Introduction to Partial Differential Equations

Jason Murphy

May 13, 2017

Contents

1 Introduction 4
1.1 Derivation of some common PDE 4
2 Review of Topology and Calculus 7
2.1 Properties of \mathbb{R}^{d} | 7
2.2 Calculus Review 8
2.3 Further Topics 9
2.4 Convolution and Distributions 9
3 The Laplace Equation 13
3.1 The Fundamental Solution 13
3.2 Green's Functions 16
3.3 Properties of Solutions 21
4 The Heat Equation 25
4.1 The Fundamental Solution 25
4.2 The Mean Value Property 28
4.3 The Maximum Principle and Uniqueness 30
5 The Wave Equation 34
5.1 The Fundamental Solution 34
5.1.1 The Case $d=1$ 35
5.1.2 The Case $d=3$ 36
5.1.3 The Case $d=2$ 38
5.2 Energy Methods 40
6 Separation of Variables 43
6.1 Linear Algebra Review 43
6.2 Separation of Variables 44
6 Fourier Series 45
7 The Fourier Transform 52
7.1 The Fourier Transform 52
7.2 Higher Dimensions 57
7.3 Application to PDEs 58
7.4 Tempered Distributions 60
7.5 Duhamel's Principle 63
8 The Method of Characteristics 67
8.1 The Method of Characteristics 67
8.1.1 The Linear Case. 67
8.1.2 The Quasilinear Case. 69
8.2 Scalar Conservation Laws 70
8.2.1 Rankine-Hugoniot Condition for Shocks. 73
8.2.2 Entropy Solutions 74
9 Calculus of Variations 76
9.1 Several Examples 76
10 Numerical Methods 82
10.1 Finite Difference Schemes 82
10.2 Numerical Stability 84
10.3 Finite Element Method 86
11 Topics from Physics 88
11.1 Classical Mechanics. 88
11.2 Quantum Mechanics 90
11.3 Electromagnetism. 100
11.4 Elementary Particles 102

Chapter 1

Introduction

These notes are based on an undergraduate introductory PDE course I gave at UC Berkeley in the Fall of 2014. While searching for a textbook, I could not find exactly what I was looking for. Between the textbooks of Strauss and Evans, I could find essentially everything I wanted to cover; however, I found that I wanted something a bit more in-depth than the book of Strauss and a bit more basic than the book of Evans. Inspired largely by these two textbooks, I prepared my own notes, which formed the basis of this document.

The prerequisites for this class consisted of multivariable calculus, linear algebra, and differential equations. In particular, I could not assume familiarity with real analysis. Thus, many issues related to convergence are dealt with rather informally, and many technical details are glossed over.

These notes are a work in progress and will be updated over time.

1.1 Derivation of some common PDE

Example 1.1.1 (Heat equation). Let $\Omega \subset \mathbb{R}^{d}$ be an open region of space. Let $u(t, x)$ denote the density of some quantity in Ω (e.g. 'heat') at time t and position x. The goal is to describe how the distribution of heat evolves in time.

Denote by $\mathbf{F}(t, x)$ the 'flux density' of the heat at (t, x). Heat flows from regions of high density to low density, so we approximate $\mathbf{F}=-k \nabla u$ for some $k>0$.

Now fix a small subregion $V \subset \Omega$. The amount of heat in V is given by

$$
\int_{V} u(t, x) d x .
$$

We wish to measure

$$
\frac{d}{d t} \int_{V} u(t, x) d x=\int_{V} \frac{\partial u}{\partial t}(t, x) d x
$$

To do so, we need to measure the flow of heat through the boundary ∂V.
Let $\mathbf{n}(x)$ be the outward-pointing unit normal vector at $x \in \partial V$. Then

$$
\int_{V} \frac{\partial u}{\partial t} d x=-\int_{\partial V} \mathbf{F} \cdot \mathbf{n} d S=\int_{\partial V} k \nabla u \cdot \mathbf{n} d S
$$

Applying the divergence theorem, we find

$$
\begin{equation*}
\int_{V} \frac{\partial u}{\partial t} d x=\int_{V} \operatorname{div} k \nabla u d x=\int_{V} k \Delta u d x \tag{*}
\end{equation*}
$$

For any (t, x), we now consider regions $V \subset \Omega$ that 'shrink down' to (t, x). As (*) holds on each V, we conclude

$$
\frac{\partial u}{\partial t}(t, x)=k \Delta u(t, x) .
$$

This is the heat equation.
Example 1.1.2 (Laplace equation). We revisit the setting of Example 1, but suppose the system has reached equilibrium. In particular, $u=u(x)$. (The density is constant in time).

Consider a subregion $V \subset \Omega$. As the system is at equilibrium,

$$
\int_{V} u d x
$$

is constant. Thus the flow through ∂V is zero:

$$
\int_{\partial V} k \nabla u \cdot \mathbf{n} d S=0
$$

Applying the divergence theorem, we find

$$
\int_{V} \Delta u d x=0
$$

As V was arbitrary, we deduce

$$
\Delta u(x)=0 .
$$

This is the Laplace equation.

Definition 1.1.1. Solutions to Laplace's equation are called harmonic.
Example 1.1.3 (Wave equation). Let $\Omega \subset \mathbb{R}^{d}$ be an open region of space inhabited by an elastic object (for example, a string if $d=1$, a drumhead if $d=2$). Let $u(t, x)$ denote the displacement of the object in some fixed direction. The goal is to derive an equation for u. We will primarily use ' $F=m a$ '.

Let $V \subset \Omega$ be a small subregion. Force (tension) acts on the object through the boundary ∂V. For elastic bodies, a reasonable approximation is $\mathbf{F}=-k \nabla u$ for some $k>0$.

The net force on the object in the region V is thus

$$
-\int_{\partial V} \mathbf{F} \cdot \mathbf{n} d S=\int_{\partial V} k \nabla u \cdot \mathbf{n} d S
$$

The acceleration of the object within V is given by

$$
\frac{d^{2}}{\partial t^{2}} \int_{V} u d x=\int_{V} \frac{\partial^{2} u}{\partial t^{2}} d x
$$

Assuming constant mass density ρ, Newton's law $(F=m a)$ gives

$$
\int_{\partial V} k \nabla u \cdot \mathbf{n} d S=\rho \int_{V} \frac{\partial^{2} u}{\partial t^{2}} d x
$$

Applying the divergence theorem we find

$$
\int_{V}\left(\frac{\partial^{2} u}{\partial t^{2}}-c \Delta u\right) d x=0, \quad c=\frac{k}{\rho} .
$$

As V was arbitrary, we deduce

$$
\frac{\partial^{2} u}{\partial t^{2}}-c \Delta u=0 .
$$

This is the wave equation.

Chapter 2

Review of Topology and Calculus

2.1 Properties of \mathbb{R}^{d}

We work in Euclidean space \mathbb{R}^{d}, which is a vector space with the standard basis $\left\{e^{1}, \ldots, e^{d}\right\}$, where $e^{1}=(1,0, \ldots, 0)$, etc. For $x \in \mathbb{R}^{d}$, we write $x=\left(x_{1}, \ldots, x_{d}\right)$ to denote $x=x_{1} e^{1}+\cdots+x_{d} e^{d}$. We call x_{1}, \ldots, x_{d} the components of x.

The standard inner product on \mathbb{R}^{d} is given by $x \cdot y=x_{1} y_{1}+\cdots+x_{d} y_{d}$. The norm of a vector is defined by $|x|=\sqrt{x \cdot x}$. The distance between two points is given by $d(x, y)=|x-y|$.

We use the metric on \mathbb{R}^{d} to define its topology, that is, the notion of open/closed sets and convergence/limits.

For $x \in \mathbb{R}^{d}$ and $r>0$, we define the open ball

$$
B_{r}(x)=\left\{y \in \mathbb{R}^{d}: d(x, y)<r\right\} .
$$

A set $\Omega \subset \mathbb{R}^{d}$ is open if for any $x \in \Omega$, there exists $r>0$ such that $B_{r}(x) \subset \Omega$. A set $C \subset \mathbb{R}^{d}$ is closed if its complement $\mathbb{R}^{d} \backslash C:=\left\{x \in \mathbb{R}^{d}:\right.$ $x \notin C\}$ is open.

The closure of Ω, denoted $\bar{\Omega}$, is the intersection of all closed sets containing Ω

A sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{d}$ converges to $\ell \in \mathbb{R}^{d}$ if

$$
\text { for any } \varepsilon>0 \text { there exists } N \text { such that }\left|x_{n}-\ell\right|<\varepsilon \text { for all } n \geq N \text {. }
$$

We call ℓ the limit of the sequence and write $x_{n} \rightarrow \ell$

A set C is closed if whenever $\left\{x_{n}\right\}_{n=1}^{\infty} \subset C$ and $x_{n} \rightarrow \ell$, we have $\ell \in C$.
A set $K \subset \mathbb{R}^{d}$ is compact if it is closed and bounded. (This is not a definition of compact, but rather a theorem about compact sets in \mathbb{R}^{d}.)

2.2 Calculus Review

Fix an open set $\Omega \subset \mathbb{R}^{d}$ and a function $f: \Omega \rightarrow \mathbb{R}$.
A function f is continuous at $x \in \Omega$ if whenever $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \Omega$ and $x_{n} \rightarrow x$, we have $f\left(x_{n}\right) \rightarrow f(x)$. The function f is continuous if it is continuous at each $x \in \Omega$

A function f is differentiable at $x \in \Omega$ if there exists $v \in \mathbb{R}^{d}$ such that for any $\left\{h_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{d} \backslash\{0\}$ such that $h_{n} \rightarrow 0$, we have

$$
\frac{f\left(x+h_{n}\right)-f(x)-v \cdot h_{n}}{\left|h_{n}\right|} \rightarrow 0 .
$$

We call v the gradient of f at x, and we write $v=\nabla f(x)$.
The components of $\nabla f(x)$ are the partial derivatives of f, denoted $\frac{\partial f}{\partial x_{i}}(x)$. That is, $\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{d}}(x)\right)$.

The function f is differentiable if it is differentiable at each $x \in \Omega$.
Note that $\frac{\partial f}{\partial x_{i}}$ defines a function from $\Omega \rightarrow \mathbb{R}$, which may also be differentiable. Thus we have second order derivatives $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$, as well as higher order derivatives. Clairaut's theorem states that 'mixed' partial derivatives (e.g. $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ versus $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$) are equal if they are continuous.

We say f is smooth if it has continuous derivatives of every order we write $f \in C^{\infty}$.

The support of f is defined as follows: $\operatorname{supp}(f):=\overline{\{x: f(x) \neq 0\}}$. If f is smooth and $\operatorname{supp}(f)$ is compact, we write $f \in C_{c}^{\infty}$.

A vector field is a function $\mathbf{F}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$. We write \mathbf{F} in terms of its component functions: $\mathbf{F}=\left(F_{1}, \ldots, F_{d}\right)$.

We use the following notation for a function $u: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, with $(t, x) \in \mathbb{R} \times \mathbb{R}^{d}:$

$$
\begin{aligned}
& u_{t}=\partial_{t} u=\frac{\partial u}{\partial t}, \\
& u_{x_{i}}=\partial_{x_{i}} u=\partial_{i} u=\frac{\partial u}{\partial x_{i}}, \\
& \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=u_{x_{i} x_{j}}=\partial_{x_{i} x_{j}} u=\partial_{i j} u, \quad \text { etc. } \\
& \nabla u=\left(u_{x_{1}}, \ldots, u_{x_{d}}\right)=\operatorname{grad} u
\end{aligned}
$$

The divergence of $\mathbf{F}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is given by $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\sum_{i=1}^{d} \frac{\partial F_{i}}{\partial x_{i}}$.
The Laplacian of u is given by $\Delta u=\operatorname{div} \nabla u=\sum_{i=1}^{d} u_{x_{i} x_{i}}$.

