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1. Introduction

The primary references used while preparing these notes were the textbook of
Stein and Shakarchi (specifically Chapters 1–3, 5, and 8 therein), as well as the
textbook of Gamelin (specifically the proof of the prime number theorem in Chapter
XIV therein).

1.1. Primer on Analysis and Metric Space Topology. We begin by review-
ing some fundamental concepts from analysis and topology that will be needed
throughout the course.

For set complements, we will write

X\Y = {x ∈ X : x /∈ Y }.

We recall the fundamental notions of norms and metrics.

Definition 1.1 (Norm). Let X be a vector space over R. A norm on X is a
function ρ : X → [0,∞) such that

• for all x ∈ X, c ∈ R, ρ(cx) = |c|ρ(x)
• for all x ∈ X, ρ(x) = 0 =⇒ x = 0
• for all x, y ∈ X, ρ(x+ y) ≤ ρ(x) + ρ(y) (triangle inequality)

Definition 1.2 (Metric). Let X be a non-empty set. A metric on X is a function
d : X ×X → [0,∞) such that

• for all x, y ∈ X d(x, y) = d(y, x)
• for all x, y ∈ X d(x, y) = 0 =⇒ x = y
• for all x, y, z ∈ X d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If X is a vector space over R with a norm ρ, then we may define a metric d on
X by

d(x, y) = ρ(x− y).

However, not every metric arises in this way. For example, if we take the discrete
metric on R (i.e. d(x, y) = 1 for any x 6= y), this cannot arise from any norm on
R, since the homogeneity condition would require d( 1

2x,
1
2y) = 1

2d(x, y), which fails
for any x 6= y.

Suppose X is a non-empty set with metric d. For x ∈ X and r > 0 we define
the ball of radius r around x by

Br(x) := {y ∈ X : d(x, y) < r}. (1.1)

We call a set S ⊂ X open if

for all x ∈ S there exists r > 0 such that Br(x) ⊂ S.

Given S ⊂ X and T ⊂ S, we call T open in S if T = S ∩R for some open R ⊂ X.
One can readily check that the following properties hold:

• ∅ is open, X is open,
• any union of open sets is open,
• finite intersections of open sets are open.

These conditions show that this definition of open sets produces what is called
a ‘topology’. We therefore call the definition of open sets appearing in (1.1) the
metric space topology.
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Suppose S ⊂ X and x ∈ S. We call x an interior point if there exists r > 0
such that Br(x) ⊂ S. The set of interior points of S is denoted S◦. A set S is open
if and only if S = S◦ (exercise).

We call a set S ⊂ X closed if X\S is open. Note that ‘closed’ does not mean
‘not open’. For example, the sets ∅ and X are always both open and closed.

Given a set S ⊂ X we define the closure of S by

S =
⋂
{T ⊂ X : S ⊂ T and T is closed}.

A set S is closed if and only if S = S (exercise).
A point x ∈ X is called a limit point of S ⊂ X if

for all r > 0 [Br(x)\{x}] ∩ S 6= ∅.

A set is closed if and only if it contains all of its limit points (exercise).
The boundary of S is defined by S\S◦. It is denoted ∂S.
Let S ⊂ X. An open cover of S is a collection of open sets {Uα} (indexed by

some set A) such that

S ⊂
⋃
α∈A

Uα.

We call S compact if every open cover has a finite subcover. That is, for any open
cover {Uα}α∈A of S, there exists a finite set B ⊂ A such that

S ⊂
⋃
α∈B

Uα.

We record here a few useful facts concerning compact sets in metric spaces.

Lemma 1.3. In a metric space, every compact set is closed.

Proof. Suppose that S ⊂ X is compact and that y ∈ X\S. For every x ∈ S,
we have d(x, y) > 0, and so with rx := 1

10d(x, y) we have Brx(x) ∩ Brx(y) = ∅.
Now, the collection {Brx(x) : x ∈ S} gives an open cover of S, and hence by
compactness there exists a finite subcover. That is, there exists x1, . . . , xN so that
S ⊂ ∪Nj=1Brj (xj), where rj = rxj . Now let r = min{rj : j = 1, . . . N} > 0. Then we
claim Br(y) ⊂ X\S. To see this, suppose instead that there exists x ∈ Br(y) ∩ S.
Then x ∈ Brj (xj) for some xj . But then

d(xj , y) ≤ d(xj , x) + d(x, y) < rj + r ≤ 2rj = 1
5d(xj , y),

yielding a contradiction. In conclusion, we have shown that for any y ∈ X\S, there
exists r0 > 0 so that Br0(y) ⊂ X\S. This shows that X\S is open, so that S is
closed. �

Lemma 1.4. A closed subset of a compact metric space is compact.

Proof. Suppose (X, d) is compact and S ⊂ X is closed. If {Uα} is an open cover
of S, then {Uα} together with [X\S] is an open cover of X. There exists a finite
subcover of X, which we may assume consists of U1, . . . , UN , X\S. In this case,
U1, . . . , UN necessarily covers S. �

Finally, we have the following important theorem about nested compact sets in
metric spaces:
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Theorem 1.5 (Cantor’s intersection theorem). Let (X, d) be a metric space. Sup-
pose {Sk}∞k=1 is a collection of non-empty compact subsets of X such that Sk+1 ⊂ Sk
for each k. Then

∞⋂
k=1

Sk 6= ∅.

Proof. Exercise! �

A set S ⊂ X is connected if it cannot be written in the form

S = A ∪B,
where A,B are disjoint, non-empty, and open in S. This is a bit of a strange
definition, in the sense that connectedness is defined in terms of what it is not.
Nonetheless, connected means essentially what you think it means (especially if we
stick to reasonably intuitive topologies like the metric space topology). Later, we
will introduce the notion of path-connectedness, which is even more intuitive and
is equivalent to connectedness in many scenarios.

1.2. Sequences and Convergence. A sequence in a metric space (X, d) is a
function x : N → X. We typically write xn = x(n) and denote the sequence by
{xn}n∈N, {xn}∞n=1, or even by {xn}.

Suppose x : N→ X is a sequence and N is an infinite (ordered) subset of N. The
restriction x : N → X, denoted {xn}n∈N is called a subsequence of {xn}n∈N.

We often denote subsequences by {xnk}∞k=1 (with the understanding that N =
{nk : k ∈ N}).

Definition 1.6 (Cauchy sequence). A sequence {xn}∞n=1 in a metric space (X, d)
is Cauchy if

for all ε > 0 there exists N ∈ N such that

n,m ≥ N =⇒ d(xn, xm) < ε.

Definition 1.7 (Convergent sequence). A sequence {xn}∞n=1 in a metric space
(X, d) converges to ` ∈ X if

for all ε > 0 there exists N ∈ N such that

n ≥ N =⇒ d(xn, `) < ε.

We write limn→∞ xn = `, or xn → ` as n→∞. We call ` the limit of the sequence.

We say the space (X, d) is complete if every Cauchy sequence converges. This
is a property of the metric, as opposed to the property of the topology generated
by the metric (see Exercise 1.3).

We have the following important characterization of compact sets in metric
spaces.

Theorem 1.8. Let (X, d) be a metric space. A set S ⊂ X is compact if and only
if every sequence in S has a subsequence that converges to a point in S.

Proof. =⇒ : Suppose S is compact and {yk} is a sequence in S. Consider the
open cover of S by the balls {B1(x) : x ∈ S}. By compactness, there exists a finite
subcover {B1(xj)}Nj=1. At least one of these balls, say B1(x1) contains infinitely

many terms of the sequence yk, giving us a subsequence we may denote by y1
k. Now

B1(x1) is a closed subset of S and hence is compact. Therefore, arguing as above,
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we may find finitely many balls of radius 1
2 that cover B1(x1), and at least one of

these balls (say B 1
2
(x2)) must contain infinitely many terms of the sequence y1

k,

giving us a second subsequence y2
k. We now repeat this process, finding balls of the

form B1/j(x
j) that contain subsequences yjk, with yj+1

k a subsequence of yjk.

Now, observe that the sets B1/j(xj) are (by construction) a nested sequence of
non-empty compact sets, and hence (by Theorem 1.5) there exists a point z in their
intersection. Note also that z ∈ S; for this one can argue as follows: z is a limit
point of S by construction (unless perhaps z = xj for some j, in which case z ∈ S
anyway).

We now consider the diagonal sequence zk := ykk and show that zk → z. To this
end, let ε > 0 and choose K > 2

ε . Then for k ≥ K we have zk ∈ B1/K(xK). As

z ∈ B1/K(xK), we deduce

d(zk, z) ≤ d(zk, x
K) + d(xK , z) < 2

K < ε for all k ≥ K.

This shows zk → z, as desired.
⇐=: Now suppose that every sequence in S has a convergent subsequence, and

let {Uα}α∈A be an open cover of S.
We claim that there exists r > 0 so that

for all x ∈ S, there exists α ∈ A such that Br(x) ⊂ Uα. (1.2)

Suppose not. Then we may find balls Bn of radius 1/n that are not contained
in any Uα. We choose xn ∈ Bn for each n, and pass to a subsequence so that
xnk → z ∈ S. Now, choose β so that z ∈ Uβ . As Uβ is open, we may find
ε > 0 so that B3ε(z) ⊂ Uβ . Then for k large enough, we have xnk ∈ Bε(z).
Choosing k possibly even larger (so that 1/nk < ε), we deduce Bnk ⊂ B3ε(z) ⊂ Uβ ,
contradicting the fact that the balls Bn do not belong to any Uα by construction.

Now choose r > 0 as in (1.2). We claim that there exist finitely balls {Bk}Nk=1

of radius r that cover S. If not, we may construct a sequence of points yn so that

yn /∈ ∪n−1
k=1Br(yk).

However, this sequence cannot have a convergent subsequence, since any ball of
radius r/2 can contain at most one yk. Now these balls Bk have radius r and
hence each is contained in some set Uαk by (1.2). In particular, we deduce that
S ⊂ ∪Nk=1Uαk , yielding the desired finite subcover. �

1.3. Limits and Continuity. Suppose (X, d) and (Y, d̃) are metric spaces and
f : X → Y .

Definition 1.9 (Limit). Suppose x0 ∈ X and ` ∈ Y . We write

lim
x→x0

f(x) = `, or f(x)→ ` as x→ x0

if

for all {xn}∞n=1 ⊂ X, lim
n→∞

xn = x0 =⇒ lim
n→∞

f(xn) = `.

Equivalently, limx→x0
f(x) = ` if

for all ε > 0 there exists δ > 0 such that

for all x ∈ X d(x, x0) < δ =⇒ d̃(f(x), `) < ε.
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Definition 1.10 (Continuity). The function f is continuous at x0 ∈ X if

lim
x→x0

f(x) = f(x0),

If f continuous at each x ∈ X we say f is continuous on X.

Definition 1.11 (Uniform continuity). The function is uniformly continuous
on X if

for all ε > 0 there exists δ > 0 such that

for all x, x̃ ∈ X d(x, x̃) < δ =⇒ d̃(f(x), f(x̃)) < ε.

We will also make use of the following ‘little-oh’ notation.

Definition 1.12 (Little-oh notation). Suppose (X, d) is a metric space and Y is a
vector space over R with norm ρ. Let f, g : X → Y and x0 ∈ X. We write

f(x) = o(g(x)) as x→ x0

if

for all ε > 0 there exists δ > 0 such that

d(x, x0) < δ =⇒ ρ(f(x)) < ερ(g(x)).

1.4. Real Analysis. Finally we recall a few definitions from real analysis.
Let S ⊂ R.

• M ∈ R is an upper bound for S if

for all x ∈ S, x ≤M.

• m ∈ R is a lower bound for S if

for all x ∈ S, x ≥ m.
• M∗ ∈ R is the supremum of S if

– M∗ is an upper bound for S, and
– for all M ∈ R, if M is an upper bound for S then M∗ ≤M

• m∗ ∈ R is the infimum of S if
– m∗ is a lower bound for S, and
– for all m ∈ R, if m is a lower bound for S then m∗ ≥ m

• If S has no upper bound, we define supS = +∞.
• If S has no lower bound, we define inf S = −∞.

Finally, if {xn} is a real sequence, then

lim sup
n→∞

xn := lim
n→∞

(
sup
m≥n

xm

)
, lim inf

n→∞
xn := lim

n→∞

(
inf
m≥n

xm

)
.

1.5. Exercises.

Exercise 1.1. Recall the definition of S◦ and S from Section 1.1.

• Show that S is open if and only if S = S◦

• Show that S is closed if and only if S = S.
• Show that S is closed if and only if S contains all of its limit points.

Exercise 1.2. Prove Theorem 1.5. (Hint: Argue by contradiction. If the inter-
section is empty, then the collection of the complements of the Sk yields an open
cover of X and hence of S1. Now use compactness...)
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Exercise 1.3. Let N denote the natural numbers {1, 2, 3, . . . }. Let d1(n,m) =

|n−m| be the standard metric, and define d2 = (n,m) = |n−m|
nm . First, show that

that d2 is a metric. Next, show that for both d1 and d2, the ‘metric space topology’
coincides with the ‘discrete topology’, that is, the topology in which single points
(and hence all sets) are open. Finally, show that (N, d1) is a complete metric space,
while (N, d2) is not.

Exercise 1.4. Prove that the two definitions of limit appearing in Definition 1.9
are equivalent.
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2. The Complex Plane

2.1. Definitions. The complex plane, denoted C, is the set of expressions of the
form

z = x+ iy,

where x and y are real numbers and i is an (imaginary) number that satisfies

i2 = −1.

We call x the real part of z and write x = Re z. We call y the imaginary part
of z and write y = Im z. If x = 0 or y = 0, we omit it. That is, we write x+ i0 = x
and 0 + iy = iy.

Notice that C is in one-to-one correspondence with R2 under the map x+ iy 7→
(x, y). Under this correspondence we call the x-axis the real axis and the y-axis
the imaginary axis.

Addition in C corresponds to addition in R2:

(x+ iy) + (x̃+ iỹ) = (x+ x̃) + i(y + ỹ).

We define multiplication in C as follows:

(x+ iy)(x̃+ iỹ) = (xx̃− yỹ) + i(xỹ + x̃y).

Addition and multiplication satisfy the associative, distributive, and commuta-
tive properties, as one can readily check. Furthermore we have an additive identity,
namely 0, and a multiplicative identity, namely 1. We also have additive and mul-
tiplicative inverses. Thus, C has the algebraic structure of a field.

2.2. Topology. The complex plane C inherits a norm and hence a metric space
structure from R2: if z = x+ iy then we define the norm (or length) of z by

|z| =
√
x2 + y2,

and for z, w ∈ C we define the distance between z and w by |z − w|.
We equip C with the metric space topology. Thus we have notions of open/closed

sets, compact sets, connected sets, convergent sequences, continuous functions, and
so on.

Definition 2.1 (Bounded set, diameter). A set Ω ⊂ C is bounded if

there exists R > 0 such that Ω ⊂ BR(0).

If Ω is a bounded set, its diameter is defined by

diam(Ω) = sup
w,z∈Ω

|z − w|.

The Heine–Borel theorem in R2 gives the following characterization of com-
pact sets in C.

Theorem 2.2. A set Ω ⊂ C is compact if and only if it is closed and bounded.

Proof. Let us present the general case for S ⊂ Rn.
=⇒ : Suppose S is compact. We know from Lemma 1.3 that S is closed. To

see that S is bounded, consider the open cover of S by balls of radius one around
each point, and then take a finite subcover. We then have that S is contained in a
finite union of bounded sets, and hence is bounded.
⇐=: Now suppose S is closed and bounded, and we will show that every sequence

in S has a convergent sequence. This implies that S is compact by Theorem 1.8.
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First consider the case n = 1, and let {xn} be a sequence in S. Note that {xn}
is necessarily a bounded sequence. We will construct a monotonic subsequence. To
this end, let

N = {n : xn ≥ xm for all m > n}.
If N is infinite, then we can take the subsequence {xn}n∈N , which is monotone
decreasing. If instead N is finite, then take n1 = maxN + 1. By definition, there
exists n2 > n1 so that xn2

> xn1
, and then n3 > n2 so that xn3

> xn2
, and so

on. That is, we can constrict a monotone increasing subsequence. In particular,
we now have a monotone subsequence of {xn}. Noting that bounded monotone
subsequences converge (to the infimum or supremum), we have our convergent
subsequence. As S is closed, the limit necessarily belongs to S as well. This
handles the n = 1 case.

For the case of n > 1, we again take an arbitrary sequence {xn} in S, which
is necessarily bounded. It follows that each component if bounded. Thus we can
apply the argument above to find a subsequence along which the first component
converges. We can then take a subsequence of this subsequence along which the
second component converges, and continuing in this way we can find a subsequence
along which every component converges. It follows that the sequence xn converges
along this subsequence, and again the limit must belong to S since S is closed. This
completes the proof. �

We note that the completeness of R2 implies completeness of C (that is, Cauchy
sequences converge).

2.3. Geometry. Polar coordinates in R2 lead to the notion of the polar form of
complex numbers. In particular, any nonzero (x, y) ∈ R2 may be written

(x, y) = (r cos θ, r sin θ)

where r =
√
x2 + y2 > 0 and θ ∈ R is only uniquely defined up to a multiple of 2π.

Thus we can write any nonzero z ∈ C as

z = r[cos θ + i sin θ]

for some θ ∈ R. We call θ the argument of z and write θ = arg(z).
By considering Taylor series and using i2 = −1, we can write

cos θ + i sin θ = eiθ

(exercise). Thus for any z ∈ C\{0} we can write z in polar form:

z = reiθ, r = |z|, θ = arg(z).

The polar form clarifies the geometric meaning of multiplication in C. In partic-
ular if w = ρeiφ and z = reiθ, then

wz = rρ ei(φ+θ).

Thus multiplication by z consists of dilation by |z| and rotation by arg(z).
For z = x+ iy ∈ C we define the complex conjugate of z by

z̄ = x− iy.

That is, z̄ is the reflection of z across the real axis. Note that if z = reiθ then
z̄ = re−iθ.
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We also note that

Re z = 1
2 (z + z̄) and Im z = − i

2 (z − z̄).

Furthermore |z|2 = zz̄ (exercise).

2.4. The Extended Complex Plane. Let S ⊂ R3 be the sphere of radius 1
2

centered at (0, 0, 1
2 ). The function

Φ : S\{(0, 0, 1)} → C

defined by

Φ((x, y, z)) =
x

1− z
+ i

y

1− z
is called the stereographic projection map. This function is a bijection, with
the inverse

Φ−1 : C→ S\{(0, 0, 1)}
given by

Φ−1(x+ iy) =

(
x

1 + x2 + y2
,

y

1 + x2 + y2
,

x2 + y2

1 + x2 + y2

)
.

We depict this map in the following figure: 

g

o

Note that |x + iy| → ∞ if and only if Φ−1(x + iy) → (0, 0, 1). Thus we can
identify (0, 0, 1) with “the point at infinity”, denoted ∞.

We call S the Riemann sphere. We call C together with ∞ the extended
complex plane, denoted C∪ {∞}. We identify C∪ {∞} with S via stereographic
projection.

2.5. Exercises.

Exercise 2.1. Show that |z|2 = zz̄.

Exercise 2.2. Use Taylor series expansions to show that

eiθ = cos θ + i sin θ.

Exercise 2.3. For all z ∈ C\{0} there exists a unique w ∈ C\{0} such that zw = 1,
which we denote by 1

z or z−1. Given z = x + iy ∈ C\{0}, compute the real and

imaginary parts of z−1.
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Exercise 2.4. Describe the following sets in C geometrically and draw a picture
of each.

• {z ∈ C : |z − a| = |z − b|}, where a, b ∈ C,
• {z ∈ C : Re (z) > 0},
• {z ∈ C : Re (az + b) > 0}, where a, b ∈ C,
• {z ∈ C : |z| = Re (z) + 1}.



INTRODUCTION TO COMPLEX ANALYSIS 13

3. Holomorphic Functions

3.1. Definitions. The definition of the complex derivative mirrors the definition
for the real-valued case.

Definition 3.1 (Holomorphic). Let Ω ⊂ C be an open set and f : Ω → C. The
function f is holomorphic at z0 ∈ Ω if there exists ` ∈ C such that

lim
h→0

f(z0 + h)− f(z0)

h
= `. (3.1)

We write ` = f ′(z0) and call f ′(z0) the derivative of f at z0.

A synonym for holomorphic is (complex) differentiable. If f is holomorphic
at each point of Ω, we say f is holomorphic on Ω. If f is holomorphic on all of C,
we say that f is entire.

Remark. In (3.1) we consider complex-valued h. This will have surprisingly
drastic consequences for the notion of complex differentiability.

Theorem 3.2. The usual algebraic rules for derivatives hold:

• (f + g)′(z) = f ′(z) + g′(z)
• (αf)′(z) = αf ′(z) for α ∈ C
• (fg)′(z) = f(z)g′(z) + f ′(z)g(z)

•
(
f
g

)′
(z) = g(z)f ′(z)−f(z)g′(z)

[g(z)]2 provided g(z) 6= 0

Moreover the usual “chain rule” holds: (f ◦ g)′(z) = f ′(g(z))g′(z).

Proof. As in the real-valued case, these all follow from the definition of the deriva-
tive and limit laws. �

Thus complex derivatives share the algebraic properties of real-valued differen-
tiation. However, due to the structure of complex multiplication, complex differen-
tiation turns out to be very different.

3.2. The Cauchy–Riemann Equations. Suppose f : C → C. For (x, y) ∈ R2,
define u, v : R2 → R by

u(x, y) := Re [f(x+ iy)] and v(x, y) := Im [f(x+ iy)].

Note that as mappings we may identify f : C→ C with F : R2 → R2 defined by

F (x, y) = (u(x, y), v(x, y)).

The question of differentiability is more subtle.

Proposition 3.3 (Cauchy–Riemann equations). The function f is holomorphic at
z0 = x0 + iy0 with derivative f ′(z0) if and only if u, v are differentiable at (x0, y0)
and satisfy

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) = Re [f ′(z0)],

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0) = Im [f ′(z0)].

Proof. We first note f is differentiable at z0 with derivative f ′(z0) if and only if

f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|) as z → z0.
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Recalling the definition of multiplication in C and breaking into real and imaginary
parts, this is equivalent to(

u(x, y)
v(x, y)

)
=

(
u(x0, y0)
v(x0, y0)

)
+

(
Re [f ′(z0)] −Im [f ′(z0)]
Im [f ′(z0)] Re [f ′(z0)]

)(
x− x0

y − y0

)

+ o(
√
|x− x0|2 + |y − y0|2) as (x, y)→ (x0, y0).

On the other hand, u and v are differentiable at (x0, y0) if and only if(
u(x, y)
v(x, y)

)
=

(
u(x0, y0)
v(x0, y0)

)
+

(
∂u
∂x (x0, y0) ∂u

∂y (x0, y0)
∂v
∂x (x0, y0) ∂v

∂y (x0, y0)

)(
x− x0

y − y0

)

+ o(
√
|x− x0|2 + |y − y0|2) as (x, y)→ (x0, y0).

The result follows. (See the exercises for another derivation of the Cauchy–Riemann
equations, as well.) �

Example 3.1 (Polynomials). If f : C→ C is a polynomial, i.e.

f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n

for some ai ∈ C, then f is holomorphic (indeed, entire) with derivative

f ′(z) = a1 + 2a2z + · · ·+ nanz
n−1.

Example 3.2. Let f : C\{0} → C be defined by f(z) = 1
z . Then f is holomorphic,

with

f ′ : C\{0} → C given by f ′(z) = − 1
z2 .

