomy,
that for any a, b ∈ N we have exactly one of the following: a < b, a > b, or a = b.

Multiplication is defined inductively as well. That is, 0 × m = 0 and S(n) ×
m = (n × m) + m. We again get all of the usual properties, like commutativity,
distributivity, associativity, the fact that n ×m = 0 guarantees m = 0 and n = 0,
the fact that a× c = b× c implies a = b (provided c 6= 0), and so on. We may also
use the standard notation ab for a× b. We also have that multiplication preserves
order, i.e. if a < b and c is positive, then ac < bc.
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4.2. Integers. Our next step is to introduce the integers, denoted Z. An integer is
actually going to be identified with an equivalence class of pairs of natural numbers.
In particular, we define the equivalence relation

(a, b) ∼ (c, d) iff a+ d = b+ c.

Secretly, we are thinking that (a, b) corresponds the integer a− b, so that the usual
natural numbers just correspond to pairs of the form (a, 0) and the negative integers
correspond to pairs of the form (0, a) for a 6= 0. There are, of course, many ways
to express the same integer, e.g. (3, 5) ∼ (2, 4) ∼ (1, 3) ∼ (0, 2) (and all of these
ultimately correspond to the number −2).

To make this precise, one has to define addition and multiplication and check that
everything is ‘well-defined’ (i.e. does not depend on the particular representative
of the equivalence class). The definitions are

(a, b) + (c, d) := (a+ c, b+ d) and (a, b)× (c, d) = (ac+ bd, ad+ bc).

These are precisely the formulas you end up with if you assume that we already
know (a, b) corresponds to the integer a− b, but the point is that you don’t know
this yet. So you need to check things like

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) =⇒ (a, b) + (c, d) ∼ (a′, b′) + (c′, d′).

The negation of the integer (a, b) is the integer (b, a). We write (b, a) = −(a, b).
If you know that (a, b) corresponds to a− b, then this is very reasonable. It follows
that any integer is either zero, equal to a positive integer n (that is, it is a member
of the equivalence class of (n, 0) for some positive n), or equal to the negation of a
positive integer n. In the final case, we say we have a negative integer.

With this ‘trichotomy’ in place, we go back to using a single letter to denote an
integer, say x. Then we know that x = 0, x = n for some n ∈ N, or x = −n for
some n ∈ N. We can then derive all of the basic algebraic laws for integers, like

x+ (−x) = 0 and x1 = x,

along with commutativity, distributivity, associativity, and so on. We define sub-
traction by x− y = x+ (−y); on the right-hand side, (−y) represents the negation
of the integer y.

The notion of order carries over nicely to the set of integers. That is, we have
that n ≥ m if n = m + a for some a ∈ N, but now n and m may be any integer.
All of the usual properties of order still hold; we won’t list them here.

4.3. The rationals. From the integers we can construct the rationals, denoted Q.
As above, a rational number is going to be identified with an equivalence class of
pairs of integers (more precisely, an element of Z × Z\{0}), using the equivalence
relation

[a, b] ≈ [c, d] iff ad = bc.

Secretly, we think of [a, b] representing the rational number a
b . Then the fact that

[1, 2] ≈ [2, 4] ≈ [3, 6] (and so on) should be obvious. We define sums, products, and
negation by viewing [a, b] as a

b and doing our usual rules of algebra; the result is
the following:

[a, b] + [c, d] = [ad+ bc, bd], [a, b] ∗ [c, d] = [ac, bd], −[a, b] = [−a, b].
One can check that these operations are well-defined (i.e. independent of the rep-
resentative of equivalence class). Now, just as we had to find the natural numbers
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inside the integers, we need to find the integers inside the rational numbers. In this
case, we identify the rational [a, 1] with the integer a. (If you remember that we
are thinking of [a, b] as a

b , then this is reasonable).
The rational numbers have one additional operation, namely, that of reciprocals.

In particular, if x = [a, b] with a 6= 0, then we set x−1 = [b, a]. To see that this is
well-defined, one needs to check that if [a, b] ≈ [c, d], then [b, a] ≈ [d, c].

Using the definitions above, we can define all of the usual algebraic rules for
adding/multiplying rational numbers. We also obtain that xx−1 = 1 for x ∈ Q\{0}.
We can also define the quotient of two rational numbers, namely

x
y = x× y−1 for x ∈ Q, y ∈ Q\{0}.

We now extend the notion of positivity and order to the rationals. In particular,
x is positive if x = [a, b] for some a, b > 0, and x is negative if x = −y for some
positive y. It follows that every rational is either positive, negative, or equals zero.
We then say x > y if x − y is positive, and so on. This leads to all of the usual
properties of order (like transitivity, preservation of order under addition or positive
multiplication, and so on).

Finally, we can define the absolute value |x| of a rational x ∈ Q and the distance
|x− y| between two rationals in the usual ways.

4.4. The real numbers. Finally, we can ‘construct’ the real numbers, denoted
R. There are two standard approaches. One (using equivalence classes of Cauchy
sequences of rational numbers) is due to Cantor; the other (using subsets of the
rationals known as ‘cuts’) is due to Dedekind. We will follow Cantor’s approach.

We first recall that a sequence of rational numbers is a function mapping N to
Q. We use the notation {an}. We say that a sequence is Cauchy if for any rational
ε > 0, there exists N ∈ N so that

n,m ≥ N =⇒ |an − am| < ε.

This is the same definition we used before, except we restrict to rational ε > 0
(since we don’t know what general real numbers are yet).

We now define an equivalence relation on the class of sequences of rational num-
bers as follows:

{an} ' {bn} if lim
n→∞

|an − bn| = 0.

Here we use the usual notion of limit, but again with rational ε. That is, the above
means that for any rational ε > 0, there exists N ∈ N so that

n ≥ N =⇒ |an − bn| < ε.

You should check that the relation above does in fact define an equivalence relation.
We now define a real number to be an equivalence class of Cauchy sequences of

rational numbers.

Example 4.1. Go way back to Example 1.4, where we constructed a sequence of
rationals of the form xn = an

bn
. This sequence is a Cauchy sequence, but did not

converge to any rational number. Indeed, we showed that any putative limit L
would have to satisfy L2 = 2, which has no rational solution. The equivalence class
of {xn} is the real number that we would then call

√
2.

Since sums and products of Cauchy sequences are again Cauchy sequences (and
equivalence of Cauchy sequences is preserved under these operations), we can make
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sense of addition and multiplication of real numbers. We can also find the rationals
(and hence the integers and natural numbers) ‘hiding’ inside this definition of reals
by simply identifying a rational number q with equivalence class of the Cauchy
sequence {q, q, q, . . . }. We can define the negation of a real number by prescribing
−{xn} = {−xn}. In this way, we find that all of the usual algebraic laws carry over
to the real numbers. The reciprocal operation is a bit more subtle, but the crucial
fact is this: if x is a nonzero real number, then it has a representative sequence
an that is bounded away from zero. In this case, we can show that a−1n is again
Cauchy, and we can take x−1 to be the real number represented by the sequence
a−1n .

We incorporate positivity and order into the reals as follows. We say x is positive
if it has a representative sequence that is bounded below by a positive rational c.
Negative reals are the negations of positive reals. We get the usual trichotomy:
every real is either positive, negative, or zero.

At this point, we can prove some interesting things about real numbers. For
example, we have the Archimedean property :

Lemma 4.1 (Archimedean property). For any x > 0 and ε > 0, there exists
M ∈ N so that Mε > x.

The name for this property comes from the fact that this was used in the ‘ex-
haustion’ type arguments of Archimedes (presented at the very beginning of these
notes).

To establish Lemma 4.1, we will rely on one additional lemma about the natural
numbers.

Lemma 4.2. For any integers A ≥ 1 and B ≥ 1, there exists n ∈ N such that
An > B.

Proof. We will use induction on B. First suppose B = 0 and A ≥ 1. Then choosing
n = 1, we obtain An > B. Next, suppose that for all A ≥ 1, there exists n such
that An > B. Now choose any A ≥ 1, and choose n such that An > B. Then
A(n+1) = An+A ≥ An+1 > B+1. This completes the inductive step and hence
the proof of the lemma. �

Proof of Lemma 4.2. Fix x > 0 and ε > 0, and suppose towards a contradiction
that for any M ∈ N, we have x ≥Mε. This means that for any M ∈ N, we may find
a Cauchy sequence qMn representing x so that qMn ≥ Mε for all n. By extracting
the tail of the sequence, we may also assume that

|qMn − qM` | < 1
M for all n, `.

Now consider the ‘diagonal’ sequence {qMM }. We will show that this is a Cauchy
sequence of rationals. Indeed, for any M,N, n, we may write

|qMM − qNN | = |qMM − qMn + qMn − qNn + qNn − qNN |
≤ 1

M + |qMn − qNn |+ 1
N .

Now given a rational η > 0, we may choose N0 so that 1
N0

< η (by the previous

lemma). On the other hand, for fixed N,M ≥ N0, we have that {qMn }n and
{qNn }n are equivalent Cauchy sequences (since they both represent x). In particular,
limn→∞[qNn − qMn ] = 0, and hence we may choose n sufficiently large so that

|qMn − qNn | < η.
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Altogether, we found N0 so that N,M ≥ N0 guarantees

|qMM − qNN | < 3η,

showing that {qMM } is Cauchy.
Now, using the fact that qMM is Cauchy, we may find N0 so that

qMM ≤ q
N0

N0
+ 1 for all M ≥ N0.

On the other hand, we have qMM ≥Mε, and hence we deduce

Mε ≤ qN0

N0
+ 1 for all M ≥ N0.

Writing qN0

N0
= p/r for some positive integers p, r, this implies

Mrε ≤ p+ r for all M ≥ N0.

As Mrε > 0, this implies (choosing a representative sequence for ε) that we may
find a rational number a/b (with a, b > 0) so that

Mra ≤ b(p+ r) for all M ≥ N0.

However, applying Lemma 4.2 (with A = ra and B = b(p + r), we may find M
(which, without loss of generality, can be taken greater than N0) so that

Mra > b(p+ r),

which yields a contradiction. �

Using the Archimedean property, we also derive the important fact that:

Lemma 4.3 (Density of Q). The rational numbers are dense in R.

This lemma means that for any x < y, there exists q ∈ Q so that x < q < y.
(The irrational numbers, i.e. R\Q, are dense in R as well.)

Proof. Let us just consider the case 0 < x < y. By the Archimedean principle, we
may choose b ∈ N so that b(y − x) > 1. Then by − bx > 1, and hence there must
exist a ∈ N so that bx < a < by (see below). In particular, x < a

b < y.
To argue for the existence of a, note that {n ∈ N : n ≥ by} is nonempty (this is a

consequence of Lemma 4.2). Then by the well-ordering principle (see Exercise 4.1),
there is a smallest integer n∗ such that n∗ ≥ by. Setting a = n∗ − 1, we get
bx < a < by, as desired. �

Finally, let us discuss the crucial property of R that we have been after for so
long, namely, that of completeness.

Proposition 4.4. The real numbers, R, are complete.

Proof. Let {xn} be a Cauchy sequence of real numbers. For each n, let {ynm} be a
representative Cauchy sequence of rationals for xn. By extracting the tail of each
sequence, we may assume that

|yn` − ynm| < 1
n for all m, ` ≥ 1.

Now let us define the ‘diagonal’ sequence

zn = ynn .

Let’s show that {zn} is a Cauchy sequence: Let ε > 0 and (using the fact that {xn}
is Cauchy) choose N so that

n,m ≥ N =⇒ |xn − xm| < ε.
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Since xn − xm is represented by yn` − ym` , we may find an ` so that

|yn` − ym` | < ε.

Choosing N even larger so that Nε > 1 (which is possible by the Archimedean
property), we find that for m,n ≥ N we have

|zn − zm| ≤ |ynn − yn` |+ |yn` − ym` |+ |ym` − ymm |
< 1

n + ε+ 1
m < 3ε.

Now, let z be the real number represented by the sequence {zn}.
We will show that limn→∞ xn = z. Fix ε > 0 and let us choose N large enough

that

Nε > 1 and n,m ≥ N =⇒ |xn − xm| < ε.

Then, as before, we may find ` so that

|yn` − ym` | < ε.

Now fix n ≥ N . To show that |xn − z| < ε, it suffices to show that xn − z is
represented by a sequence of rationals qm satisfying |qm| < ε for all m. In fact,
xn − z is represented by

ynm − zm = ynm − ymm ,
and we have

|ynm − ymm | ≤ |ynm − yn` |+ |yn` − ym` |+ |ym` − ymm |
< 1

n + ε+ 1
m < 3ε

for all m. The result follows. �

As we saw above, once we have the completeness property of real numbers, other
essential properties of real numbers (like existence of suprema, and the ‘nested
interval property’) follow.

We can quickly fill in one gap that remains, namely, the question of real expo-
nentiation. In particular, for x > 0 and α ∈ R, the quantity xα = limn→∞ xqn ,
where {qn} is any sequence of rationals converging to α. One must, of course, check
that this is actually well-defined.

4.5. Cardinality. The last topic we will cover in this section is that of cardinality,
which refers to the size of a set. To begin, we define what it means for two sets to
have equal cardinality:

Definition 4.1. Two sets X and Y have equal cardinality if there exists a bijection
mapping X to Y .

Here a bijection refers to a mapping that is both injective and surjective. Injective
means that

f(x) = f(y) =⇒ x = y,

while surjective means that

for any y ∈ Y, there exists x ∈ X so that f(x) = y.

Sometimes we say ‘one-to-one’ instead of injective and ’onto’ instead of surjective.
We will see below that it is possible for two sets to have the same cardinality,

even though one is a strict subset of the other.



A COURSE ON ADVANCED CALCULUS 75

The emptyset ∅ is said to have cardinality zero. For any n ∈ N\{0}, we say that
a set has cardinality n if it has equal cardinality with the set

{j ∈ N : 1 ≤ j ≤ n}.

You should convince yourself that if X has cardinality n, then it cannot have
cardinality m for any m ∈ N\{n}.

We say that a set is finite if it has cardinality n for some n ∈ N. Otherwise, the
set is infinite.

Example 4.2. The set of natural numbers, N, is infinite.

Proof. We can show that for any n ∈ N, any function

f : {j ∈ N : 1 ≤ j ≤ n} → N

is necessarily bounded ; that is, there exists M ∈ N so that f(j) ≤ M for all
1 ≤ j ≤ n. It follows that for any n ∈ N, there is no surjective function from
{j ∈ N : 1 ≤ j ≤ n} to N. �

The next example shows that it is possible for two sets to have equal cardinality,
even though one is a strict subset of the other. (You should convince yourself that
this is not possible if either has finite cardinality.)

Example 4.3. The natural numbers N and the integers Z have equal cardinality.

Proof. We define f : N→ Z by

f(n) =

{
n+1
2 n odd

−n2 n even.

I will leave it to you to check that this is a bijection. �

We say a set is countable (or countably infinite) if it has equal cardinality with
the natural numbers. If a set is infinite but not countably infinite, we say it is
uncountable.

Example 4.4. The rationals, Q, are countable.

Proof. It suffices to show that the rationals in (0, 1) are countable. To this end,
let us describe how to construct a surjective map f from N to (0, 1) ∩Q. We first
define f(0) = 1

2 . Then, supposing we have defined f(n) via f(n) = p
q , we define

f(n+ 1) according to the following rule:

• If p < q − 1, we set f(n+ 1) = p+1
q .

• If p = q − 1, we set f(n+ 1) = 1
q+1 .

Thus we have

f(0) = 1
2 , f(1) = 1

3 , f(2) = 2
3 , f(3) = 1

4 , f(4) = 2
4 , f(5) = 3

4 , f(6) = 1
5 ,

and so on. In particular, every rational of the form p
q with p, q ≥ 0 and 1 ≤ p < q

is in the range of this function. This accounts for every rational in (0, 1). �

Example 4.5. The real numbers, R, are uncountable.
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Proof. It is enough to show that the real numbers in (0, 1) are uncountable. We
will give the classic ‘diagonal’ argument of Cantor. This uses the notion of ‘decimal
expansion’ of real numbers, which involves writing a real number x ∈ (0, 1) as

x = .7364826482364872 . . . ,

with the digits possibly ‘going on forever’. We can actually view this as giving a
Cauchy sequence of rationals representing x of the form

qn =

n∑
k=1

ak
10k

,

where ak ∈ {0, . . . , 9}. (In the example above, we have {ak} = {7, 3, 6, 4, 8, 2, . . . }.)
Note that the decimal expansion is not unique because of examples like

.1 = .09999999 . . .

However, if we restrict to the use of infinite decimal expansions, we can restore
uniqueness. We will follow this convention in what follows.

What we can show is that if we have any (countable) list of real numbers in
(0, 1), then we can produce a real number in (0, 1) that is not contained in the list.
This will show that there is no surjective map from N to (0, 1) ∩ R, which implies
uncountability.

So, we suppose we have any list of real numbers in (0, 1). For example, suppose
our list begins

x1 = .2764578236834 . . . ,

x2 = .3487934758934 . . . ,

x3 = .3948753948573 . . . ,

and so on. We will define a new real number z by prescribing its decimal expansion.
We choose the first coefficient to be a nonzero number different than the first
coefficient of x1, the second coefficient to be a nonzero number different than the
second coefficient of x2, and so on. Thus our number might begin with

z = .355 . . .

Continuing in this fashion, we choose the nth coefficient to be different than the nth

coefficient of xn. In this way, we can construct a real number that is guaranteed
not to be on our original list! �

The examples above show that while the natural numbers and the real numbers
are both infinite, they are not the ‘same size’ (that is, they do not have the same
cardinality). This suggests the question: are there any cardinalities between that
of N and that of R? This question, which came to be known as the continuum
hypothesis, was investigated thoroughly by Cantor, who was never able to resolve
the problem. In fact, it was not until work of Gödel (1940) and Cohen (1963)
that the question was settled. Strangely enough, the answer is neither ‘yes’ or ‘no’.
Instead, it turns out that either possibility is consistent with the other axioms of
set theory. That is, this issue is completely ‘independent’ from the rest of axiomatic
set theory!
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4.6. Exercises.

Exercise 4.1. Show that if S is a non-empty subset of the natural numbers, then
S has a minimal element.
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5. Metric space topology

In this section, we are going to present some of the content encountered above
from a slightly more general viewpoint, namely, that of ‘metric spaces’ and ‘metric
space topology’. As we will see, the notion of ‘continuity’ can be understood in sig-
nificantly more general and abstract settings than the case of real-valued functions
of one variable. Indeed, this is one instance in which a little bit of abstraction pays
off quite well.

5.1. Metric spaces. Informally, a metric space is any non-empty set with a notion
of a ‘distance’ between two points. To be considered a ‘distance’, we need certain
properties to hold. The precise definition is the following:

Definition 5.1 (Metric space). A metric space (X, d) is a non-empty setX together
with a function d : X ×X → [0,∞) satisfying the following:

1. d(x, y) = d(y, x) for x, y ∈ X.
2. d(x, y) = 0 if and only if x = y.
3. For any x, y, z ∈ X, we have

d(x, z) ≤ d(x, y) + d(y, z).

The first condition is a symmetry condition; the second condition guarantees
that distinct points are a positive distance apart; and the third condition is known
as the ‘triangle inequality’. The triangle inequality says that you should never be
able to find a strictly more efficient route by adding an extra stop to your itinerary.

Example 5.1. The real numbers, R, with the distance d(x, y) = |x−y|, is a metric
space. However, this is not the only ‘distance’ we could assign to numbers. Another
example is the ‘discrete metric’

d̃(x, y) =

{
1 x 6= y

0. x = y

You should check that d̃ satisfies the definition of metric as well!

This ‘metric space’ viewpoint will also allow us to study higher dimensional
Euclidean space.

Example 5.2. We define Rn to be the set of all ordered ‘n-tuples’ of the form

x = (x1, . . . , xn), where each xi ∈ R.
The standard ‘Euclidean’ distance is given by

d(x, y) =
√

(y1 − x1)2 + · · ·+ (yn − xn)2.

Can you verify that the triangle inequality holds?
This notion of distance is intimately linked to our notion of the ‘size’ or ‘length’

(or norm) of an element of Rn. In particular, we write

|x| = d(x, 0) =
√
x21 + · · ·+ x2n.

This agrees with the usual notion of ‘absolute value’ in one dimension; in higher
dimensions it is our definition of length.

In fact, the notion of metric space goes far beyond Rn. Let’s see a few more
examples.
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Example 5.3 (Function spaces).

(i) Consider the set of continuous real-valued functions on [0, 1]. Define the
distance

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

This gives a metric space (known as C([0, 1])), and we may call d the
uniform metric. What is the meaning of the ‘norm’ of a function f?

(ii) Again consider the set of continuous, real-valued functions on [0, 1]. This
time, define the distance

d̃(f, g) =

∫ 1

0

|f(x)− g(x)| dx.

This also forms a metric space. Now what is the meaning of the ‘norm’ of
a function?

We first define what convergence means in the setting of a metric space X. We
first work in the setting of sequences. Here a ‘sequence’ is just a function mapping
N to X, which we denote by xn (rather than x(n), say).

Definition 5.2 (Convergent sequence). Let {xn} be a sequence in a metric space
(X, d). We say that xn converges to x ∈ X if

for all ε > 0 there exists N such that n ≥ N =⇒ d(xn, x) < ε.

We use all the same notation as before, e.g. xn → x as n→∞, or

lim
n→∞

xn = x.

When X = R and d(x, y) = |x−y|, this is exactly the same definition of convergence
that we had before. What would convergence mean if you were using the discrete
metric on R? (See Exercise 5.2.)

Example 5.4. Let’s return to the metric spaces described in Example 5.3. Now a
sequence of ‘points’ actually refers to a sequence of functions fn, each of which is
defined on [0, 1]. Let’s consider the sequence

fn(x) = xn, x ∈ [0, 1].

(i) If we consider the uniform metric, that is,

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|,

then the sequence does not converge. To see this, note that we have

lim
n→∞

fn(x) = lim
n→∞

xn = f(x) :=

{
0 0 ≤ x < 1,

1 x = 1,

where here ‘lim’ is just referring to a limit of a sequence of real numbers. This
implies that the limit of the sequence fn (in terms fo the metric d) would have to
be f ; however, f does not belong to the metric space (since it is not continuous).
The conclusion is that the sequence does not converge in the uniform metric. More
precisely, we say that the sequence converges pointwise but not uniformly. Note that
this language is completely consistent with our notions of pointwise and uniform
convergence in the preceding sections.
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(ii) However, if we consider the second metric, that is,

d̃(f, g) =

∫ 1

0

|f(x)| dx,

then the sequence fn converges to the zero function f(x) ≡ 0. Indeed,

d(fn, 0) =

∫ 1

0

|fn(x)| dx =

∫ 1

0

xn dx = 1
n+1 → 0 as n→∞.

The notion of a Cauchy sequence also makes perfect sense in a general metric
space:

Definition 5.3 (Cauchy sequence). A sequence {xn} in a metric space (X, d) is
Cauchy if for all ε > 0, there exists N ∈ N so that

n,m ≥ N =⇒ d(xn, xm) < ε.

It is not hard to show that every convergent sequence is a Cauchy sequence.
Whether or not Cauchy sequences converge depends on whether or not the space
is ‘complete’.

Definition 5.4. A metric space (X, d) is complete if every Cauchy sequence con-
verges.

We saw in the preceding sections that R is complete. This important property
also holds for Rn.

Theorem 5.1. The space Rn (with the standard Euclidean metric) is complete.

Proof. Let {xk} be a Cauchy sequence in Rn. Write the components of x ∈ Rn as

x = (x1, . . . , xn).

Since

|xj | ≤
√

[x1]2 + · · ·+ [xn]2 = ‖x‖ for each j,

we can deduce that each sequence of components {xjk} is a Cauchy sequence in
R. Thus (by completeness of R), for each j = 1, . . . , n, we have a limit zj . In
particular, given ε > 0, we may choose N1, . . . , Nn so that

k ≥ Nj =⇒ |xjk − z
j | < ε.

Defining z = (z1, . . . , zj), we find that for

k ≥ max{N1, . . . , Nn},

we have

|xk − z| =
√
|x1k − z1|2 + · · ·+ |xnk − zn|2

<
√
ε2 + · · ·+ ε2 =

√
nε.

The result follows. �

What about the spaces in Example 5.3? That’s a harder question that we won’t
get into here. But I encourage you to think about it!
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5.2. Metric space topology. We have just seen that the notion of a metric gives
rise to the notion of convergence. We can also use the notion of a metric to define a
notion of ‘open’ and ‘closed’ sets. (There is actually a more general concept hiding
in the background here, namely, that of a topology or a topological space. However,
in these notes, we will keep our attention focused on the more straightforward
setting of metric spaces).

We have the following two definitions:

Definition 5.5 (Open ball). Let (X, d) be a metric space. Given x ∈ X and r > 0,
we define the (open) ball of radius r centered at x by

Br(x) = {y ∈ X : d(x, y) < r}.

Definition 5.6 (Open set). Let (X, d) be a metric space and let S be a subset of
X. We say that S is open if

for all x ∈ S, there exists r > 0 such that Br(x) ⊂ S.

I like to think of openness in terms of ‘wiggle room’. That is, a set is open if
there is a little bit of ‘wiggle room’ around each point. Exactly what that looks
like depends on the metric itself. By the way, you should stop for a second and
make sure that you agree that ‘open balls’ are actually ‘open sets’ according to the
definition above.

As an aside, the three essential properties of ‘open sets’ that guarantee that this
definition yields a ‘topology’ are the following:

• The sets ∅ and X are open.
• If {Uα}α∈A is any collection of open sets, then the union ∪α∈AUα is open.
• If {Un}Nn=1 is any finite collection of open sets, then the intersection ∩Nn=1Un

is open.

You are asked to verify these properties in Exercise 5.5.
Let us also point out that there is a way of phrasing convergence purely in terms

of open sets—see Exercise 5.6.
Once we have a notion of ‘open sets’, we also get a notion of ‘closed sets’. But

be careful: ‘closed’ is not the same thing as ‘not open’.

Definition 5.7. Let (X, d) be a metric space. A set S is closed if its complement
Sc is open. Here

Sc := {x ∈ X : x /∈ S}.

Really, don’t conflate ‘closed’ with ‘not open’ or vice versa. Remember, ∅ and
X are always both open, but they are complements of one another. So they are
always both closed as well.

Let’s see a few examples.

Example 5.5. Consider R with the standard metric. An open ball is an interval
of the form (x − r, x + r) for some x ∈ R and r > 0. Intervals of the form (a, b)
are open, but intervals of the form [a, b) or [a, b] are not. Semi-infinite intervals
like (a,∞) are open. Intervals of the form [a, b] are closed, while intervals of the
form [a, b) or (a, b] are neither open nor closed. How about an interval of the form
[a,∞)? Is it closed?
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Example 5.6. Consider R with the discrete metric. Then for any x ∈ R,

Br(x) =

{
{x} if r ≤ 1,

R if r > 1.

This actually shows that in this topology, every single point {x} is open. But then
since arbitrary unions of open sets are open, we get that every set is open! That
means that every set is closed as well.

We often think about closed sets in terms of sequences. In particular, we have
the following:

Lemma 5.2. Let (X, d) be a metric space and S ⊂ X. Then S is closed if and
only if whenever {xk} is a sequence of elements in S that converge to x, we have
x ∈ S.

Proof. I will show you the ⇐= direction. You can work out the =⇒ direction
yourself!

We argue by contrapositive. We suppose S is not closed. This means that Sc

is not open. This in turn implies that there exists x∗ ∈ Sc so that for any n,
B1/n(x∗) 6⊂ Sc. In other words, for any n, there exists xn ∈ S with

d(xn, x∗) <
1
n .

But now the sequence {xn} is contained in S but converges to x∗, which does not
belong to S. Done! �

Example 5.7. Consider the set of rationals Q as a subset of R (with the standard
metric). Is this set open, closed, both, or neither?

Well, the set is not closed, because I can find a sequence of rational numbers
converging to

√
2, which is irrational. The set is not open, either, because for any

ε > 0 and any q ∈ Q, we can find an irrational x in (q − ε, q + ε) (so there is no
‘wiggle room’).

Example 5.8. Let’s go back to the function space example of C([0, 1]). Consider
the set S of polynomials (restricted to [0, 1]). Is this set open, closed, both, or
neither? Actually, we will see this set is a lot like the previous example.

Indeed, the set is not closed, because I can find a sequence of polynomials Pn
converging uniformly to a continuous function that is not a polynomial. Indeed,
we can just consider the Taylor polynomial approximations to some function like
sinx.

The set is not open, either, because for any ε > 0 and any polynomial P , I
can find a continuous function f that is not a polynomial with d(P, f) < ε. In
particular, I just need to take f(x) = P (x) + ε sin(x), say.

In fact, just like the rationals in R, the polynomials are dense in C([0, 1]). This
means that for any continuous function f on [0, 1], we can find a sequence of poly-
nomials Pn converging uniformly to f on [0, 1]. (This is a result due to Weierstrass
in 1885.)

5.3. Continuity. Now that we have seen some of the basics of topology, we can
turn to several important concepts: continuity, connectedness, and compactness.
These are actually ‘purely topological concepts’, that they only depend on the
notion of an open set. However, we will focus on giving ‘sequential’ or ‘functional’



A COURSE ON ADVANCED CALCULUS 83

versions of these, which are a little bit more intuitive to work with and end up
being equivalent in the metric space setting anyway.

First, we give a definition of continuity in terms of sequences that should look
pretty familiar.

Definition 5.8 (Continuity, I). Let X and Y be metric spaces and f : X → Y .
We say that f is continuous at x0 ∈ X if

whenever lim
n→∞

xn = x0, we have lim
n→∞

f(xn) = f(x0).