2.3 Further Topics

Theorem 2.3.1 (Gauss-Green formula). Let $\Omega \subset \mathbb{R}^{d}$ be an open region with smooth boundary $\partial \Omega$. Let $f: \bar{\Omega} \rightarrow \mathbb{R}$ be a smooth function. Let $\boldsymbol{n}(x)=\left(n_{1}(x), \ldots, n_{d}(x)\right)$ denote the outward-pointing unit normal vector at $x \in \partial \Omega$. Then for $i \in\{1, \ldots, d\}$,

$$
\int_{\Omega} u_{x_{i}} d x=\int_{\partial \Omega} u n_{i} d S
$$

- Change of variables:

$$
\underbrace{\int_{\mathbb{R}^{d}} f\left(x+x_{0}\right) d x=\int_{\mathbb{R}^{d}} f(y) d y}_{y=x+x_{0}, \quad d y=d x}, \quad \underbrace{\int_{\mathbb{R}^{d}} f(c x) d x=|c|^{-d} \int_{\mathbb{R}^{d}} f(y) d y}_{y=c x, d y=|c|^{d} d x}
$$

- Polar coordinates:

$$
\underbrace{\int_{\mathbb{R}^{d}} f(x) d x=\int_{0}^{\infty} \int_{\partial B_{1}(0)} f(r \theta) r^{d-1} d S d r}_{x=r \theta, \quad d x=r^{d-1} d r d S(\theta)}
$$

- An operator is a function whose input/output are functions. Important examples include differential operators, for example
- $\partial_{x_{i}} \quad$ (partial derivative)
- $\Delta \quad$ (Laplacian)
- $\partial_{t}-\Delta \quad$ (heat operator)
$-\partial_{t}^{2}-\Delta \quad$ (d'Alembertian)

2.4 Convolution and Distributions

Definition 2.4.1. Let $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. The convolution of f and g is the function

$$
f * g: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

defined by

$$
f * g(x)=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y
$$

Note: this makes sense even if g is merely continuous, and even in much more general settings.

Properties.

- $f * g=g * f$
- $\partial_{i}(f * g)=\left(\partial_{i} f\right) * g=f *\left(\partial_{i} g\right) \quad$ (similarly for differential operators)
- for $f, g \in C_{c}^{\infty}$, we have $f * g \in C_{c}^{\infty}$

Approximate identities.

- Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfy $\int \phi d x=1$, with $\operatorname{supp}(\phi) \subset B_{1}(0)$.
- Define $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ via $\phi_{n}(x)=n^{d} \phi(n x)$. (draw picture)
- Note

$$
\int \phi_{n}(x) d x=\underbrace{\int n^{d} \phi(n x) d x=\int \phi(y) d y}_{y=n x, \quad d y=n^{d} d x}=1
$$

with $\operatorname{supp}(\phi) \subset B_{1 / n}(0)$.

- Fact: For $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have $f * \phi_{n}(x) \rightarrow f(x)$ for all x

Question. Is there a function δ_{0} such that $f * \delta_{0}(x)=f(x) \quad$?
Answer. No, there is no such function. But there is such a "distribution".

Definition 2.4.2. A distribution is a functional $u: C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ that is
(i) linear, i.e. $u(\alpha f+\beta g)=\alpha u(f)+\beta u(g)$
(ii) continuous, i.e. if $f_{k} \rightarrow f$ then $u\left(f_{k}\right) \rightarrow u(f)$.

We denote the set of distributions by $\mathcal{D}\left(\mathbb{R}^{d}\right)$. Distributions are sometimes called 'generalized functions'. In this context, elements of C_{c}^{∞} are often called 'test functions'. The space \mathcal{D} is the "dual space" of C_{c}^{∞}.
Example 2.4.1.

- if $u \in C_{c}^{\infty}$, then we may think of u as a distribution by defining

$$
\begin{equation*}
u(f)=\int u(x) f(x) d x \tag{*}
\end{equation*}
$$

- even for more general functions u, we may think of u as a distribution via (*)
- Dirac delta: $\delta_{0}(f)=f(0)$

Remark 2.4.3. We will define $f * u$ for $f \in C_{c}^{\infty}$ and $u \in \mathcal{D}$ below and show $f * \delta_{0}=f$.

Derivatives of distributions. For $u \in \mathcal{D}$, we would like to define $\partial_{i} u \in \mathcal{D}$.

First, suppose $u \in C_{c}^{\infty}$ and take a 'test function' $f \in C_{c}^{\infty}$.
By the integration by parts formula,

$$
\underbrace{\int \partial_{i} u f d x}_{\partial_{i} u(f)}=\underbrace{-\int u \partial_{i} f d x}_{-u\left(\partial_{i} f\right)} .
$$

Thus for $u \in \mathcal{D}$, we can define $\partial_{i} u \in \mathcal{D}$ by

$$
\partial_{i} u(f):=-u\left(\partial_{i} f\right) \quad \text { for } f \in C_{c}^{\infty} .
$$

This is very powerful: now we can take derivatives of non-differentiable functions!

Similarly, if \mathcal{L} is a differential operator we can make sense of $\mathcal{L} u$.
Convolution with distributions. We would like to define $f * u$ for $f \in C_{c}^{\infty}$ and $u \in \mathcal{D}$.

First, suppose $f, u \in C_{c}^{\infty}$. Then

$$
f * u(x)=u * f(x)=\int u(y) f(x-y) d y
$$

Notation: $\tau_{x} f(y)=f(y-x) \quad$ (translation)

$$
\tilde{f}(y)=f(-y) \quad \text { (reflection) }
$$

Then we have $f(x-y)=\widetilde{\tau_{x} f}(y)$, so that we can write

$$
f * u(x)=\underbrace{\int u(y) \widetilde{\tau_{x} f}(y) d y}_{u\left(\widetilde{\tau_{x} f}\right)}
$$

Thus for $f \in C_{c}^{\infty}$ and $u \in \mathcal{D}$ we define $f * u$ to be the function

$$
f * u(x):=u\left(\widetilde{\tau_{x} f}\right) .
$$

General principle. Whatever you can define for C_{c}^{∞} you can also define for \mathcal{D}, provided the definitions agree when restricted to C_{c}^{∞}.

Let's verify that $f * \delta_{0}=f$ for all $f \in C_{c}^{\infty}$:

$$
f * \delta_{0}(x)=\delta_{0}\left(\widetilde{\tau_{x} f}\right)=\widetilde{\tau_{x} f}(0)=f(x) .
$$

Definition 2.4.4. Let \mathcal{L} be a differential operator. A distribution $\Phi \in \mathcal{D}$ is a fundamental solution for \mathcal{L} if $\mathcal{L}(\Phi)=\delta_{0}$.

The key property of the fundamental solution is the following: if Φ is a fundamental solution for \mathcal{L}, then the solution to $\mathcal{L} u=f$ is given by

$$
u=f * \Phi .
$$

Indeed,

$$
\mathcal{L}(u)=\mathcal{L}(f * \Phi)=f * \mathcal{L}(\Phi)=f * \delta_{0}=f .
$$

Question: why does $f * \phi_{n}(x) \rightarrow f(x)$?

Chapter 3

The Laplace Equation

3.1 The Fundamental Solution

We seek the fundamental solution for the Laplace operator $-\Delta$, that is, a distribution Φ such that $-\Delta \Phi=\delta_{0}$. Then we can solve Poisson's equation $-\Delta u=f$ on \mathbb{R}^{d} by defining $u=f * \Phi$.

We focus on $d \geq 3$ (see the exercises for $d=1,2$). We begin by trying to find a function u such that $\Delta u=0$ on $\mathbb{R}^{d} \backslash\{0\}$.

The key observation is the following: the Laplace equation is invariant under rotations (see the exercises). So we look for a function that is also invariant under rotations:

$$
u(x)=v(r), \quad r=|x|=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}} .
$$

We compute:

$$
\begin{aligned}
& \partial_{i} u=v^{\prime}(r) \partial_{i} r=v^{\prime}(r) \frac{x_{i}}{|x|}, \quad \quad=\frac{d}{d r}, \\
& \partial_{i} \partial_{i} u=v^{\prime \prime}(r) \frac{x_{i}^{2}}{|x|^{2}}+v^{\prime}(r)\left[\frac{1}{|x|}-\frac{x_{i}^{2}}{|x|^{3}}\right], \\
& \Delta u=\sum_{i=1}^{d} \partial_{i} \partial_{i} u=v^{\prime \prime}(r)+\frac{d-1}{r} v^{\prime}(r)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \Delta u=0 \quad \text { if and only if } \quad v^{\prime \prime}+\frac{d-1}{r} v^{\prime}=0, \\
& \Longrightarrow \frac{v^{\prime \prime}}{v^{\prime}}=-\frac{d-1}{r} \\
& \Longrightarrow {\left[\log \left(v^{\prime}\right)\right]^{\prime}=-\frac{d-1}{r}, } \\
& \Longrightarrow \log \left(v^{\prime}\right)=-(d-1) \log r+C_{1}=\log r^{-(d-1)}+C_{1}, \\
& \Longrightarrow v^{\prime}=C_{2} r^{-(d-1)} \\
& \Longrightarrow v=-C r^{-(d-2)} .
\end{aligned}
$$

Therefore

$$
u(x)=C|x|^{-(d-2)} \quad \text { solves } \quad-\Delta u=0 \quad \text { on } \quad \mathbb{R}^{d} \backslash\{0\} \quad \text { for } \quad d \geq 3
$$

We now show show that we can choose C so that $\Phi(x)=C|x|^{-(d-2)}$ is a fundamental solution, that is, $-\Delta \Phi=\delta_{0}$. We consider $\Phi(x)$ as a distribution and take a test function $f \in C_{c}^{\infty}$. Then

$$
\begin{aligned}
-\Delta \Phi(f)=f(0) & \Longleftrightarrow-\Phi(\Delta f)=f(0) \\
& \Longleftrightarrow-\int \Phi(x) \Delta f(x) d x=f(0) \\
& \Longleftrightarrow-\int C|x|^{-(d-2)} \Delta f(x) d x=f(0) \\
& \Longleftrightarrow \int|x|^{-(d-2)} \Delta f(x) d x=-\frac{1}{C} f(0)
\end{aligned}
$$

Therefore we need to compute $\int|x|^{-(d-2)} \Delta f(x) d x$ for an arbitrary test function f.