Example 3.3 (Conjugation). Consider the function f : C→ C defined by f(z) = z̄,
which corresponds to F : R2 → R2 defined by

F (x, y) = (x,−y).

That is, u(x, y) = x and v(x, y) = −y. Note that F is infinitely differentiable as a
function on R2. Indeed,

∇F ≡
(

1 0
0 −1

)
.

However, f does not satisfy the Cauchy–Riemann equations, since

∂u
∂x = 1, but ∂v

∂y = −1.

Thus f is not holomorphic.
In the exercises you will show f(z) = z̄ is not holomorphic by another method.

3.3. Power Series. Given {an}∞n=0 ⊂ C, we can define a new sequence {Sn}∞n=0

of partial sums by

SN :=

N∑
n=0

an.

If the sequence SN converges, we denote the limit by
∑∞
n=0 an and say the series∑

n an converges. Otherwise we say the series
∑
n an diverges.

If the (real) series
∑
n |an| converges, we say

∑
n an converges absolutely.
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Lemma 3.4. The series
∑
n an converges if and only if

for all ε > 0 there exists N ∈ N such that

n > m ≥ N =⇒
∣∣∣∣ n∑
k=m+1

ak

∣∣∣∣ < ε.

Proof. See Exercise 3.5. �

Corollary 3.5.
(i) If

∑
n an converges absolutely, then

∑
n an converges.

(ii) If
∑
n an converges then limn→∞ an = 0.

Proof. See Exercise 3.6. �

Given a sequence {an}∞n=0 ⊂ C and z0 ∈ C, a power series is a function of the
form

f(z) =

∞∑
n=0

an(z − z0)n.

Theorem 3.6. Let f(z) =
∑∞
n=0 an(z − z0)n and define the radius of conver-

gence R ∈ [0,∞] via

R = [lim sup |an|1/n]−1,

with the convention that 0−1 =∞ and ∞−1 = 0. Then

• f(z) converges absolutely for z ∈ BR(z0),

• f(z) diverges for z ∈ C\BR(z0).

Proof. Suppose R /∈ {0,∞} (you should check these cases separately). Further
suppose that z0 = 0. (You should check the case z0 6= 0.)

If |z| < R then we may choose ε > 0 small enough (depending on z) that

(R−1 + ε)|z| < 1.

By definition of lim sup,

there exists N ∈ N such that n ≥ N =⇒ |an|1/n ≤ R−1 + ε.

Thus for n ≥ N we have

|an| |z|n ≤ [ (R−1 + ε)|z| ]n.

Using the “comparison test” with the (real) geometric series∑
[ (R−1 + ε)|z| ]n

we deduce that
∑
anz

n converges absolutely.
If |z| > R then we may choose ε > 0 small enough (depending on z) that

(R−1 − ε)|z| > 1.

By definition of lim sup, there exists a subsequence {ank} such that

|ank |1/nk ≥ R−1 − ε.
Thus along this subsequence

|ank | |z|nk ≥ [ (R−1 − ε)|z| ]nk > 1.

Thus limn→∞ anz
n 6→ 0, which implies that

∑
anz

n diverges. �



16 JASON MURPHY

Remark 3.7. We call BR(0) the disc of convergence. The behavior of f (i.e.
convergence vs. divergence) on ∂BR(0) is a more subtle question.

Definition 3.8. Let Ω ⊂ C be an open set and f : Ω→ C. We call f analytic if
there exists z0 ∈ C and {an}∞n=0 ⊂ C such that the power series

∞∑
n=0

an(z − z0)n

has a positive radius of convergence and there exists δ > 0 such that

f(z) =

∞∑
n=0

an(z − z0)n for all z ∈ Bδ(z0).

Example 3.4 (Some familiar functions).

• We define the exponential function by

ez =

∞∑
n=0

zn

n!
.

• We define the cosine function by

cos z =

∞∑
n=0

(−1)n
z2n

(2n)!
.

• We define the sine function by

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.

Analytic functions are holomorphic:

Theorem 3.9. Suppose f(z) =
∑∞
n=0 an(z − z0)n has disc of convergence BR(z0)

for some R > 0.
Then f is holomorphic on BR(z0), and its derivative f ′ is given by the power

series

f ′(z) =

∞∑
n=0

nan(z − z0)n−1,

which has the same disc of convergence.
(By induction f is infinitely differentiable, and all derivatives are obtained by

termwise differentiation.)

Proof. Let us suppose

z0 = 0.

(You should check the case z0 6= 0.)
We define

g(z) =

∞∑
n=0

nanz
n−1.

First notice that since limn→∞ n1/n = 1, we have

lim sup
n→∞

|nan|1/n = lim sup
n→∞

|an|1/n,

and hence g also has radius of convergence equal to R.



INTRODUCTION TO COMPLEX ANALYSIS 17

We now let w ∈ BR(0) and wish to show that g(w) = f ′(w), that is,

lim
h→0

f(w + h)− f(w)

h
= g(w).

To this end, we first note that for any N ∈ N we may write

f(z) =

N∑
n=0

anz
n

︸ ︷︷ ︸
:=SN (z)

+

∞∑
n=N+1

anz
n

︸ ︷︷ ︸
:=EN (z)

.

We now choose r > 0 such that |w| < r < R and choose h ∈ C\{0} such that
|w + h| < r.

We write

f(w + h)− f(w)

h
− g(w) =

SN (w + h)− SN (w)

h
− S′N (w) (1)

+ S′N (w)− g(w) (2)

+
EN (w + h)− EN (w)

h
. (3)

Now let ε > 0.
For (3) we use the fact that

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

and |w + h|, |w| < r to estimate∣∣∣∣EN (w + h)− EN (w)

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|
∣∣∣∣ (w + h)n − wn

h

∣∣∣∣ ≤ ∞∑
n=N+1

|an|n rn−1.

As g converges absolutely on BR(0) we may choose N1 ∈ N such that

N ≥ N1 =⇒
∞∑

n=N+1

|an|n rn−1 < ε
3 .

For (2) we use that limN→∞ S′N (w) = g(w) to find N2 ∈ N such that

N ≥ N2 =⇒ |S′N (w)− g(w)| < ε
3 .

Now we fix N > max{N1, N2}. For (1) we now take δ > 0 so that

|h| < δ =⇒
∣∣∣∣SN (w + h)− SN (w)

h
− S′N (w)

∣∣∣∣ < ε
3 and |w + h| < r.

Collecting our estimates we find

|h| < δ =⇒
∣∣∣∣f(w + h)− f(w)

h
− g(w)

∣∣∣∣ < ε,

as needed. �

Remark 3.10. We just showed that analytic functions are holomorphic. Later
we will prove that that the converse is true as well! (In particular, holomorphic
functions are automatically infinitely differentiable!)
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3.4. Curves in the Plane.

Definition 3.11 (Curves).

• A parametrized curve is a continuous function z : [a, b] → C, where
a, b ∈ R.
• Two parametrizations

z : [a, b]→ C and z̃ : [c, d]→ C

are equivalent if there exists a continuously differentiable bijection t :
[c, d]→ [a, b] such that t′(s) > 0 and z̃(s) = z(t(s)).
• A parametrized curve z : [a, b]→ C is smooth if

z′(t) := lim
h→0

z(t+ h)− z(t)
h

exists and is continuous for t ∈ [a, b]. (For t ∈ {a, b} we take one-sided
limits.)
• The family of parametrizations equivalent to a smooth parametrized curve
z : [a, b]→ C determines a (smooth) curve γ ⊂ C, namely

γ = {z(t) : t ∈ [a, b]},

with an orientation determined by z(·).
• Given a curve γ we define γ− to be the same curve with the opposite

orientation. If z : [a, b]→ C is a parametrization of γ, we may parametrize
γ− by

z−(t) = z(b+ a− t), t ∈ [a, b].

• A parametrized curve z : [a, b] → C is piecewise-smooth if there exist
points

a = a0 < a1 < · · · < an = b

such that z(·) is smooth on each [ak, ak+1]. (We call the restrictions of z to
[ak, ak+1] the smooth components of the curve.)

• The family of parametrizations equivalent to a piecewise-smooth parametrized
curve determines a (piecewise-smooth) curve, just like above.

• Suppose γ ⊂ C is a curve and z : [a, b] → C is a parametrization of γ. We
call {z(a), z(b)} the endpoints of γ. We call γ closed if z(a) = z(b). We
call γ simple if z : (a, b)→ C is injective.

Example 3.5. Let z0 ∈ C and r > 0. Consider the curve

γ = ∂Br(z0) = {z ∈ C : |z − z0| = r}.

The positive orientation is given by

z(t) = z0 + reit, t ∈ [0, 2π],

while the negative orientation is given by

z(t) = z0 + re−it, [0, 2π].

By default we will consider positively oriented circles.

Definition 3.12 (Path-connected). A set Ω ⊂ C is path-connected if for all
z, w ∈ Ω there exists a piecewise-smooth curve in Ω with endpoints {z, w}.
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Definition 3.13 (Component). Let Ω ⊂ C be open and z ∈ Ω. The connected
component of z is the set of w ∈ Ω such that there exists a curve in Ω joining z
to w.

Proposition 3.14. Let Ω ⊂ C be open. Then Ω is connected if and only if Ω is
path connected.

Proof. See Exercise 3.10. �

Definition 3.15 (Homotopy). Let Ω ⊂ C be an open set. Suppose γ0 and γ1 are
curves in Ω with common endpoints α and β.

We call γ0 and γ1 homotopic in Ω if there exists a continuous function γ :
[0, 1]× [a, b]→ Ω such that

• γ(0, t) is a parametrization of γ0 such that γ(0, a) = α and γ(0, b) = β
• γ(1, t) is a parametrization of γ1 such that γ(1, a) = α and γ(1, b) = β
• γ(s, t) is a parametrization of a curve γs ⊂ Ω for each s ∈ (0, 1) such that
γ(s, a) = α and γ(s, b) = β.

Definition 3.16 (Simply connected). An open connected set Ω ⊂ C is called
simply connected if any two curves in Ω with common endpoints are homotopic.

Definition 3.17 (Integral along a curve). Let γ ⊂ C be a smooth curve parametrized
by z : [a, b]→ C and let f : C→ C be a continuous function.

We define the integral of f along γ by∫
γ

f(z) dz :=

∫ b

a

f(z(t))z′(t) dt︸ ︷︷ ︸
Riemann integral

.

(To be precise we can define this in terms of real and imaginary parts.)

Remark 3.18. For this to qualify as a definition, we need to check that the defi-
nition is independent of parametrization:

Suppose z̃ : [c, d] → C is another parametrization of γ, i.e. z̃(s) = z(t(s)) for
t : [c, d]→ [a, b].

Changing variables yields∫ d

c

f(z̃(s))z̃′(s) ds =

∫ d

c

f(z(t(s)))z′(t(s))t′(s) ds =

∫ b

a

f(z(t))z′(t) dt.

If γ is piecewise smooth we define the integral by summing over the smooth
components of γ: ∫

γ

f(z) dz :=

n−1∑
k=0

∫ ak+1

ak

f(z(t))z′(t) dt.

Example 3.6. Let γ be the unit circle, parametrized by z(t) = eit for t ∈ [0, 2π].
Then ∫

γ

dz

z
=

∫ 2π

0

1
eit ie

it dt = 2πi.

We define the length of a smooth curve γ by

length(γ) =

∫ b

a

|z′(t)| dt.
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This definition is also independent of parametrization (check! ).
The length of a piecewise-smooth curve is the sum of the lengths of its smooth

components.

Theorem 3.19 (Properties of integration).∫
γ

[αf(z) + βg(z)] dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.∫
γ

f(z) dz = −
∫
γ−
f(z) dz.∣∣∣∣ ∫

γ

f(z) dz

∣∣∣∣ ≤ sup
z∈γ
|f(z)| · length(γ).

Proof. The first equality follows from the definition and the linearity of the usual
Riemann integral.

For the second equality, we use the change of variables formula and the fact that
if z(t) parametrizes γ then z−(t) := z(b+ a− t) parametrizes γ−.

For the inequality we have that∣∣∣∣ ∫
γ

f(z) ds

∣∣∣∣ ≤ sup
t∈[a,b]

|f(z(t))|
∫ b

a

|z′(t)| dt ≤ sup
z∈γ
|f(z)| length(γ)

for a smooth curve γ. �

We turn to the notion of the winding number of a curve around a point.

Definition 3.20 (Winding number). Let γ ⊂ C be a closed, piecewise smooth
curve. For z0 ∈ C\γ we define the winding number of γ around z0 by

Wγ(z0) =
1

2πi

∫
γ

dz

z − z0
.

Theorem 3.21 (Properties of winding number).

(i) Wγ(z0) ∈ Z (for z0 ∈ C\γ)
(ii) if z0 and z1 are in the same connected component of C\γ, then Wγ(z0) =

Wγ(z1)
(iii) If z0 is in the unbounded connected component of C\γ then Wγ(z0) = 0.

Proof. Suppose z : [0, 1] → C is a parametrization of γ, and define G : [0, 1] → C
by

G(t) =

∫ t

0

z′(s)

z(s)− z0
ds.

Then G is continuous and (except at possibly finitely many points) differentiable,
with

G′(t) =
z′(t)

z(t)− z0
.

We now define H : [0, 1]→ C by

H(t) = [z(t)− z0]e−G(t).

Note that H is continuous and (except at possibly finitely many points) differen-
tiable, with

H ′(t) = z′(t)e−G(t) − [z(t)− z0]
z′(t)

z(t)− z0
e−G(t) = 0
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Thus H is constant. In particular since z0 /∈ γ and γ is closed,

[z(1)− z0]e−G(1) = [z(0)− z0]e−G(0) =⇒ e−G(1) = e−G(0) = 1

This implies 2πiWγ(z0) = G(1) = 2πik for some k ∈ Z, which gives (i).
Now (ii) follows since Wγ is continuous and Z-valued.
Finally (iii) follows since lim|z0|→∞Wγ(z0) = 0. �

Example 3.7. Example 3.6 shows that if γ is the unit circle then Wγ(0) = 1.

Theorem 3.22 (Jordan curve theorem). Let γ ⊂ C be a simple, closed, piecewise-
smooth curve. Then C\γ is open, with boundary equal to γ.

Moreover C\γ consists of two disjoint connected sets, say A and B.
Precisely one of these sets (say A) is bounded and simply connected. This is the

interior of γ.
The other set (B) is unbounded. This is the exterior of γ.
Finally, there exists a “positive orientation” for γ such that

Wγ(z) =

{
1 z ∈ A
0 z ∈ B.

To prove this theorem would take us too far afield, but for the proof one can
look in Appendix B in Stein–Shakarchi.

Definition 3.23. We will call a curve γ satisfying the hypotheses of Theorem 3.22
a Jordan curve.

3.5. Goursat’s Theorem and Cauchy’s Theorem. Our next topic concerns
the existence of ‘primitives’ (or antiderivatives) of holomorphic functions.

Definition 3.24 (Primitive). Let Ω ⊂ C be open and f : Ω → C. A primitive
for f on Ω is a function F : Ω→ C such that

• F is holomorphic on Ω,
• for all z ∈ Ω, F ′(z) = f(z).

Our first result gives a necessary condition for the existence of primitives.

Theorem 3.25. Let Ω ⊂ C be open and f : Ω→ C be continuous.
Suppose F is a primitive for f . If γ is a curve in Ω joining α to β, then∫

γ

f(z) dz = F (β)− F (α).

In particular, if γ is closed and f has a primitive then∫
γ

f(z) dz = 0.

Proof. Let z : [a, b]→ C be a parametrization of γ. If γ is smooth, then∫
γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt =

∫ b

a

F ′(z(t))z′(t) dt

=

∫ b

a

d
dt [F ◦ z](t) dt = F (z(b))− F (z(a)) = F (β)− F (α).
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If γ is piecewise-smooth, then∫
γ

f(z) dz =

n−1∑
k=0

F (z(ak+1))− F (z(ak))

= F (z(an))− F (z(a0)) = F (β)− F (α).

�

Example 3.8. The function f(z) = 1
z does not have a primitive in C\{0}, since∫

γ

dz
z = 2πi for γ = {z : |z| = 1}.

Corollary 3.26. Let Ω ⊂ C be open and connected. If f : Ω → C is holomorphic
and f ′ ≡ 0, then f is constant.

Proof. See Exercise 3.11. �

Theorem 3.27 (Goursat’s theorem). Let Ω ⊂ C be open and T ⊂ Ω be a (closed)
triangle contained in Ω. If f : Ω→ C is holomorphic, then∫

∂T

f(z) dz = 0.

Lemma 3.28 (Warmup). Let Ω, T, f as above. If in addition f ′ is continuous,
then ∫

∂T

f(z) dz = 0.

Proof. This uses Green’s theorem and the Cauchy–Riemann equations. See Exer-
cise 3.15. �

Proof of Goursat’s theorem. First write T = T 0.
We subdivide T 0 into four similar subtriangles T 1

1 , . . . , T
1
4 and note∫

∂T 0

f(z) dz =

4∑
j=1

∫
∂T 1

j

f(z) dz.

This implies that∣∣∣∣ ∫
∂T 1

j

f(z) dz

∣∣∣∣ ≥ 1
4

∣∣∣∣ ∫
∂T 0

f(z) dz

∣∣∣∣ for at least one j.

Choose such a T 1
j and rename it T 1.

Repeating this process yields a nested sequence of triangles

T 0 ⊃ T 1 ⊃ · · · ⊃ Tn ⊃ . . .

such that ∣∣∣∣ ∫
∂T 0

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣ ∫
∂Tn

f(z) dz

∣∣∣∣,
and

diam(Tn) = (1
2 )ndiam(T 0), length(∂Tn) = (1

2 )nlength(∂T 0).

Using Cantor’s intersection theorem we may find z0 ∈ ∩∞n=0T
n. (In fact z0 is

unique.)
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As f is holomorphic at z0, we may write

f(z) = f(z0) + f ′(z0)(z − z0)︸ ︷︷ ︸
:=g(z)

+h(z)(z − z0),

where limz→z0 h(z) = 0.
Since g is continuously complex differentiable, the lemma implies∫

∂Tn
f(z) dz =

∫
∂Tn

g(z) dz︸ ︷︷ ︸
=0

+

∫
∂Tn

h(z)(z − z0) dz.

Thus we can estimate∣∣∣∣ ∫
∂Tn

f(z) dz

∣∣∣∣ ≤ sup
z∈∂Tn

|h(z)| · diam(Tn) · length(∂Tn)

= 4−n sup
z∈∂Tn

|h(z)| · diam(T 0) · length(∂T 0).

Thus ∣∣∣∣ ∫
∂T 0

f(z) dz

∣∣∣∣ ≤ sup
z∈∂Tn

|h(z)| · diam(T 0) · length(∂T 0).

We now send n→∞ and use limz→z0 h(z) = 0 to conclude that∫
∂T 0

f(z) dz = 0.

�

Corollary 3.29. Goursat’s theorem holds for polygons.

Proof. Check! �

Theorem 3.30. If z0 ∈ C, R > 0, and f : BR(z0)→ C is holomorphic, then f has
a primitive in BR(z0).

Proof. Without loss of generality, we may take z0 = 0.
For z ∈ BR(0), let γz be the piecewise-smooth curve that joins 0 to z comprised

of the horizontal line segment joining 0 to Re (z) and the vertical line segment
joining Re (z) to z.

We define

F (z) =

∫
γz

f(w) dw.

We will show
(i) F is holomorphic on BR(0) and
(ii) F ′(z) = f(z) for z ∈ BR(0).
To this end, we consider z ∈ BR(0) and h ∈ C such that z + h ∈ BR(0).
Using Goursat’s theorem we deduce

F (z + h)− F (z) =

∫
`

f(w) dw,

where ` is the line segment joining z to z + h.
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We now write ∫
`

f(w) dw = f(z)

∫
`

dw +

∫
`

[f(w)− f(z)] dw

= f(z)h+

∫
`

[f(w)− f(z)] dw.

Thus ∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣ 1
h

∫
`

[f(w)− f(z)] dw

∣∣∣∣
≤ |h||h| · sup

w∈`
|f(w)− f(z)|

→ 0 as h→ 0.

�

Theorem 3.31. Let Ω ⊂ C be an open set and f : Ω→ C be holomorphic. Suppose
γ0 and γ1 are homotopic in Ω. Then∫

γ0

f(z) dz =

∫
γ1

f(z) dz.

Proof. By definition of homotopy we get a (uniformly) continuous function γ :
[0, 1]× [a, b]→ Ω, where each γ(s, ·) parametrizes the curve γs.

As γ is continuous, the image of [0, 1]× [a, b] under γ (denoted by K) is compact.
Step 1. There exists ε > 0 such that for all z ∈ K, B3ε(z) ⊂ Ω.
If not, then for all n we may find zn ∈ K and wn ∈ B1/n(z) ∩ [C\Ω]. As K is

compact, there exists a convergent subsequence znk → z ∈ K ⊂ Ω. However, by
construction wnk → z. As C\Ω is closed, we find z ∈ C\Ω, a contradiction.

Choose an ε > 0 as in Step 1. By uniform continuity,

there exists δ > 0 such that

|s1 − s2| < δ =⇒ sup
t∈[a,b]

|γ(s1, t)− γ(s2, t)| < ε.

Step 2. We will show that for any s1, s2 with |s1 − s2| < δ we have∫
γs1

f(z) dz =

∫
γs2

f(z) dz. (3.2)

For this step we construct points {zj}nj=0 ⊂ γs1 , {wj}nj=0 ⊂ γs2 , and balls
{Dj}nj=0 in Ω of radius 2ε such that:

• w0 = z0 and wn = zn are the common endponts of γs1 and γs2
• for j = 0, . . . , n− 1 we have zj , zj+1, wj , wj+1 ∈ Dj

• γs1 ∪ γs2 ⊂ ∪nj=0Dj .

On each ball Dj Theorem 3.30 implies that f has a primitive. say Fj .
On Dj ∩Dj+1 the functions Fj and Fj+1 are both primitives for f , and hence

they differ by a constant (see Exercise 3.12).
In particular

Fj+1(zj+1)− Fj(zj+1) = Fj+1(wj+1)− Fj(wj+1),

or, rearranging:

Fj+1(zj+1)− Fj+1(wj+1) = Fj(zj+1)− Fj(wj+1).
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Hence∫
γs1

f(z) dz −
∫
γs2

f(z) dz =

n−1∑
j=0

[Fj(zj+1)− Fj(zj)]−
n−1∑
j=0

[Fj(wj+1)− Fj(wj)]

=

n−1∑
j=0

[Fj(zj+1)− Fj(wj+1)− (Fj(zj)− Fj(wj))]

=

n−1∑
j=0

[Fj+1(zj+1)− Fj+1(wj+1)− (Fj(zj)− Fj(wj))]

= Fn(zn)− Fn(wn)− (F0(z0)− F0(w0))

= 0.

Step 3. We now divide [0, 1] into finitely many intervals [sj , sj+1] of length less
than δ and apply Step 2 on each interval to deduce that∫

γ0

f(z) dz =

∫
γ1

f(z) dz.

�

We can now give a sufficient condition for the existence of a primitive.

Theorem 3.32 (Cauchy’s theorem). Let Ω ⊂ C be simply connected and f : Ω→ C
be holomorphic. Then f has a primitive in Ω.

In particular, ∫
γ

f(z) dz = 0

for any closed curve γ ⊂ Ω.

Proof. Fix z0 ∈ Ω.
For any z ∈ Ω let γz be a curve in Ω joining z0 to z and define

F (z) =

∫
γz

f(w) dw.