We say that f is continuous on X if f is continuous at every point x0 ∈ X.

Note that when we write limxn = x0, we are referring to the metric on X, while
lim f(xn) = f(x0) involves the metric on Y . When X = Y = R with the usual
metric, this recovers our notion of continuity.

Here’s a more interesting example to test your understanding:

Example 5.9. Let X be the metric space of continuous functions on [0, 1] with
metric

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

Define the function J : X → R by

J(f) =

∫ 1

0

f(x) dx.

Then J is continuous. Indeed, fn → f means the sequence fn converges uniformly
to f on [0, 1]. Thus for any ε > 0, there exists N so that

n ≥ N =⇒ |fn(x)− f(x)| < ε for all x ∈ [0, 1].

In this case, we have

|J(fn)− J(f)| =
∣∣∣∣∫ 1

0

fn(x)− f(x) dx

∣∣∣∣ ≤ ∫ 1

0

|fn(x)− f(x)| dx < ε

for any n ≥ N .

An equivalent definition of continuity that involves the metrics a bit more ex-
plicitly is the following:

Definition 5.9 (Continuity, II). Let (X, d) and (Y, d̃) be metric spaces and f :
X → Y . We say that f is continuous at x0 ∈ X if

for all ε > 0 there exists δ > 0 so that x ∈ Bδ(x0) =⇒ f(x) ∈ Bε(f(x0)).

That is,

d(x, x0) < δ =⇒ d̃(f(x), f(x0)) < ε.

Note that Bδ(x0) is a ball in the (X, d) metric, while Bε(f(x0)) is a ball in the

(Y, d̃) metric.
At this point, you should stop and convince yourself that Definition 5.8 and

Definition 5.9 are equivalent. Otherwise, we would have two competing notions of
‘continuity’, which would be a serious problem.

To test out your understanding, consider the following example:

Example 5.10. Let X = Y = R. Give X the discrete metric and Y the standard
metric. It follows that every function f : X → Y is continuous.
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We can also continue from Definition 5.9 to define a notion of uniform continuity:

Definition 5.10 (Uniformly Continuous). Let (X, d) and (Y, d̃) be metric spaces
and f : X → Y . We say that f is uniformly continuous if for all ε > 0, there exists
δ > 0 so that for all x0 ∈ X,

x ∈ Bδ(x0) =⇒ f(x) ∈ Bε(f(x0)).

With these definitions of continuity in place, we can establish some basic results
about continuous functions that parallel those we proved above. For example:

Proposition 5.3. Let X,Y, Z be metric spaces. Suppose f : X → Y is continuous
and g : Y → Z is continuous. Then g ◦ f is continuous.

Proof. The proof is actually identical to the proof of Proposition 2.6. You just need
to replace all instances of | · − · | with d(·, ·), where d is the appropriate metric. �

5.4. Connectedness and compactness. We next introduce two properties of
sets known as connectedness and compactness. More precisely, we will define ‘path-
connectness’ and ‘sequential compactness’ (which turn out to be equivalent in the
setting of metric spaces).

Definition 5.11 (Path-connected set). Let X be a metric space. A nonempty set
S ⊂ X is path-connected if for any x0, x1 ∈ S, there exists a continuous function
f : [0, 1] → S so that f(0) = x0 and f(1) = x1. (We call such a function a path
between x0 and x1).

Example 5.11. Suppose we equip R with the discrete metric d. Then the only
connected sets are singletons {x}. Indeed, the only functions γ : [0, 1] → (R, d)
that are continuous are constant functions. Can you see why?

Example 5.12. Intervals in R (with the standard metric) are connected. For
example, the interval [a, b] is connected because given x0, x1 ∈ [a, b] we can define
the path

f(θ) = (1− θ)x0 + θx1 ∈ [a, b].

In fact, this same construction shows that in Rn, any ‘n-dimensional interval’ of
the form

I1 × I2 × · · · × In
(where each Ij is an interval) is connected. So, in 2d you get rectangles, in 3d you
get rectangular prisms, and so on.

More generally, we have the following result about connected subsets of R:

Lemma 5.4. Suppose S ⊂ R is connected and y0 < y1 are elements of S. Then
[y0, y1] ⊂ S.

Proof. By connectedness, there exists a continuous function γ : [0, 1] → S with
γ(0) = y0 and γ(1) = y1. By the Intermediate Value Theorem, γ must attain every
value in [y0, y1]. �

In general, we have the following result concerning continuous functions on con-
nected sets:

Theorem 5.5. Suppose S is a connected subset of a metric space (X, d) and f :

X → Y is a continuous function, with (Y, d̃) another metric space. Then f(S) is a
connected subset of Y .
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Proof. Take any y0, y1 ∈ f(S). By definition, y0 = f(x0) and y1 = f(x1) for some
x0, x1 ∈ S. As S is connected, we may find a continuous path γ : [0, 1]→ S so that
γ(0) = x0 and γ(1) = x1. Then, using Proposition 5.3, we find that

f ◦ γ : [0, 1]→ f(S)

is a continuous path with

f ◦ γ(0) = f(x0) = y0 and f ◦ γ(1) = f(x1) = y1.

Thus f(S) is connected. �

As a consequence of this general result, we can obtain a higher-dimensional
version of the intermediate value theorem. Note that this is only new in dimensions
n ≥ 2.

Corollary 5.6 (Intermediate value theorem for Rn). If S ⊂ Rn is connected and
f : S → R is continuous, then f satisfies the intermediate value property. More
precisely, suppose that

f(x0) = y0 and f(x1) = y1 for some x0, x1 ∈ S.
Then for any c between y0 and y1, there exists x∗ ∈ S so that f(x∗) = c.

Proof. From the theorem above, the image set f(S) is a connected subset of R. By
assumption, this set contains y0 and y1. Thus, the lemma above guarantees that
the image f(S) contains every c between y0 and y1. �

Remark 5.7. Our presentation here is a bit ‘backwards’. Usually, connectedness is
introduced as a purely topological property. This definition of connectedness is then
used to establish something like Lemma 5.4, which is subsequently used to prove
the Intermediate Value Theorem (even the one-dimensional version). Instead, we
essentially proved the Intermediate Value Theorem ‘by hand’ in dimension n = 1,
and then used it to derive the higher dimensional analogues.

The notion of ‘compactness’ takes more effort to get used to, but it is an ex-
tremely important concept. The definition that follows might remind you of a result
we discussed previously, namely, the Bolzano–Weierstrass Theorem 3.29.

Definition 5.12 (Compact set). Let X be a metric space. A set S ⊂ X is (sequen-
tially) compact if every sequence {xn} in S has a subsequence {xnk} that converges
to a limit in S.

In everyday language, we use ‘compact’ to mean something like ‘able to fit neatly
into a small space’. The definition above can be connected to this more intuitive
notion by means of the following result concerning compact sets in Rn. This is a
version of the ‘Heine–Borel’ Theorem of the late 1800s.

Theorem 5.8. Consider Rn with the standard metric. Then S ⊂ Rn is compact if
and only if it is closed and bounded.

Proof. =⇒ : Suppose S is (sequentially) compact.
We first show S is closed. We suppose {xk} is a sequence in S converging to x∗.

By compactness, we know that xk has a subsequence that converges to a limit in
S. However, this subsequential limit must also be x∗, and so we obtain x∗ ∈ S.

We next show S is bounded. If not, then we may find a sequence {xk} in S such
that ‖xk‖ > k. However, this sequence can have no convergent subsequence!
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⇐=: Suppose S is closed and bounded, and let {xk} be a sequence in S. De-

note the components of xk by xjk for j = 1, . . . , n. Because S is bounded, each

component sequence {xjk} is bounded. Applying the Bolzano–Weierstrass Theorem
(Theorem 3.29), we can therefore find a subsequence along which x1k converges. We
can then take a subsequence of this subsequence so that x2k also converges. Con-
tinuing in this fashion, we can find a subsequence of the original sequence along
which xjk converges for each j = 1, . . . , n. It follows that {xk} converges along this
subsequence, and because S is closed the limit must belong to S. �

With this theorem in hand, we have a simple description of compact sets in Rn.
Unfortunately, this characterization of compact sets is not valid in all settings. In
particular, in more general spaces we can have closed, bounded sets that fail to be
compact.

We next consider how continuous functions behave on compact sets.

Lemma 5.9. Suppose f : X → Y is a continuous function between two metric
spaces and X is compact. Then f(X) is compact.

Proof. Let {yn} be a sequence in f(X). Then each yn = f(xn) for some xn = X.
By compactness, the sequence {xn} has a convergent subsequence xnk → x∗ ∈ X.
By continuity, f(xnk)→ f(x∗) ∈ f(X). �

Using this, lemma, we can prove a more general version of the Extreme Value
Theorem.

Theorem 5.10 (Extreme Value Theorem). Suppose f : X → R is a continuous
function and X is compact. Then

(i) f is bounded, and
(ii) f attains its maximal and minimal values.

Proof. We first show that f is bounded. This means that there exists M > 0 so
that |f(x)| ≤M for all x ∈ X. We argue by contradiction. If f were not bounded,
we could find {xn} ⊂ X such that |f(xn)| > n for each n. However, this would give
a sequence in f(X) that has no convergent subsequence, contradicting that f(X)
is compact.

We can therefore define M = supx∈X f(x) and m = infx∈X f(x). We will show
that there exists x∗ so that f(x∗) = M ; attainment of the value m is similar. Using
the definition of supremum, we see that for any n ≥ 1, the number M − 1

n is not
an upper bound for the set

{f(x) : x ∈ X}.
Therefore, for each n ≥ 1, we may find xn ∈ X so that

M − 1
n < f(x) ≤M.

By compactness of X, there exists a subsequence xnk converging to some x∗ ∈ X.
Noting that f(xnk) → M by construction and appealing to continuity, we derive
that f(x∗) = M , as desired. �

Finally, we prove an analogue of Theorem 3.28 (which showed that continuous
functions on [a, b] are automatically uniformly continuous).

Theorem 5.11. Suppose f : X → Y is a continuous function between two metric
spaces and X is compact. Then f is uniformly continuous.
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Proof. Suppose f is continuous but not uniformly continuous. Then, carefully
negating the definition of uniform continuity, we may find ε0 > 0 and two sequences
{xn} and {yn} in X such that

d(xn, yn) < 1
n and d̃(f(xn), f(yn)) > ε0.

Now, using compactness of X (twice), it is possible to find a subsequence along
which xnk → x∗ ∈ X and ynk → y∗ ∈ X. In fact, we must have x∗ = y∗, since

d(x∗, y∗) ≤ d(x∗, xnk) + d(xnk , ynk) + d(ynk , y∗)→ 0 as k →∞.
We now claim that f fails to be continuous at x∗, which yields a contradiction. To
see this, first note that by the triangle inequality and by construction, we have

d̃(f(ynk), f(x∗)) + d̃(f(xnk), f(x∗)) ≥ d̃(f(ynk), f(xnk)) > ε0

for all k. Using the pigeonhole principle, this implies that there is a subsequence
zk of either ynk or xnk along which

d̃(f(zk), f(x∗)) >
1
2ε0.

However, as we are guaranteed that zk → x∗, this implies that f fails to be contin-
uous at x∗, as desired. �

5.5. Exercises.

Exercise 5.1. Fix 1 ≤ p <∞ and define

d(x, y) =

(
|y1 − x1|p + · · ·+ |yn − xn|p

) 1
p

for x, y ∈ Rn.

Show that d is a metric.

Exercise 5.2. Let X = R and d(x, y) be the discrete metric, that is,

d(x, y) =

{
1 x 6= y,

0 x = y.

Show that a sequence xn converges if and only if it is eventually constant (that is,
there exists c ∈ R and N ∈ N so that n ≥ N =⇒ xn = c).

Exercise 5.3. Verify that an ‘open ball’ in a metric space is actually an open set.

Exercise 5.4. Show that the set of continuous functions on [0, 1] with the metric

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

is a complete metric space.

Exercise 5.5. Verify the properties of ‘open sets’ listed after the definition of ‘open
set’.

Exercise 5.6. . Let {xn} be a sequence in a metric space (X, d). Show that xn
converges to x if and only if for any open set U containing x, there exists N ∈ N
so that

n ≥ N =⇒ xn ∈ U.

Exercise 5.7. Let (X, d) be a metric space. Show that for any distinct pair of
points x, y ∈ X, there exist open sets S, T so that x ∈ S, y ∈ T , and S ∩ T = ∅.
(This shows that every metric space is a ‘Hausdorff ’ space.)
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Exercise 5.8. Work out the =⇒ direction of Lemma 5.2.

Exercise 5.9. Show that the definitions of continuity in Definition 5.8 and Defi-
nition 5.9 are equivalent.
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Second Semester Content
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6. Euclidean n-space and linear transformations

6.1. Euclidean n-space. We recall the definition of Euclidean n-space, namely

Rn = {(x1, . . . , xn) : each xj ∈ R}.

In the previous section, we considered this space in the context of ‘metric spaces’.
In this section, we will instead focus on the viewpoint of Rn as a ‘vector space’,
specifically, an ‘inner product space’. As we will see, the inner product structure
on Rn gives rise to the same metric space structure that we considered previously.

The vector space structure of Rn refers to the fact that we can (i) add elements
of Rn and (ii) multiply elements of Rn by scalars (i.e. real numbers). In particular,

if x = (x1, . . . , xn), y = (y1, . . . , yn), and c ∈ R,

then we can define

x+ y = (x1 + y1, . . . , xn + yn) ∈ Rn and cx = (cx1, . . . , cxn) ∈ Rn. (6.1)

To be precise, the notation above (writing x, y horizontally) should be used when
we are just thinking of x and y as points in Rn, rather than ‘vectors’. When we wish
to emphasize the vector space structure, we will write elements of Rn as column
vectors, as follows:

x =

 x1
...
xn

 .
As you can see, it is much bulkier to type columns, and so often we will use rows.
Nonetheless, at times it will be important to view elements of Rn as column vectors
(e.g. when we introduce linear transformations), so we will need to be careful about
this at various points. Note that in general, I will not decorate x with an arrow
(i.e. write ~x) or write it in bold (i.e. write x), so you will have to pay attention
and use context to interpret expressions like cx in (6.1) above.

The usual algebraic rules for manipulating real numbers carry over to algebraic
rules for manipulating vectors. For example, a(x + y) = ax + ay whenever a ∈ R
and x, y ∈ Rn, or x + 0 = x for any x ∈ Rn, where 0 denotes the zero vector
(0, . . . , 0) (again, without any special decoration).

There are many other examples of sets (beyond just Rn) that have ‘vector space
structure’. Important examples include ‘function spaces’ (which we also encoun-
tered when discussing metric spaces), like the space of continuous functions, or the
space of differentiable functions, and so on. Any time you are working with a vec-
tor space, there are several important concepts that you will encounter, including
the notions of subspace, linear combination, span, linear independence, basis, and
dimension. We briefly review these concepts here:

Example 6.1 (Linear algebra refresher).

• If V is a vector space and W is a subset of V , then W is called a subspace
if 0 ∈W , and av + bw ∈W whenever a, b ∈ R and v, w ∈W .

• If {v1, . . . , vk} is a collection of vectors in a vector space V , then a vector
of the form

v = a1v1 + · · ·+ akvk, aj ∈ R
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is a linear combination of v1, . . . , vk. The set of all linear combinations of
{v1, . . . , vk} is called the span of {v1, . . . , vk}. The span of a set of vectors
always produces a subspace.
• A set of vectors {v1, . . . , vk} is linearly independent if

a1v1 + · · · akvk = 0 =⇒ a1 = a2 = · · · = ak = 0.

That is, the only linear combination of the vectors vk that equals zero is
the ‘trivial’ one.
• Suppose W is a subspace of V . A collection of vectors {v1, . . . , vk} is a

basis for W if it is linearly independent and its span equals W .
• If a vector space has a basis consisting of finitely many elements, it is called

finite dimensional. In this case, every basis necessarily has the same number
of elements (not obvious, but I won’t prove it here); this number is called
the dimension of the vector space. If a vector space has no finite basis,
then it is called infinite dimensional.

Example 6.2. Rn is a finite-dimensional vector space; its dimension is n. A basis
for Rn is given by the vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Example 6.3. The set of continuous functions on [0, 1] is an infinite dimensional
vector space.

Once one has played around with the ‘algebra’ of adding and scaling vectors, it
is natural to ask whether or not there is any sense in which we can take products
of vectors. In fact, the answer is yes, there are several types of products that one
could consider. For now, we will focus on one particular choice, namely, the inner
product or dot product on Rn.

Definition 6.1. The dot product of two vectors x, y ∈ Rn is the real number

x · y = x1y1 + · · ·+ xnyn,

which we may also write

x · y =

n∑
j=1

xjyj .

To be clear: the dot product of two vectors is not another vector, but rather a
scalar (i.e. a real number). We can quickly check some algebraic properties of this
product (like x · y = y · x, and so on), as well as the fact that x · x ≥ 0 for any
x ∈ Rn (in fact, x · x = 0 if and only if x = 0).

What is not yet clear is what the meaning of this ‘product’ is. Surprisingly, this
definition of dot product is all we need to make sense of all of the ‘geometry’ of Rn.
To see this, let us first show how we can use the dot product to define a notion of
the length or norm of a vector in Rn.

Definition 6.2. The (Euclidean) length (or norm) of x ∈ Rn is defined by

|x| =
√
x · x =

( n∑
j=1

x2j

) 1
2

.

You should check that this corresponds to your usual notion of the length of a
vector in R2 or R3, say. In particular, we see that |cx| = |c| |x| for any c ∈ R and
x ∈ Rn, and the only vector of length zero is the zero vector.
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Once we have this notion of ‘norm’, we can also speak of the ‘distance’ between
two vectors:

Definition 6.3. The (Euclidean) distance between x and y is defined by

d(x, y) = |x− y| =
( n∑
j=1

(xj − yj)2
) 1

2

.

Again, this corresponds to our usual notion of Euclidean distance. In particular,
d(x, y) = d(y, x) for any x, y ∈ Rn, and d(x, y) = 0 if and only if x = y.

We are going to see below that this notion of ‘distance’ satisfies the other property
discussed in Section 5 on metric spaces, namely the triangle inequality. Similarly,
we will see that our notion of ‘length’ satisfies a triangle inequality. The key is the
following essential inequality, known as the Cauchy–Schwarz inequality.

Theorem 6.1 (Cauchy–Schwarz). For any x, y ∈ Rn,

|x · y| ≤ |x| |y|.

Proof. It is enough to consider the case x 6= 0 and y 6= 0. In this case, we may set

u = x
|x| and v = y

|y| , so that |u| = |v| = 1.

Then we have

0 ≤ |u− v|2 = (u− v) · (u− v) = |u|2 − 2u · v + |v|2 = 2− 2u · v,
or

u · v ≤ 1, which means x · y ≤ |x| |y|.
Running the same argument with v = − y

|y| also yields −u · v ≤ 1, and hence the

result follows. �

If we expand out the definition of the inner product and norm, the Cauchy–
Schwarz inequality reads [ n∑

j=1

xjyj

]2
≤

n∑
j=1

x2j ·
n∑
j=1

y2j .

The Cauchy–Schwarz inequality implies the important triangle inequality :

Lemma 6.2 (Triangle inequality). For any x, y ∈ Rn, we have

|x+ y| ≤ |x|+ |y|.
Consequently, for any x, y, z ∈ Rn,

d(x, z) ≤ d(x, y) + d(y, z).

Proof. It is enough to prove the first inequality (can you see why?). For this, we
use Cauchy–Schwarz to obtain

|x+ y|2 = (x+ y) · (x+ y)

= |x|2 + 2x · y + |y|2

≤ |x|2 + 2|x| |y|+ |y|2 = (|x|+ |y|)2,
which yields the result. �

The Cauchy–Schwarz inequality also allows us to make sense of the notion of the
angle between two nonero vectors.



A COURSE ON ADVANCED CALCULUS 93

Definition 6.4 (Angle). Let x and y be two nonzero vectors in Rn. We define the
angle between x, y to be the unique θ ∈ [0, π] such that

cos θ =
x · y
|x| |y|

.

Note that in the case y = cx for some c > 0 (so the vectors are parallel), we have

x · y = |x| |y| =⇒ θ = 0,

and similarly if y = cx for some c < 0 (so the vectors are antiparallel), we have

x · y = −|x| |y| =⇒ θ = π.

In the case θ = π
2 (when the vectors are perpendicular), we have x · y = 0. We

often use the word orthogonal instead of perpendicular, that is,

x · y = 0 ⇐⇒ x and y are orthogonal.

The computation in the proof of the triangle inequality shows that

x · y = 0 =⇒ |x+ y|2 = |x|2 + |y|2,
which we know as the Pythagorean Theorem.

A simple example to help you visualize the relationship between dot products
and angles is the following: fix x = (1, 0) ∈ R2 and let y = (cos θ, sin θ) ∈ R2 for
some θ ∈ [0, π]. Then the angle between x and y is θ.

We now have the basics of Euclidean space in place. We defined vectors in Rn,
made sense of scalar addition and multiplication, and defined one product (the dot
product) that allowed us to define notions of distance, length, and angle.

Before moving on to the next topic, let us point out that the notion of an ‘inner
product’ also extends well beyond the setting of vectors in Rn.

Example 6.4. Let C([−1, 1]) be the vector space of continuous functions on [−1, 1].
For f, g ∈ C([−1, 1]), define the so-called L2 inner product

〈f, g〉 =

∫ 1

−1
f(x) g(x) dx.

This defines a norm and distance (called the L2-norm, L2-distance) via

‖f‖2 =
√
〈f, f〉 =

(∫ 1

−1
|f(x)|2 dx

) 1
2

and d2(f, g) = ‖f − g‖2.

We have the Cauchy–Schwarz inequality |〈f, g〉| ≤ ‖f‖2‖g‖2, which means∣∣∣∣∫ f(x)g(x) dx

∣∣∣∣ ≤ (∫ |f(x)|2 dx
) 1

2
(∫

g(x)|2 dx
) 1

2

.

This implies the triangle inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.
We also have the notion of the angle between two functions, and say f and g are
orthogonal if

〈f, g〉 = 0, i.e.

∫ 1

−1
f(x)g(x) dx = 0.

For example, if f is an even function and g is an odd function, then f and g are
orthogonal.
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We turn now to our next topic, namely, linear mappings between Euclidean
spaces.

6.2. Linear mappings and matrices. We define a linear mapping (or ‘linear
transformation’) between Rn and Rm as follows:

Definition 6.5 (Linear Mapping). A function L : Rn → Rm is linear if

L(ax+ by) = aL(x) + bL(y) for all a, b ∈ R and x, y ∈ Rn.

The canonical example of a linear mapping is given by matrix-vector multiplica-
tion. We define an m× n matrix to be a rectangular array of real numbers with m
rows and n columns, as follows:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

 .
We denote the rows of A by Ai, where i = 1, . . . ,m. Note that each Ai is an element
of Rn. For example,

A2 = (a21, a22, . . . , a2n), and so on.

We can then define the function LA : Rn → Rm by imposing that LA(x) is an
element of Rm satisfying

LA(x) = (A1 · x,A2 · x, . . . , Am · x) ∈ Rm.
To be clear:

an m× n matrix A yields a mapping LA : Rn → Rm.
Pay attention to the order of the m’s and n’s—it is very easy to mess this up.

The fact that the mapping LA : Rn → Rm defined above is actually linear
follows from the corresponding property for dot products and the definition of
scalar multiplication and addition of vectors. In particular, we have

LA(ax+ by) = (A1 · (ax+ by), . . . , Am · (ax+ by))

= (a(A1 · x) + b(A2 · y), . . . , a(Am · x) + b(Am · y))

= a(A1 · x, . . . , Am · x) + b(A1 · y, . . . , Am · y)

= aLA(x) + bLA(y)

for any a, b ∈ R and x, y ∈ Rm.
The collection of m × n matrices actually forms a vector space (of dimension

mn), which we write Rm×n. Given a matrix A ∈ Rm×n and x ∈ Rn, we can use
different notation to express the vector LA(x) ∈ Rm. In particular, if we view
x ∈ Rn as an n× 1 matrix (we call it a column vector), then we may simply write

LA(x) = Ax,

where the product on the right is an instance of matrix multiplication, and we again
view the output (an element of Rm) as an m×1 column vector. Another viewpoint
(used below) is that Ax is obtained by taking a linear combination of the columns
Aj of A, namely,

Ax = x1A
1 + · · ·+ xnA

n.

The general definition for matrix multiplication is as follows:
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Definition 6.6 (Matrix multiplication). Given an m × n matrix A and an n × p
matrix B, we define the matrix product AB to be the m × p matrix whose ikth

entry is

(AB)ik =

n∑
j=1

aijbjk, i = 1, . . . ,m, k = 1, . . . , p.

If we write Ai for the rows of A and Bk for the columns of B, we may also write
(AB)ik = Ai ·Bk.

Matrix multiplication satisfies many of the familiar algebraic rules for multipli-
cation, with one key exception, namely, that matrix multiplication is not in general
commutative. That is, even if both products AB and BA make sense, you cannot
expect AB = BA in general.

Here is what we mean when we say that matrix multiplication is the ‘canonical’
example of a linear transformation:

Theorem 6.3. Suppose f : Rn → Rm is a linear mapping. Then there exists a
unique m× n matrix A such that

f(x) = Ax for all x ∈ Rn.

Proof. If f : Rn → Rm is a linear mapping, then we define A so that its columns
are given by Aj = f(ej) for j = 1, . . . , n. Writing x ∈ Rn as

x = x1e1 + · · ·+ xnen,

it follows from linearity that f(x) = Ax for any x:

f(x) = x1f(e1) + · · ·xnf(en) = x1A
1 + · · ·+ xnA

n = Ax.

For uniqueness, we observe that if

Ax = f(x) = Bx for all x ∈ Rn,

then by evaluating at the standard basis vectors for Rn, we can obtain that each
column of A equals each column of B, so that A = B. �

Example 6.5. Let’s look at two special cases. First, the theorem implies that any
linear mapping f : Rn → R is of the form f(x) = a · x for some a ∈ Rn. Second,
the theorem implies that any linear mapping f : R→ Rn is of the form f(x) = xa
for some a ∈ Rn.

We have just seen that any linear transformation between Rn and Rm essentially
‘is’ a matrix. Something similar is true for linear transformations between general
finite-dimensional vector spaces. In particular, any linear transformation f : V →
W between an n-dimensional vector space V and an m-dimensional vector space
W can be represented by an m× n matrix (after choosing bases for V and W ).

The situation is richer in the setting of infinite dimensional vector spaces. Let
us just consider a few simple examples:

Example 6.6. Consider the vector space C([0, 1]). We can define linear transfor-
mations T : C([0, 1])→ R and S : C([0, 1])→ R by

T (f) = f(0) and S(f) =

∫ 1

0

f(x) dx.

I will leave it to you to check that these are linear transformations.
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Example 6.7. Let V denote the set of infinitely differentiable functions. Define
the linear transformation T : V → V by

Tf = d
dxf.

We state without proof the following useful proposition, as well:

Proposition 6.4. If f : Rn → Rm and g : Rm → Rk are linear transformations,
then the composition g ◦ f : Rn → Rk is a linear transformation. In fact, if
A ∈ Rm×n and B ∈ Rk×n are the matrices for f and g, then BA is the matrix for
g ◦ f , that is

g ◦ f(x) = BAx.

Given any linear transformation f : Rn → Rm (so that f(x) = Ax for some
m× n matrix A), there are two associated subspaces that we may consider:

Definition 6.7. The kernel (or null space) of a linear transformation f : Rn → Rm
is the subspace

{x ∈ Rn : f(x) = 0} ⊂ Rn.
The image (or range) of f is the subspace

{y ∈ Rm : y = f(x) for some x ∈ Rn} ⊂ Rm.

It is a general fact of linear algebra that for any linear transformation f : Rn →
Rm, the sum of the dimension of the kernel and the dimension of the image equals
n.

In later sections, we will need to make use of the determinant of certain n × n
matrices. We use the notation detA or |A| for the determinant of a matrix A. I
assume you have worked with determinants before, but just to remind you, the
definition of the determinant is inductive: for a 1 × 1 matrix A, we just have
detA = A. For an n× n matrix A = (ajk), we let Ajk denote the (n− 1)× (n− 1)
submatrix obtained by removing row j and column k from A. Then

detA =

n∑
i=1

(−1)1+ja1j detA1j .

(This is also called the cofactor expansion along the first row; actually, any row or
column may be used.) We will need a few facts about determinants, namely:

• The determinant is multilinear (viewing it as a function of the columns of
the matrix) and alternating.

• The determinant of A is equal to the determinant of At (i.e. the transpose
of A, obtained by swapping the rows and columns of A).

• det(AB) = det(A) det(B).

The determinant has a geometric interpretation: given a matrix A ∈ Rn×n,
we consider the image of the standard basis vectors ej . Then |detA| is the n-
dimensional volume of the paralellepiped spanned by the vectors {Aej}.

The determinant is also connected to the question of invertibility. We say that
an n× n matrix A is invertible if there exists a matrix B so that AB = BA = In,
where In is the ‘identity’ matrix containing the standard basic vectors {ej} for its
columns. We then have the following:

Theorem 6.5. An n×n matrix A is invertible if and only if detA 6= 0. This holds
if and only if the columns of A are linearly independent.
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One can also use a formula involving the determinant (known as Cramer’s rule)
to solve linear systems; however, we won’t discuss this here.