First let $\varepsilon>0$ and write

$$
\int|x|^{-(d-2)} \Delta f(x) d x=\underbrace{\int_{B_{\varepsilon}(0)}|x|^{-(d-2)} \Delta f(x) d x}_{I}+\underbrace{\int_{\mathbb{R}^{d} \backslash B_{\varepsilon}(0)}|x|^{-(d-2)} \Delta f(x) d x}_{I I} .
$$

For I, first use polar coordinates:

$$
\int_{B_{\varepsilon}(0)}|x|^{-(d-2)} d x=\int_{0}^{\varepsilon} \int_{\partial B_{1}(0)} r^{-d+2} r^{d-1} d S d r=\int_{0}^{\varepsilon} r d r=\frac{1}{2} \varepsilon^{2} .
$$

So

$$
|I| \leq \max _{x \in \mathbb{R}^{d}}|\Delta f(x)| \cdot \frac{1}{2} \varepsilon^{2} \leq c \varepsilon^{2} .
$$

For $I I$, we integrate by parts: (draw picture)

$$
\begin{aligned}
\int_{\mathbb{R}^{d} \backslash B_{\varepsilon}(0)}|x|^{-(d-2)} \Delta f(x) d x= & -\int_{\mathbb{R}^{d} \backslash B_{\varepsilon}(0)} \nabla\left(|x|^{-(d-2)}\right) \cdot \nabla f(x) d x & I I I \\
& +\int_{\partial B_{\varepsilon}(0)}|x|^{-(d-2)} \nabla f(x) \cdot \mathbf{n}(x) d S & I V
\end{aligned}
$$

We have

$$
|I V| \leq \varepsilon^{-(d-2)} \max _{x \in \mathbb{R}^{d}}|\nabla f(x)| \cdot \operatorname{Area}\left(\partial B_{\varepsilon}(0)\right) \leq c \varepsilon^{-(d-2)} \varepsilon^{d-1} \leq c \varepsilon .
$$

For $I I I$ we integrate by parts again: (draw picture)

$$
\begin{aligned}
I I I= & \int_{\mathbb{R}^{d} \backslash B_{\varepsilon}(0)} \Delta\left(|x|^{-(d-2)}\right) f(x) d x \quad(\equiv 0) \\
& -\int_{\partial B_{\varepsilon}(0)} \nabla\left(|x|^{-(d-2)}\right) f(x) \cdot \mathbf{n}(x) d S . \quad V
\end{aligned}
$$

For $x \in \partial B_{\varepsilon}(0)$ we have

$$
\begin{aligned}
& \nabla\left(|x|^{-(d-2)}\right)=-(d-2)|x|^{-d} x=-(d-2) \varepsilon^{-d} x \\
& \mathbf{n}(x)=-\frac{x}{|x|}=-\varepsilon^{-1} x, \\
& \nabla\left(|x|^{-(d-2)}\right) \cdot \mathbf{n}(x)=(d-2) \varepsilon^{-d-1}|x|^{2}=(d-2) \varepsilon^{-(d-1)} .
\end{aligned}
$$

Let $\alpha_{d}=\operatorname{Volume}\left(B_{1}(0)\right)$, so that $\operatorname{Area}\left(\partial B_{\varepsilon}(0)\right)=d \varepsilon^{d-1} \alpha_{d}$.
$V=-(d-2) \varepsilon^{-(d-1)} \int_{\partial B_{\varepsilon}(0)} f(x) d S=-(d-2) d \alpha_{d} \frac{1}{\operatorname{Area}\left(\partial B_{\varepsilon}(0)\right)} \int_{\partial B_{\varepsilon}(0)} f(x) d S$.
Putting it all together: for any $\varepsilon>0$, we have

$$
\int|x|^{-(d-2)} \Delta f(x) d x=-d(d-2) \alpha_{d} \underbrace{\frac{1}{\operatorname{Area}\left(\partial B_{\varepsilon}(0)\right)} \int_{\partial B_{\varepsilon}(0)} f(x) d S}_{\text {average value of } f \text { on } \partial B_{\varepsilon}(0)}+\mathcal{O}(\varepsilon)
$$

We send $\varepsilon \rightarrow 0$ to find

$$
\int|x|^{-(d-2)} \Delta f(x) d x=-d(d-2) \alpha_{d} f(0)
$$

We conclude that

$$
\Phi(x)=\frac{1}{d(d-2) \alpha_{d}}|x|^{-(d-2)}
$$

is a fundamental solution for $-\Delta$ for $d \geq 3$.
Conclusion. The solution to Poisson's equation $-\Delta u=f$ on \mathbb{R}^{d} is given by

$$
u(x)=f * \Phi(x)=\frac{1}{d(d-2) \alpha_{d}} \int_{\mathbb{R}^{d}} \frac{f(y)}{|x-y|^{(d-2)}} d y .
$$

3.2 Green's Functions

So far, we have solved Poisson's equation $-\Delta u=f$ on all of \mathbb{R}^{d} by convolution with the fundamental solution Φ. We turn to the Dirichlet problem, which is an example of a boundary value problem.

Let $\Omega \subset \mathbb{R}^{d}$ be an open, bounded set with smooth boundary $\partial \Omega$. Given functions f and g, we study the problem

$$
\left\{\begin{align*}
-\Delta u=f & \text { on } \Omega \tag{*}\\
u=g & \text { on } \partial \Omega .
\end{align*}\right.
$$

We will break (*) into two subproblems:

$$
\left\{\begin{array} { r l }
{ - \Delta u = f } & { \text { on } \Omega } \\
{ u = 0 } & { \text { on } \partial \Omega }
\end{array} \quad (* _ { 1 }) \quad \left\{\begin{array}{rl}
-\Delta u=0 & \text { on } \Omega \\
u=g & \text { on } \partial \Omega
\end{array} \quad\left(*_{2}\right)\right.\right.
$$

Note if u_{1} solves $\left(*_{1}\right)$ and u_{2} solves $\left(*_{2}\right)$, then $u=u_{1}+u_{2}$ solves $(*)$.
We first turn to $\left(*_{1}\right)$. For the case of $\Omega=\mathbb{R}^{d}$, we computed $-\Delta \Phi=\delta_{0}$, so that

$$
u(x)=\int_{\mathbb{R}^{d}} \Phi(x-y) f(y) d y \quad \text { solves } \quad-\Delta u=f .
$$

The key fact about Φ was the following: $u=-\Delta u * \Phi$, that is,

$$
-\int_{\mathbb{R}^{d}} \Phi(x-y) \Delta u(y) d y=u(x) .
$$

We will look for a solution to $\left(*_{1}\right)$ of the form

$$
u(x)=\int_{\Omega} G(x, y) f(y) d y .
$$

The function G will be called the Green's function for Ω.
We need to find G so that

$$
\text { (i) } \quad-\int_{\Omega} G(x, y) \Delta u(y) d y=u(x) \quad \text { whenever } \quad u=0 \quad \text { on } \quad \partial \Omega \text {. }
$$

This will guarantee $-\Delta u=f$ on Ω. To have $u=0$ on $\partial \Omega$ we also need
(ii) $\quad G(x, y)=0$ for $x \in \partial \Omega, y \in \Omega$.

First try: can we just take $G(x, y)=\Phi(x-y)$ again, as in the case of \mathbb{R}^{d} ?

For $x \in \Omega$, we have

$$
\begin{aligned}
-\int_{\Omega} & \Phi(x-y) \Delta u(y) d y \\
& =\int_{\Omega} \nabla[\Phi(x-y)] \cdot \nabla u(y) d y-\int_{\partial \Omega} \Phi(x-y) \nabla u(y) \cdot \mathbf{n}(y) d S \\
& =-\int_{\Omega} \Delta \Phi(x-y) u(y) d y+\underbrace{\int_{\partial \Omega} u(y) \nabla[\Phi(x-y)] \cdot \mathbf{n}(y) d S}_{u=0 \text { on } \partial \Omega}-\int_{\partial \Omega} \Phi(x-y) \nabla u(y) \cdot \mathbf{n}(y) d S \\
& =\int_{\Omega} \delta_{0}(x-y) u(y) d y-\int_{\partial \Omega} \Phi(x-y) \nabla u(y) \cdot \mathbf{n}(y) d S \\
& =u(x)-\int_{\partial \Omega} \Phi(x-y) \nabla u(y) \cdot \mathbf{n}(y) d S
\end{aligned}
$$

We missed...
Second try: How about $G(x, y)=\Phi(x-y)-e(x, y)$ for some "corrector" function e ?

Computing as above (using $u=0$ on $\partial \Omega$), we find

$$
\int_{\Omega} e(x, y) \Delta u(y)=\int_{\Omega} \Delta e(x, y) u(y) d y+\int_{\partial \Omega} e(x, y) \nabla u(y) \cdot \mathbf{n}(y) d S .
$$

So

$$
\begin{aligned}
-\int_{\Omega} G(x, y) \Delta u(y) d y= & u(x) \\
& +\int_{\Omega} \Delta e(x, y) u(y) d y+\int_{\partial \Omega}[e(x, y)-\Phi(x-y)] \nabla u(y) \cdot \mathbf{n}(y) d S
\end{aligned}
$$

We should therefore choose $e(x, y)$ such that

$$
\begin{aligned}
& \text { (a) }-\Delta_{y} e(x, y)=0 \text { for } x, y \in \Omega \\
& \text { (b) } \quad e(x, y)=\Phi(x-y) \text { for } x \in \Omega, y \in \partial \Omega .
\end{aligned}
$$

Together (a) and (b) guarantee that $G(x, y)=\Phi(x-y)-e(x, y)$ satisfies (i).

Moreover (b) implies

$$
\left(i i^{\prime}\right) \quad G(x, y)=0 \quad \text { for } \quad x \in \Omega, y \in \partial \Omega
$$

This is not quite condition (ii). However, we will show the following:
Claim: $\quad G(x, y)=G(y, x)$.

Then it is clear that ($i i^{\prime}$) implies $(i i)$.
Proof of claim. Fix $x, y \in \Omega$. Define $v(z)=G(x, z)$. By ($i i^{\prime}$), we know $v=0$ on $\partial \Omega$. Thus

$$
\begin{aligned}
G(x, y) & =v(y) \\
& =-\int_{\Omega} G(y, z) \Delta v(z) d z \\
& =-\int_{\Omega} G(y, z) \Delta G(x, z) d z \\
& =\int_{\Omega} G(y, z) \delta_{0}(x-z) d z \\
& =G(y, x) .
\end{aligned}
$$

Conclusion (part one). Suppose $\Omega \subset \mathbb{R}^{d}$ is an open, bounded set with smooth boundary $\partial \Omega$. Suppose that e is a "corrector" function satisfying

$$
\left\{\begin{align*}
-\Delta_{y} e(x, y)=0 & \text { for } x, y \in \Omega \tag{**}\\
e(x, y)=\Phi(x-y) & \text { for } x \in \Omega, y \in \partial \Omega
\end{align*}\right.
$$

Then

$$
G(x, y)=\Phi(x-y)-e(x, y)
$$

is the Green's function for Ω.
The function

$$
u(x)=\int_{\Omega} G(x, y) f(y) d y
$$

solves $\left(*_{1}\right)$, that is:

$$
\left\{\begin{aligned}
-\Delta u=f & \text { on } \Omega \\
u=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Remark 3.2.1. The question of the existence of the Green's function is still open, since we still do not know how to solve ($* *$).

How about $\left(*_{2}\right)$? We can actually the solution to $\left(*_{1}\right)$. Suppose v solves

$$
\left\{\begin{aligned}
-\Delta v=-\Delta g & \text { on } \Omega \\
v=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Then

$$
u=g-v \quad \text { solves } \quad\left(*_{2}\right),
$$

since we have $-\Delta u=0$ on Ω and $u=g$ on $\partial \Omega$.

From above, we know

$$
\begin{aligned}
v(x) & =-\int_{\Omega} G(x, y) \Delta g(y) d y \\
& =\int_{\Omega} \nabla G(x, y) \cdot \nabla g(y) d y-\underbrace{\int_{\partial(x, y)=0} G(x, y) \nabla g(y) \cdot \mathbf{n}(y) d S}_{G \Omega} x, y \in \partial \Omega \\
& =-\int_{\Omega} \Delta G(x, y) g(y) d y+\int_{\partial \Omega} g(y) \nabla G(x, y) \cdot \mathbf{n}(y) d S \\
& =\int_{\Omega} \delta_{0}(x-y) g(y) d y+\int_{\partial \Omega} g(y) \nabla G(x, y) \cdot \mathbf{n}(y) d S \\
& =g(x)+\int_{\partial \Omega} g(y) \nabla G(x, y) \cdot \mathbf{n}(y) d S .
\end{aligned}
$$

Hence

$$
u(x)=g(x)-v(x)=-\int_{\partial \Omega} g(y) \nabla G(x, y) \cdot \mathbf{n}(y) d S \quad \text { solves } \quad\left(*_{2}\right) .
$$

Conclusion (part two). If G is the Green's function for Ω, then the function

$$
u(x)=\int_{\Omega} G(x, y) f(y) d y-\int_{\partial \Omega} g(y) \nabla_{y} G(x, y) \cdot \mathbf{n}(y) d S
$$

solves

$$
\left\{\begin{aligned}
-\Delta u=f & \text { on } \Omega \\
u=g & \text { on } \partial \Omega .
\end{aligned}\right.
$$

We will next study a few cases when the Green's function can be explicitly computed.