(Note that this is well-defined by Theorem 3.31)
For h ∈ C sufficiently small, we can write

F (z + h)− F (z) =

∫
`

f(w) dw,

where ` is the line segment joining z and z + h.
Thus arguing as in the proof of Theorem 3.30 we find that F ′(z) = f(z). �

3.6. The Cauchy Integral Formula and Applications. We next prove an im-
portant ‘representation formula’ for holomorphic functions and explore some its
consequences.

Lemma 3.33. Suppose w ∈ C, R > 0, and g : BR(w)\{w} → C is holomorphic.
Then ∫

∂Br(w)

g(z) dz =

∫
∂Bs(w)

g(z) dz for 0 < r < s < R.
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Proof. Let δ > 0 be a small parameter. Join ∂Br(w) to ∂Bs(w) with two vertical
line segments a distance δ apart, and denote the curves γ1, . . . , γ6 as in the following
figure:

dy n v82

V8 181

By Cauchy’s theorem (applied twice), we have∫
γ1

g(z) dz+

∫
γ3

g(z) dz = −
(∫

γ2

g(z) dz+

∫
γ4

g(z) dz

)
=

∫
γ5

g(z) dz+

∫
γ6

g(z) dz.

Rearranging gives∫
γ1

g(z) dz −
∫
γ5

g(z) dz =

∫
γ6

g(z) dz −
∫
γ3

g(z) dz,

which gives the result.
�

Theorem 3.34 (Cauchy integral formula). Let Ω be an open set and f : Ω → C
holomorphic. Suppose w ∈ Ω and B is a ball containing w such that B ⊂ Ω. Then

f(w) =
1

2πi

∫
∂B

f(z)

z − w
dz.

Proof. Arguing as in the proof of Lemma 3.33, one can show that it suffices to take
B = Br(w) for some r > 0. (Check! )

Step 1. We show

lim
ε→0

1

2πi

∫
∂Bε(w)

f(z)

z − w
dz = f(w). (3.3)

To see this we write

f(z)

z − w
=
f(z)− f(w)

z − w
+ f(w)

1

z − w
.

Since

lim
z→w

f(z)− f(w)

z − w
= f ′(w)

we find that

there exist ε0 > 0, C > 0 such that |z − w| < ε0 =⇒
∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣ < C.
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Thus for ε < ε0 we have∣∣∣∣ 1

2πi

∫
∂Bε(w)

f(z)− f(w)

z − w
dz

∣∣∣∣ ≤ 2Cπε

2π
= Cε.

In particular

lim
ε→0

1

2πi

∫
∂Bε(w)

f(z)− f(w)

z − w
dz = 0. (∗)

On the other hand for any ε > 0

1

2πi

∫
∂Bε(w)

dz

z − w
= W∂Bε(w)(w) = 1. (∗∗)

Putting together (∗) and (∗∗) we complete Step 1.
Step 2. Using the lemma and the fact that

f(z)

z − w
is holomorphic in Ω\{w}, we find that∫

∂Br(w)

f(z)

z − w
dz =

∫
∂Bε(w)

f(z)

z − w
dz for all 0 < ε < r.

Thus by Step 1,

1

2πi

∫
∂Br(w)

f(z)

z − w
dz = lim

ε→0

1

2πi

∫
∂Bε(w)

f(z)

z − w
dz = f(w).

�

3.7. Corollaries of the Cauchy Integral Formula. We now record some im-
portant consequences of the Cauchy integral formula.

Corollary 3.35. Holomorphic functions are analytic (and hence infinitely differ-
entiable).

More precisely: let Ω ⊂ C be open and f : Ω → C holomorphic. Then for all
z0 ∈ Ω we can expand f in a power series centered at z0 with radius of convergence
at least infz∈C\Ω |z − z0|.

Proof. Let z0 ∈ Ω and choose

0 < r < inf
z∈C\Ω

|z − z0|.

By the Cauchy integral formula we have

f(w) =
1

2πi

∫
∂Br(z0)

f(z)

z − w
dz for all w ∈ Br(z0).

Now for z ∈ ∂Br(z0) and w ∈ Br(z0) we have |w − z0| < |z − z0|, so that

1

z − w
=

1

(z − z0)− (w − z0)
=

1

z − z0

1

1− w−z0
z−z0

=
1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n
.

Here we have used the geometric series expansion, and we note that the series
converges uniformly for z ∈ ∂Br(z0).
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In particular, for w ∈ Br(z0) we have

f(w) =
1

2πi

∫
∂Br(z0)

f(z)

z − z0

∞∑
n=0

(
w − z0

z − z0

)n
dz

=

∞∑
n=0

(
1

2πi

∫
∂Br(z0)

f(z)

(z − z0)n+1
dz

)
(w − z0)n

This shows that f has a power series expansion at w.
Moreover since

f(z)

(z − z0)n+1

is holomorphic in Ω\{z0} we can use Lemma 3.33 above to see that the integrals

1

2πi

∫
∂Br(z0)

f(z)

(z − z0)n+1
dz

are independent of r.
Thus f has a power series expansion for all w ∈ Br(z0), with the same coefficients

for each w. �

Remark 3.36. From the proof of Corollary 3.35 and termwise differentiation we
deduce the Cauchy integral formulas:

f (n)(z0) =
n!

2πi

∫
∂Br(z0)

f(z)

(z − z0)n+1
dz for 0 < r < inf

z∈C\Ω
|z − z0|.

From these identities we can read off the Cauchy inequalities:

|f (n)(z0)| ≤ n!

rn
sup

z∈∂Br(z0)

|f(z)| for 0 < r < inf
z∈C\Ω

|z − z0|.

Next we have Liouville’s theorem.

Corollary 3.37 (Liouville’s theorem). Suppose f : C → C is entire and bounded.
Then f is constant.

Proof. The Cauchy inequalities imply

|f ′(z)| ≤ 1

r
sup
w∈C
|f(w)|

for any r > 0. As f is bounded, this implies f ′(z) ≡ 0, which implies that f is
constant. �

Corollary 3.38 (Fundamental theorem of algebra). Let f(z) = anz
n+· · ·+a1z+a0

with an 6= 0. Then there exist {wj}nj=1 such that

f(z) = an(z − w1)(z − w2) · · · (z − wn).

Proof. Without loss of generality assume an = 1.
Suppose first that

f(z) 6= 0 for all z ∈ C.
Then the function 1

f is entire. Moreover, we claim it is bounded.

To see this write

f(z) = zn + zn(an−1

z + · · ·+ a0

zn ) for z 6= 0.
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As lim|z|→∞
1
zk

= 0 for all k ≥ 1

there exists R > 0 such that |z| > R =⇒
∣∣an−1

z + · · ·+ a0

zn | <
1
2 .

Thus

|z| > R =⇒ |f(z)| ≥ 1
2 |z|

n ≥ 1
2R

n =⇒
∣∣ 1
f(z)

∣∣ ≤ 2R−n.

On the other hand, since f is continuous and non-zero on the compact set BR(0),
there exists ε > 0 such that

|z| ≤ R =⇒ |f(z)| ≥ ε =⇒
∣∣ 1
f(z) | ≤ ε

−1.

Thus

for all z ∈ C
∣∣ 1
f(z)

∣∣ ≤ 2R−n + ε−1,

that is, 1
f is bounded.

Thus Liouville’s theorem implies that 1
f (and hence f) is constant, which is a

contradiction.
We conclude that

there exists w1 ∈ C such that f(w1) = 0.

We now write z = (z − w1) + w1 and use the binomial formula to write

f(z) = (z − w1)n + bn−1(z − w1)n−1 + · · ·+ b1(z − w1) + b0

for some bk ∈ C.
Noting that b0 = f(w1) = 0, we find

f(z) = (z − w1)[(z − w1)n−1 + · · ·+ b2(z − w1) + b1] =: (z − w1)g(z).

We now apply the arguments above to the degree n− 1 polynomial g(z) to find
w2 ∈ C such that g(w2) = 0.

Proceeding inductively we find that P (z) has n roots {wj}nj=1 and factors as

f(z) = (z − w1)(z − w2) · · · (z − wn),

as was needed to show. �

We next have a converse of Goursat’s theorem.

Corollary 3.39 (Morera’s theorem). Let Ω ⊂ C be open and f : Ω → C be
continuous. If ∫

∂T

f(z) dz = 0

for all closed triangles T ⊂ Ω, then f is holomorphic in Ω.

Proof. Recall that to prove Theorem 3.30 (the existence of primitives for holomor-
phic functions in a disk) we needed (i) continuity and (ii) the conclusion of Goursat’s
theorem.

For this theorem we are given both (i) and (ii) and hence we may conclude that
f has a primitive in any disk contained in Ω.

Thus for any w ∈ Ω there exists r > 0 and a holomorphic function F : Br(w)→ C
such that F ′(z) = f(z) for all z ∈ Br(w) ⊂ Ω.

Using Corollary 3.35 we conclude that F ′ = f is holomorphic at w, as needed. �

We also have the following useful corollary.
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Corollary 3.40. Let Ω ⊂ C be open. Let {fn}∞n=1 be a sequence of holomorphic
functions fn : Ω → C. Suppose fn converges to f : Ω → C “locally uniformly”,
that is, for any compact K ⊂ Ω we have fn → f uniformly on K. Then f is
holomorphic on Ω.

Proof. Let T ⊂ Ω be a closed triangle.
Note that as fn → f uniformly we have f is continuous on T .
By Goursat’s theorem we have∫

∂T

fn(z) dz = 0 for all n.

Thus since fn → f uniformly on T we have∫
∂T

f(z) dz = lim
n→∞

∫
∂T

fn(z) dz = 0.

As T was arbitrary, Morera’s theorem implies that f is holomorphic on Ω. �

Remark 3.41. Contrast this to the real-valued case: every continuous function on
[0, 1] can be uniformly approximated by polynomials (this is Weierstrass’s theorem),
but not every continuous function is differentiable.

Remark 3.42. Under the hypotheses of Corollary 3.40 we also get that f ′n converge
to f ′ locally uniformly. In fact, this is true for higher derivatives as well. (See
Exercise 3.20.)

Remark 3.43. In practice one uses Corollary 3.40 to construct holomorphic func-
tions (perhaps with a prescribed property) as a series of the form

F (z) =

∞∑
n=1

fn(z).

A related idea is to construct holomorphic functions of the form

f(z) =

∫ b

a

F (s, z) ds.

See Exercise 3.21.

We next turn to a remarkable “uniqueness theorem” for holomorphic functions.

Theorem 3.44 (Uniqueness theorem). Let Ω ⊂ C be open and connected and let
z0 ∈ Ω. Suppose {zk}∞k=1 ⊂ Ω\{z0} satisfies limk→∞ zk = z0.

Suppose f, g : Ω→ C are holomorphic and f(zk) = g(zk) for each k. Then f ≡ g
in Ω.

Proof. First we note that it suffices to consider the case g = 0. (Check! )
As f is holomorphic at z0, we may find r > 0 such that

f(z) =

∞∑
n=0

an(z − z0)n for z ∈ Br(z0).

Step 1. We show f(z) = 0 for z ∈ Br(z0).
By continuity we have f(z0) = 0.
Let z ∈ Br(z0)\{z0}. If f(z) 6= 0, then we choose m to be the smallest integer

such that am 6= 0.
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We can then write
f(z) = am(z − z0)m(1 + g(z))

where

g(z) :=

∞∑
n=m+1

an
am

(z − z0)n−m → 0 as z → z0.

Thus there exists δ > 0 such that

|z − z0| < δ =⇒ |g(z)| < 1
2 =⇒ 1 + g(z) 6= 0.

Choosing k large enough that |zk − z0| < δ and recalling zk 6= z0 we find

0 = f(zk) = am(zk − z0)m(1 + g(zk)) 6= 0,

a contradiction.
Step 2. We use a “clopen” argument.
Define the set

S = interior({z ∈ Ω : f(z) = 0}).
This set is open by definition. Moreover by Step 1, z0 ∈ S. Thus S 6= ∅.
Finally we claim that S is closed in Ω.
To see this we suppose {wn}∞n=1 ⊂ S converges to some w0 ∈ Ω. We need to

show w0 ∈ S.
To see this we first note that by continuity f(w0) = 0.
Next, arguing as in Step 1, we find δ > 0 such that f(z) = 0 for all z ∈ Bδ(w0).

This shows w0 ∈ S.
As Ω is connected and S is nonempty, open in Ω, and closed in Ω, we conclude

that S = Ω, as was needed to show. �

Definition 3.45. Suppose Ω and Ω′ are open connected subsets of C with Ω ( Ω′.
If f : Ω → C and F : Ω′ → C are holomorphic and f(z) = F (z) for z ∈ Ω, we call
F the analytic continuation of f into Ω′.

Remark 3.46. By the uniqueness theorem, a holomorphic function can have at
most one analytic continuation.

3.8. Exercises.

Exercise 3.1. Define f : C→ C by f(z) = z̄. Use the definition of the deriva-
tive to show that f is not holomorphic at any point.

Exercise 3.2. Fix w ∈ D and define the Blaschke factor

F (z) =
w − z
1− w̄z

for z ∈ D.

Show the following:

• F : D→ D, and F : ∂D→ ∂D,
• F is a bijection on D,
• F is holomorphic on D.

Exercise 3.3. Let f : C→ C and define u, v : R2 → R by

u(x, y) = Re [f(x+ iy)], v(x, y) = Im [f(x+ iy)].

Suppose f is holomorphic at some z0 = x0 + iy0 ∈ C.

• Use the definition of the derivative to show that

f ′(z0) = ∂u
∂x (x0, y0) + i ∂v∂x (x0, y0) and f ′(z0) = −i∂u∂y (x0, y0) + ∂v

∂y (x0, y0). (∗)
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• Use (∗) to derive the Cauchy–Riemann equations.

Exercise 3.4. Suppose f : C→ C is holomorphic. Show the following:

• if Re (f) is constant, then f is constant,
• if Im (f) is constant, then f is constant,
• if |f | is constant, then f is constant.

Exercise 3.5. Prove Lemma 3.4.

Exercise 3.6. Prove Corollary 3.5.

Exercise 3.7. Let {an}Nn=1 and {bn}Nn=1 be finite sequences in C, and define Bk =∑k
n=1 bn, with the convention B0 = 0. Prove the summation by parts formula:

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

Exercise 3.8. Show the following:

• the power series
∑
n nz

n does not converge for any z ∈ ∂D,
• the power series

∑
n

1
n2 z

n converges for all z ∈ ∂D,

• the power series
∑
n

1
nz

n converges for all z ∈ ∂D except for z = 1.

Exercise 3.9. Show that if f is holomorphic at z ∈ C then f is continuous at z.

Exercise 3.10. Let Ω ⊂ C be open. Show that Ω is connected if and only if it is
path connected.

Exercise 3.11. Let Ω ⊂ C be open and connected and f : Ω→ C be holomorphic.
Show that if f ′(z) = 0 for all z ∈ Ω then f is constant.

Exercise 3.12. Suppose Ω ⊂ C is open and connected and f : Ω→ C is continuous.
Show that if F and F̃ are both primitives for f in Ω then the function F − F̃ is
constant.

Exercise 3.13.

• Show that D = {z ∈ C : |z| < 1} is simply connected.
• Find an open connected subset of C that is not simply connected. (Explain

why your example meets all of the stated requirements.)

Exercise 3.14. Let γ be a circle with positive orientation.

• Suppose γ is centered at the origin. Evaluate the integrals∫
γ

zn dz for n ∈ Z. (∗)

• Suppose γ does not contain the origin. Evaluate the integrals (∗).

Exercise 3.15. Let Ω ⊂ C be open and f : Ω → C be holomorphic. Further
assume that f ′ is continuous. Use Green’s theorem to show that∫

∂T

f(z) dz = 0

for any triangle T ⊂ Ω.
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Exercise 3.16. Show that the relation “is homotopic to” is an equivalence relation.
That is,

(i) any curve is homotopic to itself,
(ii) if γ0 is homotopic to γ1, then γ1 is homotopic to γ0,
(ii) if γ0 is homotopic to γ1 and γ1 is homotopic to γ2, then γ0 is homotopic to

γ2.

Exercise 3.17. Let r,R > 0 and z0, z1 ∈ C. Construct a continuous F : [0, 1]×
[0, 1]→ C such that

• the function t 7→ F (0, t) is a parametrization of ∂Br(z0),
• the function t 7→ F (1, t) is a parametrization of ∂BR(z1),
• for each s ∈ (0, 1) the function t 7→ F (s, t) parametrizes a closed curve in
C.

Exercise 3.18. Prove this stronger version of the Cauchy integral formula: let
Ω ⊂ C be open and f : Ω → C be holomorphic. If z0 ∈ Ω and B is any ball
containing z0 such that B ⊂ Ω, then

f(z0) =
1

2πi

∫
∂B

f(z)

z − z0
dz.

Hint. Use the version of the Cauchy integral formula we proved in class, and argue
as in the proof of “Lemma 4.33” from class.

Exercise 3.19. Let K ⊂ C be compact and f : K → C be continuous. Suppose
that f(z) 6= 0 for all z ∈ K. Show that

there exists δ > 0 such that for all z ∈ K |f(z)| ≥ δ.

Exercise 3.20. Let Ω ⊂ C be open and suppose {fn}∞n=1 is a sequence of holo-
morphic functions on Ω that converge uniformly to f : Ω→ C. Show that for δ > 0
we have that f ′n → f ′ uniformly on the set

Kδ := {z ∈ Ω : Bδ(z) ⊂ Ω}.
Hint. Use the Cauchy inequalities. You may take for granted that f is holomorphic
(since we proved this in class).

Exercise 3.21. Let Ω ⊂ C be open. Suppose F : [0, 1]×Ω→ C is continuous and
satisfies

for all s ∈ [0, 1] the function z 7→ F (s, z) is holomorphic on Ω.

Show that the function f : Ω → C defined by f(z) =
∫ 1

0
F (s, z) ds is holomorphic

on Ω. Hint. Use the definition of the Riemann integral to show that f is the (locally
uniform) limit of holomorphic functions.

Exercise 3.22. Can every continuous function on the set {z ∈ C : |z| ≤ 1} be
approximated uniformly by polynomials? If so, prove it. If not, give a counterex-
ample.

Exercise 3.23. Suppose f : C→ C is entire and satisfies |f(z)| ≤ C(1 + |z|)n for
some C > 0 and some integer n (for all z ∈ C). Show that f is a polynomial of
degree at most n.
Hint. We proved the case n = 0 in class (Liouville’s theorem). For the general case
use the Cauchy inequalities to show that f (n+k)(0) = 0 for all integers k > 0. Why
does this solve the problem?
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Exercise 3.24. Suppose f : C→ C is entire.
(i) Show that if f(z) = 0 for uncountably many z ∈ C then f ≡ 0.
(ii) Suppose that for each z0 ∈ C at least one coefficient in the power series

expansion at z0 is zero. Prove that f is a polynomial.
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4. Meromorphic Functions

4.1. Isolated Singularities.

Definition 4.1 (Isolated singularity). If z0 ∈ C and f : Ω\{z0} → C for some open
set Ω, we call z0 an isolated singularity (or point singularity) of f .

Example 4.1. The following functions have isolated singularities at z = 0.

(i) f : C\{0} → C defined by f(z) = z
(ii) g : C\{0} → C defined by g(z) = 1

z

(iii) h : C\{0} → C defined by h(z) = e
1
z .

Theorem 4.2 (Riemann’s removable singularity theorem). Let Ω ⊂ C be open,
and let z0 ∈ Ω. Suppose f : Ω\{z0} → C satisfies

(i) f is holomorphic on Ω\{z0}
(ii) f is bounded on Ω\{z0}.

Then f may be extended uniquely to a holomorphic function F : Ω→ C.

Remark 4.3. We call the point z0 in Theorem 4.2 a removable singularity of
f .

Proof of Theorem 4.2. As Ω is open we may find r > 0 such that Br(z0) ⊂ Ω.
For z ∈ Br(z0) let us define

F (z) =
1

2πi

∫
∂Br(z0)

f(w)

w − z
dw.

We first note that F : Br(z0)→ C is holomorphic (cf. the exercises).
We will show that

f(z) = F (z) for z ∈ Br(z0)\{z0},

which implies (by the “uniqueness theorem”) that F extends to a holomorphic
function on the connected component A of Ω containing z0, and f(z) = F (z) for
z ∈ A\{z0}.

Let z ∈ Br(z0)\{z0} and let ε > 0 be small enough that

Bε(z0) ∪Bε(z) ⊂ Br(z0).

(Without loss of generality assume Re (z) > Re (z0). This only helps the picture.)
Let δ > 0 be a small parameter. Join ∂Bε(z) and ∂Bε(z0) up to ∂Br(z0) with

two pairs of lines, each a distance δ apart. We define the curves γ1, . . . , γ12 as in
the following figure:
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Let us define

Aj =
1

2πi

∫
γj

f(w)

w − z
dw for j = 1, . . . , 12.

Using Cauchy’s theorem we deduce

• A1 +A2 +A3 +A4 +A7 +A8 +A9 +A10 = 0,
• A11 +A8 +A12 +A10 = 0,
• A5 +A2 +A6 +A4 = 0.

Combining these equalities yields

A1 −A5 +A7 −A11 = A6 −A3 +A12 −A9,

or:

1

2πi

∫
∂Br(z0)

f(w)

w − z
dw︸ ︷︷ ︸

F (z)

=
1

2πi

∫
∂Bε(z)

f(w)

w − z
dw︸ ︷︷ ︸

I

+
1

2πi

∫
∂Bε(z0)

f(w)

w − z
dw︸ ︷︷ ︸

II

. (∗)

Note that I = f(z) for all small ε > 0 by the Cauchy integral formula.
For II we note that for any 0 < ε < 1

2 |z − z0|,

|II| =
∣∣∣∣ 1

2πi

∫
∂Bε(z0)

f(w)

w − z
dw

∣∣∣∣
≤

2πε supw∈Ω\{z0} |f(w)|
2π infw∈∂Bε(z0) |w − z|

≤ ε
supw∈Ω\{z0} |f(w)|

1
2 |z − z0|

.

Since f is bounded on Ω\{z0}, we find

lim
ε→0
|II| = 0.

Thus sending ε→ 0 in (∗) implies F (z) = f(z), as was needed to show. �
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Example 4.2. The function f(z) = z on C\{0} has a removable singularity at
z = 0.

Definition 4.4 (Pole). Let Ω ⊂ C be an open set, z0 ∈ Ω, and f : Ω\{z0} → C.
If there exists r > 0 such that the function g : Br(z0)→ C defined by

g(z) :=

{ 1
f(z) z ∈ Br(z0)\{z0}
0 z = z0

is holomorphic on Br(z0), we say f has a pole at z0.

Example 4.3. The function f(z) = 1
z defined on C\{0} has a pole at z = 0.

Proposition 4.5. Suppose f : Ω\{z0} → C is holomorphic with an isolated singu-
larity at z0. Then z0 is a pole of f if and only if |f(z)| → ∞ as z → z0.

Proof. If z0 is a pole then by definition 1
f(z) → 0 as z → z0. In particular |f(z)| → ∞

as z → z0.
On the other hand, suppose |f(z)| → ∞ as z → z0. Then 1

f(z) → 0 as z → z0.

In particular 1
f is bounded as z → z0.

Thus 1
f has a holomorphic extension in some ball around z0, which (by conti-

nuity) must be given by the function “g” defined in Definition 4.4. In particular f
has a pole at z0. �

Definition 4.6 (Essential singularity). Let Ω ⊂ C be an open set, z0 ∈ Ω, and
f : Ω\{z0} → C be holomorphic. If z0 is neither a removable singularity nor a pole,
we call z0 an essential singularity.