6.3. Limits, continuity, and topology of Rn. The notions of limits and conti-
nuity for functions f : Rn → Rm were already described in the context of metric
spaces discussed in Section 5. So, we will only briefly review the main ideas here:

First, we have the following definitions:

• An open ball in Rn is a set of the form

Br(a) = {x ∈ Rn : |x− a| < r}.
• A point a ∈ Rn is a limit point of a set D ⊂ Rn if

for every r > 0, D ∩ [Br(a)\{a}] 6= ∅.
Note that a limit point of D does not necessarily have to belong to D.
• If D ⊂ Rn, f : D → Rm, and a ∈ Rn is a limit point of D, then we write

lim
x→a

f(x) = b

if

for any ε > 0, there exists δ > 0 such that[
x ∈ D and 0 < |x− a| < δ

]
=⇒ |f(x)− b| < ε.

The following lemma is also useful for establishing existence of limits in higher
dimensions.

Lemma 6.6. Suppose D ⊂ Rn and f : D → Rm. Write f1, . . . , fm for the m
component functions of f . Then

lim
x→a

f(x) = b ⇐⇒ lim
x→a

fi(x) = bi for i = 1, . . . ,m.

Proof. A great exercise in checking the definitions! �

We then have a few more definitions and basic results, which should once again
mostly be review:

• Let D ⊂ Rn. A function f : D → Rm is continuous at a ∈ D if

lim
x→a

f(x) = f(a). (6.2)

Note that this asserts two things: (i) the limit exists, and (ii) the limit
equals f(a). If a is not a limit point of D (in which case we call it an isolated
point), we say that (6.2) is ‘vacuously’ true, and hence f is automatically
continuous at any isolated point.

• Using Lemma 6.6, we can immediately see that a function is continuous at
a if and only if each component function is continuous at a.

• As in the case of real-valued functions on R, we have that the finite sum
or product continuous functions is continuous, and the composition of two
continuous functions is continuous as well. These facts are very useful
for proving continuity of many familiar functions (without having to rely
directly on the ‘ε-δ’ definition).

Finally, we discuss a few ‘topological’ properties of Rn. These topics were covered
in Section 5, so we will once again be somewhat brief in our presentation.

We first recall the notion of a convergent sequence. It is basically the same as in
the case of real numbers:
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Definition 6.8. A sequence {xk} ⊂ Rn converges to ` ∈ Rn if for any ε > 0, there
exists N such that

k ≥ N =⇒ |xk − `| < ε.

You should check that a sequence converges if and only if each component se-
quence converges. (You should also make sure you can see how the completeness
of R implies the completeness of Rn.)

We also need the following:

• A set S ⊂ Rn is open if for any x ∈ S, there exists r > 0 so that Br(x) ⊂ S.
Arbitrary unions of open sets are open, as are finite intersections of open
sets.
• A set S ⊂ Rn is closed if its complement Sc = {x ∈ Rn : x /∈ S} is open.

Closed does not mean the same thing as‘not open’ ! A useful criterion for
checking if a set is closed is the following: a set is closed if and only if it
contains all of its limit points. This is equivalent to saying that S is closed
if and only if whenever {xk} is a convergent sequence of elements of S, the
limit also belongs to S.
• A set K ⊂ Rn is compact if every sequence in K has a subsequence that

converges to a limit in K. We have the important Heine–Borel Theorem
that says that K ⊂ Rn is compact if and only if it is closed and bounded.
• A set D ⊂ Rn is connected if for any two points x, y ∈ D, there exists a

continuous function γ : [0, 1]→ D such that γ(0) = x and γ(1) = y.

Finally, we recall some important theorems about continuous functions on com-
pact and connected sets:

• If K ⊂ Rn is compact and f : K → Rm is continuous, then the image f(K)
is compact in Rm.

• If K ⊂ Rn is compact and f : K → R is continuous, then f attains
maximum and minimum values on K.

• If K ⊂ Rn is compact and f : K → R is continuous, then f is uniformly
continuous.

• If D ⊂ Rn is connected and f : D → Rm is continuous, then f(D) ⊂ Rm is
connected.

If you need to review any of this material, please refer back to Section 5!

6.4. Exercises.
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7. Multivariable differential calculus

7.1. The derivative in higher dimensions. To get started, let us recall the
definition of the derivative of a real-valued function defined on an open interval,
say f : I → R. We said that f is differentiable at a point a ∈ R if the limit

lim
h→0

f(a+ h)− f(a)

h
exists,

and we call this limit the derivative f ′(a). Rearranging this, we can express this by
saying that there exists ` ∈ R such that defining R(h) via

f(a+ h) = f(a) + `h+R(h), we have lim
h→0

R(h)
h = 0.

(In this case ` = f ′(a).)
The definition in the higher dimensional case (i.e. where F : Rn → Rm) is similar

to the last formula. However, the parameter h now must be taken to be an element
of Rn, and the simple multiplication `h is replaced by a linear transformation L(h),
where L : Rn → Rm. That is, we want to be able to write

F (a+ h) = F (a) + L(h) +R(h), where lim
h→0

|R(h)|
|h|

= 0

for some linear transformation L. The precise definition is the following:

Definition 7.1 (Differentiable). Let D ⊂ Rn be an open set and F : D → Rm.
Given a ∈ D, we say that f is differentiable at a if there exists a linear mapping
L : Rn → Rm such that

lim
|h|→0

F (a+ h)− F (a)− L(h)

|h|
= 0. (7.1)

Before proceeding, we need to deal with one subtle point. Namely, we should
show that if F is differentiable, then the linear transformation appearing in the
definition above is necessarily unique. Indeed, we have to check this, since we would
like to give this transformation a name (and then use it to define the derivative of
F ).

Lemma 7.1. Let F : D → Rm be as in Definition 7.1 and a ∈ D. Suppose L1 and
L2 are linear transformations from Rn → Rm that both satisfy (7.1). Then

L1(v) = L2(v) for all v ∈ Rn, i.e. L1 ≡ L2.

Proof. For h ∈ Rn, define R1(h) and R2(h) by setting

F (a+ h) = F (a) + Lj(h) +Rj(h), j = 1, 2. (7.2)

Then, by the assumption (7.1), we have

lim
|h|→0

|Rj(h)|
|h|

= 0, j = 1, 2. (7.3)

Rearranging (7.2), we can write

L1(x)− L2(x) = R2(x)−R1(x) for any x ∈ Rn. (7.4)
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Now fix v ∈ Rn\{0} and apply (7.4) with the sequence of vectors xn = 1
nv, where

n ∈ N. Using linearity of L1 and L2, this implies

1
n [L1(v)− L2(v)] = R2( 1

nv)−R2( 1
nv)

=⇒ L1(v)− L2(v) = |v| ·
[
R2( 1

nv)

| 1nv|
−
R2( 1

nv)

| 1nv|

]
However, by (7.3), the right-hand side tends to zero as n → ∞ (since | 1nv| → 0).
Thus we conclude

L1(v) = L2(v) for all v ∈ Rn\{0}.
As L1 and L2 are both linear, we also have L1(0) = L2(0) = 0. Thus we conclude
L1 ≡ L2, as desired. �

With uniqueness established, we can now make the following definition:

Definition 7.2 (Differential; derivative). Suppose D ⊂ Rn and F : D → Rm is
differentiable at a point a ∈ D.

• We denote the (unique) linear transformation L : Rn → Rm appearing in
(7.1) by dFa, and we call this linear transformation the differential of F at
a.
• We denote the (unique) m× n matrix of dFa by F ′(a) (see Theorem 6.3),

and we call this the derivative of F at a.

In particular,

dFa(x) = F ′(a)x for all x ∈ Rn,
where the right-hand side is the matrix-vector product.

We have now defined the notion of a derivative of a function F : Rn → Rm, albeit
in a somewhat abstract way (namely, as the matrix of some linear transformation).
However, we can also recognize the entries of the matrix F ′(a) as more familiar
objects, namely, partial derivatives of the component functions of F .

Theorem 7.2 (Entries of the derivative matrix). Suppose D ⊂ Rn and F : D →
Rm is differentiable at a ∈ D. Then, writing (F 1, . . . , Fm) for the components of
F , we have that the entries of F ′(a) are given by

[F ′(a)]jk = DkF
j(a) := lim

h→0

F j(a+hek)−F j(a)
h (7.5)

for j = 1, . . . ,m and k = 1, . . . n.

Remark 7.3. A few remarks are in order. First, the quantity

DkF
j(a), also denoted

∂F j

∂xk
(a)

is called the partial derivative of the function F j with respect to xk. It is defined
by the limit in (7.5), and part of the theorem is the assertion that this limit exists.
In the formula (7.5), ek refers to the kth standard basis vector, and h here is just
an element of R (not Rn).

Proof. By assumption, we have

lim
|h|→0

F (a+ h)− F (a)− F ′(a)h

|h|
= 0.
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In particular, for each j ∈ {1, . . . ,m}, we have

lim
|h|→0

F j(a+ h)− F j(a)− [F ′(a)h]j

|h|
= 0,

where [F ′(a)h]j denotes the jth component of F ′(a)h. In particular,

[F ′(a)h]j =

n∑
`=1

[F ′(a)]j`h
`,

where hk denotes the kth component of h.
Now fix k ∈ {1, . . . , n} and consider a sequence of the form hmek where hm ∈ R

satisfies hm → 0 as m→∞, and ek is the kth standard basis vector. Then we have

[F ′(a)hmek]j = hm

n∑
`=1

[F ′(a)]j`e
`
k = hm[F ′(a)]jk,

and so

lim
m→∞

F j(a+ hmek)− F j(a)− hm[F ′(a)]jk
hm

= 0,

or, rearranging:

lim
m→∞

F j(a+ hmek)− F j(a)

hm
= [F ′(a)]jk.

As this holds for an arbitrary sequence hm → 0, we can conclude that

lim
h→0

F j(a+ hek)− F j(a)

h
= [F ′(a)]jk,

which shows that the partial derivative exists and

DkF
j(a) = [F ′(a)]jk.

�

Let’s work through several examples to clarify some of the ideas above.

Example 7.1. Suppose F : Rn → Rm is a linear transformation. Then we have

F (a+ h) = F (a) + F (h) for all a, h ∈ Rn

which implies that F is differentiable for all a ∈ Rn, and in fact

dFa = F for all a ∈ Rn.

In particular, if we denote the matrix of F by A, then F ′(x) = A for all x ∈ Rn.
Put differently,

the derivative of F (x) = Ax is given by F ′(x) = A.

This is exactly what we expect based on the scalar case!

Example 7.2. Let F : R2 → R4 be given by

F (x, y) = (y, x, xy, y2 − x2).
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Then the partial derivatives all exist and are continuous, which implies that F is
differentiable (see Lemma 7.4 below). At an arbitrary point (x, y), the derivative
matrix is given by

F ′(x, y) =


0 1
1 0
y x
−2x 2y

 .
Example 7.3. Let f : R2 → R be given by

f(x, y) =

{
xy2

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

All of the partial derivatives of f exist at (x, y) = (0, 0). To see this, first note

f(h, 0)− f(0, 0)

h
=

1

h

h · 0
h2
≡ 0, so that Dxf(0, 0) = 0,

and similarly

Dyf(0, 0) = 0.

Thus, if the differential df(0,0) exists, it must be the zero transformation; in partic-
ular, we must have

lim
|k|→0

f(k)

|k|
= 0.

But observe that if we choose k = (h, h) with h > 0, then

f(h, h)

|(h, h)|
=

1√
2h

h3

2h2
=

1

2
√

2
as h→ 0.

Thus f is not differentiable at (0, 0).

The last example showed that just having partial derivatives is not enough to
guarantee differentiability. However, if the partial derivatives are continuous, this
does guarantee differentiability:

Lemma 7.4. If the partial derivatives of F exist and are continuous at a, then F
is differentiable at a.

Proof. It is enough to consider a function F : Rn → R (for differentiability of
F : Rn → Rm is equivalent to differentiability of each of its component functions).

We will prove differentiability of F at a by verifying that the differential of F at
a is given by the linear transformation

L(h) =

n∑
i=1

DiF (a)hi

(which must be the case, if F is indeed differentiable). Thus our task is to prove

lim
h→0

F (a+ h)− F (a)−
∑n
i=1DiF (a)hi

|h|
= 0.

To this end, given h = (h1, . . . , hn) ∈ Rn\{0} we set

h̃0 = 0, and h̃i = (h1, . . . , hi, 0, . . . 0) for i = 1, . . . , n.
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Then we may write

F (a+ h)− F (a) =

n∑
i=1

[F (a+ h̃i)− F (a+ h̃i−1)],

and so our task becomes to show

lim
|h|→0

{
1
|h|

n∑
i=1

[F (a+ h̃i)− F (a+ h̃i−1)−DiF (a)hi]

}
= 0. (7.6)

Now, the point is that we may write

F (a+ h̃i)− F (a+ h̃i−1) = gi(ai + hi)− g(ai),

where gi : R→ R is defined by

gi(x) = f(a1 + h1, . . . , ai−1 + hi−1, x, ai+1, . . . , an).

In particular, by the Mean Value Theorem, we can write

gi(ai + hi)− gi(ai) = g′i(ci)hi for some ci between ai and ai + hi,

and by the definition of gi, we can write

g′i(ci) = DiF (bi), bi = (a1 + h1, . . . , ai−1 + hi−1, ci, ai+1, . . . , an).

That is, we have

F (a+ h̃i)− F (a+ h̃i−1) = DiF (bi)hi,

where bi have the property that

lim
|h|→0

bi = a for i = 1, . . . , n.

Returning to (7.6), the problem has now reduced to showing that

lim
|h|→0

hi
|h| [DiF (bi)−DiF (a)] = 0 for each i = 1, . . . , n.

But now we are in business, each since hi
|h| is bounded by 1 and (since the partial

derivatives of F are continuous)

|h| → 0 =⇒ bi → a =⇒ DiF (bi)→ DiF (a).

Done! �

At this point, we have defined the derivative and partial derivatives and have
seen a bit about the relationship between them. Next, we will introduce a few other
related notions and some more special cases.

We first introduce the notion of a ‘directional derivative’.

Definition 7.3. Suppose F : Rn → Rm, a ∈ Rn, and v ∈ Rn\{0}. We define the
directional derivative of F with respect to v at the point a by

DvF (a) = lim
h→0

F (a+ hv)− F (a)

h
,

provided this limit exists. Note that here h ∈ R is a scalar.

If the function F is differentiable at a, then it has directional derivatives in every
direction. In particular, the directional derivatives in the directions e1, . . . , en coin-
cide with the partial derivatives D1F, . . . ,DnF (which are the columns consisting
of (DkF

j)mj=1, with k = 1, . . . , n), and we can use these to compute all directional
derivatives:
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Lemma 7.5. Let F : Rn → Rm and a ∈ Rn. If F is differentiable at a, then for
any v = (v1, . . . , vn) ∈ Rn\{0}, the directional derivative DvF (a) exists. In fact,

DvF (a) = dFa(v) =

n∑
j=1

vjDjF (a).

Proof. For t ∈ R, we have by definition of differentiability that

lim
t→0

F (a+ tv)− F (a)− dFa(tv)

|tv|
= 0.

As
dFa(tv) = tdFa(v),

it follows that

lim
t→0

F (a+ tv)− F (a)

t
− dFa(v) = 0,

which shows that DvF (a) exists and equals dFa(v). For the second equality, we
recall that DjF (a) are the columns of the derivative matrix F ′(a), so that

DvF (a) = dFa(v) =

n∑
j=1

vjdFa(ej) =

n∑
j=1

vj [F
′(a)]ej =

n∑
j=1

vjDjF (a).

�

As with partial derivatives, it is possible to have directional derivatives in every
direction and yet fail to be differentiable.

Example 7.4. Take the same example as before: let f : R2 → R be given by

f(x, y) =

{
xy2

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Let v ∈ R2\{0} and observe that

f(tv) =
t3v1v2

t2[v21 + v22 ]
= tf(v).

Thus

Dvf(0) = lim
t→0

f(tv)− f(0)

t
= f(v).

In particular, all directional derivatives exist at (0, 0), but we have already seen
that f is not differentiable at (0, 0).

Example 7.5 (The gradient and directional derivatives). Suppose f is a scalar-
valued function, i.e. f : Rn → R. Suppose further that f is differentiable at a ∈ Rn.
Then the derivative F ′(a) is a 1× n matrix, i.e. a ‘row vector’, with entries given
by the partial derivatives of f . We call this the gradient vector of f at a, denoted

∇f(a) = (D1f(a), . . . , Dnf(a)) ∈ Rn.
In particular, the conclusion of Lemma 7.5 may be restated

DvF (a) = ∇f(a) · v,
giving a simple expression for directional derivatives.

You may remember from multivariable calculus that the gradient vector points
in the direction of most rapid increase, and that the gradient vector vanishes at
extreme values. We will cover these topics in more detail below.
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Example 7.6 (Curves in Rm). We may also consider the case of a function f : R→
Rm, which we view as a curve inside Rm (perhaps the trajectory of some object).
In this case, if f is differentiable at a, then its derivative f ′(a) is a m × 1 matrix,
i.e. a column vector, consisting of the ordinary derivatives of its m components.
We interpret the vector f ′(a) as the velocity vector of the object.

What is the purpose of the derivative? One possible answer is that the derivative
provides us with the best (local) linear approximation to a function. That is, if we
suppose that F : D → Rm (with D ⊂ Rn) is differentiable at a ∈ D, then we can
define the transformation

T (x) = F (a) + F ′(a)[x− a].

This is not actually linear. Instead, it is called affine (a fixed translation of a linear
transformation). By the definition of differentiability, |F (x)− T (x)| → 0 as x→ a;
in fact, we have the stronger statement that |F (x)−T (x)| = o(|x−a|), which means
we can divide by |x−a| and the difference still tends to zero. The image of Rn under
T is then a linear (actually, affine...) approximation to the image F (D) ⊂ Rm.

Example 7.7. Let D ⊂ R2 be given by

D = {(x, y) : x2 + y2 < 1}
and f : D → R3 be given by

f(x, y) = (x, y, 1− x2 − y2).

Then the image f(D) is a paraboloid in R3. The function f is differentiable, with

f ′(x, y) =

 1 0
0 1
−2x −2y

 .
The linear approximation to f at the point (x, y) = (0, 0) is given by

T (x, y) = (0, 0, 1) + f ′(0, 0)(x, y) = (x, y, 1).

As (x, y) vary in R2, this simply traces out a copy of the xy-plane, translated to
height 1.

The linear approximation to f at the point (x, y) = (1
2 ,

1
2 ) is

T (x, y) =

 1/2
1/2
1/2

+

 1 0
0 1
−1 −1

[ x− 1
2

y − 1
2

]
=

 x
y

3
2 − x− y


In particular, the linear approximation to the surface f(D) at (x, y) = (1

2 ,
1
2 ) is the

plane z = 3
2 − x− y.

To close this section, let us record one useful fact that carries over to the higher-
dimensional case:

Proposition 7.6. If F : Rn → Rm is differentiable at a, then F is continuous at
a.

Proof. For h 6= 0, write

F (a+ h)− F (a) = |h| · F (a+ h)− F (a)− dFa(h)

|h|
+ dFa(h).

The first term tends to zero as |h| → 0 by definition of differentiability. The second
term tends to zero as well (since we may write dFa(h) = |h|F ′(a) h

|h| ). �
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7.2. The higher dimensional chain rule. Recall that if f, g : R→ R are differ-
entiable functions, then the composition f ◦ g is differentiable, with

(g ◦ f)′(x) = g′(f(x))f ′(x).

In this section, we will establish a higher-dimensional analogue of this result:

Theorem 7.7 (The chain rule). Let U ⊂ Rn and V ⊂ Rm be open sets. Suppose
F : U → Rm is differentiable at a ∈ U and G : V → Rk is differentiable at
F (a) ∈ V . Then the composition H = G ◦ F is differentiable at a, and we have

dHa = dGF (a) ◦ dFa
as a composition of linear mappings. Consequently, in terms of the derivatives, we
have

H ′(a) = G′(F (a))F ′(a)

as a product of matrices.

Proof. Define

ϕ(h) =
F (a+ h)− F (a)− dFa(h)

|h|
, h 6= 0

and

ψ(k) =
G(F (a) + k)−G(F (a))− dGF (a)(k)

|k|
, k 6= 0.

By definition of differentiability, we have

lim
h→0

ϕ(h) = 0 and lim
k→0

ψ(k) = 0.

Thus (using the definition of ψ with k = F (a+ h)− F (a)) we have

H(a+ h)−H(a)

= G(F (a+ h))−G(F (a))

= G(F (a) + [F (a+ h)− F (a)])−G(F (a))

= dGF (a)(F (a+ h)− F (a)) + |F (a+ h)− F (a)|ψ(F (a+ h)− F (a)).

Now, using the definition of ϕ and linearity of dGF (a) and dFa, we can write

H(a+ h)−H(a)

= dGF (a)(dFa(h)) + |h|ϕ(h)) +
∣∣ |h|ϕ(h) + dFa(h)

∣∣ · ψ(F (a+ h)− F (a))

= dGF (a)(dFa(h)) + |h|dGF (a)(ϕ(h))

+ |h| · |ϕ(h) + dFa( h
|h| )| · ψ(F (a+ h)− F (a)).

Rearranging, we find that

H(a+ h)−H(a)− dGF (a) ◦ dFa(h)

|h|
= dGF (a)(ϕ(h)) + |ϕ(h) + dFa( h

|h| )| · ψ(F (a+ h)− F (a)).

We now claim that the right-hand side tends to zero as |h| → 0, which will complete
the proof. To see this, observe:

• The first term is a matrix multiplied by ϕ(h); the latter tends to zero as
|h| → 0.
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• The second term contains ψ(F (a+h)−F (a)). As F is continuous (indeed,
it is differentiable), we have F (a + h) − F (a) → 0 as |h| → 0; then since
ψ(k)→ 0 as |k| → 0, this term tends to zero as well.

�

Example 7.8. Suppose x : R→ Rm describes the trajectory of some particle, and
V : Rm → R is some scalar ‘potential energy’ function. Then V ◦ x : R → R gives
the potential energy of the particle at each time, and the chain rule implies

d
dtV (x(t)) = ∇V (x(t)) · x′(t).

I will leave it to you to work out some other familiar examples. In particular,
expanding out the matrices, you can derive formulas like the following: if u = u(x, y)
and x = x(t), y = y(t), then

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
.

Example 7.9. Let T : R2 → R2 be the polar coordinate mapping, i.e.

T (r, θ) = (r cos θ, r sin θ),

and given differentiable f : R2 → R, let us define

g(r, θ) = f ◦ T (r, θ) = f(r cos θ, r sin θ).

Then
∂g

∂r
=
∂f

∂x
cos θ +

∂f

∂y
sin θ,

∂g

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ.

If one computes higher order derivatives (e.g. viewing ∂f
∂x as a function from R2 → R

and then computing a partial derivative of this function), one can obtain the identity

∂2f

∂x2
+
∂2f

∂y2
=
∂2g

∂r2
+

1

r

∂g

∂r
+

1

r2
∂2g

∂θ2
.

The second-order differential operator on the left-hand side is important in many
physical applications. It is called the Laplacian and is denoted by ∆ (or sometimes
∇2 in the physics literature). The formula above gives a representation of the
Laplacian in polar coordinates; this is a typical application of the chain rule.

Example 7.10. Consider the one-dimensional wave equation

∂2f

∂t2
=
∂2f

∂x2
, where f : R2 → R is the unknown.

To solve this equation, one can try to introduce a change of variables[
t
x

]
=

[
A B
C D

] [
u
v

]
for some unknowns A,B,C,D. We then define

g(u, v) = f(t(u, v), x(u, v)) = f(Au+Bv,Cu+Dv).

We can ‘find’ the second derivatives ∂2f
∂t2 and ∂2f

∂x2 by taking second derivatives of g.
In particular,

∂g

∂u
= A

∂f

∂t
+ C

∂f

∂x
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and
∂2g

∂v∂u
= AB

∂2f

∂t2
+ (AD +BC)

∂2f

∂t∂x
+ CD

∂2f

∂x2
.

Let us now choose A,B,C,D so that AB = 1, CD = −1, and AD + BC = 0.
We can achieve this by taking

A = B = 1, C = 1, D = −1.

Then if f is to solve the wave equation, we find that

g(u, v) = f(u+ v, u− v) must solve
∂2g

∂u∂v
≡ 0

For this latter equation, we see that g must have the form

g(u, v) = a(u) + b(v) for some functions a, b.

Inverting the transformation from (t, x)→ (u, v), this implies that

f(t, x) = a(x+ t) + b(x− t) for some functions a, b.

That is, f is the sum of two traveling waves, one moving in the positive x direction
and one moving in the negative x direction. In general, we would be given an initial
position and velocity for f (i.e. f(0, x) and Dtf(0, x)) and use these two determine
the precise functions a and b. Proceeding in this way leads to the d’Alembert
solution to the wave equation (after Jean le Rond d’Alembert, 1717–1783).

We can use the chain rule to prove a few other useful facts (all of which are
analogues of results in the one-dimensional case).

Theorem 7.8. Let U be an open, connected subset of Rn. A function F : U → Rm
is constant if and only if F ′(x) = 0 for all x ∈ U . Consequently, if two differentiable
functions F,G : U → Rm satisfy F ′(x) = G′(x) for all x ∈ U , then F − G is a
constant function.

Proof. It is enough to consider the case m = 1 (why?). It is straightforward to show
that constant functions have zero derivative, so let us prove the converse. That is,
let us suppose that ∇f(x) = 0 for all x ∈ U and show that f is constant.

We choose arbitrary a, b ∈ U and want to show that f(a) = f(b). As U is
connected, we can choose a continuous function γ : [0, 1]→ U so that γ(0) = a and
γ(1) = b. Suppose for now that we also knew that γ were differentiable. Then, by
the chain rule, we would have

d
dt [f ◦ γ] = ∇f(γ(t)) · γ′(t) ≡ 0,

so that f ◦ γ : [0, 1]→ R must be constant. In particular,

f(b) = f ◦ γ(1) = f ◦ γ(0) = f(a),

as desired.
Now, we don’t actually know that γ has to be differentiable. If you are happy

assuming that γ is differentiable, that’s fine. Otherwise, the argument can be
modified as follows (but feel free to skip this part): We can first extend γ to be
continuous on all of R (but zero outside of [−1, 2], say). We then take a differentiable
function K : R→ R that is positive, zero outside of [−1, 1], and obeys∫ 1

−1
K(x) dx = 1. (7.7)
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We then define Kn(x) = nK(nx) and note that by a change of variables, each Kn

still satisfies (7.7). We then define

γn(x) =

∫
R
Kn(x− y)γ(y) dy

(that is, we define each component of γn by a Riemann integral). One can then
show that (i) each γn is differentiable, (ii) γn → γ uniformly on [0, 1], and (iii) for
n sufficiently large, γn([0, 1]) ⊂ U . Then we still have

d
dt [f ◦ γn] = ∇f(γn(t)) · γ′n(t) ≡ 0 for each n,

so that each f ◦ γn is constant. However, since

lim
n→∞

f ◦ γn(0) = f(a) and lim
n→∞

f ◦ γn(1) = f(b),

we can derive that |f(b)− f(a)| < ε for any ε > 0, which implies the result. �

As another application of the chain rule, we can prove a Mean Value Theorem
for real-valued, differentiable functions on Rn:

Theorem 7.9 (Mean Value Theorem). Let U ⊂ Rn be open. Suppose a, b ∈ U and
that the line segment L joining a to b is entirely contained in U . If f : U → R is
differentiable, then

f(b)− f(a) = ∇f(c) · (b− a) for some c ∈ L.

Proof. Let ϕ : [0, 1]→ U be given by

ϕ(t) = (1− t)a+ tb, so that ϕ′(t) ≡ b− a.

Now define g(t) = f(ϕ(t)), so that g : [0, 1] → R. By the one-dimensional Mean
Value Theorem, there exists ξ ∈ [0, 1] so that

g(1)− g(0) = g′(ξ).

However, this means

f(b)− f(a) = g(1)− g(0) = g′(ξ) = ∇f(ϕ(ξ)) · ϕ′(ξ) = ∇f(c) · (b− a),

where c = ϕ(ξ) ∈ L. �

As another application, we can establish the ‘equality of mixed partial deriva-
tives’ under the assumption that the derivatives are continuous. (This is called
Clairaut’s Theorem, after Alexis Clairaut, 1713–1765.)

Theorem 7.10 (Equality of mixed partial derivatives). Let U ⊂ Rn be open and
f : U → R. If the first and second derivatives of f exist and are continuous on U ,
then we have DiDjf = DjDif for all i, j = 1, . . . , n.

We begin with a lemma concerning the following quantity (sometimes called a
second difference):

∆2fa(h, k) := f(a+ h+ k)− f(a+ h)− f(a+ k) + f(a).

Lemma 7.11. Let U ⊂ Rn be open and contain the parallelogram determined by
the points a, a + h, a + k, and a + h + k. If f : U → R and Dhf : U → R are
differentiable, then there exist α, β ∈ (0, 1) so that

∆2fa(h, k) = DkDhf(a+ αh+ βk).
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Proof. We define the function

g(x) = f(x+ k)− f(x),

which is differentiable on an open set containing the line segment joining a and
a+ h. Then, using the Mean Value Theorem (Theorem 7.9), we may write

∆2fa(h, k) = g(a+ h)− g(a) = ∇g(a+ αh) · h
for some α ∈ (0, 1). Now, using Lemma 7.5, we write

∇g(a+ αh) · h = Dhg(a+ αh) = dga+αh(h).

By the definition of g, we can see that

dga+αh(h) = dfa+αh+k(h)− dfa+αh(h),

which by the same reasoning as above can be rewritten

dga+αh(h) = Dhf(a+ αh+ k)−Dhf(a+ αh)

= ∇[Dhf ](a+ αh+ βk) · k
= DkDhf(a+ αh+ βk)

for some β ∈ (0, 1). �

Proof of Theorem 7.10. By assumption, Djf and Dif are both differentiable (see
Lemma 7.4). Fix a ∈ U .