Recall that for $\Omega \subset \mathbb{R}^{d}$, the Green's function for Ω is the function

$$
G(x, y)=\Phi(x-y)-e(x, y),
$$

where Φ is the fundamental solution for $-\Delta$ and e is a "corrector" function satisfying

$$
\left\{\begin{align*}
-\Delta_{y} e(x, y)=0 & \text { for } x, y \in \Omega \tag{*}\\
e(x, y)=\Phi(x-y) & \text { for } x \in \Omega, y \in \partial \Omega
\end{align*}\right.
$$

We compute the Green's function for two specific cases.

Example 3.2.1 (Half-space). Let

$$
\Omega=\mathbb{R}_{+}^{d}=\left\{x \in \mathbb{R}^{d}: x_{d} \geq 0\right\} .
$$

Then $\partial \Omega=\left\{x \in \mathbb{R}^{d}: x_{d}=0\right\}$.
For a point $y \in \Omega$, define the reflection of y by

$$
\tilde{y}=\left(y_{1}, \ldots, y_{d-1},-y_{d}\right) .
$$

We let

$$
e(x, y)=\Phi(x-\tilde{y})=\Phi(\tilde{x}-y) \quad \longleftarrow \Phi=\Phi(|x|) \text { (draw picture). }
$$

Then for $x, y \in \Omega$, we have $\tilde{x} \notin \Omega$, and hence

$$
-\Delta_{y} e(x, y)=-\Delta_{y} \Phi(\tilde{x}-y)=\delta_{0}(\tilde{x}-y)=0 .
$$

Moreover for $y \in \partial \Omega$ we have $y=\tilde{y}$, and hence

$$
e(x, y)=\Phi(x-\tilde{y})=\Phi(x-y) \quad \text { for } \quad x \in \Omega, y \in \partial \Omega .
$$

Thus the Green's function for the half-space is given by

$$
G(x, y)=\Phi(x-y)-\Phi(\tilde{x}-y), \quad \tilde{x}=\left(x_{1}, \ldots, x_{d-1},-x_{d}\right)
$$

Example 3.2.2 (Unit Ball). Let $\Omega=B_{1}(0)$, so $\partial \Omega=\partial B_{1}(0)$.
For a point $x \in \Omega \backslash\{0\}$, define the inversion of x by

$$
\tilde{x}=\frac{x}{|x|^{2}} .
$$

As a first try, suppose we let $e(x, y)=\Phi(\tilde{x}-y)$ again, since $-\Delta \Phi(\tilde{x}-y)=$ 0 . However, in this case we will not have $\Phi(\tilde{x}-y)=\Phi(x-y)$ for $x \in \Omega$, $y \in \partial \Omega$, since $|\tilde{x}-y| \neq|x-y|$. Indeed, let $x \in \Omega$ and $y \in \partial \Omega$. Then $|y|=1$, so

$$
\begin{aligned}
|\tilde{x}-y|^{2} & =|\tilde{x}|^{2}-2 \tilde{x} \cdot y+|y|^{2} \\
& =\frac{1}{|x|^{2}}-2 \frac{x}{|x|^{2}} \cdot y+1 \\
& =\frac{1}{|x|^{2}}\left[1-2 x \cdot y+|x|^{2}\right] \\
& =\frac{1}{|x|^{2}}\left[|y|^{2}-2 x \cdot y+|x|^{2}\right] \\
& =\frac{1}{|x|^{2}}|x-y|^{2} .
\end{aligned}
$$

So we find $|x-y|=|x||\tilde{x}-y|$ for $x \in \Omega$ and $y \in \partial \Omega$.
For a second try, let us take

$$
e(x, y)=\Phi(|x||\tilde{x}-y|) .
$$

Then $e(x, y)=\Phi(x-y)$ for $x \in \Omega, y \in \partial \Omega$.
But do we have $-\Delta_{y} e(x, y)=0$? In fact we do! Recall $\Phi(z)=c|z|^{-(d-2)}$ (in dimensions $d \geq 3$). Then

$$
\Phi(|x||\tilde{x}-y|)=|x|^{-(d-2)} \Phi(\tilde{x}-y),
$$

so

$$
-\Delta_{y} e(x, y)=-|x|^{-(d-2)} \Delta \Phi(\tilde{x}-y)=0
$$

as above.
Thus the Green's function for the unit ball is given by:

$$
G(x, y)=\Phi(x-y)-\Phi(|x|(\tilde{x}-y)), \quad \tilde{x}=\frac{x}{|x|^{2}} .
$$

So far, we have attempted to find solutions to the Laplace and Poisson equation. We next discuss some properties of solutions.

3.3 Properties of Solutions

Theorem 3.3.1 (Mean Value Property). Let u be a smooth solution to $-\Delta u=0$ on an open set $\Omega \subset \mathbb{R}^{d}$. If $\overline{B_{R}(x)} \subset \Omega$, then

$$
u(x)=\frac{1}{\operatorname{Area}\left(\partial B_{R}(x)\right)} \int_{\partial B_{R}(x)} u(y) d S \quad\left(\text { average of } u \text { over } \partial B_{R}(x)\right)
$$

Proof. Let

$$
A_{R}:=d \alpha_{d} R^{d-1}=\operatorname{Area}\left(\partial B_{R}(x)\right) \quad \longleftarrow \text { recall } \alpha_{d}=\operatorname{Volume}\left(B_{1}(0)\right)
$$

Define $f:(0, R] \rightarrow \mathbb{R}$ via

$$
f(r):=\frac{1}{A_{r}} \int_{\partial B_{r}(x)} u(y) d S=\underbrace{\frac{r^{d-1}}{A_{r}} \int_{\partial B_{1}(0)} u(x+r z) d S}_{z=\frac{y-x}{r}, d S(z)=r^{-(d-1)} d S(y)}=\frac{1}{A_{1}} \int_{\partial B_{1}(0)} u(x+r z) d S .
$$

By the continuity of u, we have

$$
\begin{equation*}
u(x)=\lim _{r \rightarrow 0} f(r) \tag{1}
\end{equation*}
$$

On the other hand, we can compute

$$
\begin{aligned}
f^{\prime}(r) & =\frac{1}{A_{1}} \int_{\partial B_{1}(0)} \nabla u(x+r z) \cdot z d S(z) \quad(y=x+r z) \\
& =\frac{1}{r^{d-1} A_{1}} \int_{\partial B_{r}(x)} \nabla u(y) \cdot \frac{y-x}{r} d S(y) \\
& =\frac{1}{A_{r}} \int_{\partial B_{r}(x)} \nabla u(y) \cdot \mathbf{n}(y) d S(y) \\
& =\frac{1}{A_{r}} \int_{B_{r}(x)} \Delta u(y) d y \quad \text { (Gauss-Green formula) } \\
& =0
\end{aligned}
$$

Thus f is constant. In particular $f(r)=f(R)$ for all $r \in(0, R]$. Therefore, from (1) we deduce

$$
u(x)=f(R)=\frac{1}{A_{R}} \int_{\partial B_{R}(x)} u(y) d S
$$

In fact, we will prove that we also have

$$
u(x)=\frac{1}{\operatorname{Volume}\left(B_{R}(x)\right)} \int_{B_{R}(x)} u(y) d y .
$$

Corollary 3.3.2. We also have that

$$
u(x)=\frac{1}{\operatorname{Volume}\left(B_{R}(x)\right)} \int_{B_{R}(x)} u(y) d y=\frac{1}{\alpha_{d} R^{d}} \int_{B_{R}(x)} u(y) d y .
$$

Proof. Indeed, using polar coordinates:

$$
\begin{aligned}
\int_{B_{R}(x)} u(y) d y & =\int_{0}^{R} \int_{\partial B_{1}(x)} u(r \theta) d S r^{d-1} d r \\
& =\int_{0}^{R} \int_{\partial B_{r}(x)} u(z) d S d r \quad\left(z=r \theta, \quad d S(z)=r^{d-1} d S(\theta)\right) \\
& =\int_{0}^{R} d \alpha_{d} r^{d-1} u(x) d r \quad \text { (mean value property) } \\
& =\alpha_{d} R^{d} u(x)
\end{aligned}
$$

Thus if u is harmonic, then u satisfies the mean value property. The converse is true as well! (This can be shown by using similar computations.)

Next we will prove the maximum principle for harmonic functions. First, we need a definition.

Definition 3.3.3. A set $\Omega \subset \mathbb{R}^{d}$ is connected if Ω cannot be written as a disjoint union of non-empty open sets.

Remark 3.3.4. Ω connected \Longleftrightarrow only subsets of Ω that are both open and closed (in Ω) are \emptyset and Ω.
(Indeed, if $\Omega=A \cup B$ where A, B are disjoint non-empty open sets then A and B are both open and closed.)

Theorem 3.3.5 (Maximum principle). Suppose u is smooth and $\Omega \subset \mathbb{R}^{d}$ is open, bounded, and connected. Suppose

$$
-\Delta u=0 \quad \text { in } \Omega \quad \text { and let } \quad M:=\max _{x \in \bar{\Omega}} u(x) \text {. }
$$

If there exists $x_{0} \in \Omega$ such that $u\left(x_{0}\right)=M$, then $u \equiv M$ in Ω.
That is, non-constant harmonic functions attain their maximum value on the boundary.

Proof. We let

$$
A=\{x \in \Omega: u(x)=M\} .
$$

First notice that $A \neq \emptyset$, since $x_{0} \in A$ by assumption.
Second, we claim A is closed. Indeed, suppose $\left\{x_{n}\right\} \subset A$ and $x_{n} \rightarrow x \in$ Ω. Then since u is continuous, we have $u\left(x_{n}\right) \rightarrow u(x)$. But since $x_{n} \in A$, we have $u\left(x_{n}\right) \equiv M$. Thus $u(x)=M$. That is, $x \in A$.

Third, we claim A is open. Indeed, suppose $x \in A$. Then since Ω is open, we may find $R>0$ so that $B_{R}(x) \subset \Omega$. Then using the mean value property, we have

$$
M=u(x)=\frac{1}{\operatorname{Vol}\left(B_{R}(x)\right)} \int_{B_{R}(x)} u(y) d y \leq \frac{1}{\operatorname{Vol}\left(B_{R}(x)\right)} \int_{B_{R}(x)} M d y \leq M .
$$

This implies that $u(y)=M$ for $y \in B_{R}(x)$. That is $B_{R}(x) \subset A$. This shows that A is open.

As Ω is connected and A is non-empty, open, and closed, we conclude that $A=\Omega$. That is, $u(x) \equiv M$ on Ω.

The maximum principle has an important corollary:

Corollary 3.3.6 (Uniqueness for Poisson's equation). Let $\Omega \subset \mathbb{R}^{d}$ be open, bounded, and connected. Suppose u_{1} and u_{2} are both smooth solutions to

$$
\left\{\begin{aligned}
-\Delta u & =f & \text { on } \Omega \\
u & =g & \text { on } \partial \Omega
\end{aligned}\right.
$$

Then $u_{1} \equiv u_{2}$ on Ω.
Proof. Let $u=u_{1}-u_{2}$. Then u solves $-\Delta u=0$ on Ω, with $u=0$ on $\partial \Omega$. By the maximum principle, we get $u \leq 0$ on Ω. That is, $u_{1} \leq u_{2}$ on Ω. Next let $\tilde{u}=u_{2}-u_{1}$. Then \tilde{u} solves $-\Delta \tilde{u}=0$ on Ω with $\tilde{u}=0$ on $\partial \Omega$. By the maximum principle, we get $\tilde{u} \leq 0$ on Ω. That is, $u_{2} \leq u_{1}$ on Ω. We conclude $u_{1} \equiv u_{2}$ on Ω.