Example 4.4. The function f(z) = e
1
z defined on C\{0} has an essential singu-

larity at z = 0.

The behavior of a function near an essential singularity is wild:

Theorem 4.7 (Casorati–Weierstrass theorem). Let z0 ∈ C and r > 0. Suppose
f : Br(z0)\{z0} is holomorphic with an essential singularity at z0. Then the image
of Br(z0)\{z0} under f is dense in C, that is,

for all w ∈ C for all ε > 0

there exists z ∈ Br(z0)\{z0} such that |f(z)− w| < ε.

Proof. Suppose not. Then there exists w ∈ C and ε > 0 such that

|f(z)− w| ≥ ε for all z ∈ Br(z0)\{z0}.
We define

g : Br(z0)\{z0} by g(z) =
1

f(z)− w
.

Note that g is holomorphic on Br(z0)\{z0} and bounded by 1
ε .

Thus g has a removable singularity at z0 and hence may be extended to be
holomorphic on Br(z0).

If g(z0) 6= 0 then the function

z 7→ f(z)− w
is holomorphic on Br(z0). Thus f is holomorphic at z0, a contradiction.

If g(z0) = 0 then the function

z 7→ f(z)− w
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has a pole at z0. Thus f has a pole at z0, a contradiction. �

Definition 4.8 (Meromorphic). Let Ω ⊂ C be open and {zn} be a (finite or infinite)
sequence of points in Ω with no limit points in Ω. A function f : Ω\{z1, z2, . . . } is
called meromorphic on Ω if

(i) f is holomorphic on Ω\{z1, z2, . . . }
(ii) f has a pole at each zn.

Definition 4.9 (Singularities at infinity). Suppose that f : C\BR(0) → C is
holomorphic for some R > 0. Define F : B1/R(0)\{0} → C by F (z) = f(1/z).

We say f has a pole at infinity if F has a pole at z = 0. Similarly, f can have
a removable singularity at infinity, an essential singularity at infinity.

If f is meromorphic on C and either has a pole or removable singularity at
infinity, we say f is meromorphic on the extended plane.

Our next task is to understand the behavior of meromorphic functions near poles.

Theorem 4.10. Let Ω ⊂ C be open and z0 ∈ Ω. Suppose f has a pole at z0. Then
there exists a unique integer m > 0 and an open set U 3 z0 such that

f(z) =

∞∑
n=−m

an(z − z0)n for z ∈ U.

Remark 4.11. We call m the multiplicity (or order) of the pole at z0. If m = 1
we call the pole simple.

We call the function

g(z) =

−1∑
n=−m

an(z − z0)n

the principal part of f at z0.
The coefficient a−1 is called the residue of f at z0, denoted resz0f, for which

we can deduce the following formula:

resz0f = lim
z→z0

1
(m−1)! (

d
dz )m−1[(z − z0)mf(z)].

We also introduce the following convention: if f is holomorphic at z0, we define
resz0f = 0.

Lemma 4.12. Suppose Ω ⊂ C is open and connected and z0 ∈ Ω. Let f : Ω → C
be holomorphic and not identically zero.

If f(z0) = 0 then there exists an open set U 3 z0, a unique integer m > 0, and
a holomorphic function g : U → C such that

• f(z) = (z − z0)mg(z) for z ∈ U ,
• g(z) 6= 0 for z ∈ U .

Remark 4.13. We call m the multiplicity (or order) of the zero at z0.

Proof. We can write f in a power series in some ball around z0:

f(z) =

∞∑
n=0

an(z − z0)n.

As f is not identically zero, there is some smallest integer m > 0 such that
am 6= 0.
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Thus

f(z) = (z − z0)m[am + am+1(z − z0) + · · · ] =: (z − z0)mg(z).

Note that g is analytic, and hence holomorphic. Moreover g(z0) = am 6= 0, so
that g is non-zero in some open set around z0.

For the uniqueness of m, suppose we may write

f(z) = (z − z0)mg(z) = (z − z0)nh(z)

with h(z0) 6= 0 and n 6= m. Without loss of generality, suppose n > m. Then we
find

g(z) = (z − z0)n−mh(z)→ 0 as z → z0,

a contradiction. �

Lemma 4.14. Suppose f has a pole at z0 ∈ C. Then there exists an open set
U 3 z0, a unique integer m > 0, and a holomorphic function h : U → C such that

• f(z) = (z − z0)−mh(z) for z ∈ U ,
• h(z) 6= 0 for z ∈ U .

Proof. We apply the lemma above to the function 1
f . �

Proof of Theorem 4.10. We apply Lemma 4.14 and write

f(z) = (z − z0)−mh(z)

for z in an open set U 3 z0. The series expansion for f now follows from the power
series expansion for the holomorphic function h. �

We can now classify the possible meromorphic functions on the extended complex
plane.

Theorem 4.15. If f is meromorphic on the extended complex plane, then f is a
rational function. (That is, f is the quotient of polynomials.)

Proof. We define F : C\{0} → C by F (z) = f(1/z).
By assumption, F has a pole or removable singularity at 0; thus it is holomorphic

in Br(0)\{0} for some r > 0.

This implies that f has at most one pole in C\B1/r(0) (namely, the possible pole
at infinity).

We next note f can have at most finitely many poles in B1/r(0), say {zk}nk=1.
For each k ∈ {1, . . . , n} we may write

f(z) = gk(z) + hk(z),

where gk is the principal part of f at zk and hk is holomorphic in an open set
Uk 3 zk. Note that gk is a polynomial in 1/(z − zk).

Furthermore (if there is a pole at infinity) we can write

F (z) = g̃∞(z) + h̃∞(z)

where g̃∞ is the principal part of F at 0 and h̃∞ is holomorphic in an open set
containing 0. Note that g̃∞ is a polynomial in 1/z.

We define g∞(z) = g̃∞(1/z) and h∞(z) = h̃∞(1/z).
Now consider the function

H(z) = f(z)− g∞(z)−
n∑
k=1

gk(z).
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Notice that H has removable singularities at each zk, so that we may extend H
to be holomorphic on all of C.

Moreover, z 7→ H(1/z) is bounded near z = 0, which implies H is bounded near
infinity.

In particular, we have H is bounded on C so that (by Liouville’s theorem) H
must be constant, say H(z) ≡ C.

Rearranging we have

f(z) = C + g∞(z) +

n∑
k=1

gk(z),

which implies that f is a rational function, as needed. �

4.2. The Residue Theorem and Evaluation of Some Integrals.

Theorem 4.16 (Residue theorem). Let Ω ⊂ C be an open set and f : Ω → C be
meromorphic on Ω. Let γ ⊂ Ω be a simple closed curve such that f has no poles
on γ. Then

1

2πi

∫
γ

f(z) dz =
∑

w∈interior γ
reswf.

Remark 4.17. Note that if f is holomorphic on Ω, this formula reproduces Cauchy’s
theorem.

Proof. We define S = interior(γ).
To begin, we notice that there can only be finitely many poles in S, say {zj}nj=0.

(Why? )
We treat the case of one pole z0; it should be clear how to generalize the proof

to more poles.
As f is holomorphic in S\{z0}, a familiar argument using Cauchy’s theorem

shows ∫
γ

f(z) dz =

∫
∂Bε(z0)

f(z) dz for all small ε > 0.

(cf. the proof of Lemma 3.33).
From Theorem 4.10 we can write

f(z) =

−1∑
n=−m

an(z − z0)n︸ ︷︷ ︸
:=g(z)

+h(z),

where h is holomorphic.
As the Cauchy integral formulas imply

(k − 1)!

2πi

∫
∂Bε(z0)

dz

(z − z0)k
= (k − 1)st derivative of 1 at z0 =

{
1 k = 1
0 k > 1,

we deduce
1

2πi

∫
∂Bε(z0)

g(z) dz = a−1 = resz0f.

On the other hand, Cauchy’s theorem says∫
∂Bε(z0)

h(z) dz = 0.



INTRODUCTION TO COMPLEX ANALYSIS 41

We conclude
1

2πi

∫
γ

f(z) dz = resz0f,

as was needed to show. �

The main use of the residue theorem is the computation of integrals.

Example 4.5 (Shifting the contour). Consider the integral

F (ξ) =

∫ ∞
−∞

e−2πixξe−πx
2

dx for ξ ≥ 0.

(This integral evaluates the Fourier transform of the function x 7→ e−πx
2

at the
point ξ.)

We first note that F (0) = 1. (Check! )
For ξ > 0 we complete the square in the integrand to write

F (ξ) = e−πξ
2

∫ ∞
−∞

e−π(x+iξ)2

dx.

“Formally” we would like to make a substitution y = x+ iξ, dy = dx, to see that

F (ξ) = e−πξ
2

∫ ∞
−∞

e−πy
2

dy = e−πξ
2

F (0) = e−πξ
2

.

To make this argument precise we introduce the function f(z) = e−πz
2

, which
we note is entire.

For R > 0 we let γR be the boundary of the rectangle with vertices ±R,±R+ iξ,
oriented counter clockwise.

By the residue theorem (in this case Cauchy’s theorem) we have∫
γR

f(z) dz = 0 for all R > 0.

We write γR as the union of four curves γ1, . . . , γ4, which we parametrize as
follows

• z1(x) = x, x ∈ [−R,R]
• z2(x) = R+ ix, x ∈ [0, ξ]
• z3(x) = iξ − x, x ∈ [−R,R]
• z4(x) = −R+ iξ − ix, x ∈ [0, ξ].

Thus

−
∫
γ3

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz +

∫
γ4

f(z) dz. (∗)

Now,

−
∫
γ3

f(z) dz =

∫ R

−R
e−π(iξ−x)2

dx = eπξ
2

∫ R

−R
e−πx

2

e2πixξ dx

= eπξ
2

∫ R

−R
e−πx

2

e−2πixξ dx (“u sub”)

→ eπξ
2

F (ξ) as R→∞.
Similarly ∫

γ1

f(z) dz =

∫ R

−R
e−πx

2

dx→ 1 as R→∞.
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We now claim that

lim
R→∞

(∫
γ2

f(z) dz +

∫
γ4

f(z) dz

)
= 0,

so that sending R→∞ in (∗) gives

eπξ
2

F (ξ) = 1, i.e. F (ξ) = e−πξ
2

,

as we hoped to show.
We deal with γ2 and leave γ4 (which is similar) as an exercise. We compute∫

γ2

f(z) dz = i

∫ ξ

0

e−π(R+ix)2

dx = ie−πR
2

∫ ξ

0

eπx
2

e−2πiRx dx,

so that ∣∣∣∣ ∫
γ2

f(z) dz

∣∣∣∣ ≤ ξeπξ2

e−πR
2

→ 0 as R→∞.

Example 4.6 (Calculus of residues). We can use the residue theorem to evaluate
the integral

I =

∫ ∞
0

dx

1 + x4
.

We define the function

f(z) =
1

1 + z4
.

We note that f is meromorphic on C, with poles at the points z such that
z4 = −1.

Question. For which z ∈ C do we have z4 = −1?
As z4 + 1 is a polynomial of degree four, the fundamental theorem of algebra

tells us we must have four roots (counting multiplicity).
For any such root we must have |z|4 = 1, so that |z| = 1 and we may write

z = eiθ.
Writing 1 = eiπ, we have reduced the question to finding θ ∈ [0, 2π) such that

e4iθ = eiπ. That is,

ei(4θ−π) = 1, i.e. 4θ − π = 2kπ for some integer k.

We find

θ =
π

4
,

3π

4
,

5π

4
,

7π

4
.

Thus f has simple poles at

z1 = eiπ/4, . . . , z4 = e7iπ/4

and we can write

f(z) =

4∏
j=1

1

z − zj
.

Now consider the curve γR that consists of the three following pieces:

• hR = {x : x ∈ [0, R]}, oriented ‘to the right’
• cR = {Reiθ : 0 ≤ θ ≤ π/2}, oriented counter-clockwise,
• vR = {ix : x ∈ [0, R]}, oriented ‘downward’.
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By the residue theorem we have that

lim
R→∞

∫
γR

f(z) dz = lim
R→∞

2πi
∑

w∈interior(γR)

reswf = 2πi resz1f. (∗)

Now, we notice that for large R we have∣∣∣∣ ∫
cR

f(z) dz

∣∣∣∣ ≤ 2 · 1
2πR

R4
→ 0 as R→∞.

On the other hand, we note

lim
R→∞

∫
hR

f(z) dz =

∫ ∞
0

dx

1 + x4
= I.

We can also compute∫
vR

f(z) dz = −
∫ R

0

i dx

1 + (ix)4
= −i

∫ R

0

dx

1 + x4
→ −i I as R→∞.

Thus sending R→∞, (∗) becomes

(1− i)I = 2πi resz1f, i.e. I =
2πi

1− i
resz1f.

It remains to compute the residue:

resz1f = lim
z→z1

[(z − z1)f(z)] =

4∏
j=2

1

z1 − zj
=

1

z3
1

4∏
j=2

1

1− zj
z1

=
1

ei
3π
4 (1− eiπ2 )(1− eiπ)(1− ei 3π

2 )

=
1

√
2

2 (−1 + i)(1− i)(2)(1 + i)

=
1

2
√

2(−1 + i)
.

Thus

I =
2πi

1− i
· 1

2
√

2(−1 + i)
=

2πi

2
√

2(2i)
=

π

2
√

2
.
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In the exercises you will compute∫ ∞
0

dx

1 + xn

for all integers n ≥ 2.

4.3. The Argument Principle and Applications.

Theorem 4.18 (Argument principle for holomorphic functions). Let Ω ⊂ C be
open and f : Ω → C be holomorphic, with f 6≡ 0. Let γ ⊂ Ω be a simple closed
curve such that f has no zeros on γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = #{zeros of f in interior(γ), counting multiplicity}.

Proof. Let S = interior(γ).
Let {zk}nk=1 denote the (finitely many) zeros of f in S.

As the function z 7→ f ′(z)
f(z) is holomorphic on S\{zk}nk=1, a familiar argument

using Cauchy’s theorem shows that

1

2πi

∫
γ

f ′(z)

f(z)
dz =

n∑
k=1

1

2πi

∫
∂Bk

f ′(z)

f(z)
dz,

where Bk ⊂ S is any sufficiently small ball containing zk.
Thus it suffices to show that if zk is a zero of order mk we have

1

2πi

∫
∂Bk

f ′(z)

f(z)
dz = mk.

To this end we use Lemma 4.12 to write

f(z) = (z − zk)mkgk(z) for z ∈ Bk,
where gk is holomorphic and gk(z) 6= 0 for z ∈ Bk.

Thus

f ′(z) = mk(z − zk)mk−1gk(z) + (z − zk)mg′k(z) (z ∈ Bk)

so that

f ′(z)

f(z)
=

mk

z − zk
+

g′k(z)

gk(z)︸ ︷︷ ︸
holomorphic

(z ∈ Bk).

Thus by Cauchy’s theorem:

1

2πi

∫
∂Bk

f ′(z)

f(z)
dz =

mk

2πi

∫
∂Bk

dz

z − zk
+ 0 = mkW∂Bk(zk) = mk,

as was needed to show. �

Remark 4.19. Let Ω, f , and γ be as above. Let γ be parametrized by z(t) for
t ∈ [a, b]. Consider the curve f ◦ γ, parametrized by f(z(t)) for t ∈ [a, b]. Then

Wf◦γ(0) =
1

2πi

∫
f◦γ

dz

z
=

1

2πi

∫ b

a

[f ◦ z]′(t)
f(z(t))

dt =
1

2πi

∫ b

a

f ′(z(t))z′(t)

f(z(t))
dt

=
1

2πi

∫
γ

f ′(z)

f(z)
dz.
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Thus

Wf◦γ(0) = #{zeros of f in interior(γ)}.
In particular if f has n zeros inside γ then the argument of f(z) increases by

2πn as z travels around γ.
(This explains the terminology “argument principle”.)

There is also an argument principle for meromorphic functions. It works simi-
larly, but poles count as zeros of negative order.

Theorem 4.20 (Argument principle for meromorphic functions). Let Ω ⊂ C be
open and f : Ω→ C be meromorphic. Let γ ⊂ Ω be a simple closed curve such that
f has no zeros or poles on γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz = #{zeros of f in interior(γ), counting multiplicity}

−#{poles of f in interior(γ), counting multiplicity}

Proof. Arguing as in the proof of Theorem 4.18, we find that it suffices to show the
following:

If z0 is a pole of f of order m, then

1

2πi

∫
∂B

f ′(z)

f(z)
dz = −m

where B is any sufficiently small ball containing z0.
To this end we use Lemma 4.14 to write

f(z) = (z − z0)−mh(z) (z ∈ B),

where h is holomorphic and h(z) 6= 0 for z ∈ B.
Thus

f ′(z) = −m(z − z0)−m−1h(z) + (z − z0)−mh′(z)

so that
f ′(z)

f(z)
=
−m
z − z0

+
h′(z)

h(z)︸ ︷︷ ︸
holomorphic

(z ∈ B).

Thus by Cauchy’s theorem:

1

2πi

∫
∂B

f ′(z)

f(z)
dz = −m 1

2πi

∫
∂B

dz

z − z0
+ 0 = −mW∂B(z0) = −m,

as needed. �

Corollary 4.21 (Rouché’s theorem). Let Ω ⊂ C be open and γ ⊂ Ω be a simple
closed curve. Let f, g : Ω→ C be holomorphic. If

|f(z)| > |g(z)| for all z ∈ γ,

then f and f + g have the same number of zeros in the interior of γ.

Remark 4.22. One can interpret Rouché’s theorem as follows (we learned this
interpretation from R. Killip): if you walk your dog around a flagpole such that the
leash length is always less than your distance to the flagpole, then your dog circles
the flagpole as many times as you do. (f  you, g  leash, f + g  dog, 0  
flagpole.)
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This theorem remains true if we replace (∗) with the weaker hypothesis

|g(z)| < |f(z)|+ |f(z) + g(z)| for all z ∈ γ, (∗)
which means that the flagpole never obscures your view of the dog (see Exercise 4.3).

Proof of Rouché’s theorem. For t ∈ [0, 1] consider the holomorphic function z 7→
f(z) + tg(z).

We first note that

|f(z)| > |g(z)| =⇒ |f(t) + tg(z)| > 0 for z ∈ γ, t ∈ [0, 1].

It follows that the function

n(t) :=
1

2πi

∫
γ

f ′(z) + tg′(z)

f(z) + tg(z)
dz

is continuous for t ∈ [0, 1].
We now notice that by the argument principle,

n(t) = #{zeros of f + tg inside γ}.
In particular, n is integer-valued. As continuous integer-valued functions are con-
stant, we conclude n(0) = n(1), which gives the result. �

Remark 4.23. Rouché’s theorem allows for a very simple proof of the fundamental
theorem of algebra. See Exercise 4.4.

With Rouché’s theorem in place, we can prove an important topological property
of holomorphic functions.

Theorem 4.24 (Open mapping theorem). Let Ω ⊂ C be open and connected, and
let f : Ω→ C be holomorphic and non-constant. Then

f(Ω) := {f(z) : z ∈ Ω} = {w ∈ C | ∃ z ∈ Ω : f(z) = w}
is open.

Proof. Let w0 ∈ f(Ω). We need to show that

there exists ε > 0 such that Bε(w0) ⊂ f(Ω). (∗)
To this end, we first choose z0 ∈ Ω such that f(z0) = w0.
As Ω is open and f is non-constant, we may find δ > 0 such that

• Bδ(z0) ⊂ Ω,
• f(z) 6= w0 for z ∈ ∂Bδ(z0).

In particular, as ∂Bδ(z0) is compact and f is continuous, we find

there exists ε > 0 such that |f(z)− w0| > ε for z ∈ ∂Bδ(z0).

We will now show that Bε(w0) ⊂ f(Ω), so that (∗) holds.
Fix w ∈ Bε(w0) and write

f(z)− w = f(z)− w0︸ ︷︷ ︸
:=F (z)

+w0 − w︸ ︷︷ ︸
:=G(z)

.

Note that for z ∈ ∂Bδ(z0) we have

|F (z)| > ε = |G(z)|,
so that Rouché’s theorem implies that F and F +G have the same number of zeros
in Bδ(z0).
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As F (z0) = 0, we conclude that F +G has at least one zero in Bδ(z0). That is,

there exists z ∈ Bδ(z0) such that f(z) = w.

That is, w ∈ f(Ω). We conclude Bε(w0) ⊂ f(Ω), as was needed to show. �

We turn to one final property of holomorphic functions.

Theorem 4.25 (Maximum principle). Let Ω ⊂ C be open, bounded, and connected
and f : Ω→ C holomorphic. If there exists z0 ∈ Ω such that

|f(z0)| = max
z∈Ω
|f(z)|, (∗)

then f is constant.
In particular, if f is non-constant then |f | attains its maximum on ∂Ω.

Proof #1. Suppose (∗) holds for some z0 ∈ Ω.
Suppose toward a contradiction that f is not constant.
Then f(Ω) is open, and hence there exists ε > 0 such that Bε(f(z0)) ⊂ f(Ω).
However, this implies that

∃z ∈ Ω : |f(z)| > |f(z0)|,
contradicting (∗). �

Remark 4.26. The hypothesis that Ω is bounded is essential. Indeed, consider

f(z) = e−iz
2

on
Ω = {z : Re (z) > 0, Im (z) > 0}.

Then |f(z)| = 1 for z ∈ ∂Ω but f(z) is unbounded in Ω.

4.4. The Complex Logarithm. The function f(z) = 1
z is holomorphic in C\{0}.

By analogy to the real-valued case, we may expect that f has a primitive in
C\{0}, namely “log(z).”

However, f does not have a primitive in C\{0}, since∫
γ

dz

z
= 2πiWγ(0),

which is nonzero for any closed curve γ enclosing 0.
We next show that we can indeed define a primitive for f , but only in certain

subsets of C.

Theorem 4.27 (Existence of logarithm). Let Ω ⊂ C be simply connected with
1 ∈ Ω but 0 /∈ Ω. Then there exists F : Ω→ C such that

(i) F is holomorphic in Ω,
(ii) eF (z) = z for z ∈ Ω,
(iii) F (r) = log r when r ∈ R is sufficiently close to 1.

We write F (z) = logΩ z.

Remark 4.28. By (ii) and the chain rule, we can deduce F ′(z) = 1
z . This will also

be clear from the proof of Theorem 4.27.

Proof of Theorem 4.27. For z ∈ Ω we let γ be a curve in Ω joining 1 to z and define

F (z) =

∫
γ

dw

w
.

As 0 /∈ Ω, the function w 7→ 1
w is holomorphic on Ω.
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As Ω is simply connected, we note that F is independent of γ.
Arguing as we did long ago (to prove existence of primitives; see Theorems 3.30 and 3.32),

we find that F is holomorphic with F ′(z) = 1
z . This proves (i).

For (ii) we compute

d
dz (ze−F (z)) = e−F (z) − zF ′(z)e−F (z) = e−F (z) − z 1

z e
−F (z) = 0.

As Ω is connected we deduce that ze−F (z) is constant.
As e−F (1) = e0 = 1, we conclude ze−F (z) ≡ 1, which gives (ii).
Finally we note that if r ∈ R is sufficiently close to 1 then

F (r) =

∫ r

1

dx

x
= log r,

as needed. �

Definition 4.29. If Ω = C\(−∞, 0], we call logΩ the principal branch of the
logarithm and write logΩ z = log z.

Remark 4.30.
(i) If z = reiθ with r > 0 and |θ| < π, so that z ∈ C\(−∞, 0], then we have

log z = log r + iθ.