By Lemma 7.11, for all h, k sufficiently small, we can find α1, β1 ∈ (0, 1) so that

∆2fa(hei, kej) = DkejDheif(a+ α1hei + β1kej).

Similarly, we can find α2, β2 ∈ (0, 1) such that

∆2fa(kej , hei) = DheiDkejf(a+ α2kej + β2hei).

However, by the definition of ∆2fa, we can verify that ∆2fa(X,Y ) ≡ ∆2fa(Y,X).
Noting that

Dheif(X) = ∇f(X) · hei = h∇f(X) · ei = hDif(X)

(and similarly Dkejf = kDjf), we therefore derive

hk ·DjDif(a+ α1hei + β1ej) = hk ·DiDj(f + α2kej + β2hei).

As the second partial derivatives are assumed to be continuous, we can therefore
send h, k → 0 to deduce DjDif(a) = DiDjf(a), as desired. �

Example 7.11. For a typical looking function like

f(x, y) = x2y4 + 3x5y2 + xy,

one can readily check that DxDyf = DyDxf . In this case, this fact is guaranteed
by Clairaut’s Theorem because the function is infinitely differentiable, with all
derivatives continuous.

Example 7.12. Equality of mixed partials is not guaranteed unless we check the
hypotheses of Clairaut’s Theorem. Indeed, consider the example

f(x, y) =

{
xy(x2−y2)
x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Then a bit of calculation shows

D1f(0, y) = −y and D2f(x, 0) = x for all x, y.
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In particular, we can obtain that

D1D2f(0, 0) = 1 but D2D1f(0, 0) = −1.

What went wrong?

7.3. Taylor’s formula and classification of critical points. Our goal in this
section is to establish a ‘Taylor series’ or ‘Taylor polynomial’ expansion for a func-
tion f : Rn → R. The motivating theorem to keep in mind is the Lagrange Re-
mainder, Theorem 2.4, which we may write in the form

f(a+ h) = f(a) + f ′(a)h+ f ′′(a)
2! h2 + · · ·+ f(k)(a)

k! hk + f(k+1)(c)
(k+1)! h

k+1 (7.8)

for some c between a and a + h. Clearly, to develop any kind of analogue of this
result, it will be necessary that we better understand higher derivatives of functions
of multiple variables.

Definition 7.4. Let f : U → R for some open set U ⊂ Rn. We say a f ∈ Ck(U)
if all iterated partial derivatives of f up to order k exist and are continuous on U .
That is, if i1, . . . iq ∈ {1, . . . , n} and 0 ≤ q ≤ k, then

Di1 · · ·Diqf

exists and is continuous on U .

Note that by Lemma 7.4 and Clairaut’s Theorem (Theorem 7.10), if f ∈ Ck(U)
then the order of partial derivatives does not matter. For example,

D1D2D3D1f = D1D1D2D3f,

and so on. We use the notation Dk
j f to denote

Dj · · ·Dj︸ ︷︷ ︸
k times

f.

Similarly, if v ∈ Rn, we denote the repeated directional derivative by

Dk
vf = Dv · · ·Dv︸ ︷︷ ︸

k times

f.

Now, let us return to (7.8) and re-cast it in a form that is amenable to gener-
alization to higher dimensions. The key is to observe that in the case f : R → R,
‘directional derivatives’ are particularly simple. In particular, since the gradient
∇f(a) just equals f ′(a) and the ‘dot product’ is just multiplication, we have

f ′(a)h = Dhf(a), i.e. Dh = h d
dx .

Thus the general term hkf (k)(a) may be rewritten as Dk
hf(a), and so (7.8) may be

written

f(a+ h) =

k∑
`=0

1

`!
D`
hf(a) + 1

(k+1)!D
k+1
h f(c).

Viewing Dh as the directional derivative in direction h ∈ Rn, we see that this
formula at least makes sense for a function f : Rn → R belonging to Ck+1(U). In
fact, not only does the formula make sense, but it is still true in higher dimensions!
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Theorem 7.12 (Taylor’s Formula / Lagrange Remainder in Higher Dimensions).
Let U ⊂ Rn and f ∈ Ck+1(U). Suppose U contains the line segment L joining a
and a+ h. Then there exists ξ ∈ L so that

f(a+ h) =

k∑
`=0

1
`!D

`
hf(a) + 1

(k+1)!D
k+1
h f(ξ).

Proof. Our best bet will be to try to deduce this from the one-dimensional version.
To this end, we let

ϕ(t) = a+ th, ϕ : [0, 1]→ Rn,
and set

g(t) = f(ϕ(t)) = f(a+ th).

By the Lagrange Remainder Theorem in one dimension (and the fact that g(0) =
f(a) and g(1) = f(a+ h)), we may obtain

f(a+ h) = f(a) +

k∑
`=1

1
`!g

(`)(0) + 1
(k+1)!g

(k+1)(c) for some c ∈ (0, 1).

Then the result will follow provided we can establish the identity

g(`)(t) = D`
hf(a+ th), 1 ≤ ` ≤ k + 1. (7.9)

In this case, the point ξ ∈ L is given by ξ = ϕ(c). Note that establishing (7.9)
above also shows that we can actually apply the Lagrange Remainder Theorem to
g (because it shows that g is k + 1-times differentiable).

We begin by observing that by the chain rule,

g′(t) = ∇f(ϕ(t)) · ϕ′(t) = ∇f(a+ th) · h = Dhf(a+ th),

giving (7.9) in the case ` = 1. Suppose now that (7.9) holds up to level `. Then,
writing

F = D`
hf, so that g(`) = F ◦ ϕ,

we have

g(`+1)(t) = d
dt [g

(`)] = ∇F (ϕ(t)) · ϕ′(t)

= ∇F (a+ th) · h = DhF (a+ th) = D`+1
h f(a+ th),

which yields the result. �

This higher-dimensional version of the Lagrange Remainder Theorem is a bit
unsatisfactory as written. Instead of seeing multiple applications of the directional
derivative, we may instead prefer to see a theorem that involves only the partial
derivatives of the function f . To do this, we recall that

Dhf(a) = ∇f(a) · h =

n∑
i=1

hiDif(a).

We can write this as an ‘operator identity’, namely

Dh =

n∑
i=1

hiDi = h1D1 + · · ·+ hnDn.

Thus

D`
h = (h1D1 + · · ·+ hnDn)`. (7.10)
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To proceed, we can expand out this final expression using the so-called multinomial
formula

(c1 + · · ·+ cn)` =
∑
|α|=`

(
`

α

)
cα,

which contains some new notation we need to explain:

• Here α = (α1, . . . , αn) is a multiindex, which is a vector whose entries are
nonnegative integers. The quantity |α| equals α1+ · · ·+αn. The sum above
is meant to be taken over all multiindices α with |α| = `. Given n and `,
can you figure out how many such multiindices there are?
• The multinomial coefficient

(
`
α

)
is given by(

`

α

)
=
`!

α!
:=

`!

α1! · · ·αn!
, where |α| = `.

More generally we have the binomial coefficient(
α

β

)
=

α!

β!(α− β)!
,

where we recall that for a multiindex α = (α1, . . . , αn), the factorial is given
by α! = α1! · · ·αn!.
• The notation cα means

cα = cα1
1 · · · cαnn .

Example 7.13. This may be new notation, so let’s look at a concrete example,
namely, the expansion of

(c1 + c2 + c3)3.

This will be a sum of terms of the form

cα1
1 cα2

2 cα3
3 ,

where α1 + α2 + α3 = 3. In particular, there are 10 possible multiindices, given by

(3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (2, 0, 1), (1, 2, 0), (0, 2, 1), (1, 0, 2), (0, 1, 2), (1, 1, 1),

and the corresponding coefficients are

1, 1, 1, 3, 3, 3, 3, 3, 3, 6,

respectively.

Continuing from (7.10), we can write

D`
hf(a) =

∑
|α|=`

(
`

α

)
hα1
1 · · ·hαnn Dα1

1 · · ·Dαn
n f

=
∑
|α|=`

`!

α!
hαDαf,

where we have introduced some fancy new compact notation in the final line,
namely,

α = (α1, . . . , αn) =⇒ Dα = Dα1
1 · · ·Dαn

n .

With this notation, we have the following re-statement of Taylor’s formula: for
h ∈ Rn,

f(a+ h) = Pk(h) +Rk(h), (7.11)
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where

Pk(h) =

k∑
`=0

∑
|α|=`

1
α!h

αDαf(a) =
∑
|α|≤k

1
α!h

αDαf(a)

is the degree k Taylor polynomial and the remainderRk(h) is given by 1
(k+1)!D

k+1
h (ξ)

for some ξ on the line segment joining a and a+ h.

Example 7.14. Consider the function f : Rn → R given by f(x) = ex1+···+xn .
The Taylor polynomial for f can be obtained by simply writing the one-dimensional
Taylor polynomial and using x1 + · · · + xn for the variable. However, we can also
compute it as follows: as Dαf(0) = 1 for an arbitrary multiindex α, we have

Pk(x) =

k∑
`=0

∑
|α|=`

1

α!
xα =

k∑
`=0

1

`!

∑
|α|=`

(
`

α

)
xα =

k∑
`=0

1

`!
[x1 + · · ·+ xn]`,

where in the final step we have used the multinomial formula.

We have the following theorem (whose proof we skip) concerning the size of the
error term Rk(h) and the uniqueness of Taylor polynomials.

Theorem 7.13. If f ∈ Ck+1 and Rk(h) is the kth degree remainder for f at a,
then

lim
h→0

Rk(h)

|h|k
= 0.

In fact, if Q is any polynomial such that

lim
x→a

f(x)−Q(x− a)

|x− a|k
= 0,

then Q is the kth degree Taylor polynomial of f at a.

This theorem is useful because it gives us a way to determine Taylor polynomials
without necessarily having to compute a lot of derivatives:

Example 7.15. Let us determine the third degree Taylor polynomial of f(x) =
ex sinx at x = 0. We write

ex = P (x) +R(x) and sin(x) = P̃ (x) + R̃(x),

where
P (x) = 1 + x+ 1

2x
2 + 1

6x
3 and P̃ (x) = x− 1

6x
3.

We multiply these two expressions and only keep up to the cubic terms. This yields

ex sinx = x+ x2 + 1
3x

3 +R∗(x),

where
R∗(x) = − 1

2x
5 − 1

36x
6 +R(x)P̃ (x) + R̃(x)P (x) +R(x)R̃(x).

Since we have (by the previous theorem)

lim
x→0

R∗(x)
x3 = 0,

it follows (again by the previous theorem) that x + x2 + 1
3x

3 is the degree three
Taylor polynomial for ex sinx.

With the basic theory of Taylor polynomials in place, we turn to our key appli-
cation, namely, the classification of critical points.
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Definition 7.5. Suppose U ⊂ Rn and f : U → R is differentiable. We call a ∈ U
a critical point of f if ∇f(a) = 0.

The significance of critical points lies in the fact that if f has a maximum or
minimum at a point a, then a must be a critical point for f . For example, the
function g(x) = f(x, a2, . . . , an) would have an extreme point at x = a1 and hence
we would have g′(a1) = 0 (a fact we know well from calculus in one dimension).
But g′(a1) = D1f(a). Similarly, all partial derivatives of f would have to vanish.

Suppose now that f ∈ C3(U) has a critical point at a ∈ U . Then the Taylor
Formula (or Lagrange Remainder Theorem) for f takes the form

f(a+ h) = f(a) + q(h) +R(h),

where

q(h) = 1
2D

2
hf(a) and lim

h→0

R(h)

|h|2
= 0. (7.12)

Let’s open up the definition of q(h) to see what it really looks like. This is important,
so let us state it as a lemma.

Lemma 7.14. With f , q as above, we may express

q(x) = 1
2x ·Hx for x ∈ Rn,

where H is the n× n Hessian matrix with entries given by

Hjk = DjDkf(a).

Proof. This is ultimately just a rephrasing of computations we have done before,
but let’s see it anyway. We have that

q(x) = 1
2 (x1D1 + · · ·+ xnDn)2f(a)

= 1
2

n∑
j=1

n∑
k=1

DjDkf(a)xjxk

= 1
2

n∑
k=1

xk[Hx]k = 1
2x ·Hx.

�

This lemma shows that the quantity q(h) appearing in the Taylor expansion for
f has the form of a ‘quadratic form’ on Rn:

Definition 7.6. A quadratic form on Rn is a function of the form

F (x) = x ·Ax
for some symmetric matrix A. (Here symmetric means Ajk = Akj).

In our case, the symmetry comes from the fact that Hjk = DjDkf(a). Since we
are working with f ∈ C3, we are guaranteed Hjk = Hkj by Clairaut’s Theorem.

Now let’s recall what led us here: we want to try to classify critical points (as
maxima, minima, etc.). The Taylor expansion above suggests that what we really
need to understand is the behavior (i.e. positivity or negativity) of the quadratic
form x 7→ x ·Hx, where H is the Hessian matrix of f at a.

Definition 7.7. Let F : Rn → R be a quadratic form on Rn. We call F :

• positive definite if F (x) > 0 for all x 6= 0,
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• negative definite if F (x) < 0 for all x 6= 0,
• nondefinite otherwise.

We can then prove the following result:

Theorem 7.15. Suppose f ∈ C3(U) for some open set U containing a critical
point a. Let q(x) = 1

2x ·Hx, where H is the Hessian matrix of f at a. Then f has:

(a) a local minimum if q is positive definite,
(b) a local maximum if q is negative definite,
(c) neither if q is nondefinite.

Proof. Let’s prove (a) in detail. We need to prove that there exists δ > 0 so that

0 < |h| < δ =⇒ f(a+ h) > f(a).

Using the Taylor expansion, we see that the condition f(a+h) > f(a) is equivalent
to the requirement q(h) +R(h) > 0.

Dividing by the nonnegative quantity |h|2 and using the form of q(·), we see that
it suffices to find δ > 0 so that

0 < |h| < δ =⇒ q( h
|h| ) + R(h)

|h|2 > 0.

Now observe that for h 6= 0, we have

h
|h| ∈ K := {x ∈ Rn : |x| = 1}.

As q is continuous, it attains a minimum value, say m, on the compact set K. As q
is positive definite, we must have m > 0. On the other hand, using (7.12), we can
find δ > 0 so that

0 < |h| < δ =⇒
∣∣R(h)
|h|2

∣∣ < 1
2m,

so that
0 < |h| < δ =⇒ q( h

|h| ) + R(h)
|h|2 > 1

2m > 0,

as desired.
The proof of (b) is similar—you should work out the details!
Finally, for (c), we choose h1, h2 ∈ Rn so that q(h1) > 0 and q(h2) < 0. Then

we can write

f(a+ thi)− f(a) = q(thi) +R(thi) = t2[q(hi) + |hi|2R(thi)
|thi|2 ]

for any t 6= 0. In particular, for t sufficiently small, we have

f(a+ th1) > f(a) and f(a+ th2) < f(a),

showing that f has neither a maximum nor a minimum at a. �

Now, Theorem 7.15 will only be useful to us if we actually have some techniques
to determine whether the quadratic form q is positive or negative. This is ultimately
a linear algebra problem. Let us quickly review the main we will need:

Theorem 7.16 (Diagonalization of symmetric matrices). Suppose A is a symmet-
ric n×n matrix (that is, Ajk = Akj for all j, k). Then there exists an orthonormal
basis {v1, . . . , vn} and real numbers λ1, . . . , λn so that

A = PDP−1, with P = [v1 · · · vn] and D = diag(λ1, . . . , λn).

In particular, λ1, . . . , λn are the eigenvalues of A and v1, . . . , vn are corresponding
eigenvectors.



A COURSE ON ADVANCED CALCULUS 117

We won’t prove this here. You should have covered it in your linear algebra
course!

Corollary 7.17. The quadratic form F (x) = x ·Ax is positive definite if and only
if all of the eigenvalues of A are positive. It is negative definite if and only if all of
the eigenvalues of A are negative.

Proof. Write A = PDP−1 as in Theorem 7.16. In fact, since the columns of P
form an orthonormal set, we have P−1 = PT (the transpose of P ). Then

F (x) = x ·Ax = x · PDPTx = [PTx] ·DPTx =

n∑
j=1

λjy
2
j ,

where y = PTx. In particular, if F is positive definite, then by choosing x = Pej
(so that y = ej) we find that λj > 0 for each j. Conversely, if each λj > 0 and
x 6= 0, then y = PTx 6= 0 and hence y2k > 0 for at least one k, so that F (x) > 0. A
similar argument deals with the negative definite case. �

This characterization in terms of eigenvalues is very handy, since we have a
systematic way to determine the eigenvalues of a matrix:

Lemma 7.18. The eigenvalues of an n × n matrix A are the roots of the charac-
teristic polynomial

p(λ) := det[A− λI],

where I is the n× n identity matrix.

Proof. This is another standard linear algebra fact, so we will skip it. �

Let’s see what all of this new technology can do for us.

Example 7.16. Suppose f : R3 → R has a critical point at a, and the quadratic
form of f at a is

q(x1, x2, x3) = x21 + x22 + x23 + 4x2x3.

The corresponding matrix for q is

A =

 1 0 0
0 1 2
0 2 1

 ,
which has characteristic polynomial

p(λ) = (1− λ)[(1− λ)2 − 4].

The roots of this polynomial are −1, 1, 3. Thus f has neither a maximum nor a
minimum at a. (This basically means that there are two directions in which the
value of f moves up and one direction in which the value of f moves down.)

In the case of real-valued functions of two variables, the situation becomes rela-
tively simple. To see this, we will use the following linear algebra lemma:

Lemma 7.19. Let A be an n× n matrix with eigenvalues λ1, . . . , λn. Then

detA =

n∏
j=1

λj and trA =

n∑
j=1

λj ,

where trA =
∑n
j=1Ajj is the sum of the diagonal entries of A (called the trace of

A).
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Proof. These are more linear algebra facts. Let’s prove it in the special case that
A is diagonalizable (which will always be the case when A is the Hessian matrix of
a function f ∈ C3). In this case, we write A = PDP−1, where D is the diagonal
matrix that necessarily consists of the eigenvalues of A. We now need a few other
linear algebra facts, namely,

det(AB) = det(A) · det(B), det(A−1) = [detA]−1, and tr(AB) = tr(BA),

all of which you are encouraged to prove on your own if you have not seen before.
In particular, we find that

det(A) = det(PDP−1) = det(P ) · det(D) · det(P−1).

Now, since det(P−1) = [det(P )]−1, this implies det(A) = det(D). But D is di-
agonal, so its determinant is the product of its entries, which in this case are the
eigenvalues of A.

Next,

tr(A) = tr(PDP−1) = tr(P−1PD) = tr(D),

and this final quantity equals the sum of the diagonal entries of D, which in this
case are the eigenvalues of A. �

We can now prove the following result about critical points for functions of two
variables (which you might recall from your multivariable calculus course):

Theorem 7.20 (Classification of critical points, two-dimensional case). Let U ⊂
R2, and suppose f : R2 → R is a differentiable function with a critical point at
a ∈ U . Define

D = fxx(a)fyy(a)− [fxy(a)]2

Then:

• If D > 0 and fxx(a) > 0, then f has a local minimum at x = a.
• If D > 0 and fxx(a) < 0, then f has a local maximum at x = a.
• If D < 0, then f has a saddle point at x = a.
• If D = 0, we can’t say anything.

Proof. The quantity D here is nothing but det(H) in disguise, which is essentially
the matrix of the quadratic form for f .

If D > 0, then the product of the eigenvalues of H is positive. That means
they are either both positive or both negative. If fxx(a) > 0, then (again since
D > 0) we must have fyy(a) > 0. But then the trace of H is positive, and so both
eigenvalues must be positive, so that f has a local minimum. If fxx(a) < 0 then
(again since D > 0) we must have fyy(a) < 0, so that the trace is negative, and so
both eigenvalues are negative, which implies that f has a local maximum. If D < 0,
then the product of eigenvalues is negative, so they must have opposite signs. Then
H has one positive eigenvalue and one negative eigenvalue; in the two-dimensional
case, this corresponds to saddle shape around the point a. �

You’ll work a few more examples in the homework problems.
In the preceding sections, we found a method to look for local maxima and

minima for real-valued functions on Rn. In particular, we look for critical points
and study the quadratic form (i.e. the Hessian matrix) at these points. Using
information about the eigenvalues of this matrix, we can determine whether the
critical points are maxima, minima, or neither.
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Our next main goal is to study the problem of constrained optimization. That
is, we still want to look for the maximum/minimum values of a function; how-
ever, we now search for these values under some given constraints on the inputs.
This is an important modification to the above problem: On the one hand, this
type of constrained minimization problem shows up frequently in applications. On
the other hand, understanding this problem requires a significant amount of new
mathematics. So, off we go!

7.4. The Implicit Function Theorem and Inverse Function Theorem. In
this section, we discuss two important theorems known as the implicit function the-
orem and inverse function theorem. They involve two very fundamental questions:

(i) Given a function G(x, y), can we solve the equation G(x, y) = 0 for y as a
function of x?

(ii) Given an equation f(x) = y, can we solve for x as a function of y?

These are the questions that will be answered by the two theorems mentioned
above. The key to establishing them both will be to establish yet another theorem,
namely, the contraction mapping theorem (and an upgraded version thereof). In
fact, this is an important result in its own right! Although we will focus on the
familiar setting of finite-dimensional Euclidean space, it is worth mentioning that
the results in this section can be generalized significantly (e.g. to the ‘Banach
space’ setting). In fact, the proofs here are presented in such a way that they
carry over nearly verbatim, once you understand what Banach spaces are and what
differentiation in Banach spaces means.

We begin with the following definition:

Definition 7.8. Let U ⊂ Rn. A function T : U → Rm is called a contraction if
there exists α ∈ (0, 1) so that

|T (x)− T (y)| ≤ α|x− y| for all x, y ∈ U.

Theorem 7.21 (Contraction Mapping Principle). Suppose U ⊂ Rn is closed and
T : U → U is a contraction. Then T has a unique fixed point. That is, there exists
unique x ∈ U such that T (x) = x.

Proof. Let x0 ∈ U , and define xk ∈ U inductively via xk+1 = T (xk). It follows that

|x2 − x1| = |T (x1)− T (x0)| ≤ α|x1 − x0|
for some α ∈ (0, 1); similarly,

|x3 − x2| = |T (x2)− T (x1)| ≤ α2|x1 − x0|,
and more generally

|xk+1 − xk| ≤ αk|x1 − x0|.
Thus, for any m > n, we have by the triangle inequality that

|xm − xn| ≤
m−1∑
k=n

|xk+1 − xk| ≤ |x1 − x0|
m−1∑
k=n

αk ≤ αn|x1−x0|
1−α .

Since α ∈ (0, 1), it follows that {xn} is a Cauchy sequence and hence has a limit
x ∈ U . As every contraction is necessarily continuous (check!), it follows that
T (xn)→ T (x). However, since T (xn) = xn+1, we also have that T (xn)→ x. Thus
T (x) = x. Finally, we note that if T (x) = x and T (y) = y, then

|x− y| = |T (x)− T (y)| ≤ α|x− y|.
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Since α < 1, this implies x = y. �

We will upgrade this result considerably via Lemma 7.23 and Theorem 7.24
below. These results will really constitute the ‘hard work’ of this section.

We first define the following:

Definition 7.9. Let U ⊂ Rn and V ⊂ Rm. A function T : U × V → Rm is a
uniform contraction if there exists α ∈ (0, 1) so that

|T (x, y1)− T (x, y2)| ≤ α|y1 − y2| for all x ∈ U, y1, y2 ∈ V.

Then we have the following corollary to the contraction mapping principle.

Corollary 7.22. Suppose U ⊂ Rn is open and V ⊂ Rm is closed. If T : U×V → V
is a uniform contraction, then there exists a fixed point function g : U → V such
that T (x, g(x)) = g(x).

Proof. Apply the contraction mapping principle to each function Fx defined by
Fx(y) = T (x, y). �

The key result we will prove below is that the fixed point function g ‘inherits the
regularity’ of the contraction T . To make all of this precise, let us first introduce
a bit of notation. We will continue to look at functions T : Rn × Rm → Rm. We
will write elements of Rn × Rm as (x, y). That is, x ∈ Rn and y ∈ Rm. If T is
differentiable at a point (x, y), then its derivative will be an m×(n+m) matrix. As
usual, we can make sense of its partial derivatives DjT (x, y), each of which will be a
column of the matrix T ′(x, y). We write DxT (x, y) to denote the first n columns of
this matrix (so it is an m×n matrix), and DyT (x, y) to denote the last m columns
of this matrix (so it is an m×m matrix).

Throughout the proofs below, we will use the following fact several times: if A
is an n× n matrix, then there exists C > 0 such that

|Ax| ≤ C|x| for all x ∈ Rn, (7.13)

which is left as an exercise.
As mentioned above, we will show that the fixed point function g inherits the

regularity of the contraction T . In particular, we will prove that if T is C1, then so
is g. To motivate what follows, let us see what form the derivative of g should take
(assuming it is differentiable). We start by differentiating the identity T (x, g(x)) =
g(x), which yields

Dxg = DxT (x, g(x)) +DyT (x, g(x))Dxg.

Rearranging, we find

(I −DyT (x, g(x))Dxg = DxT (x, g(x)),

and hence, if I −DyT (x, g(x)) is invertible, we should have

Dxg = (I −DyT (x, g(x)))−1DxT (x, g(x)).

We will therefore need the following result:

Lemma 7.23. Suppose T : U × V → V is a uniform contraction (with constant
α), where U ⊂ Rn and V ⊂ Rm. Let g : U → V be the fixed point function of T .

If T ∈ C1(U × V ), then the m×m matrix

A(x) = I −DyT (x, g(x))
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is invertible for all x ∈ U , where I is the m×m identity matrix. Furthermore,

|A−1(x)z| ≤ 1
1−α |z| for all x ∈ U, z ∈ Rm. (7.14)

Proof. The key is going to be the following bound:

|DyT (x, y)z| ≤ α|z| for all x ∈ U, y ∈ V, z ∈ Rm. (7.15)

Let’s prove this, and then see what it does for us.
Fix x ∈ U , y ∈ V , and z ∈ Rm\{0}, and let δn be a sequence of positive real

numbers satisfying δn → 0. Then, by definition of differentiability ,we have

lim
n→∞

∣∣∣∣DyT (x, y)[ δnz|δnz| ]−
1
|δnz|

[
T (x, y + δnz)− T (x, y)

]∣∣∣∣ = 0.

Now observe that by the uniform contraction property,∣∣ 1
|δnz| [T (x, y + δnz)− T (x, y)]

∣∣ ≤ α |δnz||δnz| ≤ α.

Combining the previous two displays and using the linearity ofDyT (x, y), we deduce

|DyT (x, y) z
|z| | ≤ α, i.e. |DyT (x, y)z| ≤ α|z|,

which is (7.15).
Now let’s try to invert the matrix A(x) defined above. The idea is that since

A is of the form ‘1 − R’, its inverse should be ‘ 1
1−R ’. This final quantity doesn’t

make any sense in the present setting (since ‘1’ and ‘R’ are matrices). However,
we can also recognize 1

1−R as the result of summing the geometric series
∑∞
k=0R

k,
and these summands actually do make sense, since they are just powers of a square
matrix. So, here are the claims we need to prove:

(i) For any x ∈ U , we can define a linear transformation L : Rm → Rm by
setting

L(z) =

∞∑
k=0

Rkz = lim
n→∞

n∑
k=0

Rkz, where R := DyT (x, g(x)).

(ii) We have L(Az) = z for all z ∈ Rm, where A = I − R. Consequently, if B
is the matrix for L, then B = A−1.

We first prove (i). Given z ∈ Rm, we need to show that the sequence

w` :=
∑̀
k=0

Rkz ∈ Rm

converges. To do this, we’ll show it’s Cauchy. In fact, this is just like the proof of
the contraction mapping theorem: We first recall that R = DyT (x, g(x)), so that
by (7.15) we have

|Rz| ≤ α|z|, |R2z| ≤ α|Rz| ≤ α2|z|, and in general |Rkz| ≤ αk|z|.

Thus for ` > j,

|w` − wj | ≤
∑̀
k=j+1

|Rkz| ≤ |z|
∑̀
k=j+1

αk ≤ |z| α
`

1−α .

It follows that {w`} is Cauchy and hence has a limit, which we define to be L(z)
and denote by

∑∞
k=0R

kz.
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Now that we have defined L(·), let’s make sure it is a linear transformation.
First, for c ∈ R and ` ≥ 0, we have

∑̀
k=0

Rk[cz] = c
∑̀
k=0

Rkz, which implies L(cz) = cL(z).

Similarly

∑̀
k=0

Rk[z1 + z2] ≡
∑̀
k=0

Rkz1 +

n∑
k=0

Rkz2 =⇒ L(z1 + z2) = L(z1) + L(z2).

This finishes the proof of (i).
For (ii), we need to show that L((I −R)z) = z for all z ∈ Rm. To this end, note

that ∑̀
k=0

Rk(1−R)z =
∑̀
k=0

Rkz −
`+1∑
k=1

Rkz = z −R`+1z. (7.16)

Thus, since

|R`+1z| ≤ α`+1|z| → 0 as `→∞,

we deduce L((1−R)z) = z as desired. I’ll leave it as an exercise to check that this
implies that the matrix for L is the inverse of (1−R).

The last thing to prove is the bound

|A−1(x)z| ≤ 1
1−α |z|.

Since we just showed that the matrix for L is A−1, this is equivalent to showing
that

|L(z)| ≤ 1
1−α |z|. (7.17)

To see this, fix z ∈ Rm and let L`(z) =
∑`
k=0R

kz, which we know converges to
L(z) as `→∞. Then (7.16) can be rewritten

L`(z)−RL`(z) = z −R`+1z, or L`(z) = z +RL`(z)−R`+1z.