Chapter 4

The Heat Equation

4.1 The Fundamental Solution

We turn to the heat equation $\partial_{t} u-\Delta u=0 .\left(\Delta=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)$
We study the initial-value problem (also called the Cauchy problem):

$$
\begin{cases}\partial_{t} u-\Delta u=0 & \text { for }(t, x) \in(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=f(x) & \text { for } x \in \mathbb{R}^{d}\end{cases}
$$

We first find the fundamental solution. We look for a function so that $\partial_{t} u-\Delta u=0$ away from $(t, x)=(0,0)$.

Observation 1: if u solves $\partial_{t} u-\Delta u=0$, then so does $u\left(\lambda^{2} t, \lambda x\right)$ for any $\lambda>0$.

We look for a solution that is invariant under this rescaling, for example

$$
\begin{equation*}
u(t, x)=v\left(\frac{x}{\sqrt{t}}\right) \quad \text { for some function } \quad v \tag{*}
\end{equation*}
$$

However, this is not a good guess. To see why not, we need the following:
Observation 2: if u solves $\partial_{t} u-\Delta u=0$, then $\int u(t, x) d x$ is constant in t.
(Physically, this is clear. For a proof, see HW.)
If we make the guess of $(*)$, however, we find

$$
\begin{aligned}
\int u(t, x) d x & =\int v\left(\frac{x}{\sqrt{t}}\right) d x \\
& =t^{d / 2} \int v(y) d y \quad\left(y=\frac{x}{\sqrt{t}}, \quad d y=t^{-d / 2} d x\right) \\
& \neq \text { constant in } t
\end{aligned}
$$

To fix this, we look for a solution of the form

$$
u(t, x)=t^{-d / 2} v\left(\frac{x}{\sqrt{t}}\right)
$$

Then we have scaling invariance and $\int u d x$ constant in t.
As before, we also assume $v(x)=v(|x|)$. Then

$$
u(t, x)=t^{-d / 2} v\left(\frac{|x|}{\sqrt{t}}\right) .
$$

Let's write $y=\frac{|x|}{\sqrt{t}}$, so that $u(t, x)=t^{-d / 2} v(y)$.
Then

$$
\begin{gathered}
\partial_{t} u=t^{-\frac{d}{2}} v^{\prime}(y) \cdot-\frac{1}{2} t^{-\frac{3}{2}}|x|-\frac{d}{2} t^{-\frac{d}{2}-1} v \\
=-\frac{1}{2} t^{-\frac{d}{2}-1} y v^{\prime}-\frac{d}{2} t^{-\frac{d}{2}-1} v . \\
u_{x_{i}}=t^{-\frac{d}{2}} v^{\prime}(y) \cdot t^{-\frac{1}{2}} \frac{x_{i}}{|x|} \\
=t^{-\frac{d}{2}-\frac{1}{2}} v^{\prime}(y) \frac{x_{i}}{|x|} \\
u_{x_{i} x_{i}}=t^{-\frac{d}{2}-\frac{1}{2}} v^{\prime}(y)\left[\frac{1}{|x|}-\frac{x_{i}^{2}}{|x|^{3}}\right]+t^{-\frac{d}{2}-1} v^{\prime \prime} \frac{x_{i}^{2}}{|x|^{2}} \\
\Delta u=t^{-\frac{d}{2}-\frac{1}{2}} v^{\prime}(y) \frac{d-1}{|x|}+t^{-\frac{d}{2}-1} v^{\prime \prime} \\
=t^{-\frac{d}{2}-1} v^{\prime}(y) \frac{d-1}{y}+t^{-\frac{d}{2}-1} v^{\prime \prime} \\
\partial_{t} u-\Delta u=-t^{-\frac{d}{2}-1}\left[\frac{1}{2} y v^{\prime}+\frac{d}{2} v+v^{\prime \prime}+\frac{d-1}{y} v^{\prime}\right] .
\end{gathered}
$$

So we want $\frac{1}{2} y v^{\prime}+\frac{d}{2} v+v^{\prime \prime}+\frac{d-1}{y} v^{\prime}=0$.
Or, multiplying by y^{d-1} :

$$
\begin{gathered}
\frac{1}{2} y^{d} v^{\prime}+\frac{d}{2} v y^{d-1}+v^{\prime \prime} y^{d-1}+(d-1) y^{d-2} v^{\prime}=0 \\
\frac{1}{2}\left(v y^{d}\right)^{\prime}+\left(v^{\prime} y^{d-1}\right)^{\prime}=0 \\
\frac{1}{2} v y^{d}+v^{\prime} y^{d-1}=0 \\
v^{\prime}=-\frac{1}{2} y v
\end{gathered}
$$

$$
\begin{gathered}
v=C e^{-y^{2} / 4} \\
u(t, x)=C t^{-d / 2} e^{-|x|^{2} / 4 t}
\end{gathered}
$$

The fundamental solution will be $\Phi(t, x)=C t^{-d / 2} e^{-|x|^{2} / 4 t}$ for some $C>0$. (See below)

Consider again the problem (IVP).
Define

$$
\begin{equation*}
u(t, x)=[f * \Phi(t, \cdot)](x)=\int_{\mathbb{R}^{d}} f(y) \Phi(t, x-y) d x \tag{**}
\end{equation*}
$$

Note $\partial_{t} u=f * \partial_{t} \Phi$ and $\Delta u=f * \Delta \Phi$, so

$$
\partial_{t} u-\Delta u=f *\left[\partial_{t} \Phi-\Delta \Phi\right]=0 \quad \text { for } \quad(t, x) \in(0, \infty) \times \mathbb{R}^{d} .
$$

So u solves the PDE. What about the initial condition?
Note $\Phi(t, x)$ form approximate identities as $t \rightarrow 0$, provided

$$
\int \Phi(t, x) d x=C t^{-d / 2} \int e^{-|x|^{2} / 4 t} d x=1 .
$$

In particular, we will have

$$
\lim _{t \rightarrow 0} u(t, x)=\lim _{t \rightarrow 0}[f * \Phi(t, \cdot)](x)=f(x),
$$

so that $(* *)$ defines a solution to (IVP).
Claim: $(4 \pi t)^{-d / 2} \int e^{-|x|^{2} / 4 t} d x=1 \quad$ (see homework)
Therefore

$$
\Phi(t, x)=(4 \pi t)^{-d / 2} e^{-|x|^{2} / 2 t}
$$

is the fundamental solution for the heat equation.
The function

$$
u(t, x)=(4 \pi t)^{-d / 2} \int_{\mathbb{R}^{d}} e^{-|x-y|^{2} / 4 t} f(y) d y
$$

solves

$$
\left\{\begin{array}{ll}
\partial_{t} u-\Delta u=0 & \text { for }(t, x) \in(0, \infty) \times \mathbb{R}^{d} \\
u(0, x)=f(x) & \text { for } x \in \mathbb{R}^{d}
\end{array} \quad(I V P) .\right.
$$

Remark 4.1.1. (i) Infinite speed of propagation.
(ii) Inhomogeneous problem $u_{t}-\Delta u=F$. Solved by 'Duhamel's principle' (more later)

4.2 The Mean Value Property

Definition 4.2.1.

(i) (Parabolic cylinder) For $\Omega \subset \mathbb{R}^{d}$ and $T>0$ we define $\Omega_{T} \subset \mathbb{R} \times \mathbb{R}^{d}$ by $\Omega_{T}=\Omega \times(0, T]$.
(ii) (Parabolic boundary) We define $\Gamma_{T}=\overline{\Omega_{T}} \backslash \Omega_{T}$.
(iii) (Heat ball) For $t \in \mathbb{R}, x \in \mathbb{R}^{d}$, and $r>0$ define

$$
E_{r}(t, x)=\left\{(s, y) \in \mathbb{R} \times \mathbb{R}^{d}: s \leq t \text { and } \Phi(t-s, x-y) \geq \frac{1}{r^{d}}\right\} .
$$

To understand the heat ball definition, consider $E_{1}(0,0)$. For $s \leq 0$,

$$
(4 \pi|s|)^{-d / 2} e^{-|y|^{2} / 4|s|} \geq 1 \quad \Longleftrightarrow \quad|y|^{2} \leq-2 d|s| \log (4 \pi|s|)
$$

Thus for $-\frac{1}{4 \pi} \leq s \leq 0$ we get y in a ball of radius $\sqrt{-2 d|s| \log (4 \pi|s|)}$.
For $E_{r}(0,0)$: for $-\frac{r^{2}}{4 \pi} \leq s \leq 0$ we get y in a ball of radius $\sqrt{-2 d|s| \log \left(\frac{4 \pi|s|}{r^{2}}\right)}$.
Theorem 4.2.2 (Mean value property.). Let u solve $\partial_{t}-\Delta u=0$ on Ω_{T}. Suppose $E_{R}(t, x) \subset \Omega_{T}$. Then

$$
u(t, x)=\frac{1}{4 R^{d}} \iint_{E_{R}(t, x)} u(s, y) \frac{|x-y|^{2}}{(t-s)^{2}} d y d s .
$$

Proof. Without loss of generality, suppose $(t, x)=(0,0)$. (see homework)

Define $f:(0, R] \rightarrow \mathbb{R}$ by

$$
f(r)=\frac{1}{4 r^{d}} \iint_{E_{r}(0,0)} u(s, y) \frac{|y|^{2}}{s^{2}} d y d s
$$

We will show that
(i) $\lim _{r \rightarrow 0} f(r)=u(0,0)$
(ii) $f^{\prime}(r) \equiv 0$

With (i) and (ii) we can conclude $u(0,0)=f(R)=\iint_{E_{R}(0,0)} u(s, y) \frac{|y|^{2}}{s^{2}} d y d s$, as needed.

For (i), we need the following
Fact. $\frac{1}{4 r^{d}} \iint_{E_{r}(0,0)} \frac{|y|^{2}}{s^{2}} d y d s=1 \quad$ for all $r>0 . \quad$ (long computation)

Thus

$$
\begin{aligned}
|f(r)-u(0,0)| & \leq \frac{1}{4 r^{d}} \iint_{E_{r}(0,0)}|u(s, y)-u(0,0)| \frac{|y|^{2}}{s^{2}} d y d s . \\
& \leq \max _{(s, y) \in E_{r}(0,0)}|u(s, y)-u(0,0)| \\
& \rightarrow 0 \quad \text { as } r \rightarrow 0
\end{aligned}
$$

since u is continuous and $|(s, y)| \rightarrow 0$ for all $(s, y) \in E_{r}(0,0)$ as $r \rightarrow 0$.
For (ii), we change variables via

$$
y=r z \quad \text { and } \quad s=r^{2} \sigma .
$$

Then

$$
d y d s=r^{d+2} d z d \sigma \quad \text { and } \quad \frac{|y|^{2}}{s^{2}}=r^{-2} \frac{|z|^{2}}{\sigma^{2}} .
$$

Moreover

$$
\begin{aligned}
& (4 \pi|s|)^{-d / 2} e^{-|y|^{2} / 4|s|} \geq r^{-d} \\
\Longleftrightarrow & \left(4 \pi r^{2}|\sigma|\right)^{-d / 2} e^{-|z|^{2} / 4|\sigma|} \geq r^{-d} \\
\Longleftrightarrow & (4 \pi|\sigma|)^{-d / 2} e^{-|z|^{2} / 4|\sigma|} \geq 1
\end{aligned}
$$

so $(s, y) \in E_{r}(0,0) \Longleftrightarrow(\sigma, z) \in E_{1}(0,0)$. Thus

$$
f(r)=\frac{1}{4} \iint_{E_{1}(0,0)} u\left(r^{2} \sigma, r z\right) \frac{|z|^{2}}{\sigma^{2}} d z d \sigma .
$$

We compute and undo the change of variables:

$$
\begin{aligned}
f^{\prime}(r) & =\frac{1}{4} \iint_{E_{1}(0,0)}\left[2 r \sigma\left[\partial_{\sigma} u\right]\left(r^{2} \sigma, r z\right)\right. \\
& =\frac{1}{4 r^{d+1}} \iint_{E_{r}(0,0)} \underbrace{2 \partial_{s} u(s, y) \frac{|y|^{2}}{s}}_{I}+\underbrace{\nabla u(s, y) \cdot y \frac{|y|^{2}}{s^{2}}}_{I I} d y d s .
\end{aligned}
$$

We now introduce an auxiliary function $\psi=\psi(r, s, y)$ such that $\psi=0$ on $\partial E_{r}(0,0)$, that is:

$$
(4 \pi|s|)^{-d / 2} e^{-|y|^{2} / 4|s|} r^{d}=1 \Longrightarrow \psi=0
$$

We take $\quad \psi(r, s, y)=-\frac{d}{2} \log (-4 \pi s)+\frac{|y|^{2}}{4 s}+d \log r$.