Indeed, we can let γ = γ1 ∪ γ2, where γ1 = [1, r] ⊂ R and γ2 = {reit : t ∈ [0, θ]},
and compute

log z =

∫ r

1

dx

x
+

∫ θ

0

ireit

reit
dt = log r + iθ.

(ii) Beware: in general, log z1z2 6= log z1 + log z2.

Indeed, if z1 = z2 = e
2πi
3 then log z1 = log z2 = 2πi

3 , while log z1z2 = − 2πi
3 .

(Check! )
(iii) One can compute the following series expansion:

log(1 + z) = −
∞∑
n=1

(−1)n

n
zn for |z| < 1. (Check!)

(iv) Let Ω ⊂ C be simply connected with 1 ∈ Ω but 0 /∈ Ω, and let α ∈ C. For
z ∈ Ω we can now define

zα := eα logΩ z.

One can check that 1α = 1, zn agrees with the “usual” definition, and (z
1
n )n = z.

We close this section with the following generalization of Theorem 4.27.

Theorem 4.31. Let Ω ⊂ C be simply connected. Let f : Ω → C be holomorphic
and satisfy f(z) 6= 0 for any z ∈ Ω. Then there exists a holomorphic g : Ω → C
such that

f(z) = eg(z).

We write g(z) = logΩ f(z).

Proof. Let z0 ∈ Ω and choose c0 ∈ C such that ec0 = f(z0).
For z ∈ Ω, we let γ be any curve in Ω joining z0 to z and define

g(z) = c0 +

∫
γ

f ′(w)

f(w)
dw.
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As f is holomorphic and non-zero, the function w 7→ f ′(w)
f(w) is holomorphic on Ω.

As Ω is simply connected, we note that g is independent of γ.

We also find that g is holomorphic on Ω, with g′(z) = f ′(z)
f(z) .

On the other hand, we can compute

d

dz

[
f(z)e−g(z)

]
= e−g(z)

[
f ′(z)− f(z)g′(z)

]
= e−g(z)

[
f ′(z)− f(z) f

′(z)
f(z)

]
= 0.

As Ω is connected we deduce f(z)e−g(z) is constant.
As eg(z0) = ec0 = f(z0), we conclude that f(z) ≡ eg(z), as was needed to show.

�

4.5. Exercises.

Exercise 4.1. Let z0 ∈ C and R > 0. Suppose that f : BR(z0)\{z0} is holomorphic
and that there exist C > 0 and 0 < ε < 1 such that

|f(z)| ≤ C|z − z0|−1+ε for all z ∈ BR(z0)\{z0}.
Show that the singularity of f at z0 is removable, that is, there exists a unique
holomorphic function F : BR(z0)→ C such that F (z) = f(z) for z ∈ BR(z0)\{z0}.

Hint. Follow the proof of Riemann’s removable singularity theorem.

Exercise 4.2. Suppose f : C→ C is entire, with f(z) =
∑∞
n=0 anz

n.
(i) Show that if an 6= 0 for infinitely many n then f has an essential singularity

at infinity.
(ii) Show that if f is injective then f(z) = a0 + a1z with a1 6= 0.
Hint. For part (ii): if f is a polynomial, you are done (why?). Otherwise by

part (i) f has an essential singularity at infinity. In this case, one can use Casorati–
Weierstrass and the open mapping theorem to contradict the injectivity of f .

Exercise 4.3. Prove the following stronger version of Rouché’s theorem.
Let Ω ⊂ C be open and γ ⊂ Ω be a simple closed curve. Let f, g : Ω → C be

holomorphic functions such that f has no zeros on γ and

|g(z)| < |f(z)|+ |f(z) + g(z)| for all z ∈ γ.
Then f and f+g have the same number of zeros in the interior of γ. Hint. As in the
proof of Rouchè’s theorem from class, the key step is to prove that |f(z)+tg(z)| > 0
for z ∈ γ and t ∈ [0, 1]. To do this, use the triangle inequality two deduce two lower
bounds for |f(z) + tg(z)| whose average is 1

2

(
|f(z)|+ |f(z) + g(z)| − |g(z)|

)
.

Exercise 4.4. Use Rouchè’s theorem to prove that any degree n polynomial has
n zeros.

Exercise 4.5. This exercise demonstrates how to use the Cauchy integral formula
and the ‘tensor power trick’ to prove the maximum principle. Suppose f,Ω are as
in Theorem 4.25 and that |f | ≤M on the boundary of Ω.

• Use the Cauchy integral formula to deduce that

|f(z)| ≤ 1
2π

|∂Ω|
dist(z,∂Ω)M

for any z ∈ Ω.
• Use the same argument applied to fn to deduce

|f(z)|n ≤ 1
2π

|∂Ω|
dist(z,∂Ω)M

n

for any z ∈ Ω.



50 JASON MURPHY

• Take nth roots and send n→∞ to deduce |f(z)| ≤M for z ∈ Ω.

Exercise 4.6. Compute
∫∞

0
sin(x2) dx and

∫∞
0

cos(x2) dx.

Exercise 4.7. Compute
∫∞

0
dx

1+xn for all integers n ≥ 2.

Exercise 4.8. Compute
∫ 2π

0
dθ

2+cos2 θ .

Exercise 4.9. Compute
∫∞
−∞

x2

(1+x2)(4+x2) dx.

Exercise 4.10. Compute
∫∞
−∞

cos x
x2+a2 dx for a > 0.

Exercise 4.11. Compute
∫∞
−∞

x3 sin x
x4+16 dx.

Exercise 4.12. Compute
∫∞
−∞

dx
(1+x2)n+1 for all integers n ≥ 0.

Exercise 4.13. Compute
∫∞

0
sin x
x dx.

Exercise 4.14. Compute
∫∞
−∞

dx
(x2+a2)(x2+b2) for a, b > 0.

Exercise 4.15. Compute
∫∞

0
1−cos x
x2 dx.

Exercise 4.16. Compute
∫∞
−∞

eax

1+ex dx for 0 < a < 1.

Exercise 4.17. Compute
∫∞
−∞

x sin x
x2+a2 dx for a > 0.

Exercise 4.18. Compute
∫∞
−∞ e−2πixξ 1

cosh(πξ) dx for ξ ∈ R.

Exercise 4.19. Compute
∫ 2π

0
dθ

a+b cos θ for a, b ∈ R with |b| < a.
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5. Entire Functions

We turn to the study of entire functions, in particular the following question:
given a sequence {ak}∞k=1 ⊂ C, is there an entire function whose zeros are precisely
ak?

By the uniqueness theorem, a necessary condition is that limk→∞ |ak| → ∞.
But is this condition also sufficient?

Convention. Throughout this section we always exclude the case f ≡ 0.

5.1. Infinite Products. We first turn to the question of infinite products of com-
plex numbers and functions.

Definition 5.1. Let {an}∞n=1 ⊂ C. We say the infinite product
∏∞
n=1(1 + an)

converges if the limit limN→∞
∏N
n=1(1 + an) exists.

The following result gives a useful criterion for convergence.

Theorem 5.2. Let {an}∞n=1 ⊂ C. If the series
∑
n an converges absolutely, then

the product
∏∞
n=1(1 + an) converges. Moreover the product converges to zero if and

only if one of its factors is zero.

Proof. Recall that

log(1 + z) = −
∞∑
n=1

(−1)n

n
zn for |z| < 1,

with 1 + z = elog(1+z). In particular | log(1 + z)| ≤ C|z| for |z| ≤ 1
2 .

Note that loss of generality, we may assume |an| < 1
2 for all n. (Why? )

Thus we can write
N∏
n=1

(1 + an) =

N∏
n=1

elog(1+an) = e
∑N
n=1 log(1+an).

We now estimate
N∑
n=1

| log(1 + an)| ≤ C
N∑
n=1

|an|

to see that the series
∑
n log(1 + an) converges absolutely.

In particular

there exists ` ∈ C such that lim
N→∞

N∑
n=1

log(1 + an) = `.

By continuity, we have that e
∑N
n=1 log(1+an) → e`, which shows that

∏
n(1 + an)

converges (to e`).
To conclude the proof we note that if 1 + an = 0 for some n then the product

is zero, while if 1 + an 6= 0 for any n then the product is non-zero since it is of the
form e`. �

For products of functions, we have the following.

Theorem 5.3. Let Ω ⊂ C be open and suppose Fn : Ω → C is a sequence of
holomorphic functions. If there exist cn > 0 such that

• |Fn(z)− 1| ≤ cn for all n and all z ∈ Ω,
•
∑
n cn <∞,
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then:

(i) the products
∏∞
n=1 Fn(z) converge uniformly on Ω to a holomorphic func-

tion F (z), and
(ii) if each Fn is nonzero on Ω, then so is F .

Proof. For z ∈ Ω we may write

Fn(z) = 1 + an(z), with |an(z)| ≤ cn,

and argue as in Theorem 5.2 to see that
∏
n Fn(z) converges. Moreover the con-

vergence is uniform in z, since the bounds on an(z) are.
Denoting the limit function by F (z), we note that since F is the uniform limit

of holomorphic functions, it is holomorphic.
Note that (ii) follows from the second statement in Theorem 5.2. �

5.2. Weierstrass Infinite Products. We return to our original question.

Theorem 5.4 (Weierstrass’s theorem). Suppose {an}∞n=1 ⊂ C satisfies limn→∞ |an| =
∞. Then there exists an entire function f : C→ C such that {an} are precisely the
zeros of f .

Furthermore any other entire function with precisely these zeros is of the form
feg for some entire function g.

As a first attempt, one could try

f(z) =

∞∏
n=1

(1− z
an

).

However, depending on the sequence {an} this product may not converge.
The solution to this problem (due to Weierstrass in 1894) is to insert factors that

guarantee convergence of the product without affecting the zeros.

Definition 5.5. For an integer k ≥ 0 we define the canonical factors Ek : C→ C
by

E0(z) = (1− z),

Ek(z) = (1− z)ez+z
2/2+···+zk/k (k ≥ 1).

We call k the degree of Ek.

Note that Ek(1) = 0 for all k ≥ 0. In fact we will prove a rate of convergence to
zero as z → 1.

Lemma 5.6 (Bounds for Ek). For all k we have:
(i) |z| ≤ 1

2 =⇒ |1− Ek(z)| ≤ 2e|z|k+1

Proof. For |z| ≤ 1
2 we can write log(1− z) in a power series

log(1− z) = −
∞∑
n=1

zn

n
,

with 1− z = elog(1−z). Thus

Ek(z) = elog(1−z)+z+z2/2+···+zk/k = e−
∑∞
j=k+1 z

j/j .
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We now notice that since |z| ≤ 1
2 , we have∣∣∣∣ ∞∑

j=k+1

zj

j

∣∣∣∣ ≤ |z|k+1
∞∑

j=k+1

|z|j−k−1 ≤ |z|k+1
∞∑
j=0

( 1
2 )j ≤ 2|z|k+1 ≤ 1.

Thus using the estimate

|1− ew| ≤ e|w| for |w| ≤ 1, (Check! )

we find

|1− Ek(z)| = |1− e−
∑∞
j=k+1 z

j/j | ≤ e
∣∣∣∣ ∞∑
j=k+1

zj

j

∣∣∣∣ ≤ 2e|z|k+1,

which gives (i).
�

Proof of Theorem 5.4. We first let

m = #{n : an = 0} <∞

and then redefine the sequence so that 0 /∈ {an}∞n=1.
We define the holomorphic functions fN : C→ C by

fN (z) = zm
N∏
n=1

En( z
an

).

We let R > 0. We will use Theorem 5.3 to show that fN converges (uniformly)
in BR(0).

We define the sets

S1 = {n : |an| ≤ 2R}, S2 = {n : |an| > 2R}.

As |an| → ∞, we have #S1 <∞. Thus we may write

fN (z) = zmgN (z)hN (z),

where gN , hN are the holomorphic functions given by

gN (z) =
∏

n∈S1, n≤N

En( z
an

) and hN (z) =
∏

n∈S2, n≤N

En( z
an

).

Note that #S1 <∞ implies that

for all N ≥ N0 := #S1, gN = gN0
.

Now for n ∈ S2 and z ∈ BR(0) we have

|an| > 2R > 2|z| =⇒ | zan | ≤
1
2 .

Thus by the lemma for n ∈ S2 we have

|En( z
an

)− 1| ≤ 2e| zan |
n+1 ≤ e

2n .

Applying Theorem 5.3 with Fn(z) = En( z
an

) and cn = e
2n , we conclude that hN

(and hence fN ) converges uniformly on BR(0).
Furthermore, for n ∈ S2, we have that En( z

an
) is nonzero on BR(0), and hence

by Theorem 5.3 the same is true for the limit of the hN .
On the other hand for N ≥ N0, we have gN = 0 precisely when z = an for

|an| ≤ 2R.
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Conclusion. The infinite product

f(z) = zm
∞∏
n=1

En( z
an

)

converges to a holomorphic function on BR(0), with a zero of order m at zero, with
all other zeros precisely at {an : |an| < R}.

Thus this function has all of the desired properties on BR(0).
However, as R was arbitrary, this (together with the uniqueness theorem) implies

that f converges and has all of the desired properties on all of C.
Finally, if h is another entire function that vanishes precisely at the sequence

{an}, then the function h
f is (more precisely, can be extended to) an entire function

with no zeros.
Thus by Theorem 4.31, there exists an entire function g such that h

f = eg, that

is, h = feg, as needed. �

To summarize: for any sequence {an} such that |an| → ∞ there exist entire
functions with zeros given by {an}, and they are all of the form

f(z) = eg(z)zm
∏

n:an 6=0

En( z
an

)

for some entire function g.
Our next goal is a refinement of this fact (due to Hadamard) in the case that

we can control the growth of f as |z| → ∞.

5.3. Functions of Finite Order.

Definition 5.7. Let f : C→ C be entire. If there exist ρ,A,B > 0 such that

for all z ∈ C |f(z)| ≤ AeB|z|
ρ

,

then we say f has order of growth ≤ ρ.
We define the order of growth of f by

ρf = inf{ρ > 0 : f has order ≤ ρ}.

Definition 5.8. Let R > 0 and let f : BR(0)→ C be holomorphic. For 0 < r < R
we let nf (r) denote the number of zeros of f inside Br(0).

Remark 5.9. Note that nf is an increasing function, that is, r2 > r1 =⇒ nf (r2) ≥
nf (r1).

We can relate the order of an entire function to its zeros.

Theorem 5.10. If f : C→ C is entire and has order of growth ≤ ρ, then

(i) there exists C > 0 such that |nf (r)| ≤ Crρ for all large r > 0,
(ii) if {zk} ⊂ C\{0} denote the zeros of f , then for any s > ρ we have∑

k

1

|zk|s
<∞.

Remark 5.11. The condition s > ρ in (ii) is sharp. To see this, consider f(z) =
sinπz, which has simple zeros at each k ∈ Z.

As f(z) = 1
2i [e

iπz − e−iπz], we find that |f(z)| ≤ eπ|z| so that f has order of
growth ≤ 1.

We now note that
∑
n 6=0

1
|n|s <∞ if and only if s > 1. �
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We have some work to do before we can prove Theorem 5.10.
We begin with a lemma.

Lemma 5.12 (Mean value property). Let z0 ∈ C and R > 0, and let f : BR(z0)→
C be holomorphic. Then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ for all 0 < r < R.

Proof. We use the Cauchy integral formula to write

f(z0) =
1

2πi

∫
∂Br(z0)

f(z)

z − z0
dz.

Parametrizing ∂Br(z0) by z(θ) = z0 + reiθ for θ ∈ [0, 2π], we find

f(z0) =
1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθ dθ =

1

2π

∫ 2π

0

f(z0 + reiθ) dθ.

�

Next we derive “Jensen’s formula”.

Proposition 5.13 (Jensen’s formula). Let R > 0 and suppose Ω ⊂ C is open, with

BR(0) ⊂ Ω.
Suppose f : Ω→ C is holomorphic, satisfies f(0) 6= 0, and is nonzero on ∂BR(0).
If {zk}nk=1 denote the zeros of f in BR(0), counting multiplicity, then

log |f(0)| =
n∑
k=1

log
( |zk|
R

)
+

1

2π

∫ 2π

0

log |f(Reiθ)| dθ.

Proof. By considering the rescaled function fR(z) := f( zR ), we see that it suffices
to treat the case R = 1.

Define the “Blaschke product” g : B1(0)→ C by

g(z) =

n∏
k=1

z − zk
1− z̄kz

.

We note that g : B1(0) → B1(0) is holomorphic, with g : ∂B1(0) → ∂B1(0). (See
Exercise 3.2.)

Furthermore, g has the same zeros as f (counting multiplicity).

It follows that the function z 7→ f(z)
g(z) is (more precisely, can be extended to) a

holomorphic function on B1(0) with no zeros inside B1(0).
Thus, as B1(0) is simply connected we may use Theorem 4.31 to construct a

holomorphic function h : B1(0)→ C such that f
g = eh.

Note that∣∣∣∣f(z)

g(z)

∣∣∣∣ = |eh(z)| = |eReh(z)+iImh(z)| = eReh(z) =⇒ log

∣∣∣∣f(z)

g(z)

∣∣∣∣ = Re (h(z)).

Thus applying the mean value formula to the h and taking the real part yields

log

∣∣∣∣f(0)

g(0)

∣∣∣∣ =
1

2π

∫ 2π

0

log

∣∣∣∣f(eiθ)

g(eiθ)

∣∣∣∣ dθ.
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As |g(eiθ)| ≡ 1, we find

log |f(0)| = log |g(0)|+ 1

2π

∫ 2π

0

log |f(eiθ)| dθ.

Noting that

g(0) =

n∏
k=1

zk =⇒ log |g(0)| = log

( n∏
k=1

|zk|
)

=

n∑
k=1

log |zk|,

we complete the proof. �

We next use Jensen’s formula to derive a formula concerning nf (r).

Proposition 5.14. Let R > 0 and suppose Ω ⊂ C is open, with BR(0) ⊂ Ω.
Suppose f : Ω→ C is holomorphic, satisfies f(0) 6= 0, and is nonzero on ∂BR(0).
Then ∫ R

0

nf (r)

r
dr = − log |f(0)|+ 1

2π

∫ 2π

0

log |f(Reiθ)| dθ.

Proof. Let {zk}nk=1 denote the zeros of f in BR(0), counting multiplicity.
For each k we define

ak(r) =

{
1 r > |zk|
0 r ≤ |zk|

and notice that nf (r) =
∑n
k=1 ak(r).

We compute∫ R

0

nf (r)

r
dr =

∫ R

0

n∑
k=1

ak(r)
dr

r
=

n∑
k=1

∫ R

0

ak(r)
dr

r
=

n∑
k=1

∫ R

|zk|

dr

r
= −

n∑
k=1

log
(
| zkR |

)
.

Applying Jensen’s formula, we complete the proof. �

Finally we are ready to prove Theorem 5.10.

Proof of Theorem 5.10. For (i) we claim it suffices to consider the case f(0) 6= 0.
Indeed, if f has a zero of order ` at z = 0, we define F (z) = z−`f(z). Then F is

an entire function with F (0) 6= 0, nf and nF differ only by a constant, and F also
has order of growth ≤ ρ.

Fix r > 1. As f(0) 6= 0 we may use Proposition 5.14 and the growth condition
to write ∫ 2r

r

nf (x)

x
dx ≤

∫ 2r

0

nf (x)

x
dx ≤ 1

2π

∫ 2π

0

log |f(2reiθ)| dθ

≤ 1

2π

∫ 2π

0

log |AeB(2r)ρ | dθ ≤ Crρ

for some C > 0.
On the other hand, as nf is increasing we can estimate∫ 2r

r

nf (x)

x
dx ≥ nf (r)

∫ 2r

r

dx

x
≥ nf (r)[log 2r − log r] ≥ nf (r) log 2.

Rearranging yields nf (r) ≤ C̃rρ, as needed.
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For part (ii) we estimate as follows:∑
|zk|≥1

|zk|−s ≤
∞∑
j=0

∑
2j≤|zk|≤2j+1

|zk|−s ≤
∞∑
j=0

2−jsnf (2j+1)

≤ C
∞∑
j=0

2−js2ρ(j+1) ≤ 2ρC

∞∑
j=0

(2ρ−s)j <∞

since s > ρ. As only finitely many zk can have |zk| < 1, this estimate suffices to
show part (ii). �

5.4. Hadamard’s Factorization Theorem. We turn to Hadamard’s factoriza-
tion theorem, which is a refinement of Weierstrass’s theorem for functions of finite
order of growth.

Theorem 5.15 (Hadamard’s factorization theorem). Let f : C → C be entire
and have order of growth ρf . Suppose f has a zero of order m at z = 0 and let
{an}∞n=1 ⊂ C\{0} denote the remaining zeros of f . Letting k denote the unique
integer such that k ≤ ρf < k + 1, we have

f(z) = zmeP (z)
∞∏
n=1

Ek( z
an

)

for some polynomial P of degree ≤ k.

Proof. Let gN : C→ C be defined by

gN (z) := zm
N∏
n=1

Ek( z
an

).

Fix R > 0. We use Theorem 5.3 to show that gN converges (uniformly) in BR(0).
As limn→∞ |an| =∞,

there exists N0 such that n ≥ N0 =⇒ | Ran | <
1
2 .

Thus for n ≥ N0 and z ∈ BR(0) we can use Lemma 5.6 to estimate

|1− Ek( z
an

)| ≤ 2e| zan |
k+1 ≤ 2eRk+1|an|−(k+1).

As k + 1 > ρ0, we can use Theorem 5.10 to see that∑
n

|an|−(k+1) <∞,

and hence Theorem 5.3 implies that gN converges uniformly on BR(0) to the infinite
product

g(z) = zm
∞∏
n=1

Ek( z
an

),

which is holomorphic on BR(0), has a zero of order m at zero, and has all other
zeros in BR(0) precisely at {an : |an| < R}.

As R > 0 was arbitrary, we can deduce that g : C→ C is an entire function with
a zero of order m at zero and all other zeros precisely at {an}.

Furthermore, since g and f have the same zeros, we find that f
g is an entire

function with no zeros, and hence we can use Theorem 4.31 to write f
g = eh for

some entire function h.
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To complete the proof, it remains to show that h must be a polynomial of degree
at most k.

We first notice that

eReh(z) = |eh(z)| =
∣∣∣∣f(z)

g(z)

∣∣∣∣.
We now need the following lemma.

Lemma 5.16. For any s ∈ (ρf , k + 1),

there exists C > 0, rj →∞ such that Re (h(z)) ≤ C|z|s for |z| = rj .

The proof of this lemma is a bit technical and so we save it until the next section.
The idea is as follows: by proving lower bounds for the Ek and using Theorem 5.10,
one can prove exponential lower bounds for |g| on the order of e−c|z|

s

(along some
sequence of increasing radii). As f has order of growth ≤ s, one can deduce the
lemma.

To finish the proof, it suffices to show that the lemma implies that h is a poly-
nomial of degree ≤ s. (This is like the version of Liouville’s theorem from Exer-
cise 3.23.)

We argue as follows. We expand h in a power series centered at z = 0:

h(z) =

∞∑
n=0

anz
n.

By the Cauchy integral formulas and parametrization of ∂Br(0) we can deduce
that for any r > 0:

1
2π

∫ 2π

0

h(reiθ)e−inθ dθ =

{
anr

n n ≥ 0
0 n < 0.

(Check! )

Taking complex conjugates yields

1
2π

∫ 2π

0

h(reiθ)e−inθ dθ = 0 for n > 0.

As Re (h) = 1
2 (h+ h̄) we add the two identities above to find

1
π

∫ 2π

0

Re [h(reiθ)]e−inθ dθ = anr
n for n > 0.