In particular,

|L`(z)| ≤ |z|+ |RL`(z)|+ |R`+1z| ≤ |z|+ α|L`(z)|+ α`+1|z|.

Rearranging this gives

(1− α)|L`(z)| ≤ |z|+ α`+1|z|, or |L`(z)| ≤ 1
1−α |z|+

α`+1

1−α |z|.

We now take the limit as `→∞ to obtain (7.17). �

We then have the following upgrade of the contraction mapping principle, which
shows that the fixed point function inherits the regularity of the original mapping.

Theorem 7.24 (Uniform Contraction Mapping Principle). Let T : U × V → V
be a uniform contraction, where U ⊂ Rn is open and V ⊂ Rm is closed, and let
g : U → V be the corresponding fixed point function.

Let k ∈ {0, 1}. If T ∈ Ck(U × V ), then g ∈ Ck(U).
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Proof. We begin with the case k = 0. By definition, we have

|g(x+ h)− g(x)| = |T (x+ h, g(x+ h))− T (x, g(x))|
≤ |T (x+ h, g(x+ h))

− T (x+ h, g(x))|+ |T (x+ h, g(x))− T (x, g(x))|
≤ α|g(x+ h)− g(x)|+ |T (x+ h, g(x))− T (x, g(x))|

for some α ∈ (0, 1). Thus

|g(x+ h)− g(x)| ≤ 1
1−α |T (x+ h, g(x))− T (x, g(x))|.

Since T is assumed to be continuous we deduce

lim
h→0

g(x+ h) = g(x),

yielding continuity of g.
Next, suppose T ∈ C1. Then, using Lemma 7.23, we can define the m×n matrix

M(x) = [I −DyT (x, g(x))]−1DxT (x, g(x)),

which depends continuously on x ∈ U (this depends on (7.14)). We will show that
g ∈ C1(U) by showing that g′(x) = M(x). To do so, we define

Rg(x, h) = g(x+ h)− g(x)−M(x)h for x ∈ U, h ∈ Rn,
and we will show that given ε > 0, there exists δ > 0 such that

0 < |h| < δ =⇒ |Rg(x, h)| < ε|h|.
(As we saw above, you can arrive at this as the right ‘guess’ for g′(x) by just
differentiating the equation T (x, g(x)) = g(x) and solving for g′(x).)

To fit the computations in the margins, we need to introduce some notation. In
particular, we set

∆g = ∆g(x, h) := g(x+ h)− g(x) ∈ Rm

(so that ∆g = Rg +Mh) and E(p, q) ∈ Rm by

E(p, q) = E((x, g(x)), (p, q))

= T (x+ p, y + q)− T (x, y)−DxT (x, y)p−DyT (x, y)q

where (p, q) ∈ Rn × Rm.
We then have

∆g = T (x+ h, g(x+ h))− T (x, g(x))

= T (x+ h, g(x) + ∆g)− T (x, g(x))

= DxT (x, g(x))h+DyT (x, g(x))∆g + E(h,∆g)

Rearranging this, we get

∆g = [I −DyT (x, g(x)]−1DxT (x, g(x))h+ [I −DyT (x, g(x))]−1E(h,∆g)

= M(x)h+ [I −DyT (x, g(x))]−1E(h,∆g),

and so
Rg(x, h) = [I −DyT (x, g(x))]−1E(h,∆g). (7.18)

Now let η > 0 be a small parameter to be chosen below. Since T ∈ C1(U × V ),
we can find µ > 0 so that

|p|+ |q| < µ =⇒ |E(p, q)| < η(|p|+ |q|).
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Next, since ∆g(x, h) is continuous and ∆g(x, 0) = 0, we can find 0 < δ < 1
2µ so

that
0 < |h| < δ =⇒ |∆g(x, h)| < 1

2µ.

In particular,

0 < |h| < δ =⇒ |h|+ |∆g| < µ

=⇒ |E(h,∆g)| < η(|h|+ |∆g(x, h)|).

Using Lemma 7.23 again and (7.18), we deduce

0 < |h| < δ

=⇒ |Rg(x, h)| < η
1−α

[
|h|+ |∆g(x, h)|

]
< η

1−α
[
|h|+ |Rg(x, h)|+ |M(x)h|

]
.

Now, as long as η is small enough so that η
1−α <

1
2 , we can rearrange this to deduce

0 < |h| < δ =⇒ |Rg(x, h)| < 2η
1−α

[
|h|+ |M(x)h|

]
.

But now M(x) is some matrix, so that |M(x)h| ≤ C|h| for some C > 0. In
particular,

0 < |h| < δ =⇒ |Rg(x, h)| < 2η(1+C)
1−α |h|,

and by choosing η small enough depending on ε, C, α we can guarantee that the
right-hand side is bounded by ε|h|. This completes the proof! �

Finally, we can state and prove the implicit function theorem:

Theorem 7.25 (Implicit Function Theorem). Let O ⊂ Rn × Rm be open. Let
F : O → Rm satisfy F ∈ C1(O). If (x0, y0) ∈ O is such that

F (x0, y0) = 0 and DyF (x0, y0) is invertible,

then there exists an open set (x0, y0) ∈ U × V ⊂ O and g : U → V satisfying
g ∈ C1(U) such that

y0 = g(x0) and F (x, g(x)) = 0 for all x ∈ U.
Moreover, if (x, y) ∈ U × V and F (x, y) = 0, then y = g(x).

Proof. For convenience (and without loss of generality), we assume (x0, y0) = (0, 0).
We let L = [DyF (0, 0)]−1 and define G : O → Rm by

G(x, y) = y − LF (x, y),

so that in particular G ∈ C1(O). Since L is an invertible matrix, we have that

G(x, y) = y if and only if F (x, y) = 0.

Note also that

G(0, 0) = 0 and DyG(0, 0) = I − [DyF (0, 0)]−1DyF (0, 0) = 0.

Thus, setting A = DxG(0, 0) and using the differentiability of G at (0, 0), we may
find δ1 > 0 so that

|x|, |y| < δ1 =⇒ |G(x, y)−Ax| < 1
2 (|x|+ |y|).

Furthermore, since DyG(x, y) is continuous, there exists δ2 > 0 so that

|x|, |y| < δ2 =⇒ |DyG(x, y)z| < 1
2 |z| for all z ∈ Rm. (7.19)

Now set
ν = min{δ1, δ2}
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and let 0 < µ < ν be a small parameter to be determined shortly, and let

U = Bµ(0) ⊂ Rn and V = Bν(0) ⊂ Rm.

It follows that if (x, y) ∈ U × V̄ , then we have

|G(x, y)| ≤ |Ax|+ 1
2 |x|+

1
2 |y|

≤ [C + 1
2 ]|x|+ 1

2 |y|
≤ [C + 1

2 ]µ+ 1
2ν < ν

if µ is chosen sufficiently small. That is,

G : U × V̄ → V̄ .

In fact, we will now show that G is a uniform contraction. To see this, let x ∈ U
and y1, y2 ∈ V̄ , and define the function

a(σ) = G(x, (1− σ)y1 + σy2).

Then we have that a : [0, 1] → V̄ ⊂ Rm. Moreover, by the chain rule, a is con-
tinuously differentiable. Thus, we can apply the fundamental theorem of calculus
component by component to obtain the equality

a(1)− a(0) =

∫ 1

0

a′(σ) dσ.

However, by definition and the chain rule, this becomes

G(x, y2)−G(x, y1) =

∫ 1

0

DyG(x, (1− σ)y1 + σy2)[y2 − y1] dσ.

Thus, for x ∈ U and y1, y2 ∈ V̄ , we can use (7.19) to obtain

|G(x, y2)−G(x, y1)| ≤
∫ 1

0

|DyG(x, (1− σ)y1 + σy2)[y2 − y1]| dσ

≤
∫ 1

0

1
2 |y2 − y1|dσ ≤

1
2 |y2 − y1|,

showing that G is a uniform contraction. In particular, by Theorem 7.24, there
exists g : U → V̄ with g ∈ C1(U) such that

G(x, g(x)) = g(x) for x ∈ U.

Moreover, given x ∈ U , we have that g(x) is the unique point in V̄ such that
G(x, g(x)) = g(x). Translating back to F , we have that F (x, g(x)) = 0 for all
x ∈ U with the desired regularity and uniqueness for g. �

Using the implicit function theorem, we can also prove the following:

Theorem 7.26 (Inverse Function Theorem). Let O ⊂ Rn be an open set containing
x0 and let f : O → Rn satisfy f ∈ C1(O). If f ′(x0) is invertible, then there exists
an open set x0 ∈ U ⊂ O, an open set V containing f(x0), and a function g : V → U
such that g ∈ C1(U), with

g(f(x)) = x for x ∈ U and f(g(y)) = y for y ∈ V.
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Proof. Let us define the function

F (y, z) = y − f(z)

for y in a small ball V around f(x0) and z in a small ball U around x0. Then
F ∈ C1 and we have

F (f(x0), x0) = f(x0)− f(x0) = 0

and

DzF (f(x0), x0) = −f ′(x0) is invertible,

showing that F satisfies the hypotheses of the implicit function theorem. In par-
ticular, there exists g : V → U with g ∈ C1(V ) such that

0 = F (y, g(y)) = y − f(g(y)), i.e. f(g(y)) = y.

This constructs the desired function g. The remaining properties will be left as an
exercise! �

7.5. Lagrange multipliers. Recall that our current goal is to study problems in
‘constrained optimization’. We have just finished what probably seemed like a long
and irrelevant detour towards this goal, but in fact we accomplished something very
useful: we proved the implicit and inverse function theorems. They will play a role
in this section.

Let us formulate the problem we will consider in this section. We will be given a
function f : Rn → R whose maxima/minima we would like to study. However, we
will no longer consider all possible x ∈ Rn as inputs to f . Instead, we will consider
x ∈ Rn satisfying a constraint, which will be of the form

g(x) = 0 for some g ∈ C1(Rn).

Then the condition ∇f(x) = 0 will no longer be the right condition to consider.
Instead, as we will see, the condition we will need to consider is the statement that
∇f(x) = λ∇g(x) for some λ ∈ R (which we call the Lagrange multiplier).

Here is the key result we need about constraints like the one described above:

Theorem 7.27 (Tangent Planes). Let g : Rn → R satisfy g ∈ C1(Rn). Define the
set

M = {x ∈ Rn : g(x) = 0 and ∇g(x) 6= 0}.
For a ∈M , define TaM to be the set of vectors v ∈ Rn such that there exists δ > 0
and a differentiable function γ : (−δ, δ)→M such that γ(0) = a and γ′(0) = v.

Then for each a ∈ M , TaM is an (n − 1)-dimensional vector space (called the
tangent plane to M at a).

Furthermore, for any a ∈M and v ∈ TaM , we have ∇g(a) · v = 0.

Proof. Let a ∈ M . Then the fact that ∇g(a) 6= 0 implies that Dig(a) 6= 0 for at
least one i = 1, . . . , n. To simplify the presentation a bit, let us suppose that we
have

Dng(a) 6= 0.

(To deal with a different value of i, we basically just need to play around with
permuting indices.)

Then we can view

g(x) = g(x1, . . . , xn) = g(x̂, xn),
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where x̂ = (x1, . . . , xn−1) ∈ Rn−1, and we have

g(â, an) = 0 and Dng(â, an) 6= 0 (i.e. ‘is invertible’),

where a = (â, an). By the implicit function theorem, we can find open sets U and
V with â ∈ U and an ∈ V , and a function h : U → V with h ∈ C1(U) such that

an = h(â) and g(x̂, h(x̂)) = 0 for all x̂ ∈ U.
In fact, by the uniqueness of this function,

{x ∈ U × V : g(x) = 0} = {x ∈ Rn : x̂ ∈ U and xn = h(x̂)}.
Now define TaM as in the statement of the theorem. We define the n−1 vectors

wj ∈ Rn by

w1 = (1, 0, . . . , 0, D1h(â)),

w2 = (0, 1, . . . , 0, D2h(â)),

and so on. We claim that TaM = span{w1, . . . , wn−1}, which implies the result.
To see this, suppose v ∈ TaM , so that there exists γ : (−δ, δ)→M with γ(0) = a

and γ′(0) = v. In particular, choosing δ > 0 smaller if necessary, we may assume
γ(t) ∈ U × V for all t. Thus

γ(t) ∈M =⇒ g(γ(t)) = 0 =⇒ γn(t) = h(γ̂(t)),

and so

γ′n(t) = ∇h(γ̂(t)) · γ̂′(t) =

n−1∑
j=1

Djh(γ̂(t))γ̂′j(t).

In particular,

γ′n(0) =

n−1∑
j=1

γ̂′j(0)Djh(â),

and so

v = γ′(0) =

n−1∑
j=1

γ̂′j(0)wj ∈ span{w1, . . . , wn−1}.

(To verify this final equality, just check component by component.)
Conversely, given a vector

v =

n−1∑
i=1

cjwj ∈ span{w1, . . . , wn−1},

we need to show that v ∈ TaM . To see this, we define

γ(t) = (â+ tc, h(â+ tc)), c = (c1, . . . , cn−1).

Then â + tc ∈ U for t small enough, so that g(γ(t)) = 0 for t small enough.
Similarly since g ∈ C1 and ∇g(a) 6= 0, we have ∇g(γ(t)) 6= 0 for t small enough.
Thus γ : (−δ, δ)→M for small enough δ > 0. Then

γ′(t) ≡ (c,∇h(â+ tc) · c) ∈ Rn.
However, checking component by component, we deduce that γ′(0) = v, and thus
v ∈ TaM .

Finally, take v ∈ TaM . We need to show ∇g(a) · v = 0. By definition, v = γ′(0)
for some γ : (−δ, δ)→M . In particular, we have

g ◦ γ ≡ 0, so that d
dt [g ◦ γ] = ∇g(γ(t)) · γ′(t) ≡ 0.
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Evaluating at t = 0 yields ∇g(a) · v = 0, as desired. �

We then have the following result on constrained optimization.

Theorem 7.28 (Lagrange Multipliers). Suppose g : Rn → R satisfies g ∈ C1(Rn),
and let

M = {x ∈ Rn : g(x) = 0 and ∇g(x) 6= 0}.
Suppose f : Rn → R is differentiable and obtains a maximum or minimum on M
at some a ∈M . Then there exists λ ∈ R such that

∇f(a) = λ∇g(a).

Proof. Let TaM be the tangent plane at a. We claim that

∇f(a) · v = 0 for all v ∈ TaM.

To see this, suppose γ : (−δ, δ) → M satisfies γ(0) = a and γ′(0) = v. Then, by
assumption, the function

ϕ(t) = f ◦ γ(t) : (−δ, δ)→ R

has a maximum or minimum at t = 0. Thus by the chain rule,

0 = ϕ′(0) = ∇f(γ(0)) · γ′(0) = ∇f(a) · v,
as desired.

Now, let {w1, . . . , wn−1} be a basis for TaM . If we extend this to a basis
{w1, . . . , wn} for Rn, then it follows that

∇f(a) = c1wn and ∇g(a) = c2wn for some c1, c2 ∈ R.

Note that c2 6= 0 (since ∇g(a) 6= 0), so that

∇f(a) = c1wn = c1
c2
∇g(a),

as desired. �

Example 7.17. Let us find the rectangular box of volume 1000 of minimal surface
area. It’s not hard to guess the answer, but the point is to exhibit the Lagrange
multiplier approach:

Writing x, y, z for the dimensions of the box, we are trying to minimize the
function

f(x, y, z) = xy + xz + yz

subject to

g(x, y, z) = 0, where g(x, y, z) = xyz − 1000.

Then at an extreme point, we will have ∇f = λ∇g, which becomes

y + z = λyz, x+ z = λxz, x+ y = λxy,

with xyz = 1000. We multiply the three equations by x, y, and z, respectively, and
substitute xyz = 1000 in each; we then obtain

xy + xz = xy + yz = xz + yz = 1000λ

Thus we should take x = y = z, and in particular x = y = z = 10.

The higher dimensional implicit function theorem can be used to prove a higher
dimensional version of the Lagrange Multiplier Theorem (with more constraints).
The result is the following:



A COURSE ON ADVANCED CALCULUS 129

Theorem 7.29 (Lagrange Multipliers, several constraints). Suppose G : Rn → Rm
is a continuously differentiable function, with m < n. Let M denote the set of
x ∈ Rn so that G(x) = 0 and such that

∇G1(x), . . . ,∇Gm(x) are linearly independent.

If f : Rn → R attains a local maximum or minimum on M at a, then there exist
λ1, . . . , λm ∈ R such that

∇f(a) = λ1∇G1(a) + · · ·+ λm∇Gm(a).

Proof. Let’s just sketch the proof.
The first essential point is to prove an analogue of Theorem 7.27. In particular,

the assumption that ∇G1, . . . ,∇Gm are linearly independent allows us to apply the
implicit function theorem to show that for each a ∈ M , we can define a tangent
plane TaM which will now be an n − m dimensional subspace of Rn. Moreover,
∇G1(a), . . . ,∇Gm(a) will all be orthogonal to this plane (and in particular will
form a basis for the orthogonal complement to this plane). Then, if f has a local
extremum on M at a, we can show that ∇f is orthogonal to this plane as well, and
hence belongs to the span of ∇G1(a), . . . ,∇Gm(a). This yields the result. �

Example 7.18. Let find the maximum and minimum of f(x, y, z) = x on the
intersection of the plane z = 1 and the sphere x2 + y2 + z2 = 4. Again, the point
is to illustrate the method:

We let

g1(x, y, z) = z − 1 and g2(x, y, z) = x2 + y2 + z2 − 4.

Since
∇f = (1, 0, 0), ∇g1 = (0, 0, 1), and ∇g2 = (2x, 2y, 2z),

we are faced with solving

1 = 2λ1x, 0 = 2λ2y, 0 = λ1 + 2λ2z

under the two constraints. Note that λ2 = 0 OR y = 0. Since 2λ2 = −λ1 and
2λ1x = 1, we must have y = 0. But then the constraints yield x2 = 3, so x = ±

√
3.

Thus the maximum and minimum are ±
√

3, respectively.
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8. Multivariable integral calculus

8.1. Definition of the n-dimensional integral. The key to defining the n-
dimensional integral will be a suitable definition of the n-dimensional ‘volume’ of
sets. In particular, we want to define a quantity that recovers length in one dimen-
sion, area in two dimensions, volume in three dimensions, and so on. To do this,
we basically want a definition that will be guaranteed to give us the right answer
if we are trying to measure the volume of an ‘n-dimensional interval’ (this is the
generalization of an interval in 1d, a rectangle in 2d, and so on), and in general
we will use some sort of approximation by intervals to define our notion of volume.
Here we go:

Definition 8.1. A closed interval in Rn is a set of the form

I = I1 × I2 × · · · × In ⊂ Rn,

where each Ik = [ak, bk] is a closed interval in R. We define the volume of such an
interval by

v(I) = (b1 − a1)(b2 − a2) · · · (bn − an).

We say two intervals I and J are nonoverlapping if I◦ ∩ J◦ = ∅ (that is, their
interiors are disjoint).

Definition 8.2. Let A ⊂ Rn be a bounded set (this means that there exists M > 0
so that |x| < M for all x ∈ A). We say that A is contented with volume v(A) if for
any ε > 0, there exist (i) nonoverlapping closed intervals I1, . . . , Im ⊂ A so that

m∑
j=1

v(Ij) > v(A)− ε

and (ii) closed intervals J1, . . . , J` so that

A ⊂
⋃̀
j=1

Jj and
∑̀
j=1

v(Jj) < v(A) + ε.

This is a pretty abstract definition, so we should spend a bit of time understand-
ing what it actually says. In some sense, it says that a set has ‘volume’ (we call
it contented) if it can be closely approximated by finitely many closed intervals,
and the volume is a quantity that we can approximate arbitrarily well using closed
intervals. In dimensions n = 1, 2, instead of ‘volume’ we will usually say ‘length’
and ‘area’, respectively.

Example 8.1 (Area of a triangle). Let A be a triangle with base b and height a.
That is, we consider A as the set

{(x, y) ∈ R2 : x ∈ [0, b] and y ∈ [0, abx]}.

We know that the area should be 1
2ab. Let’s see that our abstract definition above

agrees with this.
We split [0, b] into n equal subintervals. We then take Ik to be the rectangle

with base [(k− 1)b/n, kb/n] and height (k− 1)a/n and take Jk to be the rectangle
with base [(k − 1)b/n, kb/n] and height ka/n. The sum of the areas of the Ik is

n∑
k=1

b
n ·

(k−1)a
n = 1

2ab−
ab
2n ,
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while the sum of the areas of the Jk is
n∑
k=1

b
n
ka
n = 1

2ab+ ab
2n

(you’ll verify these computations in the homework). Thus, given ε > 0, we can
choose n so that ab

2n < ε and conclude that the area is 1
2ab.

According to our definition, we simply cannot assert that every set has volume.
That is, not every set is ‘contented’. Here is an example:

Example 8.2. Let

A = {(x, y) ∈ R2 : x, y ∈ [0, 1] ∩Q}.
Then A contains no rectangles other than those of the form [q, q]× [r, r] for q, r ∈ Q,
which have volume zero. Thus for any finite collection Ij of rectangles contained in
A, we have ∑

j

v(Ij) = 0.

On the other hand, if a finite collection of rectangles J1, . . . , J`, contains A then we
claim that we must have

[0, 1]× [0, 1] ⊂
⋃̀
j=1

Jj ,

which implies that ∑̀
j=1

v(Jj) ≥ 1.

It is therefore impossible to define a volume to the set A (because the volume v(A)
would have to satisfy

v(A) < ε and v(A) > 1− ε for all ε > 0,

which is impossible for any choice of ε ∈ (0, 12 )).

To prove the claim, we use the density of Q×Q in R2 (another exercise for you).
In particular, any point (x, y) ∈ [0, 1] × [0, 1] can be obtained as a limit of points
(pn, qn) ∈ [0, 1] × [0, 1] with pn, qn ∈ Q. Each element of this sequence (pn, qn) is
contained in one of the intervals J1, . . . , J`. In particular, there exists Jj containing
infinitely many terms (pn, qn) (i.e. a subsequence of the original sequence). Since
this subsequence still converges to (x, y) and Jj is closed, we conclude (x, y) ∈ Jj ,
which yields the claim.

The previous examples show us that basic shapes are going to have the volume
we expect them to, but that we cannot hope to assign a volume to every set. The
issue with the second example was that it had a lot of ‘boundary’. In particular,
while the set itself was just a discrete set of points (ordered pairs of rationals), the
closure of this set is the entire square [0, 1] × [0, 1]. So the boundary, which is the
closure minus the interior, is actually the entire square [0, 1]× [0, 1]. What we will
show next is that a set is contented if and only if its boundary is negligible, which
means it has volume equal to zero.

Theorem 8.1. A bounded set A is contented if and only it its boundary is negligible
(i.e. has volume zero).
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Proof. =⇒ : Suppose A is contented and let ε > 0. We choose closed intervals
I1, . . . , Im and J1, . . . , J` as in Definition 8.2. Now take any closed interval R con-
taining A, and let P be a partition of R (that is, a finite collection of nonoverlapping,
closed intervals whose union equals R) such that each Ik and each Jj is a union
of intervals of P. We then let R1, . . . , Ra be the intervals of P that comprise the
union

m⋃
k=1

Ik,

and let Ra+1, . . . , Rb be the additional intervals contained in the union

⋃̀
j=1

Jj .

It follows that the boundary of A, denoted ∂A, satisfies

∂A ⊂
b⋃

k=a+1

Rk.

We now observe that

b∑
k=a+1

v(Rk) =

b∑
k=1

v(Rk)−
a∑
k=1

v(Rk)

≤
∑̀
j=1

v(Jj)−
m∑
k=1

v(Ik)

< [v(A) + ε]− [v(A)− ε] = 2ε.

As ε > 0 was arbitrary, this implies that ∂A is contented with v(∂A) = 0.
⇐=: We suppose ∂A is negligible. To show that A is contented, it suffices to show

that for any ε > 0, there exist intervals J1, . . . , J` containing A and nonoverlapping
intervals I1, . . . , Im contained in A such that∑̀

j=1

v(Jj)−
m∑
k=1

v(Ik) < ε,

since then we obtain that v(A) is the supremum of all such sums
∑
v(Ik) (or, the

infimum of all such sums
∑
v(Jj)).

Thus, we let R be a closed interval containing A and ε > 0, and we choose
intervals R1, . . . , Ra covering ∂A with

a∑
i=1

v(Ri) < ε.

We let P be a partition of R so that each Ri is a union of elements of P. Then if
I1, . . . , Im are the intervals of P contained in A and J1, . . . , J` are the intervals of
P contained in A ∪

⋃a
i=1Ri, then we have

A ⊂
⋃̀
j=1

Jj and

[⋃̀
j=1

Jj

]
\
[ m⋃
k=1

Ik

]
⊂

a⋃
i=1

Ri.
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Since all of the intervals Ik are contained in the collection {Jj}, it follows that

∑̀
j=1

v(Jj)−
m∑
k=1

v(Ik) ≤
a∑
i=1

v(Ri) < ε,

which yields the result. �

This result provides a useful characterization of contentedness of sets, since we
can often recognize when a given set is negligible. Using this result, we can also
deduce that the intersection, union, or set difference of two contented sets is again
contented.

The definition of volume plays a central role in our topic of interest, namely, the
n-dimensional integral. To state the definitions, we need a bit more terminology:

• If f : Rn → R is a nonnegative function (that is, f(x) ≥ 0 for every x ∈ Rn),
we define the ordinate set

Of = {(x, y) ∈ Rn × R : 0 < y < f(x)} ⊂ Rn+1.

• We define the positive and negative parts of a function f : Rn → R, denoted
f+ and f−, by

f+(x) = max{0, f(x)} and f−(x) = max{0,−f(x)}.

• We say that f is of bounded support if there exists an interval I ⊂ Rn such
that f(x) = 0 for x /∈ I.

We can now define (Riemann) integrability for functions f : Rn → R.

Definition 8.3. Let f : Rn → R be a bounded function of bounded support. We
say that f is (Riemann) integrable if the sets Of+ and Of− are both contented,
and we define the integral of f by∫

f = v(Of+)− v(Of−).

We will see later that in the case n = 1, this agrees with our previous definition
of Riemann integrable.

More generally, given a set A ⊂ Rn, we may define the integral of f over A as
follows. We let χA denote the characteristic function of A, defined by

χA(x) =

{
1 x ∈ A,
0 x 6∈ A.

If fχA is integrable, we define ∫
A

f =

∫
fχA.

If fχA is not integrable, we say the integral
∫
A
f is not defined.

Using the definition alone, we can prove a few key properties of the integral:

Lemma 8.2. If f is integrable and f(x) ≥ 0 for all x ∈ Rn, then∫
f ≥ 0.
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Proof. Since f−(x) ≡ 0, we have∫
f = v(Of ) ≥ 0.

�

Lemma 8.3. If A is contented, then∫
χA = v(A).

Proof. Let ε > 0 and choose intervals I1, . . . , Iq and J1, . . . , Jp in Rn so that

∪qi=1Ii ⊂ A ⊂ ∪
p
j=1Jj ,

with
q∑
i=1

v(Ii) > v(A)− ε and

p∑
j=1

v(Jj) < v(A) + ε.

Then set I ′i = Ii × [0, 1] and J ′j = Jj × [0, 1]. It follows that

∪qi=1I
′
i ⊂ OχA ⊂ ∪

p
j=1,

with
q∑
i=1

v(I ′i) > v(A)− ε and

p∑
j=1

v(J ′j) < v(A) + ε.

It follows that v(OχA) = v(A), and hence∫
χA = v(OχA) = v(A),

as desired. �

The other fundamental properties of integrability (namely, that the set of inte-
grable functions is a vector space and the mapping f 7→

∫
f is linear) will be proven

shortly.
It is a complicated question to ask for necessary and sufficient conditions for

integrability. There is, however, a large class of functions that we can prove to be
integrable, which includes most of the functions we are likely to encounter.

Definition 8.4 (Admissible). We call f admissible if:

• f is bounded,
• f has bounded support, and
• f is continuous except on a negligible set.

Note that the set of admissible functions forms a vector space. Note also that if
f is admissible, so are f+ and f− (these will be homework problems).

Theorem 8.4. Admissible functions are integrable.

Proof. Let f be an admissible function on Rn, and let R be an interval so that
f = 0 outside R. As f± are admissible, we may assume f ≥ 0 without loss of
generality.

We choose M > 0 such that 0 ≤ f(x) ≤ M for all x, and let D denote the
negligible set where f is not continuous.
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Now, given ε > 0, we choose Q1, . . . , Qk to be closed intervals in Rn such that

D ⊂
k⋃
i=1

int(Qi) and

k∑
i=1

v(Qi) < ε.

Now set K = R\
⋃k
i=1 int(Qi). Then K is compact, and hence f is uniformly

continuous on K. In particular, there exists δ > 0 so that for all x, y ∈ K,

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

We now let P be a partition of R so that each Qi is a union of intervals of P
and such that each interval of P has diameter < δ. We then write R1, . . . , Rq for
the intervals of P contained in K and set

ai = inf
Ri
f, bi = sup

Ri

f,

so that bi − ai < ε for all i. We then set

Ii = Ri × [0, ai], i = 1, . . . , q,

Ji = Ri × [0, bi], i = 1, . . . , q,

Jq+i = Qi × [0,M ], i = 1, . . . , k.

Finally, set O∗ = Of ∪R× {0}. Then, since Of = O∗\[R× {0}] and R× {0} is
contented, it suffices to show that O∗ is contented.