Note $\quad \nabla_{y} \psi=\frac{y}{2 s}, \quad \partial_{s} \psi=-\frac{d}{2 s}-\frac{|y|^{2}}{4 s^{2}}$.
We now rewrite things and integrate by parts:

$$
\begin{aligned}
I & =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)} \partial_{s} u y \cdot \nabla_{y} \psi d s d y \\
& =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)}-d \partial_{s} u \psi-y \cdot \nabla \partial_{s} u \psi d s d y \quad(\text { parts in } y) \\
& =-\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)}-d \partial_{s} u \psi+y \cdot \nabla u \partial_{s} \psi d s d y \quad(\text { parts in } s) \\
& =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)}-d \partial_{s} u \psi-y \cdot \nabla u\left(\frac{d}{2 s}+\frac{|y|^{2}}{4 s^{2}}\right) d s d y \\
& =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)}-d \partial_{s} u \psi-\frac{d}{2 s} y \cdot \nabla u d s d y \quad-I I .
\end{aligned}
$$

So, using $u_{t}=\Delta u$,

$$
\begin{aligned}
f^{\prime}(r) & =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)}-d \partial_{s} u \psi-\frac{d}{2 s} y \cdot \nabla u d s d y \\
& =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)}-d \Delta u \psi-\frac{d}{2 s} y \cdot \nabla u d s d y \\
& =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)} d \nabla u \cdot \nabla \psi-\frac{d}{2 s} y \cdot \nabla u d s d y \\
& =\frac{1}{r^{d+1}} \iint_{E_{r}(0,0)} \frac{d}{2 s} y \cdot \nabla u-\frac{d}{2 s} y \cdot \nabla u d s d y \\
& =0 .
\end{aligned}
$$

4.3 The Maximum Principle and Uniqueness

Recall for $\Omega \subset \mathbb{R}^{d}$ and $T>0$ we define $\Omega_{T}=\Omega \times(0, T]$ and $\Gamma_{T}=\overline{\Omega_{T}} \backslash \Omega_{T}$.
Theorem 4.3.1 (Maximum principle). Suppose $\Omega \subset \mathbb{R}^{d}$ is open, bounded, and connected. Suppose $u_{t}-\Delta u=0$ on Ω_{T} for some $T>0$. Let $M:=$ $\max _{(t, x) \in \overline{\Omega_{T}}} u(t, x)$. If there exists $\left(t_{0}, x_{0}\right) \in \Omega_{T}$ such that $u\left(t_{0}, x_{0}\right)=M$, then $u(t, x) \equiv M$ on $\overline{\Omega_{t_{0}}}$.

In particular, solutions attain their maximum on Γ_{T}.

Proof. Notice that for $r>0$ small enough, we have $E_{r}\left(t_{0}, x_{0}\right) \subset \Omega_{T}$. By the mean value formula,

$$
M=u\left(t_{0}, x_{0}\right)=\frac{1}{4 r^{n}} \iint_{E_{r}\left(t_{0}, x_{0}\right)} u(s, y) \frac{\left|x_{0}-y\right|^{2}}{\left(t_{0}-s\right)^{2}} d y d s \leq M,
$$

since

$$
\frac{1}{4 r^{n}} \iint_{E_{r}\left(t_{0}, x_{0}\right)} \frac{\left|x_{0}-y\right|^{2}}{\left(t_{0}-s\right)^{2}} d y d s=1 \quad \text { (long computation). }
$$

Thus $u=M$ for $(t, x) \in E_{r}\left(t_{0}, x_{0}\right)$.
Now suppose $\left(s_{0}, y_{0}\right) \in \Omega_{T}$ is a point with $s_{0}<t_{0}$ that can be connected to to $\left(t_{0}, x_{0}\right)$ by a line segment $L \subset \Omega_{T}$. We will show $u=M$ on L.

Let

$$
r_{0}=\min \left\{s \geq s_{0}: u(t, x)=M \text { for }(t, x) \in L, s \leq t \leq t_{0}\right\} .
$$

We need to show that $r_{0}=s_{0}$. Suppose toward a contradiction that $r_{0}>s_{0}$. Then we can find $z_{0} \in \Omega$ so that $\left(r_{0}, z_{0}\right) \in \Omega_{T} \cap L$ and $u\left(r_{0}, z_{0}\right)=M$.

But then as above we have $u=M$ on $E_{r}\left(r_{0}, z_{0}\right)$ for some small $r>0$.
But $E_{r}\left(r_{0}, z_{0}\right)$ contains points $(s, y) \in L$ with $s<r_{0}$, which is a contradiction.

Thus $u \equiv M$ on L.
Finally fix any $(t, x) \in \Omega_{T}$ with $t<t_{0}$. We want to show $u(t, x)=M$.
We can connect $\left(t_{0}, x_{0}\right)$ to (t, x) by a piecewise linear path in Ω_{T}.
By the arguments above, $u=M$ on each segment, so we finally get that $u(t, x)=M$.

Corollary 4.3.2 (Uniqueness). Let $\Omega \subset \mathbb{R}^{d}$ be open, bounded, and connected, and let $T>0$. Suppose u_{1} and u_{2} are smooth solutions to

$$
\left\{\begin{array}{rlrl}
u_{t}-\Delta u=f & \text { on } \Omega_{T} \\
u=g & & \text { on } \Gamma_{T} .
\end{array}\right.
$$

Then $u_{1} \equiv u_{2}$ on Ω_{T}.
Proof. Define $v=u_{1}-u_{2}$. Then v solves

$$
\begin{cases}v_{t}-\Delta v=0 & \text { on } \Omega_{T} \\ v=0 & \text { on } \Gamma_{T} .\end{cases}
$$

Thus the maximum principle implies that $v \leq 0$ on Ω_{T}, so $u_{1} \leq u_{2}$ on Ω_{T}.
Similarly, with $w=u_{2}-u_{1}$ we deduce $u_{2} \leq u_{1}$ on Ω_{T}. Thus $u_{1}=u_{2}$ on Ω_{T}.

There is also maximum principle/uniqueness for the case $\Omega=\mathbb{R}^{d}$, but they require an extra condition.

Proposition 4.3.3 (Maximum principle, \mathbb{R}^{d} version). Suppose u solves

$$
\begin{cases}u_{t}-\Delta u=0 & (t, x) \in(0, T] \times \mathbb{R}^{d} \\ u(0, x)=f(x) & x \in \mathbb{R}^{d}\end{cases}
$$

If u satisfies

$$
u(t, x) \leq A e^{a|x|^{2}} \quad \text { for }(t, x) \in[0, T] \times \mathbb{R}^{d},
$$

then

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}^{d}} u(t, x)=\sup _{x \in \mathbb{R}^{d}} g(x) .
$$

Remark 4.3.4. Here sup means...
Proposition 4.3.5 (Uniqueness, \mathbb{R}^{d} version). Suppose u_{1}, u_{2} solve

$$
\begin{cases}u_{t}-\Delta u=0 & (t, x) \in(0, T] \times \mathbb{R}^{d} \\ u(0, x)=f(x) & x \in \mathbb{R}^{d}\end{cases}
$$

Suppose that u_{1}, u_{2} satisfy

$$
u_{1}(t, x), u_{2}(t, x) \leq A e^{a|x|^{2}} \quad \text { for }(t, x) \in[0, T] \times \mathbb{R}^{d} .
$$

Then $u_{1} \equiv u_{2}$.
To see why this extra condition is necessary, consider the following example.
Example 4.3.1. Consider the heat equation in dimension $d=1$:

$$
\begin{cases}u_{t}-u_{x x}=0 & (t, x) \in(0, \infty) \times \mathbb{R} \tag{*}\\ u(0, x)=0 & x \in \mathbb{R}\end{cases}
$$

Clearly $u(x) \equiv 0$ is a solution to $(*)$ However, we can define a second solution v as follows. Let

$$
g(t)= \begin{cases}e^{-1 / t^{2}} & t>0 \\ 0 & t=0\end{cases}
$$

Then

$$
v(t, x)=g(t)+g^{\prime}(t) \frac{x^{2}}{2!}+g^{\prime \prime}(t) \frac{x^{4}}{4!}+g^{\prime \prime \prime}(t) \frac{x^{6}}{6!}+\ldots
$$

is also a solution to $(*)$. (Non-trivial issue: convergence of this series.)
Indeed,

$$
v_{x x}=0+g^{\prime}(t)+g^{\prime \prime}(t) \frac{x^{2}}{2!}+g^{\prime \prime \prime}(t) \frac{x^{4}}{4!}+\ldots,
$$

$$
v_{t}=g^{\prime}(t)+g^{\prime \prime}(t) \frac{x^{2}}{2!}+g^{\prime \prime \prime}(t) \frac{x^{4}}{4!}+\ldots,
$$

and

$$
v(0, x)=g(0)+g^{\prime}(0) \frac{x^{2}}{2!}+g^{\prime \prime}(0) \frac{x^{4}}{4!}+\cdots=0 .
$$

(Note that v has rapid growth as $|x| \rightarrow \infty$.)

Chapter 5

The Wave Equation

5.1 The Fundamental Solution

We turn to the wave equation: $u_{t t}-\Delta u=0 \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{d}$.
Here $u=u(t, x), \quad u_{t t}=\frac{\partial^{2} u}{\partial t^{2}}, \quad \Delta u=\sum_{j=1}^{d} \frac{\partial^{2} u}{\partial x_{j}^{2}}$.
We write $\square u=u_{t t}-\Delta u$. The operator \square is called the d'Alembertian. We study the following initial value problem.

$$
(I V P) \quad \begin{cases}\square u=0 & (t, x) \in(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=f(x) & x \in \mathbb{R}^{d} \\ u_{t}(0, x)=g(x) & x \in \mathbb{R}^{d} .\end{cases}
$$

(This time we need to impose two initial conditions since the equation is second order in t.)

As usual, we want to compute the fundamental solution Φ. We will solve

$$
\left\{\begin{array}{l}
\square \Phi=0 \tag{*}\\
\Phi(0)=0, \quad \Phi_{t}(0)=\delta_{0} .
\end{array}\right.
$$

Then the solution to (IVP) will be given by

$$
u(t, x)=\left[f * \partial_{t} \Phi(t, \cdot)\right](x)+[g * \Phi(t, \cdot)](x) .
$$

We can write this more succintly as

$$
u(t)=f * \partial_{t} \Phi(t)+g * \Phi(t)
$$

Indeed, first we have

$$
\square u=f * \partial_{t}(\square \Phi)+g * \square \Phi=0,
$$

so that u solves the PDE.
For the initial conditions: First, $u(0)=f * \delta_{0}+f * 0=f$. Next, since

$$
u_{t}=f * \Phi_{t t}+g * \Phi_{t}=f * \Delta \Phi+g * \Phi_{t}=\Delta(f * \Phi)+g * \Phi_{t},
$$

we have $u_{t}(0)=\Delta(f * 0)+g * \delta_{0}=g$.