We can also take the real part directly in the case n = 0 to get

1
π

∫ 2π

0

Re [h(reiθ)] dθ = 2Re (a0). (∗)

As
∫ 2π

0
e−inθ dθ = 0 for any n > 0, we find:

an = 1
πrn

∫ 2π

0

Re [h(reiθ)]e−inθ dθ

= 1
πrn

∫ 2π

0

{
Re [h(reiθ)]− Crs

}
e−inθ dθ

for n > 0, where C, s are as in the lemma.
We now choose r = rj as in Lemma 5.16 and use (∗) to find

|an| ≤
1

πrnj

∫ 2π

0

{
Crsj − Re [h(rje

iθ)]
}
dθ ≤ 2Crs−nj − 2Re (a0)r−nj .
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Sending j → ∞ now implies |an| = 0 for n > s, which implies that h is a
polynomial of degree ≤ s, as was needed to show. �

5.5. Proof of a Technical Lemma. We include here a proof of Lemma 5.16,
which is a bit technical. The reader may skip this section if desired.

We use the notation introduced in the proof of Hadamard’s factorization theo-
rem.

Lemma 5.17 (More bounds for Ek). For all k we have:

(ii) |z| ≤ 1
2 =⇒ |Ek(z)| ≥ e−2|z|k+1

(iii) |z| ≥ 1
2 =⇒ |Ek(z)| ≥ |1 − z|e−c|z|k , where the constant may depend

on k.

Proof. For |z| ≤ 1
2 we can write log(1− z) in a power series

log(1− z) = −
∞∑
n=1

zn

n
,

with 1− z = elog(1−z). Thus

Ek(z) = elog(1−z)+z+z2/2+···+zk/k = e−
∑∞
j=k+1 z

j/j .

We now notice that since |z| ≤ 1
2 , we have∣∣∣∣ ∞∑

j=k+1

zj

j

∣∣∣∣ ≤ |z|k+1
∞∑

j=k+1

|z|j−k−1 ≤ |z|k+1
∞∑
j=0

( 1
2 )j ≤ 2|z|k+1.

Thus since |ew| ≥ e−|w| we can estimate

|Ek(z)| = |e−
∑∞
j=k+1 z

j/j | ≥ e−2|z|k+1

,

which gives (ii).
For (iii), suppose |z| ≥ 1

2 . As |ew| ≥ e−|w| it suffices to show

e−|z+z
2/2+···+zk/k| ≥ e−c|z|

k

.

This follows from the fact that for |z| ≥ 1
2 we have

|z + z2/2 + · · ·+ zk/k| ≤ Ck|z|k.

�

Lemma 5.18. With ρf , k, {an} as in Theorem 5.15, we have the following estimate:

∀s ∈ (ρf , k + 1) ∃ c > 0 : z ∈ C\
⋃
n

B 1

|an|k+1
(an) =⇒

∣∣∣∣ ∞∏
n=1

Ek( z
an

)

∣∣∣∣ ≥ e−c|z|s ,
where c may depend on k.

Proof. We write ∏
n

Ek( z
an

) =
∏
n∈S1

Ek( z
an

)
∏
n∈S2

Ek( z
an

),

where

S1 = {n : | zan | ≤
1
2}, S2 = {n : | zan | >

1
2}.
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Consider n ∈ S1. From Lemma 5.17 we have |w| ≤ 1
2 =⇒ |Ek(w)| ≥ e−c|w|

k+1

.
Thus for all z,∣∣∣∣ ∏

n∈S1

Ek( z
an

)

∣∣∣∣ ≥ ∏
n∈S1

e
−c| zan |

k+1

≥ e−c|z|
k+1 ∑

n∈S1
|an|−(k+1)

.

Now, ∑
n∈S1

|an|−(k+1) =
∑
n∈S1

|an|−s|an|s−(k+1)

≤ C|z|s−(k+1)
∑
n∈S1

|an|−s (definition of S1)

≤ C ′|z|s−(k+1) (Theorem 5.10),

so that ∣∣∣∣ ∏
n∈S1

Ek( z
an

)

∣∣∣∣ ≥ e−c|z|s .
Now take n ∈ S2. Recall from Lemma 5.17 that |w| > 1

2 =⇒ |Ek(w)| ≥
|1− w|e−c|w|k . Thus∣∣∣∣ ∏

n∈S2

Ek( z
an

)

∣∣∣∣ ≥ ∏
n∈S2

|1− z
an
|
∏
n∈S2

e−c|
z
an
|k .

Now for any z we have∏
n∈S2

e−c|
z
an
|k ≥ e−c|z|

k∑
n∈S2

|an|−k ,

and ∑
n∈S2

|an|−k =
∑
n∈S2

|an|−s|an|s−k

≤ C|z|s−k
∑
n∈S2

|an|−s (definition of S2)

≤ C ′|z|s−k (Theorem 5.10),

so that ∏
n∈S2

e−|
z
an
|k ≥ e−c|z|

s

.

Finally we note that

z ∈ C\
⋃
n

B 1

|an|k+1
(an) =⇒ |z − an| ≥ |an|−(k+1) for all n,
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so ∏
n∈S2

|1− z
an
| ≥

∏
n∈S2

|an−zan
| ≥

∏
n∈S2

|an|−(k+2)

≥
∏
n∈S2

e−(k+2) log |an|

≥ e−(k+2)
∑
n∈S2

log |an|

≥ e−(k+2)nf (2|z|) log(2|z|) (definition of S2)

≥ e−(k+2)c|z|s
′

log(2|z|) (Theorem 5.10, with s′ > ρf )

≥ e−c
′|z|s ,

where we choose ρf < s′ < s such that |z|s′ log(2|z)| ≤ C|z|s.
This completes the proof of the lemma. �

Lemma 5.19. With ρf , k, {an}, s as above, there exists a sequence {rj} ∈ (0,∞)
and c > 0 such that rj →∞ and∣∣∣∣ ∞∏

k=1

Ek( z
an

)

∣∣∣∣ ≥ e−c|z|s for all z such that |z| = rj .

Proof. As Theorem 5.10 implies
∑
n |an|−(k+1) <∞, we may find N such that∑

n≥N

|an|−(k+1) < 1
10 . (∗∗)

We now claim that for all large integers L,

∃ r ∈ [L,L+ 1] : ∂Br(0) ∩
⋃
n≥N

B 1

|an|k+1
(an) = ∅.

With this claim, the corollary follows from the previous lemma.
Suppose the claim is false. Then we may find a large integer L such that

∀ r ∈ [L,L+ 1] ∃ z ∈ B 1

|an|k+1
(an) such that n ≥ N and |z| = r.

But this implies that

[L,L+ 1] ⊂ ∪n≥N [|an| − |an|−(k+1), |an|+ |an|−(k+1),

which implies

2
∑
n≥N

|an|−(k+1) ≥ 1,

contradicting (∗∗). �

From Lemma 5.19 we take the logarithm to deduce Lemma 5.16.

5.6. Exercises.

Exercise 5.1.
(i) Construct a non-constant holomorphic function f : D → C such that f has

infinitely many zeros inside D.
(ii) Why does the existence of such a function not contradict the “uniqueness

theorem”?
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Exercise 5.2. Express the following functions as products:
(i) f(z) = sin(πz)
(ii) g(z) = ez − 1.

Exercise 5.3. Prove that

1

1− z
=

∞∏
k=0

(1 + z2k) for z ∈ D.

Exercise 5.4. Suppose f : C→ C is entire and has finite order of growth. Suppose
that there exist distinct points z1, z2 ∈ C such that f(z) /∈ {z1, z2} for any z ∈ C.
Prove that f is constant.

Exercise 5.5. Suppose f : C→ C is entire and has finite order of growth. Suppose
that f (n)(z) 6= 0 for any non-negative integer n and any z ∈ C. Show that f(z) =
eaz+b for some a, b ∈ C.

Exercise 5.6. How many solutions does the equation ez = z have in C? Your
options are: zero, finitely many, countably infinitely many, or uncountably many.
(Prove that your answer is correct.)

Exercise 5.7. (i) Find a sequence {an} ⊂ C such that
∑
n an converges but

∏
n(1+

an) diverges.
(ii) Find a sequence {an} ⊂ C such that

∏
n(1 + an) converges but

∑
n an

diverges.
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6. Conformal Mappings

We start this section with a few definitions.

Definition 6.1 (Biholomorphism). Let U, V ⊂ C be open. If f : U → V is holo-
morphic and bijective (that is, one-to-one and onto), we call f a biholomorphism.
We call the sets U and V biholomorphic and write U ∼ V .

Definition 6.2 (Automorphism). If U ⊂ C is open and f : U → U is a biholomor-
phism, we call f an automorphism of U .

In this section we will address two general questions:

1. Given an open set U , can we classify the automorphisms of U?
2. Which open sets U, V ⊂ C are biholomorphic?

Two sets will show up frequently, namely the unit disk

D = {z ∈ C : |z| < 1}

and the upper half plane

H = {z ∈ C : Im z > 0}.

6.1. Preliminaries.

Proposition 6.3. Let U, V ⊂ C be open and let f : U → V be a biholomorphism.
Then f ′(z) 6= 0 for all z ∈ U , and f−1 : V → U is a biholomorphism.

Proof. Suppose toward a contradiction that f ′(z0) = 0 for some z0 ∈ U .
We expand f in a power series in some open ball Ω 3 z0:

f(z) =

∞∑
j=0

aj(z − z0)j for z ∈ Ω.

As f is injective, it is non-constant, and hence we may choose Ω possibly smaller
to guarantee that f ′(z) 6= 0 for z ∈ Ω\{z0}.

Rearranging the formula above, using a1 = f ′(z0) = 0, and re-indexing, we can
write

f(z)− f(z0) = ak(z − z0)k + (z − z0)k+1
∞∑
`=0

b`(z − z0)`

where ak 6= 0, k ≥ 2, and b` := a`+k+1.
We next notice that

lim
δ→0

δ

∞∑
`=0

|b`|δ` = 0.

Thus we may choose δ > 0 sufficiently small that

(i) Bδ(z0) ⊂ Ω,
(ii) the following holds:

δk+1
∞∑
`=0

|b`|δ` ≤ 1
2 |ak|δ

k.
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In particular, (ii) implies that there exists ε > 0 small enough such that

w ∈ Bε(0) =⇒∣∣∣∣(z − z0)k+1
∞∑
`=0

b`(z − z0)` − w
∣∣∣∣ < |ak(z − z0)k| for z ∈ ∂Bδ(z0). (∗)

For w ∈ Bε(0)\{0} we write

f(z)− f(z0)− w = ak(z − z0)k︸ ︷︷ ︸
:=F (z)

+ (z − z0)k+1
∞∑
`=0

b`(z − z0)` − w︸ ︷︷ ︸
:=G(z)

.

As F has k zeros in ∂Bδ(z0) (counting multiplicity), and (∗) implies |G(z)| <
|F (z)| for z ∈ ∂Bδ(z0), we can use Rouchè’s theorem to conclude that

z 7→ f(z)− f(z0)− w

has at least two zeros in Bδ(z0). That is, there exists z1, z2 ∈ Bδ(z0) such that

f(z1) = f(z2) = f(z0) + w.

We now claim that we must have z1 6= z2, so that we have contradicted the
injectivity of f .

We first note that w 6= 0 implies z1, z2 6= z0.
Now on the one hand we have f ′(z) 6= 0 for z ∈ Bδ(z0). On the other hand, if

z 7→ f(z)− f(z0)− w had a zero of order ≥ 2 at z then we would have f ′(z) = 0.
Thus the zeros of f(z)− f(z0)− w must be simple, so that any two zeros must

be distinct, as was needed to show.
It remains to check that f−1 is a biholomorphism. As f−1 is bijective, it suffices

to verify that f−1 is holomorphic.
To this end, let w,w0 ∈ V , with w 6= w0. Then

f−1(w)− f−1(w0)

w − w0
=

1
w−w0

f−1(w)−f−1(w0)

=
1

f(f−1(w))−f(f−1(w0))
f−1(w)−f−1(w0)

.

Now we would like take the limit as w → w0.
We first note that the open mapping theorem implies f−1 is continuous. (Why? )
Thus as w → w0, we have f−1(w)→ f−1(w0).
Moreover, since we know f ′ 6= 0 on U , we can safely take the limit above to see

that
d
dz (f−1)(w0) =

1

f ′(f−1(w0))
.

�

Remark 6.4. We can now verify that being biholomorphic is an equivalence
relation. That is,

(i) U ∼ U for all open sets U .
(ii) U ∼ V =⇒ V ∼ U for all open sets, U, V.
(iii) [U ∼ V and V ∼W ] =⇒ U ∼W for all open sets U, V,W.

For (i), we observe that f(z) = z is a biholomorphism.
For (ii), we note that if f : U → V is a biholomorphism, then the proposition

above implies f−1 : V → U is a biholomorphism.
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For (iii), we note that if f : U → V and g : V → W are biholomorphisms, then
f ◦ g : U →W is a biholomorphism. (Check! ) �

We next discuss the main geometric property of biholomorphisms. In particular
they are “conformal”, which is a synonym for “angle-preserving”.

Recall that for vectors v = (v1, . . . , vn) ∈ Rn and w = (w1, . . . , wn) ∈ Rn we
define the inner product of v and w by

〈v, w〉Rn = v1w1 + · · ·+ vnwn.

The length of a vector v ∈ Rn is given by |v| =
√
〈v, v〉Rn . The angle θ ∈ [0, π]

between vectors v, w ∈ Rn is given by the formula

cos θ =
〈v, w〉Rn
|v| |w|

.

If M = (mjk) is an n × n matrix (with real or complex entries) and v, w ∈ Rn,
then we have

〈Mv,w〉Rn = 〈v,M tw〉Rn , (∗)
where M t is the transpose of M , whose (j, k)th entry is mkj .

Definition 6.5 (Angle). Let γj : (−1, 1) → Rn parametrize smooth curves for
j = 1, 2. Suppose that γ1(0) = γ2(0) and γ′j(0) 6= 0 for j = 1, 2. We define the
angle θ ∈ [0, π] between γ1 and γ2 by the formula

cos θ =
〈γ′1(0), γ′2(0)〉Rn
|γ′1(0)| |γ′2(0)|

.

We extend this notion to curves in C via the usual identification of C with R2.

The next proposition shows that biholomorphisms preserve angles.

Proposition 6.6. Let γj : (−1, 1) → C parametrize smooth curves for j = 1, 2,
with γ1(0) = γ2(0) = z0 ∈ C and γ′j(0) 6= 0 for j = 1, 2. Suppose f : C → C is
holomorphic at z0 and f ′(z0) 6= 0. Then the angle between γ1 and γ2 equals the
angle between f ◦ γ1 and f ◦ γ2.

Proof. By the chain rule we have

(f ◦ γj)′(0) = f ′(z0)γ′j(0).

We use polar coordinates to write

f ′(z0) = |f ′(z0)|(cos θ + i sin θ)

for some θ ∈ [0, 2π].
Under the identification of C with R2, we may identify γ′j(0) with an element of

R2 and f ′(z0) with the 2× 2 real matrix given by(
Re [f ′(z0)] −Im [f ′(z0)]
Im [f ′(z0)] Re [f ′(z0)]

)
= |f ′(z0)|

(
cos θ − sin θ
sin θ cos θ

)
︸ ︷︷ ︸

:=M

.

As cos2 θ + sin2 θ = 1, we can compute that

M tM = MM t = Id, Id =

(
1 0
0 1

)
.
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Thus using (∗) we deduce

〈Mv,Mw〉R2 = 〈v, w〉R2 , |Mv| = |v|

for all v, w ∈ R2.
We can now compute

〈(f ◦ γ1)′(0), (f ◦ γ2)′(0)〉R2

|(f ◦ γ1)′(0)| |(f ◦ γ2)′(0)|
=
〈|f ′(z0)|Mγ′1(0), |f ′(z0)|Mγ′2(0)〉R2

|f ′(z0)γ′1(0)| |f ′(z0)γ′2(0)|

=
|f ′(z0)|2

|f ′(z0)|2
〈Mγ′1(0),Mγ′2(0)〉R2

|Mγ′1(0)| |Mγ′2(0)|

=
〈γ′1(0), γ′2(0)〉R2

|γ′1(0)| |γ′2(0)|
,

which completes the proof. �

6.2. Some Examples.

Example 6.1 (Translation, dilation, rotation). For any z0, λ ∈ C the map z 7→
z0 + λz is a conformal map from C to C.

The special case z 7→ eiθz for some θ ∈ R is called a rotation.

Example 6.2. For n ∈ N define the sector

Sn = {z ∈ C : 0 < arg(z) < π
n}.

The function z 7→ zn is a conformal map from Sn to H. Its inverse is given by
z 7→ z1/n (defined in terms of the principal branch of the logarithm).

Example 6.3. The map z 7→ log z is a conformal map from H to the strip {z ∈
C : 0 < Im z < π}.

This follows from the fact that if z = reiθ with θ ∈ (0, π) then log z = log r+ iθ.
The inverse is given by z 7→ ez.

Example 6.4. The map z 7→ log z is also a conformal map from the half-disk
{z ∈ D : Im z > 0} to the half-strip {z ∈ C : Re z < 0, 0 < Im z < π}.

Example 6.5. The map z 7→ sin z is a conformal map from the half-strip

Ω := {z ∈ C : −π2 < Re z < π
2 , Im z > 0}

to H.
To see this, we first use the identity

sin z = − 1
2 [ieiz + 1

ieiz ]

to write sin z = h(ig(z)), where g(z) = eiz and h(z) = − 1
2 (z + 1

z ).
It then suffices to note the following:

• g is a conformal map from Ω to {z ∈ D : Re z > 0},
• z 7→ iz rotates {z ∈ D : Re z > 0} to {z ∈ D : Im z > 0},
• h is a conformal map from {z ∈ D : Im z > 0} to H. (Check! )
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6.3. Introduction to Groups. We next discuss the notion of groups, which arise
in the study of automorphisms.

Definition 6.7 (Group). A group is a set G, together with a function b : G×G→
G such that

(i) b(b(x, y), z) = b(x, b(y, z) for all x, y, z ∈ G,
(ii) there exists (unique) e ∈ G such that b(e, x) = b(x, e) = x for all x ∈ G,

(iii) for all x ∈ G there exists (unique) y ∈ G such that b(x, y) = b(y, x) = e.

We call b the group operation.
We call the element e in (ii) the identity element.
We call the element y in (iii) the inverse of x and write y = x−1.
To simplify notation one usually writes b(x, y) as xy (or x · y, or x+ y, or x ◦ y,

or ...).
A subgroup of a group (G, b) is a subset A ⊂ G such that (A, b) forms a group.

We write A ≤ G.
A normal subgroup of a group G is a subgroup A such that

for all a ∈ A, g ∈ G, gag−1 ∈ A.

Suppose (G1, b1) and (G2, b2) are groups. We say G1 is isomorphic to G2 if
there exists a bijection ϕ : G1 → G2 such that

ϕ(b1(x, y)) = b2(ϕ(x), ϕ(y)) for all x, y ∈ G1.

We write G1
∼= G2. Being isomorphic is an equivalence relation, as one can check.

�

Example 6.6 (Matrix groups). Throughout this example we let F denote either
C or R.

Let M2(F ) denote the set of all 2× 2 matrices with entries in F :

M2(F ) =

{(
a b
c d

)
: a, b, c, d ∈ F

}
Recall that for M =

(
a b
c d

)
we define

detM := ad− bc,

and M is invertible if and only if detM 6= 0.
The set M2(F ) under matrix multiplication does not form a group, since not

all matrices are invertible.
Recalling that det(M1M2) = detM1 · detM2, it follows that the set

GL2(F ) = {M ∈M2(F ) : detM 6= 0},

forms a group under matrix multiplication. The identity element is given by

Id =

(
1 0
0 1

)
.

We call GL2(F ) the general linear group of 2× 2 matrices with entries in F .
We define the special linear group SL2(F ) ≤ GL2(F ) by

SL2(F ) = {M ∈M2(F ) : detM = 1}.
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Example 6.7 (Quotient groups). Suppose G is a group, with the operation denoted
by b(x, y) = xy.

Suppose that A ≤ G is a normal subgroup.
We define a relation ∼ on G as follows:

x ∼ y if xy−1, x−1y ∈ A.
Because A is a subgroup, ∼ defines an equivalence relation on G. Indeed:

• x ∼ x for any x ∈ G, since xx−1 = x−1x = e ∈ A.
• if x ∼ y, then y ∼ x, since yx−1 = (xy−1)−1 ∈ A and y−1x = (x−1y)−1 ∈
A,
• if x ∼ y and y ∼ z, then xz−1 = (xy−1)(yz−1) ∈ A and x−1z = (x−1y)(y−1z) ∈
A.

For any x ∈ G we define the equivalence class of x by

[x] = {y ∈ G : y ∼ x}.
Because A is a normal subgroup, we can show the following:

[x1 ∼ x2 and y1 ∼ y2] =⇒ x1y1 ∼ x2y2.

Indeed, we have

(x1y1)(x2y2)−1 = x1y1y
−1
2 x−1

2 = x1(y1y
−1
2 x−1

2 x1)x−1
1 ∈ A

and
(x1y1)−1(x2y2) = y−1

1 x−1
1 x2y2 = y−1

1 (x−1
1 x2y2y

−1
1 )y1 ∈ A.

In particular we see that

[x1y1] = [x2y2] provided x1 ∼ x2 and y1 ∼ y2. (∗)
Thus we may define the quotient group G/A := {[x] : x ∈ G}, where we

define the group operation by [x][y] = [xy]. (Note (∗) implies that this operation is
well-defined.)

One can check that G/A forms a group, with the identity given by [e] and inverses
given by [x]−1 = [x−1].

Example 6.8 (Projective groups). As before we let F denote either C or R. Let

A = {λ Id : λ ∈ F\{0} } ⊂ GL2(F ),

where Id is the identity matrix.
As one can check, A forms a normal subgroup of GL2(F ).
Thus we can define the projective linear group by

PGL2(F ) := GL2(F )/A.

Similarly the set {±Id} forms a normal subgroup of SL2(F ).
Thus we can define the projective special linear group by

PSL2(F ) = SL2(F )/{±Id}.

Example 6.9 (Automorphism groups). Let U ⊂ C be an open set. The set of
automorphisms of U forms a group under composition, which we denote by Aut(U).
Indeed, we have the following:

• if f, g ∈ Aut(U) then f ◦ g ∈ Aut(U),
• [f ◦ g] ◦ h = f ◦ [g ◦ h] for f, g, h ∈ Aut(U),
• the identity element is given by the function e(z) = z,
• if f ∈ Aut(U) then f−1 ∈ Aut(U) (cf. Proposition 6.3).
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6.4. Möbius Transformations. In this section we introduce an important class
of conformal mappings called Möbius transformations (also known as fractional
linear transformations).

Recall that we identified the extended complex plane C∪{∞} with the Riemann
sphere

S = {(x, y, z) ∈ R3 : x2 + y2 + (z − 1
2 )2 = 1

4}
via the stereographic projection map Φ : S→ C ∪ {∞} given by

Φ((x, y, z)) = x
1−z + i y

1−z , Φ−1(x+ iy) =
(

x
1+x2+y2 ,

y
1+x2+y2 ,

x2+y2

1+x2+y2

)
.

The north pole (0, 0, 1) corresponds to ∞, since |x+ iy| → ∞ ⇐⇒ Φ−1(x+ iy)→
(0, 0, 1).

The set {(x, y, z) ∈ S : z < 1
2} corresponds to D.