To this end, we note that I1, . . . , Iq are nonoverlapping intervals contained in
O∗, while J1, . . . , Jq+k is a collection of intervals contaning O∗. Moreover,

q+k∑
j=1

v(Jj)−
q∑
i=1

v(Ii) =

k∑
i=1

v(Jq+i) +

q∑
i=1

(bi − ai)v(Ri)

< M

k∑
i=1

v(Qi) + ε

q∑
i=1

v(Ri)

≤ (M + v(R))ε.

As ε > 0 was arbitrary, it follows that O∗ is contented, as was needed to show. �

This result has a useful corollary:

Corollary 8.5. If f : A → R is nonnegative and continuous and A ⊂ Rn is
contented, then the graph

Gf = {(x, f(x)) : x ∈ A} ⊂ Rn+1

is negligible.

Proof. We first extend f to zero outside of A. It follows that f is admissible, since
it can be only be discontinuous on ∂A, which (as the boundary of a contented
set) is negligible. Then, by the theorem, Of is contented, and so its boundary is
negligible. As Gf is a subset of ∂Of , we deduce that Gf is negligible. �

Note that the proof just given also demonstrated that the ordinate set Of of
a continuous, nonnegative function f : A → R (on a contented set A ⊂ Rn) is a
contented set in Rn+1. That is, we can always make sense of the volume of the
region under the graph of a continuous function over a contented set.
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We also note that if f is admissible and A ⊂ Rn is contented, then fχA is
contented. Indeed, writing D for the negligible set where f is not continuous, we
have that fχA is continuous off of the negligible set D ∪ ∂A. We also have the
following intuitive result:

Proposition 8.6. Let f, g be integrable functions with f(x) ≤ g(x) for all x ∈ Rn.
Then ∫

f ≤
∫
g.

Consequently, if |f(x)| ≤M for all x ∈ Rn and A is contented, then∣∣∣∣∫
A

f

∣∣∣∣ ≤M · v(A).

In particular,
∫
A
f = 0 if A is negligible.

Proof. The condition f ≤ g guarantees that f+ ≤ g+ and f− ≥ g−. This shows
that

Of+ ⊂ Og+ and Og− ⊂ Of− ,
which implies the first inequality.

Now we note that if |f(x)| ≤M , then −M ≤ f(x) ≤M , so that

−M · v(A) =

∫
A

(−M) ≤
∫
A

f ≤
∫
A

M = M · v(A),

giving the second inequality. In particular, if v(A) = 0, we obtain
∫
A
f = 0. �

8.2. Step functions, Riemann sums. We are still missing some basic properties
of the integral, like linearity. In what follows, it will be useful to have a ‘step function
criterion’ for integrability, similar to the one we established in the one-dimensional
setting. We begin with the following definition.

Definition 8.5 (Step function). A function h : Rn → R is called a step function if
there exist nonoverlapping intervals I1, . . . , Ip and a1, . . . , ap ∈ R such that

h =

p∑
i=1

aiχi, where χi = χIi .

In this definition, we don’t care whether the intervals are built out of closed,
open, or half-open intervals in R.

Step functions are integrable. Indeed, they are admissible!

Theorem 8.7. If h =
∑p
i=1 aiχi is a step function, then h is integrable, with∫

h =

p∑
i=1

aiv(Ii).

Proof. First note that h is continuous except possibly on the negligible set ∪pi=1∂Ii.
Thus h is admissible, and hence integrable.

Let’s compute the integral. To simplify matters, let us take each ai > 0. Then
we have that

A :=

p⋃
i=1

Ii × (0, ai] ⊂ Oh,



A COURSE ON ADVANCED CALCULUS 137

with v(A) =
∑p
i=1 aiv(Ii). On the other hand,

Oh ⊂ A ∪
[( p⋃

i=1

∂Ii

)
× [0, a1 + · · ·+ ap]

]
,

with the latter being the union of A with a negligible set. Thus we derive that∫
h = v(Oh) =

p∑
i=1

aiv(Ii).

�

Next, we establish linearity for the integral when restricted to step functions.

Theorem 8.8. If h and k are step functions and c ∈ R, then ch and h+k are step
functions, and we have∫

ch = c

∫
h,

∫
(h+ k) =

∫
h+

∫
k.

Proof. The claims about ch are straightforward, so let us turn to the claims for
h + k. We focus on the case that h = aχI and k = bχJ (i.e. each of h and k just
involves the characteristic function of a single set). The general case follows by
induction on the number of intervals.

If I and J have disjoint interiors, then the result follows from the previous
theorem. Otherwise, we have that I0 := I ∩ J is an interval, and we can write

I\I0 = I ′1 ∪ · · · ∪ I ′q, J\I0 = I ′′1 ∪ · · · ∪ I ′′p ,

where the intervals I ′j and I ′′j are disjoint. We can then write

h+ k = aχI + bχJ = (a+ b)χI0 +

q∑
i=1

aχI′i +

p∑
i=1

bχI′′i ,

expressing h+ k as a step function. By the previous theorem, we have∫
(h+ k) = (a+ b)v(I0) + a

q∑
i=1

v(I ′i) + b

p∑
i=1

v(I ′′i )

= a[v(I0) +

q∑
i=1

v(I ′i)] + b[v(I0) +

p∑
i=1

v(I ′′i )]

= av(I) + bv(J) =

∫
h+

∫
k,

as desired. �

Here is our ‘step function’ criterion for integrability, which looks just like the 1d
version:

Theorem 8.9. Let f : Rn → R be bounded with bounded support. Then f is
integrable if and only if for any ε > 0, there exist step functions h and k such that

h ≤ f ≤ k and

∫
(k − h) < ε.
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Proof. The proof is similar to the 1d case. First suppose the criterion holds. Then,
given ε > 0, we choose the corresponding step functions h, k and define

S = {(x, xn+1) ∈ Rn+1 : h(x) ≤ xn+1 ≤ k(x)} ∪ ∂Ok ∪ ∂Oh.
Then v(S) =

∫
(k − h) < ε. However, we have

Ĝf := ∂Of\[Rn × {0}] ⊂ S,

and hence (since ε > 0 was arbitrary) we obtain that Ĝf is negligible.
Now, if Q ⊂ Rn is a rectangle containing the support of f , then we have that

∂Of± ⊂ [Q× {0}] ∪ Ĝf ,
so that ∂Of± are both negligible. But this in turn implies that Of± are both
contented, and so f is integrable.

Now suppose f is integrable. Without loss of generality, we may assume f ≥ 0
(since f+ and f− are both integrable). In this case, Of is contented, and hence
given ε > 0, we may find nonoverlapping intervals I1, . . . , Iq contained in Of and
intervals J1, . . . , Jp with

Of ⊂
p⋃
j=1

Jj

and

v(Of )− ε <
q∑
i=1

v(Ii) ≤
p∑
j=1

v(Jj) < v(Of ) + ε.

We now define h and k as follows: if the vertical line in Rn+1 through x ∈ Rn
intersects Ii, we set

h(x) = max{y ∈ R : (x, y) ∈
q⋃
i=1

Ii},

and otherwise we set h(x) = 0. Similarly, if the vertical line in Rn+1 through x ∈ Rn
intersects Jj , we set

k(x) = max{y ∈ R : (x, z) ∈
p⋃
j=1

Jj if z ∈ [0, y]}

(and k(x) = 0 outside of the support of f). Then h and k are step functions with
h ≤ f ≤ k, and since

Oh ⊃
q⋃
j=1

Ii and Ok ⊂
p⋃
j=1

Jj ,

we obtain ∫
(k − h) =

∫
k −

∫
h

= v(Ok)− v(Oh)

< v(Of ) + ε− [v(Of )− ε] = 2ε.

This completes the proof. �

With our ‘step function criterion’ in place, we can at last prove linearity of the
integral:
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Theorem 8.10 (Linearity of the integral). If f1, f2 are integrable and a1, a2 ∈ R,
then a1f1 + a2f2 is integrable, with∫

(a1f1 + a2f2) = a1

∫
f1 + a2

∫
f2.

Proof. Let’s take the simplest case a1 > 0 and a2 > 0. Given ε > 0, we take step
functions hi, ki so that hi ≤ fi ≤ ki and

∫
[ki−hi] < ε. Then we set h = a1h1+a2h2

and k = a1k1+a2k2 (which are both step functions), and we have (by Theorem 8.8)

h ≤ a1f1 + a2f2 ≤ k,

with ∫
[k − h] = a1

∫
(k1 − h1) + a2

∫
(k2 − h2) < (a1 + a2)ε.

It follows that f is integrable. We can also check that both∫
a1f1 + a2f2 and a1

∫
f1 + a2

∫
f2

lie in the interval [
∫
h,
∫
k], and hence are within (a1 + a2)ε of one another. As

ε > 0 was arbitrary, the result follows. �

As a corollary, we have a few other natural results about the integral:

Corollary 8.11.

(i) Suppose A,B are contented with A∩B negligible, and f is integrable. Then∫
A∪B

f =

∫
A

f +

∫
B

f.

(ii) Suppose f and g are integrable functions that are equal except on a negligible
set D. Then ∫

f =

∫
g.

Proof. (i) In the case A ∩B = ∅, we have χA∪B = χA + χB , and so∫
A∪B

f =

∫
fχA∪B =

∫
[fχA + fχB ] =

∫
fχA +

∫
fχB =

∫
A

f +

∫
B

f.

In the case A∩B is negligible, we first observe
∫
A∩B f = 0. Then, using the special

case just derived, we obtain∫
A∪B

f =

∫
A\B

f +

∫
A∩B

f +

∫
B\A

f

=

[∫
A\B

f +

∫
A∩B

f

]
+

[∫
B\A

f +

∫
A∩B

f

]
=

∫
A

f +

∫
B

f.

(ii) We have that f − g is zero except for on the set D, so∫
f − g =

∫
[f − g]χD =

∫
D

[f − g] = 0,

where in the last step we use that D is negligible. By linearity, this implies
∫
f =∫

g. �
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We can now give the ‘Riemann sum’ formulation of integrability. We begin by
introducing a few terms:

Definition 8.6.

• A partition of the interval Q ⊂ Rn is a collection P = {Q1, . . . , Qk} is
closed intervals with disjoint interiors such that Q = ∪ki=1Qi.
• The mesh of P is the maximum of the diameters of the Qi.
• A selection for P is a set S = {x1, . . . , xk} with xi ∈ Qi for each i.
• Given a function f : Rn → R that is zero outside Q, a partition P of Q,

and a selection S, we define the corresponding Riemann sum for f by

R(f,P,S) =

k∑
i=1

f(xi)v(Qi).

Note that R(f,P,S) is the integral of the step function h =
∑k
i=1 f(xi)χQi .

Theorem 8.12. Suppose f : Rn → R is bounded and vanishes outside Q. Then f
is integrable, with

∫
f = I, if and only if for any ε > 0, there exists δ > 0 such that

if P is a partition of Q with mesh < δ and S is any selection for P, then we have

|R(f,P,S)− I| < ε.

Proof. First suppose f is integrable and let ε > 0, and choose corresponding step
functions h, k. We may assume that there is a partition P0 = {Q1, . . . , Qs} such
that

h =

s∑
i=1

aiχi and k =

s∑
i=1

biχ̃i,

where χi, χ̃i are characteristic functions of intervals whose closure equals Qi. Now
set

A = Q\
s⋃
i=1

int(Qi), so that v(A) = 0.

In particular, we can find δ > 0 so that if P is a partition of Q with mesh < δ, then
the sum of the volumes of the intervals P1, . . . , Pc that intersect A is less than ε.
Write Pc+1, . . . , P` for the remaining intervals in P (which lie in the interior of the
Qi).

Now let S = {x1, . . . , x`} be any selection for P. Then we have

h(xi) ≤ f(xi) ≤ k(xi) for i = c+ 1, . . . , `,

so that ∑̀
i=c+1

f(xi)v(Pi) and
∑̀
i=c+1

∫
Pi

f

both belong to the interval [
∑`
i=c+1

∫
Pi
h,
∑`
i=c+1+

∫
Pi
k], and hence∣∣∣∣ ∑̀

i=c+1

f(xi)v(Pi)−
∑̀
i=c+1

∫
Pi

f

∣∣∣∣ < ε.

On the other hand, we have that both
c∑
i=1

f(xi)v(Pi) and

c∑
i=1

∫
Pi

f
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lie in the interval [−‖f‖ε,+‖f‖ε], where ‖f‖ denotes the max of |f |. Thus∣∣∣∣ c∑
i=1

f(xi)v(Pi)−
c∑
i=1

∫
Pi

f

∣∣∣∣ ≤ 2‖f‖ε.

By the triangle inequality, we derive that

|R(f,P,S)− I| =
∣∣∣∣∑̀
i=1

f(xi)v(Pi)−
∑̀
i=1

∫
Pi

f

∣∣∣∣ ≤ (1 + 2‖f‖)ε,

as desired.
Now suppose that the Riemann sum condition holds. We let ε > 0 and choose a

partition P = {P1, . . . , Pa} of Q such that for any selection S,

|I −R(f,P,S)| < ε.

We then let Q1, . . . , Qa be disjoint intervals with Qi = Pi for each i = 1, . . . , a, and
let χi be the characteristic function of Qi. We let

mi = inf
Pi
f and Mi = inf

Pi
f

and define the step functions

h =

a∑
i=1

miχi, k =

a∑
i=1

Miχi, which satisfy h ≤ f ≤ k.

Next, we let S ′ = {x′1, . . . , x′a} and S ′′ = {x′′1 , . . . , x′′a} be selections for P such
that

|mi − f(x′i)| < ε and |Mi − f(x′′i )| < ε

for each i = 1, . . . , a. Then we have∣∣∣∣R(f,P,S ′)−
∫
h

∣∣∣∣ =

∣∣∣∣ a∑
i=1

[f(x′i)−mi]v(Qi)

∣∣∣∣
≤ ε

a∑
i=1

v(Qi) < εv(Q),

and similarly ∣∣∣∣R(f,P,S ′′)−
∫
k

∣∣∣∣ < εv(Q).

We then obtain that∫
(k − h) ≤

∣∣∣∣∫ k −R(f,P,S ′′)
∣∣∣∣+
∣∣R(f,P,S ′′)− I

∣∣
+ |I −R(f,P,S ′)|+

∣∣∣∣R(f,P,S ′)−
∫
h

∣∣∣∣
≤ [2 + 2v(Q)]ε.

Thus it follows from Theorem 8.9 that f is integrable. �

Using this Riemann sum criterion, one can show that if f : Rn → R is an inte-
grable function that vanishes outside of Q, and {Pk}∞k=1 is a sequence of partitions
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of Q with the mesh of Pk converging to zero, then for any sequence of selections
Sk corresponding to Pk, we have∫

f = lim
k→∞

R(f,Pk,Sk).

This shows that integration is some sort of limiting process. Of course, as you
already know, we don’t actually use limits of Riemann sums to compute integrals.
In the next section, we will discuss two important and practical results that play a
key role in the actual computation of integrals over Rn.

8.3. Fubini’s Theorem, change of variables. In this section we prove two re-
sults that are essential for the actual computation of integrals. The first is Fubini’s
Theorem, which tell us that under the right conditions, we can compute an integral
over Rn by iterating n one-dimensional integrations. The second is the change of
variables formula, which is the higher-dimensional analogue of ‘u-substitution’ and
hence is also an extremely important tool for integration.

We begin with Fubini’s Theorem:

Theorem 8.13 (Fubini’s Theorem). Let f : Rm×Rn → R be an integrable function
such that for each x ∈ Rm, the function

fx : Rn → R given by fx(y) = f(x, y)

is integrable. Given contented sets A ⊂ Rm and B ⊂ Rn, define F : Rm → R by

F (x) =

∫
B

fx =

∫
B

f(x, y) dy.

Then F is integrable, with ∫
A×B

f =

∫
A

F.

Remark 8.14. Using the usual notation, we can write this as∫∫
A×B

f =

∫
A

[∫
B

f(x, y) dy

]
dx,

and since the roles of x and y can be reversed, we obtain∫
A

[∫
B

f(x, y) dy

]
dx =

∫
A×B

f =

∫
B

[∫
A

f(x, y) dx

]
dy

under suitable hypotheses on f . In particular, this theorem provides the rigor-
ous justification for reversing the order of integration, and for computing higher
dimensional integrals as iterated one-dimensional integrals.

Proof. Without loss of generality, we may assume f(x, y) = 0 for (x, y) /∈ A×B.
Now, first suppose that χ is the characteristic function of an interval I × J ⊂

Rm × Rn. Then note that∫ [∫
χ(x, y) dy

]
dx =

∫
I

[∫
J

dy

]
dx

=

∫
I

v(J) = v(I)v(J) = v(I × J) =

∫
χ,

which is the conclusion of Fubini’s theorem in this special case. In particular, by
linearity of the integral, we deduce that Fubini’s theorem holds for an arbitrary
step function.



A COURSE ON ADVANCED CALCULUS 143

Now, let ε > 0 and choose corresponding step functions h ≤ f ≤ k with
∫
k−h <

ε. Defining hx(y) = h(x, y) and kx(y) = k(x, y), we have that hx ≤ fx ≤ kx for
each x. Thus, if we let

H(x) =

∫
hx and K(x) =

∫
kx,

then H,K are step functions satisfying H ≤ F ≤ K and (by Fubini’s Theorem for
step functions) ∫

Rm
K −H =

∫
Rm+n

(k − h) < ε.

It follows (by the step function criterion) that F is integrable on Rm, with∫
Rm

H ≤
∫
Rm

F ≤
∫
Rm

K.

Furthermore, we see that both
∫
Rm×Rn f and

∫
Rm F lie between

∫
Rm×Rn h =

∫
Rm H

and
∫
Rm×Rn k =

∫
Rm K, and these last two integrals differ by < ε. Thus∣∣∣∣∫

Rm×Rn
f −

∫
Rm

F

∣∣∣∣ < ε.

As ε > 0 was arbitrary, the result follows. �

A few typical applications are the following (which we state but do not prove):

• Cavalieri’s Principle refers to the following: If A is a contented subset of
Rn+1 with A ⊂ R× [a, b] for intervals R, [a, b], and

A(t) = {x ∈ Rn : (x, t) ∈ A}

is contented for each t ∈ [a, b], then

v(A) =

∫ b

a

v(A(t)) dt.

That is, we can compute volumes by adding up ‘slices’ of one lower dimen-
sion. (Cavalieri was computing volumes this way in the 1600s.)

• If A ⊂ Rn is contented and f1 ≤ f2 are continuous functions on A, then

C = {(x, y) : x ∈ A and f1(x) ≤ y ≤ f2(x)}

is a contented set. If g : C → R is continuous, then∫
C

g =

∫
A

[∫ f2(x)

f1(x)

g(x, y) dy

]
dx.

• If Q = [a1, b1]× [a2, b2]× [a3, b3] is an interval in R3 and f is an integrable
function, then∫

Q

f =

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(x, y, z) dz dy dx.

Of course, we may integrate in whichever order we like.

You will work out some examples on the homework.
We turn next to the change of variables formula, which is essentially our higher-

dimensional analogue of ‘u-substitution’. Let us begin with a definition and the
careful statement of the result.
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Definition 8.7. We say that T : Rn → Rn is C1-invertible on U if it is in C1(U)
and injective on U , with the inverse map T−1 : T (U)→ U belonging to C1(T (U)).

Theorem 8.15 (Change of variables formula). Let Q be an interval in Rn. Suppose
T : Rn → Rn is a mapping that is C1-invertible on the interior of Q. If f : Rn → R
is integrable and f ◦ T : Rn → R is also integrable, then∫

T (Q)

f =

∫
Q

(f ◦ T )|detT ′|.

Remark 8.16. Because T ∈ C1, we have that T ′(x) is a continuous function, and
hence |detT ′(x)| is continuous as well. Then, since f ◦T is integrable, we have that
(f ◦ T )|detT ′| is integrable as well.

Remark 8.17. One calls |detT ′| the Jacobian determinant of T . If we imagine
trying to compute the integral ∫

A

f(u) du

by writing u = T (x) and trying to view the domain A in the form T (Q) for suitable
Q, then we could denote T ′(x) = du

dx and denote the determinant by |dudx |. With
this notation the change of variables formula looks like∫

T (Q)

f(u) du =

∫
Q

f(u(x))
∣∣du
dx

∣∣dx,
which ‘looks reasonable’ and lines up with the familiar ‘u-substitution’ from one-
dimensional calculus. Actually, in the 1d setting, you typically try to recognize
a given integral in the form appearing on the right-hand side, and then use the
‘u-substitution’ to convert it into the integral on the left. For example, when faced
with ∫ 2

0

cos(x2) 2x dx,

we set u(x) = x2 (so du
dx = 2x) and obtain∫ 2

0

cos(x2) 2x dx =

∫ 4

0

cos(u) du.

Before we begin the proof of Theorem 8.15, let us at least attempt to understand
why it should be true. The integral

∫
T (Q)

f might be approximately computed

by splitting up Q into a bunch of small intervals Qi and summing the integrals∫
T (Qi)

f , which in turn can be approximated by v(T (Qi))f(T (xi)) for some selection

of xi ∈ Qi. Now, if T is differentiable and Qi is a very small interval, then (up to a
translation) we can approximate the curved region T (Qi) by the image of Qi under
the differential of T ; in particular we expect v(T (Qi)) ≈ v(dFxi(Qi)). Using linear
algebra, we can show that for a linear transformation L and a rectangle R, we have
v(L(R)) = |detL| v(R). Thus we will have v(dFxi(Qi)) = |detT ′(xi)| v(Qi), and
hence ∫

T (Q)

f ≈
∑
i

f(T (xi))v(T (Qi))

≈
∑
i

f(T (xi))|detT ′(xi)|v(Qi) ≈
∫
Q

(f ◦ T )|detT ′|,

which is exactly what the change of variables formula makes precise.
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Proof of Theorem 8.15. We will prove the result under the slightly stronger as-
sumption that T is C1-invertible in a neighborhood of Q (rather than the interior).
One can then upgrade to the more general result with an additional argument. I’ll
leave this as an exercise for the interested student.

Let η > 0. We will begin by finding a suitable Riemann sum approximation to∫
Q

(f ◦ T )|detT ′|. In particular, we choose δ > 0 so that if P = {Q1, . . . , Qk} is a

partition of Q with mesh < δ1, then∣∣∣∣R− ∫
Q

(f ◦ T )|detT ′|
∣∣∣∣ < η,

where

R =

k∑
i=1

f(T (ai))|detT ′(ai)|v(Qi), ai = center(Qi).

Writing

mi = inf
Qi
f ◦ T and Mi = sup

Qi

f ◦ T

(which are finite since f ◦ T is integrable and thus bounded), we obtain that

R ∈ [α, β],

where

α :=

k∑
i=1

mi|detT ′(ai)|v(Qi) and β :=

k∑
i=1

Mi|detT ′(ai)|v(Qi).

Now, using the integrability of f , we find that by choosing δ > 0 possibly even
smaller, we can guarantee that

k∑
i=1

[Mi −mi]v(Qi) < η

(since this is the difference between two Riemann sums for
∫
f ◦ T ). In particular,

β − α =

k∑
i=1

[Mi −mi]|detT ′(ai)|v(Qi) ≤ Cη,

where C = supQ |T ′| (which is finite, since T ∈ C1).

Our next goal is to find α̃ ≤ β̃ with∫
T (Q)

f ∈ [α̃, β̃] (8.1)

and such that |α− α̃| and |β − β̃| are both small. To this end, we first claim that∫
T (Q)

f =

k∑
i=1

∫
T (Qi)

f.

This relies on the fact that each T (Qi) is contented and that the T (Qi) intersect
only in their boundaries (see the homework). Thus (8.1) holds with

α̃ :=

k∑
i=1

miv(T (Qi)) and β̃ :=

k∑
i=1

Miv(T (Qi)).
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We now estimate |α̃ − α| and |β̃ − β|. The key will be to obtain the following:
choosing δ > 0 possibly even smaller, we have∣∣v(T (Qi))− | detT ′(ai)|v(Qi)

∣∣ < η|detT ′(ai)|v(Qi) (8.2)

for each i = 1, . . . , k. Let’s take this for granted for the moment and complete the
proof of Theorem 8.15; we will then sketch a proof of (8.2) below.

We first estimate

|β̃ − β| ≤
k∑
i=1

|Mi| ·
∣∣v(T (Qi))− | detT ′(ai)|v(Qi)

∣∣
≤ C̃

k∑
i=1

η|detT ′(ai)|v(Qi) ≤ CC̃v(Q) · η,

where C̃ = supQ |f ◦ T |. Similarly,

|α̃− α| ≤ CC̃v(Q) · η.
Thus we find

R ∈ [α, β] and

∫
T (Q)

f ∈ [α̃, β̃].

These (and the fact that β − α ≤ Cη) imply

R−
∫
T (Q)

f ≤ β − α̃ ≤ [β − α] + [α− α̃] ≤ [C + CC̃v(Q)]η,

and similarly∫
T (Q)

f −R ≤ β̃ − α ≤ [β̃ − β] + [β − α] ≤ [C + CC̃v(Q)]η.

Thus ∣∣∣∣R− ∫
T (Q)

f

∣∣∣∣ ≤ [C + CC̃v(Q)]η,

which (by the triangle inequality) finally yields∣∣∣∣∫
Q

(f ◦ T ) detT ′ −
∫
T (Q)

f

∣∣∣∣ ≤ [1 + C + CC̃v(Q)]η.

As η > 0 was arbitrary, this implies the result, other than (8.2). �

Sketch of the proof of (8.2). We need to prove the following: Suppose T is C1-
invertible on some set U . Given η > 0, there exists δ > 0 such that if Q ⊂ U is an
interval of diameter < δ and a = center(Q), then∣∣v(T (Q))− | detT ′(a)|v(Q)

∣∣ < η|detT ′(a)|v(Q),

or equivalently ∣∣∣∣ v(T (Q))

|detT ′(a)|v(Q)
− 1

∣∣∣∣ < η. (8.3)

To simplify matters slightly, I’m going to prove this under the additional assumption
that Q is a cube (rather than a general interval). To motivate the proof, let’s first
see why we expect the result to be true in the first place. We are essentially trying
to show that

v(T (Q)) ≈ |detT ′(a)|v(Q).
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The reason that this should be true is that

T (a+ h) ≈ T (a) + T ′(a)h, (8.4)

so if we let h vary over Cδ = [−δ, δ]n, then the left-hand side ranges over the
set T (Q), while the right hand side should look like the image of Cδ under T ′(a),
translated by T (a). But by linear algebra considerations, this latter set should have
volume |detT ′(a)|v(Cδ) = |detT ′(a)|v(Q). So (8.4) is the key idea, but we need
to apply it in a bit of an unexpected way. We introduce the following notation for
translations:

τx(y) = x+ y.

Then (8.4) can be rewritten

T ◦ τa(h) ≈ τT (a) ◦ dTa(h),

which rearranges to

dT−1a ◦ τ−1T (a) ◦ T ◦ τa ≈ Id,

where Id is the identity mapping. To make this precise, we define the mapping

F = dT−1a ◦ τ−1T (a) ◦ T ◦ τa,

and observe that

dTa(F (Cδ)) = τ−1T (a)(T (Q)).

Thus, using the facts that (i) translation preserves volume and (ii) for L linear and
U contented, v(L(U)) = |detL| · v(U), we have

v(T (Q)) = v(dTa(F (Cδ))) = |detT ′(a)|v(F (Cδ)).

In particular, if we can show that v(F (Cδ)) ≈ v(Cδ) = v(Q), then we will be done.
This should follow from the fact that F ≈ Id. To see this, we claim that given
ε > 0, there exists δ > 0 so that if |x− a| < δ, then

C(1−ε)δ ⊂ F (Cδ) ⊂ C(1+ε)δ. (8.5)

In this case, we have

(1− ε)nδn ≤ v(F (Cδ)) ≤ (1 + ε)nδn.

In particular,

(1− ε)n ≤ v(F (Cδ))

v(Q)
=

v(T (Q))

|detT ′(a)|v(Q)
≤ (1 + ε)n,

which (for ε = ε(η) sufficiently small) yields (8.3).
So, take x ∈ Cδ and observe that by construction,

F (x) = dT−1a [T (a+ x)− T (a)], so that F (0) = 0.

In particular, applying the mean value theorem to each component F j , we can write

F j(x) = ∇F j(cj) · x =

n∑
k=1

DkF
j(cj)xk for some cj ∈ Cδ.

Now, by the chain rule (and the fact that the differential of a translation is the
identity), we have

dFx = dT−1a ◦ dTx
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As T is C1-invertible, it follows that dFx → Id as x → a. In particular, for δ > 0
sufficiently small, we have

|DkF
j(c)− δjk| <

ε

n
for all c ∈ Cδ,

and thus

|F j(x)− xj | =
∣∣∣∣ n∑
k=1

[DkF
j(cj)− δjk]xk

∣∣∣∣ ≤ ε|x| ≤ εδ,
which (since |xj | ≤ δ) implies

(1− ε)δ ≤ F j(x) ≤ (1 + ε)δ for each j.

This implies (8.5) and completes the sketch of the proof of (8.2). �

The standard applications of the change of variables formula involve the use of
different coordinate systems for computing integrals.

Example 8.3 (Polar coordinates). Let T (r, θ) = (r cos θ, r sin θ) be the polar co-
ordinates mapping. Suppose A ⊂ R2 is the region

A = {(x, y) ∈ R2 : a2 ≤ x2 + y2 ≤ b2}.
Then we have A = T (Q), where

Q = {(r, θ) ∈ R2 : r ∈ [a, b] and θ ∈ [0, 2π]},
and T is C1 invertible on the interior of Q. Then we can write∫

A

f =

∫
T (Q)

f =

∫
Q

(f ◦ T )|detT ′|.