5.1.1 The Case $d=1$

Then (*) reads

$$
\left\{\begin{array}{l}
\Phi_{t t}-\Phi_{x x}=0 \\
\Phi(0)=0, \quad \Phi_{t}(0)=\delta_{0}
\end{array}\right.
$$

Inspired by the factorization $\partial_{t t}-\partial_{x x}=\left(\partial_{t}-\partial_{x}\right)\left(\partial_{t}+\partial_{x}\right)$, we introduce the variables

$$
\xi=x+t, \quad \eta=x-t, \quad t=\frac{1}{2}(\xi-\eta), \quad x=\frac{1}{2}(\xi+\eta) .
$$

We write

$$
\Phi(t, x)=\Phi\left(\frac{\xi-\eta}{2}, \frac{\xi+\eta}{2}\right)=: v(\xi, \eta) .
$$

We have

$$
\begin{aligned}
v_{\xi} & =\frac{1}{2} \Phi_{t}+\frac{1}{2} \Phi_{x} \\
v_{\xi \eta} & =-\frac{1}{4} \Phi_{t t}+\frac{1}{4} \Phi_{t x}-\frac{1}{4} \Phi_{t x}+\frac{1}{4} \Phi_{x x} \\
& =-\frac{1}{4}\left(\Phi_{t t}-\Phi_{x x}\right) .
\end{aligned}
$$

Thus we want $v_{\xi \eta}=0$. The general solution to this ODE is given by

$$
v(\xi, \eta)=a(\xi)+b(\eta) \Longrightarrow \Phi(t, x)=a(x+t)+b(x-t)
$$

for some a, b.
Imposing the initial conditions we get

$$
a(x)+b(x)=0, \quad a^{\prime}(x)-b^{\prime}(x)=\delta_{0} .
$$

This implies

$$
a^{\prime}(x)=-b^{\prime}(x)=\frac{1}{2} \delta_{0} .
$$

So we should take

$$
a(x)=\frac{1}{2} H(x)+C, \quad b(x)=-\left[\frac{1}{2} H(x)+C\right]
$$

for some C, where

$$
H(x)=\left\{\begin{array}{ll}
0 & x<0 \\
1 & x>0
\end{array} \quad\right. \text { "Heaviside function". (See homework) }
$$

Thus

$$
\Phi(t, x)=\frac{1}{2}[H(x+t)-H(x-t)]= \begin{cases}\frac{1}{2} \operatorname{sign}(t) & -|t| \leq x \leq|t| \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\operatorname{sign}(t)= \begin{cases}1 & t>0 \\ -1 & t<0\end{cases}
$$

So the solution to (IVP) in dimension $d=1$ for $t \geq 0$ is given by

$$
\begin{aligned}
u(t, x) & =f *\left[\frac{1}{2} \delta_{0}(x+t)+\frac{1}{2} \delta_{0}(x-t)\right]+g * \Phi(t) \\
& =\frac{1}{2} f(x+t)+\frac{1}{2} f(x-t)+\frac{1}{2} \int_{-t}^{t} g(x-y) d y \\
& =\frac{1}{2} f(x+t)+\frac{1}{2} f(x-t)+\frac{1}{2} \int_{x-t}^{x+t} g(y) d y .
\end{aligned}
$$

(This is called d'Alembert's formula.)
Remark 5.1.1. Note that the value $u(t, x)$ depends on f at $x \pm t$ and g on $y \in(x-t, x+t)$. (An example of finite speed of propagation/Huygens principle.)

5.1.2 The Case $d=3$

We want to solve (IVP). Suppose we have a smooth solution $u(t, x)$.
For $r>0$ define the spherical means

$$
\begin{aligned}
\tilde{u}(t, x, r) & =\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} u(t, y) d S(y) \quad\left(z=\frac{y-x}{r}, d S(z)=r^{-2} d S(y)\right) \\
& =\frac{1}{4 \pi} \int_{\partial B_{1}(0)} u(t, x+r z) d S(z)
\end{aligned}
$$

By the continuity of u, we have

$$
\lim _{r \rightarrow 0} \tilde{u}(t, x, r)=u(t, x) .
$$

We also define

$$
\tilde{f}(x, r)=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} f(y) d S, \quad \tilde{g}(x, r)=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} g(y) d S .
$$

We compute

$$
\begin{aligned}
\tilde{u}_{r} & =\frac{1}{4 \pi} \int_{\partial B_{1}(0)} \nabla u(t, x+r z) \cdot z d S \\
& =\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} \nabla u(t, y) \cdot \frac{y-x}{r} d S \\
& =\frac{1}{4 \pi r^{2}} \int_{B_{r}(x)} \Delta u(t, y) d y \\
& =\frac{1}{4 \pi r^{2}} \int_{B_{r}(x)} u_{t t}(t, y) d y .
\end{aligned}
$$

So

$$
r^{2} \tilde{u}_{r}=\frac{1}{4 \pi} \int_{B_{r}(x)} u_{t t} d y .
$$

Thus
$\partial_{r}\left(r^{2} \tilde{u}_{r}\right)=\partial_{r}\left(\frac{1}{4 \pi} \int_{B_{r}(x)} u_{t t} d S\right)=\frac{1}{4 \pi} \int_{\partial B_{r}(x)} u_{t t} d S=r^{2} \frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} u_{t t} d S=r^{2} \tilde{u}_{t t}$.
That is,

$$
2 r \tilde{u}_{r}+r^{2} \tilde{u}_{r r}=r^{2} \tilde{u}_{t t} \quad \rightsquigarrow \quad r \tilde{u}_{t t}-r \tilde{u}_{r r}-2 \tilde{u}_{r}=0 .
$$

Now let $v(t, x, r)=r \tilde{u}(t, x, r)$. Then

$$
v_{t t}=r \tilde{u}_{r r}, \quad v_{r}=r \tilde{u}_{r}+\tilde{u}, \quad v_{r r}=\tilde{u}_{r r}+2 \tilde{u}_{r} .
$$

Then

$$
v_{t t}-v_{r r}=r \tilde{u}_{t t}-r \tilde{u}_{r r}-2 \tilde{u}_{r}=0 .
$$

So for fixed x, v solves the one dimensional wave equation for $t \in \mathbb{R}$, $r>0$!

We conclude that $v(t, x, r):=r \tilde{u}(t, x, r)$ solves

$$
\begin{cases}v_{t t}-v_{r r}=0 & \text { for } t \in \mathbb{R}, r>0 \\ v(0, x, r)=F(x, r) & r>0 \\ v_{t}(0, x, r)=G(x, r) & r>0\end{cases}
$$

where $F=r \tilde{f}$ and $G=r \tilde{g}$.
Applying the result from your homework, we find that for $0 \leq r \leq t$:

$$
v(t, x, r)=\frac{1}{2}[F(x, t+r)-F(x, t-r)]+\frac{1}{2} \int_{t-r}^{t+r} G(x, y) d y
$$

that is,

$$
\tilde{u}(t, x, r)=\frac{1}{2 r}[F(x, t+r)-F(x, t-r)]+\frac{1}{2 r} \int_{t-r}^{t+r} G(x, y) d y .
$$

Then

$$
\begin{equation*}
u(t, x)=\lim _{r \rightarrow 0} \tilde{u}(t, x, r)=\partial_{t} F(x, t)+G(x, t) . \tag{*}
\end{equation*}
$$

Note

$$
\begin{gathered}
G(x, t)=\frac{t}{4 \pi t^{2}} \int_{\partial B_{t}(x)} g(y) d S(y) . \\
F(x, t)=\frac{t}{4 \pi t^{2}} \int_{\partial B_{t}(x)} f(y) d S(y)=\frac{t}{4 \pi} \int_{\partial B_{1}(0)} f(x+t z) d S(z),
\end{gathered}
$$

so

$$
\begin{aligned}
\partial_{t} F & =\frac{1}{4 \pi} \int_{\partial B_{1}(0)} f(x+t z) d S(z)+\frac{t}{4 \pi} \int_{\partial B_{1}(0)} \nabla f(x+t z) \cdot z d S(z) \\
& =\frac{1}{4 \pi t^{2}} \int_{\partial B_{t}(x)} f(y) d S(y)+\frac{t}{4 \pi t^{2}} \int_{\partial B_{t}(x)} \nabla f(y) d S(y) \cdot \frac{y-x}{t} d S(y) \\
& =\frac{1}{4 \pi t^{2}}\left[\int_{\partial B_{t}(x)} f(y)+\nabla f(y) \cdot(y-x) d S(y)\right] .
\end{aligned}
$$

Continuing from (*), we find that the solution to (IVP) in dimension $d=3$ is given by

$$
u(t, x)=\frac{1}{4 \pi t^{2}} \int_{\partial B_{t}(x)} f(y)+\nabla f(y) \cdot(y-x)+t g(y) d S(y)
$$

(This is called Kirchhoff's formula.)
Remark 5.1.2. (Strong Huygens principle). The value of u at a point (t, x) depends only the initial data on the sphere $\partial B_{t}(x)$. (This is true in all odd dimensions.)

5.1.3 The Case $d=2$

We use "Hadamard's method of descent".
Suppose $u(t, x)$ is a solution to (IVP) with $d=2$. Then let us define $\bar{u}:(0, \infty) \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
\bar{u}\left(t, x_{1}, x_{2}, x_{3}\right)=u\left(t, x_{1}, x_{2}\right) .
$$

Then \bar{u} solves

$$
\square \bar{u}=0, \quad \bar{u}(0)=\bar{f}, \quad \bar{u}_{t}(0)=\bar{g},
$$

where

$$
\bar{f}\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{2}\right), \quad \bar{g}\left(x_{1}, x_{2}, x_{3}\right)=g\left(x_{1}, x_{2}\right) .
$$

Let's write $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and $\bar{x}=\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3}$.
Using (*) above we write

$$
\begin{equation*}
u(t, x)=\bar{u}(t, \bar{x})=\frac{\partial}{\partial t}\left(\frac{t}{4 \pi t^{2}} \int_{\partial \bar{B}_{t}(\bar{x})} \bar{f} d S(\bar{y})\right)+\frac{t}{4 \pi t^{2}} \int_{\partial \bar{B}_{t}(\bar{x})} \bar{g} d S(\bar{y}) . \tag{**}
\end{equation*}
$$

Here $\bar{B}_{t}(\bar{x})$ is the $3 d$-ball around \bar{x}. We parametrize $\partial \bar{B}_{t}(\bar{x})$ by defining

$$
h_{ \pm}: B_{t}(x) \rightarrow \partial \bar{B}_{t}(\bar{x}), \quad h_{ \pm}(y)=\left(y_{1}, y_{2}, \pm z(y)\right),
$$

where

$$
z(y)=\left(t^{2}-|x-y|^{2}\right)^{1 / 2} .
$$

Indeed

$$
\left|\bar{x}-h_{ \pm}(y)\right|^{2}=|x-y|^{2}+t^{2}-|x-y|^{2}=t^{2} .
$$

Note that

$$
\nabla z=-\frac{y-x}{\left(t^{2}-|x-y|^{2}\right)^{1 / 2}} \Longrightarrow \sqrt{1+|\nabla z|^{2}}=\frac{t}{\left(t^{2}-|x-y|^{2}\right)^{1 / 2}} . \quad \text { (check) }
$$