The set {(x, y, z) ∈ S : y > 0} corresponds to H.
A computation (in the spirit of the proof of Proposition 6.6) shows that Φ (and

similarly Φ−1) is conformal, that is, it preserves angles between curves. (See Exer-
cise 6.5.)

Definition 6.8 (Lift). Suppose f : C ∪ {∞} → C ∪ {∞}. We define the lift of f
to S to by

Φ−1 ◦ f ◦ Φ : S→ S.

Definition 6.9 (Möbius transformations). For any

M =

(
a b
c d

)
∈ GL2(C),

we define the Möbius transformation

fM : C ∪ {∞} → C ∪ {∞} by fM (z) =
az + b

cz + d
.

Proposition 6.10. The set of Möbius transformations forms a group under com-
position. Moreover for F = R or C we have the following:

{fM : M ∈ GL2(F )} ∼= PGL2(F ),

{fM : M ∈ SL2(F )} ∼= PSL2(F ).

Proof. We consider the case of GL2(F ), as the case of SL2(F ) is similar.
A direct computation shows

fM ◦ fN = fMN for M,N ∈ GL2(F ). (Check! )

In particular, for any M ∈ GL2(F ) we have

fM ◦ fId = fId ◦ fM = fM and fM ◦ fM−1 = fId.

Furthermore

(fL ◦ fM ) ◦ fN = fLM ◦ fN = fLMN = fL ◦ fMN = fL ◦ (fM ◦ fN )

for L,M,N ∈ GL2(F ).
It follows that G := {fM : M ∈ GL2(F )} forms a group under composition.
We now define

ϕ : G→ PGL2(F ) by ϕ(fM ) = [M ].

We first observe that f is onto.



70 JASON MURPHY

Next suppose ϕ(fM ) = ϕ(fN ) for some N,M ∈ GL2(F ). Then N = λM for
some λ ∈ F\{0}. As

λaz + λb

λcz + λd
=
az + b

cz + d
,

we find that fN = fM , so that ϕ is one-to-one.
Thus ϕ is a bijection. Moreover,

ϕ(fN ◦ fM ) = ϕ(fNM ) = [NM ] = [N ][M ] = ϕ(fN )ϕ(fM ),

so that ϕ is an isomorphism. �

Lemma 6.11. For all distinct {α, β, γ} ⊂ C∪{∞}, there exists M ∈ GL2(C) such
that

fM (α) = 1, fM (β) = 0, fM (γ) =∞.

Proof. If {α, β, γ} ⊂ C then we can take

fM (z) =
z − β
z − γ

· α− γ
α− β

.

If α, β, γ =∞ we instead take

fM (z) =
z − β
z − γ

,
α− γ
z − γ

, or
z − β
α− β

,

respectively. �

Proposition 6.12. The sets D and H are biholomorphic. Consequently Aut(D) ∼=
Aut(H).

Proof. We need to construct a biholomorphism F : D → H. We will use a Möbius
transformation.

We can think in terms of the lift of F . As a map on S, we want a 90◦ rotation
about the x-axis.

Thus as a map on C ∪ {∞}, we want

1 7→ 1, −i 7→ 0, i 7→ ∞.

Thus, as in Lemma 6.11 we define

F (z) =
z + i

z − i
· 1− i

1 + i
= −iz + i

z − i
.

This function defines a biholomorphism from D to H, as one should check.
We now define ϕ : Aut(D)→ Aut(H) by

ϕ(f) = F ◦ f ◦ F−1 for f ∈ Aut(D).

One can check that ϕ is one-to-one and onto, and moreover

ϕ(f) ◦ ϕ(g) = F ◦ f ◦ F−1 ◦ F ◦ g ◦ F−1 = F ◦ (f ◦ g) ◦ F−1 = ϕ(f ◦ g),

so that ϕ is an isomorphism. �
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6.5. Automorphisms of D and H. We will now investigate Aut(D) and Aut(H).
We have actually already encountered some elements of Aut(D), namely the

Blaschke factors

ψα(z) :=
z − α
ᾱz − 1

for α ∈ D.

Indeed, in Exercise 3.2 you showed that each ψα is an automorphism of D. In
fact,

ψ−1
α = ψα. (Check! )

Note that Blaschke factors are instances of Möbius transformations, with

ψα = fMα , Mα =

(
1 −α
ᾱ −1

)
∈ GL2(C).

As we will see, the Blaschke factors turn out to give (essentially) all automor-
phisms of D!

To see this we will use the following lemma.

Lemma 6.13 (Schwarz lemma). Suppose f : D→ D is holomorphic and f(0) = 0.
Then

(i) |f(z)| ≤ |z| for z ∈ D,
(ii) if there exists z0 ∈ D\{0} such that |f(z0)| = |z0|, then f is a rotation,
(iii) |f ′(0)| ≤ 1, with equality if and only if f is a rotation.

Proof. We expand f in a power series centered at 0:

f(z) = a0 + a1z + a2z
2 + · · · , for z ∈ D.

As f(0) = a0 = 0, we find that z 7→ f(z)
z is (more precisely, can be extended to)

a holomorphic function on D.
Now fix 0 < r < 1. By the maximum principle and the fact that |f(z)| ≤ 1, we

find

max
z∈Br(0)

∣∣ f(z)
z

∣∣ = max
z∈∂Br(0)

∣∣ f(z)
z

∣∣ ≤ 1
r .

Sending r → 1 we deduce that

|f(z)| ≤ |z| for z ∈ D,

which gives (i).

For (ii) we note that if |f(z0)| = |z0| for some z0 ∈ D\{0} then z 7→ f(z)
z attains

its maximum in D and hence is constant.
Thus f(z) = cz, and since |f(z0)| = |z0| we must have |c| = 1, so that f is a

rotation.
For (iii), we write g(z) = f(z)

z and note

g(0) = lim
z→0

f(z)

z
= lim
z→0

f(z)− f(0)

z − 0
= f ′(0).

Thus |f ′(0)| ≤ 1, and if equality holds then then g attains its maximum in D
and hence f is a rotation, as before. �

Theorem 6.14 (Automorphisms of D).

Aut(D) = {eiθψα : θ ∈ R, α ∈ D}.

In particular if f ∈ Aut(D) and f(0) = 0 then f is a rotation.
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Remark 6.15. One can actually show that Aut(D) is isomorphic to a matrix group
called PSU(1, 1), but the proof is a bit technical and we do not pursue it here.

Proof of Theorem 6.14. Suppose f ∈ Aut(D).
Choose α ∈ D such that f(α) = 0 and consider g = f ◦ ψα ∈ Aut(D).
We have g(0) = f(ψα(0)) = f(α) = 0, and so the Schwarz lemma implies

|g(z)| ≤ |z| for z ∈ D.

On the other hand, g−1(0) = ψ−1
α (f−1(0)) = ψα(α) = 0, and so the Schwarz

lemma implies

|g−1(z)| ≤ |z| for z ∈ D.
In particular

|z| ≤ |g−1(g(z))| ≤ |g(z)| for z ∈ D.
Thus |g(z)| = |z| for z ∈ D, and hence the Schwarz lemma implies that g is a

rotation:

g(z) = f ◦ ψα(z) = eiθz.

In particular

f(z) = f ◦ ψα(ψ−1
α (z)) = eiθψ−1

α (z) = eiθψα(z).

The result follows. �

We next consider Aut(H).

Theorem 6.16 (Automorphisms of H).

Aut(H) = {fM : M ∈ SL2(R)}.
In fact Aut(H) ∼= PSL2(R).

Proof. First let M =

(
a b
c d

)
∈ SL2(R). Then fM holomorphic on H, and we

can write

fM (z) =
az + b

cz + d
· cz̄ + d

cz̄ + d
=
ac|z|2 + bd+ adz + bcz̄

|cz + d|2
.

Thus for z ∈ H we have

Im [fM (z)] =
ad− bc
|cz + d|2

Im z =
Im z

|cz + d|2
> 0.

In particular we can deduce that fM ∈ Aut(H).
Next let f ∈ Aut(H) and choose β ∈ H such that f(β) = i.
We claim that there exists Mβ ∈ SL2(R) such that fMβ

(i) = β. Indeed we can
take

Mβ = 1√
Imβ

(
Reβ −Imβ

1 0

)
.

Thus f ◦ fMβ
∈ Aut(H) with f ◦ fMβ

(i) = i.
Now recall from Proposition 6.12 that there exists a biholomorphism F : D→ H

with F (0) = i. In particular,

F = fA, with A =

(
−i 1
1 −i

)
.

Now consider the function

g = fA−1 ◦ f ◦ fMβ
◦ fA.
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Then g ∈ Aut(D) with g(0) = 0, and hence

g = fA−1 ◦ f ◦ fMβ
◦ fA = e2iθ (∗)

for some θ ∈ R.
An explicit computation shows that (∗) implies

f ◦ fMβ
= fMθ

, where Mθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SL2(R). (Check! )

Thus

f = fMθ
◦ f−1

Mβ
= fMθM

−1
β
∈ {fM : M ∈ SL2(R)},

as needed.
We now define ϕ : Aut(H)→ PSL2(R) by

ϕ(fM ) = [M ] for M ∈ SL2(R).

It is clear that ϕ is onto. Next if ϕ(fM ) = ϕ(fN ) for some N,M ∈ SL2(R), then
N = ±M and hence fM = fN . Thus ϕ is one-to-one.

Thus ϕ is a bijection. Moreover,

ϕ(fN ◦ fM ) = ϕ(fNM ) = [NM ] = [N ][M ] = ϕ(fN )ϕ(fM ),

so that ϕ is an isomorphism. �

6.6. Normal Families. We now turn to the second main question of this section,
namely which subsets of C are biholomorphic. We will eventually construct biholo-
morphisms as limits of sequences of functions. In this section we develop some tools
related to taking such limits.

Definition 6.17. Let Ω ⊂ C be open and let F be a collection of functions f :
Ω→ C.

• We call F a normal family if every sequence in F has a subsequence that
converges locally uniformly.

• We call F locally uniformly bounded if

for all compact K ⊂ Ω there exists B > 0 such that

for all f ∈ F , z ∈ K, we have |f(z)| ≤ B.

• We call F locally uniformly equicontinuous if

for all compact K ⊂ Ω and for all ε > 0, there exists δ > 0

such that for all f ∈ F , z, w ∈ K, |z − w| < δ =⇒ |f(z)− f(w)| < ε.

Remark 6.18. Recall that R is separable, that is, it has a countable dense subset.
This means that there exists a countable set S ⊂ R such that

for all x ∈ R, ε > 0 there exists y ∈ S such that |x− y| < ε.

Indeed one can take S = Q (the rationals).
One can similarly show that Rn is separable for n ≥ 2. As C inherits its metric

space structure from R2, it follows that C is separable.

Lemma 6.19 (Arzelá–Ascoli theorem). Let Ω ⊂ C be open and F a family of
functions f : Ω → C. If F is locally uniformly bounded and locally uniformly
equicontinuous, then F is a normal family.
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Proof. We use a “diagonalization” argument.
Let {fn}∞n=1 ⊂ F and let K ⊂ Ω be compact. Let {wj}∞j=1 be a dense subset of

K.
As the sequence {fn(w1)} is uniformly bounded, there exists a subsequence {f1

n}
such that f1

n(w1) converges.
Similarly, from the sequence {f1

n} we can extract a sequence {f2
n} such that

f2
n(w2) converges. Note that f2

n(w1) also converges.
Proceeding inductively, we can construct subsequences {fkn} such that fkn(wj)

converges for j = 1, . . . , k.
Now consider the diagonal sequence gn = fnn . By construction gn(wj) converges

for all j.
We will now show that in fact gn converges uniformly on K.
Let ε > 0 and (by equicontinuity) choose δ > 0 so that

for all f ∈ F , z, w ∈ K, we have |z − w| < δ =⇒ |f(z)− f(w)| < ε.

By the denseness of {wj} and compactness of K,

there exists J ∈ N such that K ⊂
J⋃
j=1

Bδ(wj).

We may now find N ∈ N large enough that

n,m > N =⇒ |gn(wj)− gm(wj)| < ε for all j = 1, . . . , J.

Now let z ∈ K. Then there exists j ∈ {1, . . . , J} such that z ∈ Bδ(wj). Thus for
n,m > N we have

|gn(z)− gm(z)| ≤ |gn(z)− gn(wj)|+ |gn(wj)− gm(wj)|
+ |gm(wj)− gm(z)|

< 3ε.

It follows that {gn} is uniformly Cauchy on K, and thus converges uniformly on K
(see Exercise 6.11).

We have shown: for any compact set K, {fn} has a subsequence that converges
uniformly on K.

However, we need to find one subsequence that converges uniformly on every
compact set.

To this end, for each ` we define

K` = {z ∈ Ω : |z| ≤ ` and inf
w∈C\{Ω}

|z − w| ≥ 1
` }.

Then each K` is compact, K` ⊂ K`+1, and Ω = ∪`K`.
Now let {f1

n} be a subsequence of {fn} that converges uniformly on K1; let {f2
n}

be a subsequence of {f1
n} that converges uniformly on K2, and so on.

Now consider the diagonal sequence gn = fnn . Then {gn} converges uniformly
on each K`.

Since any compact K ⊂ Ω is contained in some K`, it follows that {gn} converges
uniformly on every compact subset of Ω. �

The next result tells us that for a family of holomorphic functions, boundedness
implies equicontinuity “for free”.



INTRODUCTION TO COMPLEX ANALYSIS 75

Theorem 6.20 (Montel’s theorem). Suppose F is a family of holomorphic func-
tions that is locally uniformly bounded. Then F is locally uniformly equicontinuous,
and hence (by Arzelá–Ascoli) F is a normal family.

Proof. Let K ⊂ Ω be compact. By compactness, we may find r > 0 such that
B3r(z) ⊂ Ω for all z ∈ K (see Exercise 6.12).

We next define the set

Sr = {α ∈ Ω : inf
β∈K
|α− β| ≤ 2r}

and note that S is compact (why? ). Thus by assumption there exists Ar > 0 such
that

|f(α)| ≤ Ar for α ∈ Sr, f ∈ F
Now let z, w ∈ K with |z − w| < r.
Using the Cauchy integral formula and the fact that ∂B2r(w) ⊂ Sr, we find that

for f ∈ F we have

|f(z)− f(w)| =
∣∣∣∣ 1

2πi

∫
∂B2r(w)

f(α)

[
1

α− z
− 1

α− w

]
dα

∣∣∣∣
≤ 1

2π

∫
∂B2r(w)

|f(α)| |z − w|
|α− z| |α− w|

dα

≤ 4πr

2π

|z − w|
2r · r

sup
α∈∂B2r(w)

|f(α)|

≤ Ar
r
|z − w|.

Hence given ε > 0, we may choose δ < min{r, εrAr } and it follows that for z, w ∈ K
we have

|z − w| < δ =⇒ |f(z)− f(w)| < ε for all f ∈ F .
As K was arbitrary, we conclude that F is locally uniformly equicontinuous, as
needed. �

6.7. The Riemann Mapping Theorem. We turn to the main result in our study
of conformal mappings.

Theorem 6.21 (Riemann mapping theorem). Let ∅ 6= Ω ( C be simply connected
and z0 ∈ Ω. Then there exists a unique biholomorphism F : Ω → D such that
F (z0) = 0 and F ′(z0) > 0.

As a consequence, if ∅ 6= U, V ( C are simply connected, then U ∼ V .

Remark 6.22. The uniqueness statement follows immediately, since if F and F̃
are two such biholomorphisms, then g = F ◦ F̃−1 ∈ Aut(D) with g(0) = 0, so that

g(z) = eiθz for some θ ∈ R. As g′(0) > 0 we must have g(z) = z, i.e. F = F̃ .
Also, to see that any simply connected U, V ( C are biholomorphic, we simply

recall that U ∼ D and D ∼ V implies U ∼ V . �

As mentioned above, we will construct the biholomorphism as a limit of func-
tions.

As such, the following lemma will be useful.

Lemma 6.23. Let Ω ⊂ C be open and connected. Suppose {fn} is a sequence
of injective functions fn : Ω → C that converge locally uniformly to the function
f : Ω→ C. Then f is either injective or constant.
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Proof. First note that as f is the locally uniform limit of holomorphic functions, it
is holomorphic.

Suppose that f is not injective, so that there exist distinct z1, z2 ∈ Ω such that
f(z1) = f(z2).

We will show that f is constant.
Define gn(z) = fn(z)− fn(z1).
As each fn is injective, we see that each gn has exactly one zero in Ω at z = z1.
We also note that {gn} converges locally uniformly on Ω to g(z) := f(z)−f(z1).
Suppose g is not identically zero. Then g has an isolated zero at z2 (since Ω is

connected).
For a sufficiently small circle γ around z2, we can guarantee that g does not

vanish on γ and z1 /∈ γ ∪ interior(γ).
Using the argument principle and the fact that 1

gn
→ 1

g and g′n → g′ uniformly

on γ, we deduce

0 ≡ 1

2πi

∫
γ

g′n(z)

gn(z)
dz → 1

2πi

∫
γ

g′(z)

g(z)
dz = 1,

a contradiction. Thus g must be identically zero, that is, f(z) ≡ f(z1).
�

Proof of Theorem 6.21. We proceed in three main steps.
Step 1. We show that there exists an open set U ⊂ D such that Ω ∼ U and

0 ∈ U .
To this end, pick α ∈ C\Ω. As the holomorphic function z 7→ z − α is nonzero

on Ω we may define a holomorphic function f : Ω→ C such that

ef(z) = z − α. (∗)

In particular f is injective.
We now fix w ∈ Ω. We claim that there exists ε > 0 such that

|f(z)− (f(w) + 2πi)| > ε for all z ∈ Ω.

Indeed, otherwise we may find {zn} ⊂ Ω such that f(zn)→ f(w) + 2πi.
But then

ef(zn) = zn − α→ ef(w) = w − α, so that zn → w.

However f(zn)→ f(w) + 2πi 6= f(w), so this contradicts the continuity of f .
It follows that the function F : Ω→ C

F (z) =
1

f(z)− (f(w) + 2πi)

is a holomorphic, injective, and bounded function.
In particular F is a biholomorphism onto its (open) image.
As F is bounded, we may translate and rescale F so that F (Ω) ⊂ D and 0 ∈

F (Ω).
Step 2. By Step 1, we may assume without loss of generality that Ω ⊂ D is an

open set with 0 ∈ Ω. Define

F = {f : Ω→ D | f is holomorphic, injective, and f(0) = 0}.

In this step we find f ∈ F that maximizes |f ′(0)|.
Note that F 6= ∅, since it contains the function f(z) = z.
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It is easy to see that F is uniformly bounded, since |f(z)| ≤ 1 for all f ∈ F and
z ∈ Ω.

In fact, by the Cauchy integral formulas we can deduce that

s := sup
f∈F
|f ′(0)| <∞.

We now choose a sequence {fn} ⊂ F such that |f ′n(0)| → s as n→∞.
By Montel’s theorem, this sequence converges locally uniformly along a subse-

quence to a holomorphic function f : Ω→ C with |f ′(0)| = s.
Note that since z 7→ z belongs to F , we must have s ≥ 1.
Thus by the lemma we find that f is non-constant and hence injective.
By continuity we find sup |f | ≤ 1, and since f is non-constant the maximum

principle implies sup |f | < 1.
Finally, since f(0) = 0, we conclude that f ∈ F with |f ′(0)| = s.
Step 3. We show that f : Ω→ D is a biholomorphism.
It suffices to show that f is onto.
Suppose toward a contradiction that

there exists α ∈ D such that f(z) 6= α for all z ∈ Ω.

Consider ψα ∈ Aut(D) and define the set

A = ψα ◦ f(Ω).

As Ω is simply connected, so is A. (This follows from the continuity of ψα ◦ f and
the open mapping theorem.)

Furthermore α /∈ f(Ω) =⇒ 0 /∈ A, so that we may define a branch of the
logarithm logA on A.

Now consider the square root function g : A→ C given by

g(z) = e
1
2 logA(z).

Now define F : Ω→ C by

F = ψg(α) ◦ g ◦ ψα ◦ f.

We now notice that F ∈ F . Indeed, F is holomorphic and satisfies

F (0) = ψg(α) ◦ g ◦ ψα(0) = ψg(α) ◦ g(α) = 0.

Moreover, F (Ω) ⊂ D since this is true for each function in the composition. (Note
for instance that |g(z)|2 = |z| < 1 for z ∈ D.)

Finally, we note that F is injective as well since each function in the composition
is.

We now define h(z) = z2 and recall ψ−1
α = ψα. Then

f = Φ ◦ F, with Φ = ψα ◦ h ◦ ψg(α).

Now Φ : D → D is holomorphic with Φ(0) = 0, but it is not injective because h
is not.

Thus by the Schwarz lemma we conclude Φ′(0) < 1.
However,

f ′(0) = Φ′(F (0))F ′(0) = Φ′(0)F ′(0) =⇒ |f ′(0)| < |F ′(0)|,

contradicting the fact that f maximizes |ϕ′(0)| for ϕ ∈ F .
We conclude f is onto, as needed.
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To complete the proof, we simply note that we may multiply f by some eiθ to
guarantee that f ′(0) > 0. �

6.8. Exercises.

Exercise 6.1. (i) Let (X, d) and (Y, d̃) be metric spaces and f : X → Y . Show
that f is continuous on X if and only if

for all open U ⊂ Y, f−1(U) is open in X,

where

f−1(U) := {x ∈ X : f(x) ∈ U}.
(ii) Suppose U, V ⊂ C are open and non-empty and f : U → V is a biholomor-

phism. Show that the inverse f−1 : V → U is continuous.
Remark: For (i) use the definition of continuity from Definition 1.10.

Exercise 6.2. Suppose U, V ⊂ C are open and biholomorphic.
(i) Show that Aut(U) and Aut(V ) are isomorphic.
(ii) Show that if U is simply connected, then so is V .

Exercise 6.3. A (real) n × n matrix M is orthogonal if MM t = Id, where t

denotes transpose and Id is the n × n identity matrix. If M is orthogonal and
detM = 1, we call M a rotation.

(i) Show that the set of orthogonal matrices forms a subgroup of GL2(R) and
that the set of rotations forms a subgroup of SL2(R). (These groups are known
as the orthogonal group, denoted O(n), and the special orthogonal group, denoted
SO(n), respectively.)

(ii) Show that M is orthogonal if and only if 〈Mv,Mw〉Rn = 〈v, w〉Rn for all
v, w ∈ Rn.

(iii) Show that if M is orthogonal then the angle between v, w ∈ Rn equals the
angle between Mv and Mw.

Remark. A few useful facts: detAt = detA, detAB = detA · detB, (AB)t =
BtAt.

Exercise 6.4. Show that h(z) = − 1
2 (z + 1

z ) is a holomorphic injective function
from {z ∈ D : Im z > 0} to H.

Exercise 6.5. Consider the inverse of the stereographic projection map:

f : R2 → R3, f(x, y) = ( x
1+x2+y2 ,

y
1+x2+y2 ,

x2+y2

1+x2+y2 ).

For (x, y) ∈ R2 let M(x, y) denote the 3 × 2 matrix of partial derivatives of f at
(x, y). Show that for all (x, y), one can write

[M(x, y)]tM(x, y) = g(x, y)Id,

where t denotes transpose, Id is the 2 × 2 identity matrix, and g : R2 → R is a
strictly positive function.

Remark. This computation implies that stereographic projection is conformal.
(Why? )

Exercise 6.6. For each pair of sets U, V below, find a Möbius transformation
taking U to V .

(i) U = {z ∈ C : |z| > 1}, V = {z ∈ C : Re (z) > 0},
(ii) U = D, V = {z ∈ C : π4 < arg(z) < 5π

4 }.
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Exercise 6.7. Let M,N ∈ GL2(C). Show that fMN = fM ◦ fN , where fM is the
Möbius transformation associated with M .