Since

T ′(r, θ) =

[
cos θ −r sin θ
sin θ r cos θ

]
=⇒ |detT ′| = r,

we find ∫
A

f =

∫ 2π

0

∫ b

a

f(r cos θ, r sin θ)r dr dθ,

which is the familiar formula for integration in polar coordinates.

Example 8.4 (Spherical coordinates). The ‘spherical coordinates’ mapping is given
by

T (ρ, ϕ, θ) = (ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ).

Then (check!) we have
|detT ′(ρ, ϕ, θ)| = ρ2 sinϕ,

and so if A is the image under T of

Q = {(ρ, ϕ, θ) : ρ ∈ [ρ1, ρ2], ϕ ∈ [ϕ1, ϕ2], θ ∈ [θ1, θ2]},
then ∫

A

f =

∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ2

ρ1

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕdρ dϕdθ.

This is the usual formula for integration in spherical coordinates.

You will work out a few more examples in the homework.
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9. Differential forms and the classic theorems of vector calculus

Our final main goal is to prove the classic theorems of vector space (like Green’s
Theorem, Stokes’ Theorem, the Divergence Theorem, and so on). We are going
to take the approach involving the integration of ‘differential forms’. Essentially,
the main new thing we need to understand is how to integrate functions over k-
dimensional ‘surface patches’ inside of Rn, and this is what differential forms will let
us do. So, this is where we are headed, but beware, there is a fair bit of abstraction
and machinery that we need to build up before we can get there.

9.1. Multilinear algebra and differential forms. We are now going to move
beyond the word of ‘linear’ algebra and discuss some multilinear algebra.

Definition 9.1. A function M : (Rn)k → R is called k-multilinear (on Rn) (or
just multilinear) if it is linear in each variable separately. So, for example,

M(αa+ βb, a2, . . . , ak) = αM(a, a2, . . . , an) + βM(b, a2, . . . , ak),

where a, b, a2, . . . , an ∈ Rk and α, β ∈ R, with similar formulas holding for each
component.

We already understand the case k = 1:

Lemma 9.1. For i = 1, . . . , n, define the projection functions dx1, . . . , dxn by

dxi(a) = ai, where a = (a1, . . . , an).

For any linear function L : Rn → R, there exist unique `1, . . . , `n such that

L =

n∑
i=1

`idxi.

Equivalently, L(x) = ` · x for all x ∈ Rn, where ` = (`1, . . . , `n).

Proof. Take `i = L(ei). I’ll leave it to you to check that this works, as well as
uniqueness. �

Let’s see if we can establish an analogous result for multilinear functions.

Definition 9.2. Given

I = (i1, . . . , ik), where 1 ≤ ir ≤ n for each r,

we define
dxI : (Rn)k → R

as follows. Given (a1, . . . , ak) ∈ (Rn)k, we form the n × k matrix A with columns
a1, . . . , ak. We then let AI be the k × k matrix whose rth row is the (ir)

th row of
A. We then define

dxI(a
1, . . . , ak) = detAI .

Example 9.1. Let n = 4 and k = 2. Suppose

A = [a1 a2] =


1 2
3 4
5 6
7 8

 .
Then

if I = (3, 2), we have dxI(a
1, a2) = det

[
5 6
3 4

]
= 2.
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Note that our definition makes dxI a k-multilinear function, since we have that
the determinant function det : (Rk)k → R is k-multilinear (viewed as a function of
its rows).

Similar to finding the matrix of a linear transformation, we can describe an
arbitrary k-multilinear function in the following way:

Lemma 9.2. Let M : (Rn)k → R be a k-multilinear function. Given i1, . . . , ik ∈
[1, n], define

αi1,...,ik = M(ei1 , . . . , eik),

where ei is the ith standard basis vector in Rn. Then

M(a1, . . . , ak) =

n∑
i1,...,ik=1

αi1,...,ika
1
i1a

2
i2 . . . a

k
ik
,

where a1 = (a11, a
1
2, . . . , a

1
n), and so on.

The proof is by induction on k, where k = 1 is equivalent to the fact that a
linear map L : Rn → R is of the form L(a) = α · a for some α ∈ Rn. The proof is
not particularly illuminating, so let’s skip it and instead work out the next simplest
case:

Example 9.2. Suppose M : (R3)2 → R is 2-multilinear on R3. Then we define

αi,j = M(ei, ej), 1 ≤ i, j ≤ 3.

Then

M(a1, a2) =

3∑
i=1

3∑
j=1

αi,ja
1
i a

2
j

In particular, M is just determined by the 32 numbers αi,j .

Lemma 9.2 is the best one can hope for if one considers arbitrary multilinear
functions. So far, we have not succeeded in writing a multilinear function as a linear
combination of the functions dxI . In fact, we cannot write arbitrary multilinear
functions in terms of the dxI . This is because the dxI have a certain special property
(preserved under linear combinations), namely that of being alternating :

Definition 9.3. A multilinear function M : (Rn)k → R is alternating if whenever
some pair of the vectors a1, . . . , ak is equal, we have

M(a1, . . . , ak) = 0.

We denote the set of alternating k-multlinear functions on Rn by Λk(Rn).

The fact that the functions dxI are alternating follows from the corresponding
property of the determinant; namely, the determinant of a matrix that has two
equal rows is guaranteed to be zero. To see this, consider Example 9.1 again, but
consider evaluating dxI(a

1, a1).
By linearity, the property of being alternating is equivalent to the property that

M changes sign if two inputs are exchanged, e.g.

M(a, b) = −M(b, a)

in the setting of a 2-multilinear function. Indeed, in this setting the formula above
is equivalent to M(a+ b, a+ b) = 0, and the general case is similar.
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We can also see that if M is alternating and a1, . . . , ak are linearly dependent,
then

M(a1, . . . , ak) = 0.

Indeed, in this case, one of the vectors may be written as a linear combination of
the others, for example

a1 =

k∑
j=2

cja
j .

But in this case, we have

M(a1, . . . , ak) =

k∑
j=2

cjM(aj , a2, . . . , ak).

As each summand involves evaluating M on a set of vectors in which a pair is equal,
we have that each summand is zero. This result shows that if k > n, then there are
no non-trivial alternating k-multilinear functions on Rn.

Alternating k-multilinear functions on Rn can indeed be written as linear com-
binations of the functions dxI . In the following, we say that I = (i1, . . . , ik) is
increasing if 1 ≤ i1 < i2 < · · · < ik ≤ n.

Theorem 9.3. Let M ∈ Λk(Rn). Define

αI = M(ei1 , . . . , eik), where I = (i1, . . . , ik).

Then

M =
∑

I increasing

αIdxI .

Proof. We first need the following identity: given I, J increasing,

dxI(e
j1 , . . . , ejk) =

{
1 I = J

0 I 6= J.

To see this, first note that if I = J , then dxI(e
j1 , . . . , ejk) is the determinant of

the k × k identity matrix, which equals one. If I 6= J , then dxI(e
j1 , . . . , ejk) is

the determinant of a matrix with one row equal to zero, and hence equals zero.
Let’s just illustrate this with a specific example. Suppose n = 4 and k = 2, and
I = (1, 2), but J = (1, 3). Then we form the matrix

[ej1 ej2 ] = [e1 e3] =


1 0
0 0
0 1
0 0

 ,
and so (since I = (1, 2)) we take the first and second rows and compute

dxI [e
1 e3] = det

[
1 0
0 0

]
= 0.

(If instead I = J = (1, 3) then we get the determinant of the 2×2 identity matrix.)

Now, let us define M̃ : (Rn)k → R by

M̃(a1, . . . , ak) =
∑

I increasing

αIdxI(a
1, . . . , ak),
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which is manifestly k-multilinear and alternating. To show that M = M̃ , it is
enough to check that they agree on each (ej1 , . . . , ejk), with J(j1, . . . , jk) increasing.
In fact, by the identity above,

M̃(ej1 , . . . , ejk) =
∑

I increasing

αIdxI(e
j1 , . . . , ejk)

= αJ = M(ej1 , . . . , ejk).

�

A corollary to the result above is that the only alternating n-multilinear function
D on Rn satisfying

D(e1, . . . , en) = 1

is the function D(a1, . . . , an) = det(A) (i.e. the determinant function), where A is
the matrix with columns a1, . . . , an.

With this bit of multilinear algebra under our belts, we can now define the notion
of a differential form.

Definition 9.4 (Differential k-form). Let U ⊂ Rn. A differential k-form on U is
a function

α : U → Λk(Rn).

For notational purposes, we often denote α(x) by αx. By Theorem 9.3, we may
write

α(x) =
∑

I increasing

aI(x)dxI

for suitable coefficients aI : U → R.
We say that α is continuous if each aI is continuous. Similarly we say α ∈ Ck(U)

if each aI ∈ Ck(U).

Example 9.3. A differential 1-form on Rn is of the form

α(x) = a1(x)dx1 + · · ·+ an(x)dxn.

We know this already; it is the content of Lemma 9.1. This can be written α(x) =
a(x) · x for some a : Rn → R.

Example 9.4. A differential 2-form on R3 is of the form

α(x) = a(1,2)(x)dx(1,2) + a(1,3)(x)dx(1,3) + a(2,3)(x)dx(2,3).

For example, switching notation from α(x) to α|x, if

α|x = f(x)dx(1,2) + g(x)dx(1,3),

then for x ∈ U and b, c ∈ R3,

α|x(b, c) = f(x) det

[
b1 c1
b2 c2

]
+ g(x) det

[
b1 c1
b3 c3

]
Example 9.5. Recall the notation for the differential of a function a : U ⊂ Rn → R.
In particular, the differential is the function da : U → Rn given by

da|x = ( ∂a∂x1

∣∣
x
, . . . , ∂a∂xn

∣∣
x
).



A COURSE ON ADVANCED CALCULUS 153

We can then identify da|x with the differential 1-form on U with coefficients given
by ∂a

∂xi
|x. Thus, in the notation above, we would write

da = ∂a
∂x1

dx1 + · · ·+ ∂a
∂xn

dxn =

n∑
i=1

∂a
∂xi

dxi.

This is a very reasonable-looking formula. In fact, you may have seen formulas
like this before, although possibly without the proper context of how this formula
should be interpreted.

By the way, what if a(x) = xi for some i = 1, . . . , n? Then the differential is
da ≡ (0, . . . , 1, . . . , 0), with the 1 in the ith position. Then the formula we just
wrote reduces to dxi = dxi, where the d on the left stands for the differential, xi on
the left stands for the function x 7→ xi, and the dxi on the right means one of our
standard 1-forms from above. Pretty nifty! This identity shows that the notation
we are using is consistent.

Note that if we take the view that a function a : U → Rn is a “0-form” on Rn,
then we obtain that the differential da of a 0-form a is a 1-form. Later, we will
define the differential of an arbitrary C1 differential form, and we will see that if α
is a k-form, then dα is a k + 1-form.

We are now going to introduce the notion of the product (also called the wedge
product or exterior product) of differential forms; along the way, we will also find a
new way of expressing the forms dxI .

Given α ∈ Λk(Rn) and i ∈ {1, . . . , n}, let’s first try to define the notion of

α ∧ dxm ∈ Λk+1(Rn), m ∈ {1, . . . , n}.
Writing α =

∑
aIdxI (the sum being over increasing I), we would like to impose

linearity in the sense that[∑
aIdxI ] ∧ dxm =

∑
aI [dxI ∧ dxm].

Thus it is sufficient to define dxI ∧ dxm for an arbitrary k-tuple I = (i1, . . . , ik).
The most natural way to do this is simply to take

dxI ∧ dxm = dx(I,m) ∈ Λk+1(Rn).

To be clear, if I = (i1, . . . , ik), then we write (I,m) to denote (i1, . . . , ik,m).
The construction above can be extended further. In particular, if I = (i1, . . . , ik)

and J = (j1, . . . , j`), then we can define

dxI ∧ dxJ ∈ Λk+`(Rn) by dxI ∧ dxJ = dx(I,J),

where (I, J) = (i1, . . . , ik, j1, . . . , j`). According to this definition, if I = (i1, . . . , ik),
then we can equally well write

dxI = dxi1 ∧ · · · ∧ dxik .
In light of the discussion above, we can now make the following definition:

Definition 9.5. Let α ∈ Λk(Rn) and β ∈ Λ`(Rn). Then we define

α ∧ β ∈ Λk+`(Rn)

as follows: if

α =
∑

I increasing

aIdxI and β =
∑

J increasing

bJdxJ ,
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then

α ∧ β =
∑

I increasing

∑
J increasing

aIbJ dxI ∧ dxJ .

Remark 9.4. The definition is a little unsatisfying in the sense that we have not
written α ∧ β as a sum over increasing (k+ `)-tuples. However, noting that (i) if Ĩ
is obtained from I by interchanging two entries, then dxĨ = −dxI and (ii) if I has
any repeated entries, then dxI ≡ 0, we can rewrite the sum above as a sum over
increasing (k + `)-tuples. For example,

dx(1,4,5) ∧ dx(2,7) = dx(1,4,5,2,7) = −dx(1,2,4,5,7),
dx(1,4,5) ∧ dx(2,4) = 0.

In particular, for any pair I, J satisfying ik = j` for some k, `, we will have dxI ∧
dxJ = 0. On the other hand, given a pair I, J such that (I, J) has all distinct entries,
we can perform interchanges to obtain an increasing (k+ `)-tuple L containing the
same entries as (I, J); then dxL = ±dxI ∧ dxJ depending on whether an even or
odd number of interchanges are needed.

Using the definition above, we can obtain the following general anticommutativ-
ity property: for α ∈ Λk(Rn) and β ∈ Λ`(Rn),

β ∧ α = (−1)k`α ∧ β.

To see this, it suffices to consider α = dxI and β = dxJ . Then the identity boils
down to the claim that it takes k` interchanges to turn (I, J) into (J, I). Indeed,
it takes k interchanges to transform

(i1, . . . , ik, j1, . . . , j`) into (j1, i1, . . . , ik, j2, . . . , j`),

and then similarly it takes k interchanges to transform

(j1, i1, . . . , ik, j2, . . . , j`) into (j1, j2, i1, . . . , ik, j3, . . . , j`).

Since we need to move j1, . . . , j` to the left, we see that altogether we require k`
interchanges.

The wedge product of differential forms is a more general case of an important
product that you have already encountered in multivariable calculus.

Example 9.6. Suppose α, β ∈ Λ1(R3). Then

α = a1 dx1 + a2 dx2 + a3 dx3 and β = b1 dx1 + b2 dx2 + b3 dx3.

(In particular, we can identify α with a ∈ R3 via α(x) = a · x for x ∈ R3, and
similarly for β.) Let’s compute α∧β ∈ Λ2(R3). We have built this product to obey
linearity, so (using anticommutativity properties) we can write:

α ∧ β = (a1 dx1 + a2 dx2 + a3 dx3) ∧ (b1 dx1 + b2 dx2 + b3dx3)

= (a1b2 − a2b1)dx1 ∧ dx2 + (a1b3 − a3b1) dx1 ∧ dx3 + (a2b3 − a3b2) dx2 ∧ dx3
The coefficients resemble those appearing in the definition of the cross product a×b.

While the usefulness of differential forms may not yet be apparent, hopefully you
are at least getting a handle on the ‘algebra’ of differential forms. In the meantime,
we are going to push ahead in this direction, and continue defining operations on
differential forms (namely, differentiation and integration).
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Definition 9.6 (Differential of a k-form). Suppose α ∈ C1(U) is a differential
k-form with coefficients aI :

α =
∑

I increasing

aI dxI , aI : U ⊂ Rn → R.

We define
dα : U → Λk+1(Rn)

by

dα =
∑

I increasing

(daI) ∧ dxI ,

where daI : U → R is the differential of aI and the sum is over increasing k-
tuples. In particular each daI : U → Λ1(Rn), so the formula above shows that
dα : U → Λk+1(Rn).

Note that the differential (viewed as a transformation from Λk to Λk+1) is a
linear transformation, which is to be expected.

Example 9.7. In the case k = 0, α is just a C1 real-valued function on U ⊂ Rn
and its differential is just dα (the usual differential).

Example 9.8. Suppose α ∈ C1(R3) is a differential 1-form of the form

α = P dx+Qdy +Rdz

Then

dα = dP ∧ dx+ dQ ∧ dy + dR ∧ dz.
Writing dP = Pxdx + Pydy + Pzdz (subscripts denoting partial derivatives) and
similarly for dQ and dR, and using the commutativity properties, we derive

dα = [Ry −Qz]dy ∧ dz + [Pz −Rx]dz ∧ dx+ [Qx − Py]dx ∧ dy.
The coefficients here are the same as those appearing in curl of the vector field
(P,Q,R).

Example 9.9. Suppose β ∈ C1(R3) is a differential 2-form of the form

β = Ady ∧ dz +B dz ∧ dx+ C dx ∧ dy,
then

dβ = (Ax +By + Cz)dx ∧ dy ∧ dz.
This coefficient is the divergence of the vector field (A,B,C).

At this point, it looks like applying the differential to a differential form will
keep producing higher and higher order differential forms. Actually, though, the
following is true:

Theorem 9.5. Suppose α ∈ C2(U) is a differential k-form. Then d(dα) = 0.

Proof. By writing α =
∑
I aIdxI and applying linearity, we see that it suffices to

consider α of the form

α = fdxI , f ∈ C2(U), I = {i1, . . . , ik}.
In this case,

dα = df ∧ dxI =

n∑
j=1

∂f
∂xj

[dxj ∧ dxI ].
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Then

d(dα) =

n∑
`=1

n∑
j=1

∂2f
∂x`∂xj

[dx` ∧ dxj ∧ dxI ].

Now observe that the diagonal entries (with ` = j) are zero, since dx`∧dx`∧dxI = 0
for any I. Otherwise, the (`, j) and (j, `) terms cancel, since the mixed second
derivatives agree but

dx` ∧ dxj ∧ dxI = −dxj ∧ dx` ∧ dxI .

�

There is also a product rule for differentials of forms:

Theorem 9.6 (Product rule for differentials of forms). If α ∈ Λk and β ∈ Λ` are
differentiable, then

d(α ∧ β) = (dα) ∧ β + (−1)k[α ∧ (dβ)].

Proof. By linearity, it is again enough to work with

α = fdxI , β = gdxJ ,

with f, g ∈ C1. Then we have

d(a ∧ b) = d[(fg) ∧ (dxI ∧ dxJ)] = d(fg) ∧ (dxI ∧ dxJ)

= [df g + f dg] ∧ (dxI ∧ dxJ)

The first term becomes

g df ∧ (dxI ∧ dxJ) = [df ∧ dxI ] ∧ [gdxJ ] = (dα) ∧ β.

For the second, we have to move dg next to J ; this requires k interchanges to pass
through dxi1 ∧ · · · ∧ dxik , and hence introduces a factor of (−1)k. In particular,
this term becomes

f dg ∧ (dxI ∧ dxJ) = (−1)k[fdxI ] ∧ [dg ∧ dxJ ] = (−1)kα ∧ (dβ).

The result follows. �

We now turn to our main topic concerning differential forms, namely, integration.
Recall that we are motivated by the desire to integrate over k-dimensional surfaces
in Rn. With this in mind, we define the following:

Definition 9.7 (Surface patch). A k-dimensional surface patch in Rn is a C1

mapping F : Q → Rn, where Q ⊂ Rk is an interval, such that F is one-to-one on
the interior of F .

Example 9.10. Let Q = [0, 2π]× [0, π] ⊂ R2 and let F : Q→ R3 be given by

F (θ, ϕ) =

 sinϕ cos θ
sinϕ sin θ

cosϕ

 .
Then the image of F is the unit sphere in R3. We identify F with its image F (Q).
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Definition 9.8. Let α be a C1 differential k-form on Rn, and let ϕ : Q → Rn be
a k-dimensional surface patch. The integral of α over ϕ is defined by∫

ϕ(Q)

α :=

∫
Q

α
∣∣
ϕ(u)

(D1ϕ(u), . . . , Dkϕ(u)),

where the integral on the right-hand side is the integral over a real-valued function
on the k-dimensional interval Q ⊂ Rk (with integration variable u). In the integral
on the right-hand side, we may write du1 · · · duk to emphasize that this is an k-
dimensional integral with integration variable u. Another option would be dku, or
(if you don’t care to specify the dimension k) just du.

Example 9.11. Let us consider a special case, namely when ϕ : Rk → Rk is given
by ϕ(x) = x and α = fdu := f du1 ∧ · · · ∧ duk. Then∫

Q

fdu =

∫
Q

fdu1 ∧ · · · ∧ duk =

∫
Q

fdu1 ∧ · · · duk(e1, . . . , ek) =

∫
Q

f.

This means that when integrating a function f , you can equally well think of
integrating the k-form fdu1 ∧ · · · ∧ u. k; if we denote du = du1 ∧ · · · ∧ duk, then we
can say that we are integrating fdu.

Example 9.12. Let Q = [0, 1]× [0, 1] and let

ϕ(u, v) = (u+ v, u− v, uv), α = xdy ∧ dz + y dx ∧ dz.

Let’s compute
∫
ϕ(Q)

α: Noting that

ϕ′(u, v) =

 1 1
1 −1
v u

 ,
we can see that

dy ∧ dz(Duϕ,Dvϕ) = u+ v, dx ∧ dz(Duϕ,Dvϕ) = u− v.

Thus ∫
ϕ(Q)

α =

∫
Q

[(u+ v)2 + (u− v)2] =

∫ 1

0

∫ 1

0

2(u2 + v2) du dv = 4
3 .

Example 9.13 (Arclength integrals). Let us consider the case k = 1, so that
γ : [a, b]→ Rn simply yields a curve in Rn. We then wish to compute the integral∫
γ
ω for a 1-form ω. In particular, if ω =

∑n
i=1 Fidxi, then∫

γ

ω =

∫ b

a

n∑
i=1

Fi(γ(t))dxi(γ
′(t)) dt

=

∫ b

a

n∑
i=1

Fi(γ(t))γ′(t) dt =

∫ b

a

F (γ(t)) · γ′(t) dt.

We can express this integral in a slightly different way, which will be important
later when we discuss Stokes’ Theorem. In particular, we define the unit tangent
vector at x ∈ γ([a, b]) by

T (x) = γ′(t)
|γ′(t)| , where x = γ(t).
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One can check that this definition is actually independent of the parametrization
γ(·) (as long as the parametrizations are ‘equivalent’, or ‘orientation-preserving’),
and in fact a choice of unit tangent vector provides an orientation of the curve.

Given the unit tangent T for a curve C ∈ Rn, we define the arclength form ds
by

ds|x(v) = T (x) · v,
which defines a differential 1-form on C. One can then verify that for ω =

∑n
i=1 Fidxi

as above, ∫
γ

ω =

∫
γ

F · T ds. (9.1)

Proof of (9.1). Let γ : [a, b] → Rn be an (oriented) parametrization of the curve
C. Then, by definition of integration of a differential form,∫

γ

F · T ds =

∫ b

a

F (γ(t)) · γ
′(t)
|γ′(t)| dsγ(t)(γ

′(t))

=

∫ b

a

F (γ(t)) · γ
′(t)
|γ′(t)|T (γ(t)) · γ′(t)

=

∫ b

a

F (γ(t)) · γ′(t) |γ
′(t)|2
|γ′(t)|2

=

∫ b

a

F (γ(t)) · γ′(t) dt.

The result follows. �

We are next going to introduce the notion of the pullback of a differential form,
which will allow us to give a cleaner formula than the one appearing in the definition.

Definition 9.9 (Pullback). Let ϕ : Rm → Rn be a C1 mapping, and let α be a
k-form on Rn. Then for u ∈ Rm, we define

(ϕ∗α)
∣∣
u

: (Rn)k → R,

by

(ϕ∗α)
∣∣
u
(v1, . . . , vk) = α

∣∣
ϕ(u)

(dϕ|u(v1), . . . , dϕ|u(vk)).

We call ϕ∗α the pullback of α by ϕ.

Just based on the definition, we can see some connection to Definition 9.8 above,
but what on earth does this operation really mean? Let’s see some examples:

Example 9.14. What is the pullback of a function f (i.e. a ‘0-form’)? It is another
function:

(ϕ∗f)
∣∣
u

= f |ϕ(u), i.e. (ϕ∗f)(u) = f(ϕ(u)) = f ◦ ϕ(u).

Thus ϕ∗f = f ◦ ϕ.

Example 9.15. What is the pullback of the 1-form f dxi? By the definition,

(ϕ∗[f dxi])
∣∣
u
(v) = [f dxi]

∣∣
ϕ(u)

(dϕ|u(v)) = f ◦ ϕ(u) [dϕ
∣∣
u
(v)]i

Now note that [dϕ
∣∣
u
(v)]i given by dϕi

∣∣
u
· v. It follows that

ϕ∗[fdxi] = [f ◦ ϕ] dϕi = (ϕ∗f) dϕi.



A COURSE ON ADVANCED CALCULUS 159

In particular, we can expand

ϕ∗[dxi] = dϕi =

m∑
j=1

∂ϕi
∂uj

duj .

Example 9.16. What is the pullback of dxi ∧ dxj? We claim that

ϕ∗[dxi ∧ dxj ] = ϕ∗dxi ∧ ϕ∗dxj = dϕi ∧ dϕj .
To see this, we first write

(ϕ∗[dxi ∧ dxj ])|u(v1, v2) = [dxi ∧ dxj ]
∣∣
ϕ(u)

(dϕ|u(v1), dϕ|u(v2))

= [dxi ∧ dxj ](dϕ|u(v1), dϕ|u(v2))

= dx(i,j)(dϕ|u(v1), dϕ|u(v2))

= det

[
[dϕ|u(v1)]i [dϕ|u(v2)]i
[dϕ|u(v1)]j [dϕ|u(v2)]j

]
.

Now note that

[dϕ
∣∣
u
(v1)]i = dϕi

∣∣
u
· v1 =

m∑
a=1

ϕiav1a,

where we write ϕia = ∂ϕi
∂ua

∣∣
u

and v1a for the ath component of v1. With similar
formulas for the other terms appearing in the matrix above, we derive

(ϕ∗[dxi ∧ dxj ])|u(v1, v2) =

m∑
a=1

m∑
b=1

ϕiaϕjb[v1av2b − v2av1b].

On the other hand, keeping the same notation from above, we have

ϕ∗dxi = dϕi =

m∑
a=1

ϕiadua,

so that

[ϕ∗dxi ∧ ϕ∗dxj ]
∣∣
u
(v1, v2) =

m∑
a=1

m∑
b=1

ϕiaϕjb[dua ∧ dub](v1, v2)

=

m∑
a=1

m∑
b=1

ϕiaϕjb det

[
v1a v1b
v2a v2b

]

=

m∑
a=1

m∑
b=1

ϕiaϕjb[v1av2b − v1bv2a].

The claim follows.

In light of the preceding examples, we can now see that some nice formulas hold
for the pullback, like

ϕ∗(fα) = (f ◦ ϕ)ϕ∗α, ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β, ϕ∗(α+ β) = ϕ∗α+ ϕ∗β.

We will prove the following:

Theorem 9.7. Let ϕ : Q ⊂ Rk → Rn be a C1 surface patch. Let α be a differential
k-form on Rn. Then ∫

ϕ(Q)

α =

∫
Q

ϕ∗α.
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Recall that in light of Example 9.11, the integrand on the right-hand side should
be viewed as ϕ∗α|u evaluated at (e1, . . . , ek).

Proof. By additivity, it is enough to consider a k-form of the type α = fdxI , where
I = (i1, . . . , ik) and f : Rn → R. In this case, we have∫

ϕ(Q)

fdxI =

∫
f ◦ ϕ(u) dxI(D1ϕ(u), . . . , Dkϕ(u)).

Now, by definition of dxI , we have that

dxI(D1ϕ(u), . . . , Dkϕ(u)) = det

[
∂ϕia
∂uj

∣∣∣∣
u

]
,

where a, j = 1, . . . , k and the matrix above has the specified value in row a and
column j. So ∫

ϕ(Q)

fdxI =

∫
Q

f ◦ ϕ(u) det

[
∂ϕia
∂uj

∣∣∣∣
u

]
.

On the other hand, we have

ϕ∗(fdxI) = (f ◦ ϕ)[ϕ∗dxi1 ] ∧ · · · ∧ [ϕ∗dxik ]

= (f ◦ ϕ) dϕi1 ∧ · · · ∧ dϕik

= (f ◦ ϕ)

k∑
`1,...,`k=1

∂ϕi1
∂u`1

· · · ∂ϕik
∂u`k

du`1 ∧ · · · ∧ du`k ,

where we have expanded each dϕia in terms of the differentials du`, and each
derivative is evaluated at u. Now observe that the sum above can be restricted to
permutations (`1, . . . , `k) of (1, . . . , k) (i.e. we cannot have `i = `j for any i 6= j, for
then the sum reduces to zero). Writing L = (`1, . . . , `k) for a typical permutation
and

Maj =
∂ϕia
∂uj

∣∣∣∣
u

,

we obtain

ϕ∗(fdxI) = (f ◦ ϕ)

[ ∑
permutations L

σ(L)M1`1 · · ·Mk`k

]
du1 ∧ · · · ∧ duk,

where σ(L) is the sign of the permutation L. By linear algebra considerations, we
have ∑

permutations L

σ(L)Mi1`1 · · ·Mik`k = detM = det

[
∂ϕia
∂uj

∣∣∣∣
u

]
.

Thus we have ∫
Q

ϕ∗(dxI) du =

∫
f ◦ ϕ(u) det

[
∂ϕia
∂uj

∣∣∣∣
u

]
where we write du = du1 ∧ · · · duk. The result follows. �

Let’s use this result to compute the integral from Example 9.12 another way.

Example 9.17. Let Q,ϕ, α be as in Example 9.12, that is,

ϕ(u, v) = (u+ v, u− v, uv), α = x dy ∧ dz + y dx ∧ dz.
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Then the pullback ϕ∗α is given by

ϕ∗α = (u+ v)ϕ∗(dy) ∧ ϕ∗(dz) + (u− v)ϕ∗(dx) ∧ ϕ∗(dz)
= (u+ v)[du− dv] ∧ [vdu+ udv] + (u− v)[du+ dv] ∧ [vdu+ udv]

= (uv + v2 + uv + v2)du ∧ dv + (u2 − uv − uv + v2)du ∧ dv
= 2(u2 + v2) du ∧ dv.

Then ∫
ϕ(Q)

α =

∫
Q

ϕ∗α =

∫
Q

2(u2 + v2) = 4
3 ,

just as we computed above.

There’s one more important result we should prove about pullbacks, namely:

Theorem 9.8. If ϕ : Rm → Rn is C1 and α is a C1 differential k-form on Rn,
then

d(ϕ∗α) = ϕ∗(dα).

Proof. By induction on k: If k = 0, then α is a C1 function, and by definition of
the differential and pulback,

ϕ∗(dα) =

n∑
j=1

∂α

∂xj

∣∣∣∣
ϕ

ϕ∗(dxj) =

n∑
j=1

m∑
k=1

∂α

∂xj

∣∣∣∣
ϕ

∂ϕj
∂uk

duk.

On the other hand, by the chain rule,

d(ϕ∗α) =

m∑
k=1

∂

∂uk

[
α ◦ ϕ

]
duk =

m∑
k=1

n∑
j=1

∂α

∂xj

∣∣∣∣
ϕ

∂ϕj
∂uk

duk.

Thus the result holds for k = 0.
Now suppose the result holds up to (k − 1)-forms. Take a k-form of the form

α = fdxI ∧ dx` =: β ∧ dx`.

Then, by the product rule for differential forms and Theorem 9.5

dα = dβ ∧ dx` − β ∧ d[dx`] = dβ ∧ dx`.

Thus, using the inductive hypothesis,

ϕ∗(dα) = ϕ∗(dβ ∧ dx`)
= ϕ∗(dβ) ∧ ϕ∗(dx`)
= d(ϕ∗β) ∧ ϕ∗(dx`).

On the other hand, by the product rule, inductive hypothesis, and Theorem 9.5,

d(ϕ∗α) = d(ϕ∗β ∧ ϕ∗dx`)
= d(ϕ∗β) ∧ ϕ∗(dx`)− ϕ∗β ∧ d[ϕ∗dx`]

= d(ϕ∗β) ∧ ϕ∗(dx`)− ϕ∗β ∧ ϕ∗[d(dx`)]

= d(ϕ∗β) ∧ ϕ∗(dx`).

The result follows. �
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9.2. Manifolds and surface area. We are now going to move towards some
actual applications of the theory of differential forms. In particular, we would like
to see how we can compute the area of surfaces inside Rn.

We begin with the following definition:

Definition 9.10 (Area of a surface patch). Suppose F : Q ⊂ Rk → Rn is a
k-dimensional surface patch. We define the k-dimensional surface area of F (Q) by

a(F ) =

∫
Q

[det[F ′(u)]tF ′(u)]1/2,

where t denotes the transpose of a matrix.

This definition is motivated by the fact that if P is a k-dimensional parallelepiped
in Rn spanned by a1, . . . , ak, then the k-dimensional area of P is given by

a(P ) = [detAtA]1/2,

where A is the n×k matrix with columns given by a1, . . . , ak. As this is essentially
a fact from linear algebra, we take it for granted here. Using this together with a
Riemann sum type construction, it becomes natural to define the area of a surface
patch as above.

Example 9.18. Let F : [0, 2π]→ R2 be given by F (u) =

[
cosu
sinu

]
. Then

F ′(u) =

[
− sinu

cosu

]
=⇒ [F ′(u)]tF ′(u) = sin2 u+ cos2 u = 1.

Then the ‘1-dimensional surface area’ (which is the same thing as arclength) of F
is

a(F ) =

∫ 2π

0

1 = 2π,

giving the arclength of the circle. Similarly, one can compute the surface area of
the 2-dimensional sphere in R3 using the spherical coordinate map.

So far, we have defined the area of a surface patch that relies on the specific
choice of a function describing the surface (also called a parametrization). For
example, our previous computation relies on specific choice F (u) = (cosu, sinu).
On the other hand, it should make sense to speak of the arclength of a curve,
or the surface area of a surface, without making reference to a specific choice of
parametrization. In particular, if you chose to describe the circle in a different way
than I did, we should still be able to agree on the length of the curve.

With this in mind, we make a new definition:

Definition 9.11. A set A ⊂ Rn is called a k-cell if there exists an open set U ⊂ Rk
containing the unit cube I ⊂ Rk and a one-to-one C1 function ϕ : U → Rn such
that

(i) A = ϕ(I), and
(ii) rank[ϕ′(u)] = k for all u ∈ I.

The restriction ϕ|I is called a parametrization of A.

The surface area of a k-cell, as defined above, is independent of parametrization:
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Theorem 9.9. If ϕ and ψ are two parametrizations of the same k-cell A ⊂ Rn,
then ∫

I

[det(ϕ′)tϕ]1/2 =

∫
I

[det(ψ′)tψ]1/2.

Sketch of proof. We set T = ψ−1 ◦ ϕ. Using the fact that ϕ′ and ψ′ are full rank,
we can use the inverse function theorem to prove that T is C1 invertible. Then we
have ϕ = ψ ◦ T , and so

(ϕ′)t(ϕ′) = [(ψ ◦ T )′]t[ψ ◦ T ]′ = (T ′)t[ψ′ ◦ T ]t[ψ′ ◦ T ]T ′.

This implies
[det(ϕ′)tϕ′]1/2 = [det(ψ′ ◦ T )tψ′ ◦ T ]1/2|detT ′|.

The result now follows from the change of variables formula. �

The surfaces in Rn that we are interested in studying may be obtained by taking
nonoverlapping unions of k-cells.

Definition 9.12 (Manifold). A set M is called a compact k-dimensional manifold
if it can be written as the union of a finite number of nonoverlapping k-cells.

Warning 9.10. This is not the standard definition of a manifold, but it will be
convenient for our purposes. The ‘real’ definition of a k-manifold is a set such
that at any point p, one can find an open set p ∈ U ⊂ Rn such that U ∩M is a
‘k-dimensional patch’.

We have actually encountered manifolds in disguise before. In particular, when
we studied Lagrange multipliers, we dealt with sets of the form

M = {x ∈ Rn : g(x) = 0 and ∇g(x) 6= 0}
for suitable g. Such sets are manifolds. Moreover, the proof that showed the
existence of tangent planes carries over to the present setting; in particular, a k-
dimensional manifold has a k-dimensional tangent plane at each point:

Definition 9.13. Let p ∈ M . We say that v is in the tangent plane of M at p if
there exists δ > 0 and a differentiable function γ : (−δ, δ)→M such that γ(0) = p
and γ′(0) = v.

Similar to the proof given in the section on Lagrange multipliers, we can show
that TpM is a k-dimensional vector space for each p ∈M .

Other examples of manifolds include familiar sets like circles or spheres, cylinders,
paraboloids, hyperboloids, and so on.

Definition 9.14 (Area of a manifold). Let M = ∪ri=1Ai is a compact k-manifold,
where Ai are k-cells. Then we define the k-dimensional area of M by

a(M) =

r∑
i=1

a(Ai).

Remark 9.11. To see that the area of M is well-defined, one must verify that
if M = ∪mi=1Bi is another decomposition of M into k-cells, then

∑m
i=1 a(Bi) =∑r

i=1 a(Ai). This can be done using an argument similar to the one appearing in
Theorem 9.9.

Our next goal will be to define the so-called surface area form for a k-manifold.
Before we can do this, we need a bit more language associated to manifolds:
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Definition 9.15 (Coordinate patches; orientation). Let M be a k-manifold.

• A coordinate patch is an injective, C1 mapping ϕ : U →M , where U ⊂ Rn
is open, such that dϕu has rank k for all u ∈ U .
• An atlas for M is a collection of coordinate patches ψi : Ui →M such that
M ⊂ ∪iψi(Ui).
• An orientation for M is an atlas {ψi} with the following property: if
ψi(Ui) ∩ ψj(Uj) 6= ∅, then the ‘change of coordinates mapping’

Tij = ψ−1j ◦ ψi
satisfies detT ′ij > 0 on its domain. The pair (M, {ψi}) is called an oriented
manifold.
• A coordinate patch ϕ : U → (M, {ψi}) is orientation-preserving if it over-

laps positively with each ψi (in the sense above); it is orientation-reversing
if it overlaps negatively with each ψi.

Remark 9.12. The condition that dϕu has rank k guarantees that det[(ϕ′(u))tϕ′(u)] 6=
0 for each u.

We now introduce the surface area form; then we’ll prove that it actually does
the job it’s supposed to do.

Definition 9.16 (Surface area form). Let M be an oriented k-manifold. Let x ∈M
and let I = (i1, . . . , ik). Choosing ϕ : U → M be an orientation-preserving patch
such that x = φ(u), we define

nI(x) =
det[ϕ′I(u)]

[det(ϕ′(u))tϕ′(u)]1/2
,

where ϕ′I is the k × k submatrix of ϕ′ obtained by choosing rows i1, . . . , ik. We
then define the surface area form on M by

dA =
∑

I increasing

nI dxI .

As usual, we need to check that the definition above does not depend on the
choice of coordinate patch (so that the surface area form is actually well-defined).
For this (and the next theorem) we will need a lemma:

Lemma 9.13. Suppose P is a k-dimensional parallelepiped in Rn spanned by
a1, . . . , ak. Writing A = [a1 a2 . . . ak], we have

a(P ) = [det(AtA)]1/2 =

[ ∑
I increasing

(detAI)
2

]1/2
,

where AI is the k × k matrix obtained by choosing rows i1, . . . , ik from A.

Sketch of proof. We begin by quoting a theorem known as the Binet–Cauchy prod-
uct formula: given a k × n matrix A and an n× k matrix B,

detAB =
∑

I increasing

[detAtI ][detBI ].

To prove this, fix A and consider the map B 7→ detAB. This is an alternating k-
multilinear function on Rn. Using Theorem 9.3 and the fact that dxI(b

1, . . . , bk) =
detBI , one can deduce that the coefficients αI appearing in the represention of
B 7→ detAB are given by detAtI , which implies the result.
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In the special case A = B, we obtain

det(AtA) =
∑

I increasing

(detAI)
2.

Since a(P ) = [det(AtA)]1/2, the result follows. �

Proof that nI is well-defined. We now suppose that ψ : V →M is another orientation-
preserving coordinate patch with x = ψ(v), and that ϕ(U) ∩ ψ(V ) intersect. Then
we set T = ψ−1 ◦ϕ and consider increasing J = (j1, . . . , jk). By the chain rule and
the fact that ϕ = ψ ◦ T ,

(ψ ◦ T )′J = ψ′J ◦ T · T ′ =⇒ detϕ′J = det[ψ′J ◦ T ] · det[T ′].

Thus, using detT ′ > 0, we deduce

detϕ′I(u)

[
∑
J increasing[detϕ′J(u)]2]1/2

=
detψ′J(v) detT ′(u)

[
∑
J increasing[detψ′J(v) detT ′(u)]2]1/2

=
detψ′J(v)

[
∑
J increasing[detψ′J(v)]2]1/2

,

i.e. (by the previous lemma)

det[ϕI(u)]

[det(ϕ′(u))tϕ′(u)]1/2
=

det[ψI(v)]

[det(ψ′(v)tψ′(v)]1/2
.

But this shows that the definition for nI in Definition 9.16 using the ϕ coordinates
agrees with the one using the ψ coordinates; in particular, nI is well-defined. �

Example 9.19 (Outer normal vector). Let M be an oriented smooth (n − 1)-
dimensional manifold in Rn. Define N : M → Rn as follows: for x ∈M , choose an
orientation-preserving coordinate patch ϕ : U → M with x = ϕ(u). Then we let
the ith component ni of N is defined to be (−1)i−1nIi , where Ii is the (n−1)-tuple
with i removed. (For example, if n = 3, then n2 = −nI2 , where I2 = (1, 3).)

The surface area form can then be written

dA =
n∑
i=1

(−1)i−1nidxIi .

We call N a unit normal vector, because N is orthogonal to the vectors ∂ϕ
∂uj

for

j = 1, . . . , n− 1 (and these vectors form a basis for the tangent space of M). Let’s
verify this in the case n = 3, and take j = 1 (we use u, v instead of u1, u2). Then

the inner product of N and ∂ϕ
∂u1

is given by

det

[
ϕ2
u ϕ2

v

ϕ3
u ϕ3

v

]
ϕ1
u − det

[
ϕ1
u ϕ1

v

ϕ3
u ϕ3

v

]
ϕ2
u + det

[
ϕ1
u ϕ1

v

ϕ2
u ϕ2

v

]
ϕ3
u

= ϕ1
uϕ

2
uϕ

3
v − ϕ1

uϕ
2
vϕ

3
u − ϕ1

uϕ
2
uϕ

3
v + ϕ1

vϕ
2
uϕ

3
u + ϕ1

uϕ
2
vϕ

3
u − ϕ1

vϕ
2
uϕ

3
u

= 0.

The following theorem shows the role of the surface area form:

Theorem 9.14 (Role of the surface area form). Let M be an oriented k-manifold
in Rn with surface area form dA (cf. Definition 9.16). Suppose ϕ : Q → M is
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the restriction of an orientation-preserving coordinate patch to an interval Q ⊂ Rk.
Then

a(ϕ) =

∫
ϕ(Q)

dA.

Proof. Beginning with the definition of area of a surface patch, applying the lemma
above and the definition of nI , and recalling the definition of the integral of a k-form
and of the form dA, we obtain

a(ϕ) =

∫
Q

[detϕ′t ϕ′]1/2

=

∫
Q

detϕ′tϕ′

[detϕ′t ϕ′]1/2

=

∫
Q

∑
I increasing(detϕ′I)

2

[detϕ′t ϕ′]1/2

=

∫
Q

∑
I increasing[detϕ′tϕ′]1/2nI ◦ ϕ detϕ′I

[detϕ′t ϕ′]1/2

=

∫
Q

∑
I increasing

nI ◦ ϕdxI(D1ϕ, . . . ,Dkϕ)

=

∫
ϕ(Q)

∑
I increasing

nIdxI =

∫
ϕ(Q)

dA.

�

Given a compact manifold of the form M = ∪ri=1Ai, where Ai are k-cells, we
essentially define the area of M as the sum of the area of each Ai. In particular,
we suppose that this decomposition is oriented, in the sense that each Ai has a
parametrization ϕi : Qi → Ai that extends to an orientation-preserving coordinate
match for M defined on an open set containing Qi. We then wish to define

a(M) =

r∑
i=1

∫
ϕi(Qi)

dA.

More generally, given any continuous k-form α on M (actually, an open set
containing M), we would like to define∫

M

α =

r∑
i=1

∫
ϕi(Qi)

α.

(Then, in particular, we get the formula a(M) =
∫
M
dA). To make these definitions,

we need to be sure that the result is independent of the specific parametrizations
used. We have proved similar things above (you use the chain rule, the change of
variables formula, and a positive Jacobian assumption), so we will not prove this
here. Instead, let’s try to see how we can actually use all of this abstract machinery
to compute something.

Example 9.20. Let M be the unit sphere in R3. We parametrize M using the
spherical coordinates

x = sinα cos θ, y = sinα sin θ, z = cosα,
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i.e ϕ(α, θ) = (sinα cos θ, sinα sin θ, cosα)t. Then a computation shows

ϕ′ =

 cosα cos θ − sinα sin θ
cosα sin θ sinα cos θ
− sinα 0

 , so that [detϕ′tϕ′]1/2 = sinα.

To compute dA, we need to compute each nI . We find

I = (1, 2) =⇒ detϕ′I = cosα sinα,

I = (2, 3) =⇒ detϕ′I = sin2 α cos θ,

I = (1, 3) =⇒ detϕ′I = − sin2 α sin θ,

so that

n(1,2) = cosα = z, n(2,3) = sinα cos θ = x, n(1,3) = − sinα sin θ = −y.

It follows that

dA = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy.
Now let Q = {(θ, α) : θ ∈ [0, 2π], α ∈ [0, π]}. Then∫

ϕ(Q)

z dx ∧ dy =

∫
Q

cosαdx ∧ dy(Dαϕ,Dθϕ) =

∫
Q

cos2 α sinα = 4π
3 .

Similarly, ∫
ϕ(Q)

y dz ∧ dx =

∫
Q

sin3 α sin2 θ = 4π
3 ,∫

ϕ(Q)

z dx ∧ dy =

∫
Q

cos2 α sinα = 4π
3 .

Thus

a(M) =

∫
ϕ(Q)

dA = 3 · 4π3 = 4π.

9.3. Stokes’ Theorem and the Classical Theorems of Vector Calculus. We
turn to our attention to a deep theorem known as Stokes’ Theorem. Before we can
even state this result precisely, we need to introduce a few new notions.

Definition 9.17. A compact oriented smooth k-manifold with boundary is a com-
pact region V in an oriented k-manifold M ⊂ Rn such that the boundary ∂V is a
smooth compact (k − 1)-manifold.

The positive orientation on ∂V is defined as follows: Given p ∈ ∂V , we let
Φ : U →M be a coordinate patch with p ∈ Φ(U), Φ−1(∂V ) ⊂ Rk, and Φ−1(intV ) ⊂
{x ∈ Rk : xk > 0}. We choose Φ to be orientation-preserving for k even, orientation-
reserving for k odd. Then ϕ|U∩Rk−1 is a coordinate patch for ∂V .

If we choose patches Φ1, . . . ,Φm that cover ∂V , their restrictions ϕ1, . . . , ϕm
form an orientation for ∂V (which is the positive orientation, by definition).

Example 9.21. If we consider the unit circle as the boundary of the unit ball in
R2, this construction yields the counterclockwise orientation for the circle.

Here is the theorem we will prove in the next section (modulo some facts about
manifolds):
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Theorem 9.15 (Stokes’ Theorem). Let V be an oriented compact smooth k-manifold
with boundary in the oriented smooth k-manifold M ⊂ Rn. If ∂V has the positive
orientation and α is a C1 differential (k − 1)-form on an open set containing V ,
then ∫

V

dα =

∫
∂V

α.

For now, let us see how many of the classical theorems from vector calculus
actually follow from Theorem 9.15.

Example 9.22 (Green’s Theorem in n = 2). In the case n = 2, V is a region in
R2 and ∂V is a curve in the plane. Then ‘α’ should be a 1-form on R2, so that

α = P dx+Qdy for some P,Q.

Then dα is the 2-form given by

dα = [∂Q∂x −
∂P
∂y ] dx ∧ dy,

and so Stokes’ Theorem becomes the familiar Green’s Theorem:∫
V

[∂Q∂x −
∂P
∂y ] dx dy =

∫
∂V

P dx+Qdy.

We next consider the divergence theorem; here we can handle the n-dimensional
case.

Definition 9.18. Let F : Rn → Rn be C1 (we call F a vector field). Denote the
components by F1, . . . , Fn. Then the divergence of F is the function divF : Rn → R
defined by

divF =

n∑
i=1

∂Fi
∂xi

.

Theorem 9.16 (Divergence Theorem). Let F be a C1 vector field defined on a
neighborhood of a compact n-manifold with boundary V ⊂ Rn. Then∫

V

divF =

∫
∂V

F ·N dA,

where N is the outer normal (see Example 9.19) and dA is the surface area form
of the positively-oriented boundary ∂V .

Proof. We want to write the left-hand side as
∫
V
dα for a suitable n−1 form α, and

the right-hand side as
∫
∂V

α, since then the result follows from Stokes’ Theorem.
To this end, we set

α :=

n∑
i=1

(−1)i−1FidxIi , where Ii = (1, . . . , i− 1, i+ 1, . . . , n).

Then

dα =

n∑
i=1

(−1)i−1
[ n∑
j=1

∂Fi
∂xj

dxj
]
∧ dxIi

=

n∑
i=1

(−1)i−1 ∂Fi∂xi
dxi ∧ dxIi

=

n∑
i=1

∂Fi
∂xi

dx1 ∧ · · · ∧ dxn = divF dx.
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This shows ∫
V

divF =

∫
V

dα.

Now let’s work on the right-hand side. Now, in the definition of
∫
∂V

F ·N dA, we
sum over coordinate patches for ∂V . On each such patch, the integral is defined by
evaluating F · N dA on the column vectors Dϕ := (D1ϕ(·), . . . , Dn−1ϕ(·)). Thus,
using Example 9.19 (recalling (−1)j−1nj = nIj ), Definition 9.16, and Lemma 9.13,
we have that

F ·N(ϕ) dA(Dϕ) = F ·N(ϕ)

n∑
j=1

nIj (ϕ)dxIj (Dϕ)

= F ·N(ϕ)

n∑
j=1

det[ϕ′Ij ]
2

[det(ϕ′)tϕ′]1/2

= [det(ϕ′)tϕ′]1/2
n∑
i=1

(−1)i−1Fi(ϕ)nIi(ϕ)

=

n∑
i=1

(−1)i−1Fi(ϕ) det[ϕ′Ii ]

=

n∑
i=1

(−1)i−1Fi(ϕ)dxIi(Dϕ) = α(Dϕ).

Thus we conclude ∫
∂V

F ·N dA =

∫
∂V

α.

The result now follows from Stokes’ Theorem. �

Next, we’ll establish the version of Stokes’ Theorem that you likely encountered
in your multivariable calculus class.

Definition 9.19 (Curl). Let F : R3 → R3 be continuously differentiable. The curl
of F , denoted curlF or ∇× F , is given by

∇× F = (∂F3

∂x2
− ∂F2

∂x3
, ∂F1

∂x3
− ∂F3

∂x1
, ∂F2

∂x1
− ∂F1

∂x2
).

Theorem 9.17 (Stokes’ Theorem, Familiar Version). Let D be an oriented, com-
pact 2-manifold with boundary in R3. Let N be the unit normal vector on D and
T the unit tangent on ∂D. If F is a C1 vector field on an open set containing D,
then ∫

D

[∇× F ] ·N dA =

∫
∂D

F · T ds.

Proof. Recalling Example 9.13, we can write∫
∂D

F · T ds =

∫
∂D

ω,

where

ω = F1 dx+ F2 dy + F3 dz.

By Stokes’ Theorem, it then suffices to show that∫
D

[∇× F ] ·N dA =

∫
D

dω.
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Recalling Example 9.8, we first note that

dω = [∇× F ]1 dy ∧ dz + [∇× F ]2 dz ∧ dx+ [∇× F ]3 dx ∧ dy.
Thus, writing ni for the components of N , the result follows provided we can prove
that

n1 dA = dy ∧ dz, n2 dA = dz ∧ dx, n3 dA = dx ∧ dy
(at least, when restricted to vectors (D1ϕ,D2ϕ), where ϕ : R2 → D is a coordinate
patch for D). However, we have basically done this computation already (in the
proof of the divergence theorem). In particular, using the definition of the surface
area form and Lemma 9.13,

n1(ϕ)dA(D1ϕ,D2ϕ) = n(2,3)(ϕ)
∑

I increasing

nI(ϕ)dxI(D1ϕ,D2ϕ)

=
detϕ′(2,3)

[detϕ′(u)tϕ′(u)]

∑
I increasing

(detϕ′I)
2

= detϕ′(2,3)

= dy ∧ dz(D1ϕ,D2ϕ).

As the computation for n2, n3 is similar, the we obtain the result. �

9.4. Sketch of the proof of Stokes’ Theorem. We recall the statement of
Stokes’ Theorem:

Theorem 9.18 (Stokes’ Theorem). Let V be an oriented compact smooth k-manifold
with boundary in the oriented smooth k-manifold M ⊂ Rn. If ∂V has the positive
orientation and α is a C1 differential (k − 1)-form on an open set containing V ,
then ∫

V

dα =

∫
∂V

α.

Let us try a much more modest goal, namely, to prove Stokes’ Theorem on the
unit cube. We let

Ik = [0, 1]k ⊂ Rk.
Let us take a moment to discuss what the boundary ∂Ik looks like:

Lemma 9.19. The boundary ∂Ik of the unit cube Ik is the nonoverlapping union
of 2k (k − 1)-dimensional faces of the form

Ik−1i,σ = {x ∈ Ik : xi = σ}, i = 1, . . . , k, σ ∈ {0, 1}.

Each face Ik−1i,σ is the image of Ik−1 ⊂ Rk−1 under the map

ei,σ : Ik−1 → Rk, where ei,ε(x1, . . . , xk−1) = (x1, . . . , xi−1, σ, xi, . . . , xk−1).

The mapping ei,σ provides an orientation for Ik−1i,σ .

Proof. A point is on the boundary if one of the components is 0 or 1. There are
then 2k faces to the boundary, since for each k you have two options (0 or 1). �

Definition 9.20 (Integrals over ∂Ik and Ik). Given a (k− 1)-form α over ∂Ik, we
define ∫

∂Ik
α =

k∑
i=1

∑
σ∈{0,1}

(−1)i+σ
∫
ei,σ

α.
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To integrate k-forms over Ik, we just need to recall that if α = fdx1 ∧ · · · ∧ dxk,
then we take

∫
Ik
α =

∫
Ik
f , where the second integral is the ordinary integral of a

real-valued function over a cube in Rk.

Example 9.23 (k=2). I2 is the unit square. Its boundary consists of four unit line
segments. The orientation given by ei,σ is such that we integrate counterclockwise
around the square. In particular, if ω is a 1-form, then∫

∂I2
ω = −

∫
e1,0

ω +

∫
e1,1

ω −
∫
e2,1

ω +

∫
e2,0

ω.

Example 9.24 (k=3). I3 is the unit cube in R3. Its boundary consists of four unit
cubes. If we wish to integrate a 2-form α over the boundary, then, for example, the
integral over e1,1 (the face where x1 = 1) would come with a plus sign, while the
integral over e1,0 (the face where x1 = 0) would come with a minus sign.

With the preliminaries in place, we can prove the following:

Theorem 9.20 (Stokes’ Theorem for the unit cube). Let α be a C1 differential
(k − 1)-form on an open set containing Ik. Then∫

Ik
dα =

∫
∂Ik

α.

Proof. Since α is a (k − 1)-form on Rk, we may write

α =

k∑
i=1

ai dxIi , where Ii = (1, . . . , i− 1, i+ 1, . . . , k).

We start by computing the right-hand side. In particular, we need to compute
the integral over each face ei,σ. Using Theorem 9.7,∫

ei,σ

α =

∫
ei,σ

k∑
j=1

ajdxIj =

∫
Ik−1

k∑
j=1

(aj ◦ ei,σ)e∗i,σ(dxIj ).

Now, we claim that

e∗i,σ(dxIj ) =

{
dxIi i = j

0 i 6= j.

Indeed,

e∗i,σ(dx`) =

k−1∑
m=1

∂[ei,σ]`
∂xm

dxm.

In particular, dxIj contains dxi (which occurs if i 6= j) then the pullback is zero

(since the ith component of ei,σ is constant). If instead i = j then dxIj does not
contain dxi and the computation above reduces to e∗i,σ(dx`) = dx` for each `, which
implies the result.

Continuing from above, we have∫
ei,σ

α =

∫
Ik−1

ai ◦ ei,σ dxIi =

∫
ei,σ

ai dxIi ,
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so that ∫
∂Ik

α =

k∑
i=1

∑
σ∈{0,1}

(−1)i+σ
∫
ei,σ

α

=

k∑
i=1

(−1)i−1
[∫

ei,1

ai dxIi −
∫
ei,0

ai dxIi

]
.

(9.2)

We turn to the left-hand side of the identity. We first observe that

dα =

k∑
i=1

daidxIi =

k∑
i=1

k∑
j=1

∂ai
∂xj

dxj ∧ dxIi =

[ k∑
i=1

(−1)i−1 ∂ai∂xi

]
dxk,

where we write dxk to denote dx1 ∧ · · · ∧ dxk.
We now apply Fubini’s Theorem and the one-dimensional fundamental theorem

of calculus to obtain∫
∂ai
∂xi

dxk

=

∫ [∫ 1

0

∂ai
∂xi

dxi

]
dxIi

=

∫
Ik−1

[ai(x1, . . . , xi−1, 1, xi+1, . . . , xk)− ai(x1, . . . , xi−1, 0, xi+1, . . . , xk) dxIi

=

∫
ei,1

ai dxIi −
∫
ei,0

ai dxIi .

Thus ∫
Ik
dα =

k∑
i=1

(−1)i−1
[∫

ei,1

ai dxIi −
∫
ei,0

ai dxIi

]
,

which agrees with the expression appearing in (9.2). �

We have now verified the conclusion of Stokes’ Theorem on the unit cube. The
proof also revealed that the key is simply the fundamental theorem of calculus,
and indeed, Stokes’ Theorem should be viewed as an extreme generalization of this
fundamental result. In what follows, we will only mention the main steps that one
could take to obtain Stokes’ Theorem in the generality appearing in Theorem 9.18.
The strategy is as follows:

• Establish Stokes’ Theorem for the unit cube.
• Establish Stokes’ Theorem for an oriented k-cell in a smooth k-manifold

in Rn. This relies primarily on the properties of pullback and differentials
obtained previously, which allow us to pull the computation back to the
unit cube.
• Establish Stokes’ Theorem for regions that can be obtained by piecing to-

gether oriented k-cells (these are called cellulated regions). By orienting
things properly, integrals over interior faces will cancel in pairs.
• Finally, extend Stokes’ Theorem to the setting of k-manifold with boundary

by piecing together cellulated regions.
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