Exercise 6.8. Let f : H→ C be holomorphic and satisfy |f(z)| ≤ 1 for z ∈ H and
f(i) = 0. Show that

|f(z)| ≤
∣∣∣∣z − iz + i

∣∣∣∣ for z ∈ H.

Exercise 6.9. A fixed point of a function f is a point z such that f(z) = z.
(i) Show that if f : D→ D is holomorphic and has two distinct fixed points, then

f(z) = z for z ∈ D.
(ii) True or false: every holomorphic function f : D→ D must have a fixed point.

(Prove that your answer is correct.)

Exercise 6.10. Let

A =

(
−i 1
1 −i

)
, M =

(
cos θ − sin θ
sin θ cos θ

)
.

Show that if fA−1 ◦ g ◦ fA = e−2iθ then g = fM .

Exercise 6.11. Suppose {fn} is a sequence of functions fn : Ω→ C. Show that if
{fn} is uniformly Cauchy on Ω, then {fn} converges uniformly on Ω.

Remark. Here uniformly Cauchy means that for any ε > 0 there exists N such
that for any n,m ≥ N and any z ∈ Ω we have |fn(z)− fm(z)| < ε.

Exercise 6.12. Let Ω ⊂ C be open and K ⊂ Ω be compact. Show that there
exists r > 0 such that for all z ∈ K we have Br(z) ⊂ Ω.

Remark. As Ω is open, it follows that for each z ∈ K there exists r > 0 such
that Br(z) ⊂ Ω. The point is that if K is compact, we can find a single r > 0 that
works for all z ∈ K. The proof of this fact is essentially included in the proof of
Theorem 1.8; see (1.2) therein.

Exercise 6.13. Let {fn} be a sequence of functions fn : Ω→ C and {wj}∞j=1 ⊂ Ω.

Suppose that for each k ≥ 1 we have a subsequence {fkn} of {fn} such that

{fk+1
n } is a subsequence of {fkn}

and
{fkn(wj)} converges for j = 1, . . . , k.

Define the subsequence {gn} by gn = fnn . Show that {gn(wj)} converges for all j.

Exercise 6.14. Suppose that {K`} is a sequence of compact sets such that K` ⊂
K`+1 for each `. Suppose that {fn} is a sequence of a functions and that for each
` ≥ 1 we have a subsequence {f `n} of {fn} such that

{f `+1
n } is a subsequence of {f `n}

and
{f `n} converges uniformly on K`.

Define the subsequence {gn} by gn = fnn . Show that {gn} converges uniformly on
each K`.
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7. The Prime Number Theorem

We next discuss an application of complex analysis to number theory. Our main
reference for this section is Chapter XIV in Gamelin’s Complex Analysis.

7.1. Preliminaries.

Definition 7.1 (Prime). Let p ∈ N. We call p prime if p > 1 and p has no positive
divisors other than 1 and p.

Convention. We use n to refer to arbitrary natural numbers, while p always
refers to primes.

We recall (without proof) the following essential fact about prime numbers.

Theorem 7.2 (Fundamental theorem of arithmetic). Every n > 1 can be written
uniquely as a product of powers of primes.

The prime number theorem addresses the question of the asymptotic distribution
of primes. For this question even to make sense, we first need the following:

Theorem 7.3 (Euclid, 300 BC). There are infinitely many primes.

Proof. Suppose there were only finitely many, say p1, . . . , pn. Now some prime pj
must divide p1 · · · pn + 1. But since pj also divides p1 · · · pn we now deduce that pj
divides 1, a contradiction. �

Definition 7.4. We define π(n) = #{p : p ≤ n}.

Definition 7.5 (Asymptotic notation). We write f(n) ∼ g(n) as n→∞ to denote

lim
n→∞

f(n)

g(n)
= 1.

The goal of this section is to prove the following:

Theorem 7.6 (Prime number theorem, Hadamard/de la Vallée Poussin, 1896).

π(n) ∼ n

log n
as n→∞.

The following figure depicts n/ log n (solid line) versus π(n) (dashed line) for n
between 1, 000 and 10, 000, 000 (left), along with the ratio of n

logn ÷ π(n) (right).

The proof will rely on the analysis of some special functions, the first of which
is the following:

Definition 7.7. We define ϑ(x) =
∑
p≤x log p for x > 0.
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The next proposition makes the role of ϑ clear:

Proposition 7.8. The prime number theorem holds if and only if

ϑ(n) ∼ n as n→∞.

Proof. We first note that

0 ≤ ϑ(n) ≤ π(n) log n for n ≥ 1.

Next we fix 0 < ε < 1. Then

ϑ(n) ≥
∑

n1−ε<p≤n

log p

≥ (1− ε) log n
[
π(n)− π(n1−ε)

]
≥ (1− ε) log n

[
π(n)− n1−ε].

Combining the two estimates above we deduce

ϑ(n)

n
≤ π(n)

log n

n
≤ 1

1− ε
ϑ(n)

n
+

log n

nε
for n ≥ 1.

As

lim
n→∞

log n

nε
= 0

and ε > 0 was arbitrary, we deduce that

ϑ(n) ∼ n if and only if π(n) ∼ n

log n
.

�

As a warmup, let’s prove the following bound (due to Chebyshev):

Lemma 7.9. For all x ≥ 1 we have ϑ(x) ≤ (4 log 2)x.

Proof. We consider the binomial coefficient bn :=

(
2n
n

)
and claim the following:

(i) bn < 22n

(ii) the product
∏
n<p<2n p divides bn (and hence is less than 22n).

For (i) we recall that bn counts the number of subsets of (1, . . . , 2n) with n
elements, while 22n counts the total number of subsets of (1, . . . , 2n).

For (ii) we argue as follows. Since

bn =
(2n)!

n!n!
=

(n+ 1) · · · (2n)

1 · · ·n
is an integer, we know that 1 · · ·n divides (n+ 1) · · · (2n). However, 1 · · ·n cannot
divide any prime between n and 2n, and hence we deduce that

(n+ 1) · · · (2n)

1 · · ·n ·
∏
n<p<2n p

is an integer, as needed.
Thus we have∑

n<p<2n

log p = log

( ∏
n<p<2n

p

)
≤ log(22n) ≤ 2n log 2,

and so
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ϑ(2m) =

m∑
k=1

∑
2k−1<p<2k

log p ≤ 2 log 2

m∑
k=1

2k−1 ≤ 2m+1 log 2.

Now for x > 0 we choose m so that 2m−1 < x ≤ 2m. Then

ϑ(x) ≤ ϑ(2m) ≤ 2m+1 log 2 ≤ (4 log 2)x,

which completes the proof. �

That is all we will say about ϑ for the moment. We turn now to our next special
function.

7.2. The Riemann Zeta Function.

Definition 7.10. For s > 1 we define ζ(s) =
∑∞
n=1 n

−s.

Proposition 7.11. The series defining ζ converges on {s ∈ C : Re s > 1} and
defines a holomorphic function there.

Proof. We first note that if ε > 0 and Sε = {s ∈ C : Re s ≥ 1 + ε}, then the series∑
n−s converges absolutely uniformly for s ∈ Sε. Indeed, if s = σ + it ∈ Sε, we

have
|n−s| = n−σ|n−it| = n−σ|e−it logn| = n−σ,

and hence we can use the comparison test with the series
∑
n−(1+ε).

Thus ζ is the locally uniform limit of the holomorphic functions fN (s) :=∑N
n=1 n

−s on the set {s ∈ C : Re s > 1}, which implies the result. �

The next lemma demonstrates a clear connection between ζ and the primes.

Lemma 7.12. For s ∈ C with Re s > 1, we have

1

ζ(s)
=
∏
p

(1− 1
ps ).

In particular ζ(s) 6= 0 if Re s > 1.

Proof. We first note that
∑
p

1
ps converges absolutely (locally uniformly) on {s ∈

C : Re s > 1}.
Thus the product above converges.
We now claim that for s ∈ C with Re s > 1 we have∏

p

1

1− p−s
=

∞∑
n=1

n−s = ζ(s), (∗)

which implies the result.
To prove (∗) we first note that for p prime and Re s > 1 we have

1

1− p−s
= 1 + p−s + p−2s + · · · .

If we apply this to the first m primes, say p1, . . . , pm, then multiply, we find
m∏
`=1

1

1− p−s`
=

∞∑
k1=0

· · ·
∞∑

km=0

(pk1
1 · · · pkmm )−s.

By the fundamental theorem of artithmetic, every n > 1 can be written uniquely
as a product of powers of primes.
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Thus each summand n−s appears at most once in the sum above, and as we send
m→∞ we will eventually cover each n−s. This proves (∗). �

The next result lets us extend ζ beyond the line {s ∈ C : Re s = 1}.

Lemma 7.13. The function

s 7→ ζ(s)− 1

s− 1

has an analytic continuation to the set {s ∈ C : Re s > 0}. In particular, ζ has a
meromorphic continuation to {s ∈ C : Re s > 0} with a single simple pole at s = 1
with res1ζ = 1.

Proof. First for s ∈ C with Re s > 1 we can write

ζ(s)− 1

s− 1
=

∞∑
n=1

n−s −
∫ ∞

1

x−s dx =

∞∑
n=1

(∫ n+1

n

[n−s − x−s] dx
)
.

We now claim that the series on the right actually converges absolutely (locally
uniformly) whenever Re s > 0, which implies the result.

Indeed, we can write∫ n+1

n

[n−s − x−s] dx =

∫ n+1

n

∫ x

n

su−(s+1) du dx,

so that ∣∣∣∣ ∫ n+1

n

[n−s − x−s] dx
∣∣∣∣ ≤ |s| max

u∈[n,n+1]
|u−(s+1)|.

As

|u−(s+1)| = u−(Re s+1) ≤ n−(Re s+1)

for u ∈ [n, n+1], the claim follows by comparison with the series
∑
n n
−(Re s+1). �

Remark 7.14. One can actually show that ζ has a meromorphic continuation into
all of C, with no other singularities than the pole at s = 1. We will not pursue this
direction.

We next study the zeros of the ζ function, which will also lead to our final special
function.

We begin by using Lemma 7.12 to write

log
(

1
ζ(s)

)
= log

(∏
p

1− 1
ps

)
=
∑
p

log(1− p−s).

As

p−s = e−s log p =⇒ d
ds

(
p−s
)

= − log p · e−s log p = − log p · p−s,

we find

−ζ
′(s)

ζ(s)
=
∑
p

log p · p−s

1− p−s
=
∑
p

log p

ps − 1
. (∗)

We split the sum into two pieces:∑
p

log p

ps − 1
=
∑
p

log p

ps
+
∑
p

log p

ps(ps − 1)
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and define

Φ(s) :=
∑
p

log p

ps
.

Note that Φ converges absolutely and defines a holomorphic function on {s ∈
C : Re s > 1}.

In fact, using Lemma 7.13 and (∗) we can say more:

Lemma 7.15. The function Φ has a meromorphic continuation to {s ∈ C : Re s >
1
2}, with simple poles precisely at the poles and zeros of ζ.

Proof. We first rewrite (∗) as

Φ(s) = −ζ
′(s)

ζ(s)
−
∑
p

log p

ps(ps − 1)
.

As ζ is meromorphic on {s ∈ C : Re s > 0} and the function

s 7→
∑
p

log p

ps(ps − 1)

defines a holomorphic function on {s ∈ C : Re s > 1
2}, we deduce that Φ has a

meromorphic continuation to {s ∈ C : Re s > 1
2}.

Furthermore, the formula above also shows that Φ has simple poles at the poles
and zeros of ζ. (Why? ) �

Remark 7.16. We can now see that Φ has a simple pole at s = 1, since ζ does.
Moreover, the formula above implies that res1Φ = res1ζ = 1.

Finally we record a result that will be crucial for the proof of the prime number
theorem.

Proposition 7.17. The function ζ has no zeros on the line ` := {s ∈ C : Re s = 1}.
Thus Φ has no poles on ` other than the pole at s = 1.

Proof. A fair warning: the proof is rather mysterious.
Suppose toward a contradiction that ζ(1 + it) = 0 for some t 6= 0.
In this case we find

|ζ(σ + it)|4 ≤ C(σ − 1)4 as σ → 1+.

As ζ has a simple pole at s = 1, we also have

|ζ(σ)|3 ≤ C ′(σ − 1)−3 as σ → 1+.

As ζ is holomorphic at s = σ + 2it0, we have that ζ(σ + 2it0) stays bounded as
σ → 1+.

Thus we deduce

|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| → 0 as σ → 1+. (∗)
On the other hand, using the formula above and using the power series for log

we have the following for s ∈ C with Re s > 1:

log
(

1
ζ(s)

)
=
∑
p

log(1− p−s) = −
∑
p

∞∑
m=1

p−ms

m
= −

∞∑
n=1

cnn
−s,

where cn = 1
m if n = pm and cn = 0 otherwise.
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Thus for s ∈ C with Re s > 1 we have

log ζ(s) =

∞∑
n=1

cnn
−s for some cn ≥ 0.

We now let s = σ + it for σ > 1 and note that

Ren−s = Re (n−σeit logn) = n−σ cos(t log n).

Thus

log|ζ3(σ)ζ4(σ + it)ζ(σ + 2it)|
= 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|
= 3Re log ζ(σ) + 4Re log ζ(σ + it) + Re log ζ(σ + 2it)

=
∞∑
n=1

cnn
−σ[3 + 4 cos(t log n) + cos(2t log n)]

=

∞∑
n=1

2cnn
−σ[1 + cos(t log n)

]2
. (Check!)

In particular

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 0,

which contradicts (∗) since log x is negative for x ∈ (0, 1). �

Remark 7.18. We now know that ζ has no zeros on {s ∈ C : Re s ≥ 1}.
One can show (via the so-called “functional equation” for ζ) that the only zeros

of ζ in {s ∈ C : Re s ≤ 0} are the “trivial zeros” at the negative even integers.
Thus all “non-trivial” zeros of ζ lie in the “critical strip” S := {s ∈ C : 0 <

Re s < 1}.
It is known that ζ has infinitely many zeros in S, and in fact their asymptotic

distribution is known.
The Riemann hypothesis states that all of the zeros of ζ in S lie on {s ∈ C :

Re s = 1
2}.

The Riemann hypothesis is one of the most famous open problems in mathe-
matics; solving it will earn you a million dollar prize (not to mention international
fame!).

7.3. Laplace Transforms. We next introduce an analytic tool that will play an
important role in the proof of the prime number theorem.

Definition 7.19 (Laplace transform). Let h : [0,∞)→ R be piecewise continuous
and have order of growth ≤ ρ. The Laplace transform of h is the function

(Lh)(s) =

∫ ∞
0

e−sth(t) dt,

which defines a holomorphic function on {s ∈ C : Re s > ρ}.

Laplace transforms show up in a variety of settings. They are frequently applied
in the context of ODEs and electrical engineering, for example.

We have a specific goal in mind, so we will not pursue the general theory. Instead
we will only prove the following:
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Proposition 7.20. Suppose h : [0,∞) → R is a bounded piecewise continuous
function. Suppose Lh has an analytic continuation across the imaginary axis. Then

lim
T→∞

∫ T

0

h(t) dt = lim
x→0+

(Lh)(x).

Proof. Let g denote the analytic continuation of Lh and let ε > 0.
For T > 0 we define

gT (z) =

∫ T

0

e−zsh(s) ds

and note that gT is an entire function.
To prove the theorem it suffices to show

|g(0)− gT (0)| < 4ε for all T sufficiently large. (∗)
Let M denote an upper bound for h, and choose R > 0 large enough that

M
R < ε.

We next choose δ > 0 small enough that g is holomorphic in an open set con-
taining

Ωδ = {z ∈ BR(0) : Re z > −δ}.
By the Cauchy integral formula, we have

g(0)− gT (0) =
1

2πi

∫
∂Ωδ

[g(z)− gT (z)] ezT
(
1 + z2

R2

)︸ ︷︷ ︸
:=F (z)

dz
z .

We write

∂Ωδ = γ1 ∪ γ2 ∪ γ3,

where

• γ1 = {z ∈ ∂Ωδ : Re z > 0},
• γ2 = {z ∈ ∂Ωδ : Re z = −δ},
• γ3 = ∂Ωδ\(γ1 ∪ γ2) (the small arcs).

For z = x+ iy ∈ γ1 we have

|g(z)− gT (z)| ≤
∣∣∣∣ ∫ ∞
T

e−szh(s) ds

∣∣∣∣ ≤M ∫ ∞
T

e−sx ds ≤ Me−xT

x
.

As |1 + z2

R2 | = 2 |x|R whenever |z| = R, we deduce∣∣∣∣ 1

2πi

∫
γ1

[g(z)− gT (z)]F (z) dzz

∣∣∣∣ ≤ πR

2π

Me−xT

x

exT

R

2x

R
≤ M

R
< ε.

To proceed, we treat g and gT separately.
As gT is entire, we may write

1

2πi

∫
γ2∪γ3

gT (z)F (z) dzz =
1

2πi

∫
γ4

gT (z)F (z) dzz ,

where

γ4 = {z ∈ BR(0) : Re z < 0}.
For z = x+ iy ∈ γ4 we estimate

|gT (z)| =
∣∣∣∣ ∫ T

0

e−szh(s) ds

∣∣∣∣ ≤M ∫ T

0

e−sx ds ≤ Me−xT

|x|
.
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Thus as above we have∣∣∣∣ 1

2πi

∫
γ4

gT (z)F (z) dzz

∣∣∣∣ ≤ πR

2π

Me−xT

|x|
exT

R

2|x|
R
≤ M

R
< ε.

We next note that for z ∈ γ3 we have

|ezT | = eRT cos arg z ≤ 1

and that the length of γ3 tends to zero as δ → 0. Thus for δ small enough we find∣∣∣∣ 1

2πi

∫
γ3

g(z)F (z) dzz

∣∣∣∣ < ε for any T > 0.

Finally for z ∈ γ2 we have |ezT | = e−δT , thus for all T sufficiently large we get∣∣∣∣ 1

2πi

∫
γ2

g(z)F (z) dzz

∣∣∣∣ < ε.

Collecting the estimates above gives (∗), as needed. �

7.4. Proof of the Prime Number Theorem. We turn to the proof of the prime
number theorem. Recall from Proposition 7.8 that it suffices to show

ϑ(n) ∼ n as n→∞, where ϑ(x) =
∑
p≤x

log p.

We begin with a lemma that brings together some ideas from the previous sec-
tions:

Lemma 7.21. For s ∈ C with Re s > 1 we have(
Lϑ(et)

)
(s) =

1

s
Φ(s).

Proof. By Lemma 7.9, the function t 7→ ϑ(et) has order of growth ≤ 1. Thus its
Laplace transform defines a holomorphic function on {s ∈ C : Re s > 1}.

Let pn denote the nth prime. Then ϑ(et) is constant for log pn < t < log pn+1,
so that ∫ log pn+1

log pn

e−stϑ(et) dt = ϑ(pn)
e−st

−s

∣∣∣∣log pn+1

t=log pn

=
1

s
ϑ(pn)

(
p−sn − p−sn+1

)
.

Summing over n and using that

ϑ(pn)− ϑ(pn−1) = log pn,

we deduce ∫ ∞
0

e−stϑ(et) dt =
1

s

∑
n

ϑ(pn)(p−sn − p−sn+1)

=
1

s

∑
n

[
ϑ(pn)− ϑ(pn−1)

]
p−sn

=
1

s

∑
p

log p

ps
,

which completes the proof. �

We next consider the function

h(t) = ϑ(et)e−t − 1.
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Lemma 7.22. The Laplace transform of h is given by the formula

(Lh)(s) =
Φ(s+ 1)

s+ 1
− 1

s

and has an analytic continuation across the imaginary axis.

Proof. By the previous lemma, we can compute that for Re s > 0 we have

(Lh)(s) =

∫ ∞
0

e−st[ϑ(et)e−t − 1] dt

=

∫ ∞
0

e−(s+1)tϑ(et) dt−
∫ ∞

0

e−st dt

=
Φ(s+ 1)

s+ 1
− 1

s
.

We know that Φ is holomorphic for Re s > 1, and by Lemma 7.15 we know that Φ
has a mermomorphic continuation to {s ∈ C : Re s > 1

2}.
Moreover, from Proposition 7.17 we know that the only pole of Φ on the line

{s ∈ C : Re s = 1} is the simple pole at s = 1, with res1Φ = 1.
We conclude that the function

s 7→ Φ(s+ 1)

s+ 1
− 1

s

can be continued analytically across the imaginary axis, which completes the proof.
�

We now have all of the ingredients we need to prove the prime number theorem.

Proof of Theorem 7.6. We first use Lemma 7.22 and Proposition 7.20 to conclude
that

lim
T→∞

∫ T

0

[ϑ(et)e−t − 1] dt

exists. Changing variables via x = et, this implies

lim
R→∞

∫ R

1

[ϑ(x)
x − 1

]
dx
x exists. (∗)

We will now use (∗) to show that ϑ(x) ∼ x as x→∞, which by Proposition 7.8
is equivalent to the prime number theorem.

First we suppose toward a contradiction that ϑ(x) > (1 + ε)x for some ε > 0
and for arbitrarily large x.

As ϑ is increasing, for any such x we have∫ (1+ε)x

x

[ϑ(t)
t − 1

]
dt
t ≥

∫ (1+ε)

x

[ϑ(x)
t − 1

]
dt
t

≥
∫ (1+ε)x

x

[
(1 + ε)xt − 1

]
dt
t

≥
∫ 1+ε

1

[
1+ε
r − 1

]
dr
r

≥ ε− log(1 + ε) > 0.
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Thus as R→∞ we have that ∫ R

1

[ϑ(t)
t − 1

]
dt
t

increases by ε− log(1+ε) over infinitely many disjoint intervals of the form (x, (1+
ε)x), which contradicts (∗).

Arguing similarly, we find that we cannot have ϑ(x) < (1 − ε)x for some ε > 0
for arbitrarily large values of x.

We conclude that ϑ(x) ∼ x as x→∞, which completes the proof. �

7.5. Exercises.

Exercise 7.1. Show that ∫ 1

0

xs dx =
1

s+ 1
for s ∈ C such that Re s > −1.

Hint. Recall Exercise 3.21.

Exercise 7.2. Suppose F is a meromorphic function on C and define f(z) = F ′(z)
F (z) .

Prove the following:
(i) If F has a zero of order n at z0, then f has a simple pole at z0 and resz0f = n.
(ii) If F has a pole of order m at z0, then f has a simple pole at z0 and resz0f =

−m.

Exercise 7.3. For s > 0 define the gamma function by the convergent integral

Γ(s) =

∫ ∞
0

e−tts−1 dt.

(i) Show that the integral defining Γ defines a holomorphic function on {s ∈ C :
Re s > 0}.

(ii) Show that Γ has a meromorphic continuation to all of C. Determine its poles,
their orders, and their residues.

Hints. For s ∈ C with Re s > 0 write

Γ(s) =

∫ 1

0

e−tts−1 dt+

∫ ∞
1

e−tts−1 dt.

Note that the second integral defines an entire function of s. Express the first
integral as a series by writing e−t in a power series and integrating term by term.
Show that the series defines a meromorphic function on C and determine its poles,
their orders, and their residues.

Remark. The gamma function shows up all over the place. One important fact
you may try to prove is that Γ(n+ 1) = n! for n ∈ N. To prove this, show that (i)
Γ(1) = 1 and (ii) Γ(s+ 1) = sΓ(s) for Re s > 0. For (ii), integrate by parts in the
integral formula for Γ.
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