Thus

$$
\frac{t}{4 \pi t^{2}} \int_{\partial \bar{B}_{t}(\bar{x})} \bar{g} d S(\bar{y})=\frac{1}{2 \pi} \int_{B_{t}(x)} \frac{g(y)}{\left(t^{2}-|x-y|^{2}\right)^{1 / 2}} d y .
$$

and
$\frac{t}{4 \pi t^{2}} \int_{\partial \bar{B}_{t}(\bar{x})} \bar{f} d S(\bar{y})=\frac{t^{2}}{2 \pi t^{2}} \int_{B_{t}(x)} \frac{f(y)}{\left(t^{2}-|x-y|^{2}\right)^{1 / 2}} d y=\frac{t}{2 \pi} \int_{B_{1}(0)} \frac{f(x+t z)}{\left(1-|z|^{2}\right)^{1 / 2}} d z$
Hence

$$
\begin{aligned}
\frac{\partial}{\partial t}(\ldots) & =\frac{1}{2 \pi} \int_{B_{1}(0)} \frac{f(x+t z)}{\left(1-|z|^{2}\right)^{1 / 2}}+\frac{t}{2 \pi} \int_{B_{1}(0)} \frac{\nabla f(x+t z) \cdot z}{\left(1-|z|^{2}\right)^{1 / 2}} d y \\
& =\frac{1}{2 \pi t^{2}} \int_{B_{t}(x)} \frac{t f(y)+t \nabla f(y) \cdot(y-x)}{\left(t^{2}-|x-y|^{2}\right)^{1 / 2}} d y
\end{aligned}
$$

Putting it all together: the solution to (IVP) in dimension $d=2$ is given by

$$
u(t, x)=\frac{1}{2 \pi t^{2}} \int_{B_{t}(x)} \frac{t f(y)+t \nabla f(y) \cdot(y-x)+t^{2} g(y)}{\left(t^{2}-|x-y|^{2}\right)^{1 / 2}} d y
$$

(This is Poisson's formula).

Remark 5.1.3. (Weak Huygens principle) The value of u at (t, x) depends only on the initial data in the ball $B_{t}(x)$. This is true for all even dimensions.

So far we have solved the wave equation in dimensions $d \in\{1,2,3\}$. For $d=1$ we can solve the PDE by changing variables $\xi=x+t$ and $\eta=x-t$. For $d=3$ we reduced the problem to the $1 d$ case by taking spherical means.For $d=2$ we used the method of descent. In general, for odd dimensions one can use spherical means and for even dimensions one can use the method of descent. We do not pursue the general case here.

5.2 Energy Methods

There is no maximum principle for the wave equation:
Example 5.2.1. Consider

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0, \\
u(0, x)=0, u_{t}(0, x)=\chi_{(-1,1)}(x) .
\end{array}\right.
$$

The solution is

$$
u(t, x)=\frac{1}{2} \int_{x-t}^{x+t} \chi_{(-1,1)}(y) d y=\frac{1}{2} \operatorname{length}[(x-t, x+t) \cap(-1,1)]
$$

Draw the solution at $t=1, t=2, t=3$.
We do have uniqueness for the wave equation. To prove it we will use energy methods.

Suppose $\square u=0$ and u and its derivatives are integrable. We define the energy of a solution u by

$$
E[u(t)]=\int_{\mathbb{R}^{d}} \frac{1}{2}\left[u_{t}(t, x)\right]^{2}+\frac{1}{2}[\nabla u(t, x)]^{2} d x
$$

Notice that

$$
\frac{d}{d t} E[u(t)]=\int_{\mathbb{R}^{d}} u_{t t} u_{t}+\nabla u \cdot \nabla u_{t} d x=\int_{\mathbb{R}^{d}} u_{t t} u_{t}-\Delta u u_{t} d x=\int_{\mathbb{R}^{d}}(\square u) u_{t}=0 .
$$

Thus $E[u(t)] \equiv E[u(0)]$. This is conservation of energy.
Let $\Omega \subset \mathbb{R}^{d}$ be an open, bounded set with smooth boundary $\partial \Omega$.
As before, for $T>0$ we let $\Omega_{T}=(0, T] \times \Omega$ and $\Gamma_{T}=\overline{\Omega_{T}} \backslash \Omega_{T}$.

Proposition 5.2.1 (Uniqueness). Suppose u_{1}, u_{2} are smooth solutions to

$$
\begin{cases}\square u=F & \text { on } \Omega_{T} \\ u=f & \text { on } \Gamma_{T} \\ u_{t}=g & \text { on }\{t=0\} \times \Omega\end{cases}
$$

Then $u_{1} \equiv u_{2}$.
Proof. Define $w=u_{1}-u_{2}$. Then w solves

$$
\begin{cases}\square w=0 & \text { on } \in \Omega_{T} \\ w=0 & \text { on } \Gamma_{T} \\ w_{t}=0 & \text { on }\{t=0\} \times \Omega\end{cases}
$$

Define

$$
E_{\Omega}[w(t)]=\int_{\Omega} \frac{1}{2}\left[w_{t}(t, x)\right]^{2}+\frac{1}{2}[\nabla w(t, x)]^{2} d x .
$$

Then

$$
\begin{aligned}
\frac{d}{d t} E_{\Omega}[w(t)] & =\int_{\Omega} w_{t} w_{t t}+\nabla w \cdot \nabla w_{t} d x \\
& =\int_{\Omega} w_{t} w_{t t}-w_{t} \Delta w d x+\int_{\partial \Omega} w_{t} \nabla w \cdot \mathbf{n} d S \\
& =\int_{\Omega}(\square w) w_{t}=0
\end{aligned}
$$

Thus $E_{\Omega}[w(t)] \equiv E_{\Omega}[w(0)]=0$. This implies that $w_{t} \equiv 0$ and $\nabla w \equiv 0$ on Ω_{T}. As $w(0, x)=0$, we conclude $w \equiv 0$. That is, $u_{1} \equiv u_{2}$.

Remark 5.2.2. 'Energy methods' may also be applied to Laplace/heat equations.

Proposition 5.2.3 (Finite speed of propagation.). Suppose $\square u=0$. Fix $\left(t_{0}, x_{0}\right) \in(0, \infty) \times \mathbb{R}^{d}$ and define the cone

$$
C=\left\{(t, x): 0 \leq t \leq t_{0}, \quad\left|x-x_{0}\right| \leq t_{0}-t\right\} .
$$

If $u(0, x)=u_{t}(0, x)=0$ for $x \in B_{t_{0}}\left(x_{0}\right)$, then $u \equiv 0$ for $(t, x) \in C$.
Proof. For dimensions $d \in\{1,2,3\}$, we can deduce this from the explicit formulas we derived.

However, energy methods provide a simpler proof (in all dimensions).

For $t \in\left[0, t_{0}\right]$ we define

$$
e(t)=\int_{B_{t_{0}-t}\left(x_{0}\right)} \frac{1}{2}\left[u_{t}(t, x)\right]^{2}+\frac{1}{2}|\nabla u(t, x)|^{2} d x
$$

In your homework, you show

$$
\frac{\partial}{\partial r} \int_{B_{r}(x)} f(y) d y=\int_{\partial B_{r}(x)} f(y) d S(y)
$$

Similarly,

$$
\frac{\partial}{\partial r} \int_{B_{r}(x)} f(r, y) d y=\int_{B_{r}(x)} \partial_{r} f(r, y) d y+\int_{\partial B_{r}(x)} f(r, y) d S(y) .
$$

Thus

$$
\begin{aligned}
\frac{d}{d t} e(t) & =\int_{B_{t_{0}-t}\left(x_{0}\right)} u_{t} u_{t t}+\nabla u \cdot \nabla u_{t} d y-\int_{\partial B_{t_{0}-t}\left(x_{0}\right)} \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2} d S \\
& =\int_{B_{t_{0}-t}\left(x_{0}\right)}(\square u) u_{t} d y+\int_{\partial B_{t_{0}-t}\left(x_{0}\right)} u_{t} \nabla u \cdot \mathbf{n}-\frac{1}{2} u_{t}^{2}-\frac{1}{2}|\nabla u|^{2} d S \\
& =\int_{\partial B_{t_{0}-t}\left(x_{0}\right)} u_{t} \nabla u \cdot \mathbf{n}-\left(\frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2}\right) d S .
\end{aligned}
$$

Now, we have

$$
\left|u_{t} \nabla u \cdot \mathbf{n}\right| \leq\left|u_{t}\right||\nabla u| \leq \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2},
$$

thus continuing from above we see

$$
\frac{d}{d t} e(t) \leq 0 .
$$

But notice that $e(t) \geq 0$ by definition, while $e(0)=0$. Thus $e(t) \equiv 0$ for each t.

As before, this implies $u \equiv 0$ on each $B_{t_{0}-t}\left(x_{0}\right)$. Thus $u \equiv 0$ on C.
From these computations we can also prove the energy flux identity.
This states that if a region of space moves at the speed of light then the energy trapped in the (time-dependent) region is non-increasing.

In particular, the energy flux through the boundary is non-negative.
Indeed, we proved that for $\square u=0$, we have

$$
\frac{d}{d t} e(t)=-\int_{\partial B_{t_{0}-t}\left(x_{0}\right)} \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2}-u_{t} \nabla u \cdot \mathbf{n} d S,
$$

so that

$$
e\left(t_{2}\right)=e\left(t_{1}\right)-\int_{t_{1}}^{t_{2}} \int_{\partial B_{t_{0}-t}\left(x_{0}\right)} \frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2}-u_{t} \nabla u \cdot \mathbf{n} d S .
$$

Chapter 6

Separation of Variables

6.1 Linear Algebra Review

Linear algebra review 1: Let X be a vector space and $A: X \rightarrow X$ a linear transformation. A nonzero vector $v \in X$ is an eigenvector of A if there exists $\lambda \in \mathbb{C}$ such that $A v=\lambda v$. We call λ the eigenvalue associated to v.

Linear algebra review 2: Let X be a vector space over \mathbb{C}.
An inner product on X is a function $b: X \times X \rightarrow \mathbb{C}$ such that

- $b(v, w)=\overline{b(w, v)}$
- $b(\alpha v+\beta w, z)=\alpha b(v, z)+\beta b(w, z)$
- $b(v, v) \geq 0$
- $b(v, v)=0 \Longrightarrow v=0$

We use the notation $\langle v, w\rangle=b(v, w)$.
We call v, w orthogonal if $\langle v, w\rangle=0$. We write $v \perp w$.
A set $\left\{v_{n}\right\} \subset X$ is called orthonormal if $\left\langle v_{n}, v_{m}\right\rangle= \begin{cases}1 & n=m \\ 0 & n \neq m .\end{cases}$
A set $\left\{v_{n}\right\} \subset X$ is called an orthonormal basis if it is orthonormal and forms a basis.

If $\left\{v_{n}\right\}$ is an orthonormal basis then for any $x \in X$ we have $x=$ $\sum_{n}\left\langle x, v_{n}\right\rangle v_{n}$.

Linear algebra review 3:
If $\langle\cdot, \cdot\rangle$ is an inner product on X then we can define the norm of a vector $x \in X$ by

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

We have the following important facts:
(i) triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$
(ii) Cauchy-Schwarz inequality: $|\langle x, y\rangle| \leq\|x\|\|y\|$
(iii) Pythagorean theorem: if $x \perp y$ then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

6.2 Separation of Variables

We turn to the study of initial value problems with boundary conditions: $(t, x) \in(0, \infty) \times \Omega$.

The problems have three components:
(i) the equation (PDE)
(ii) the initial conditions (IC) $\quad(t=0)$
(iii) the boundary conditions $(\mathrm{BC}) \quad(x \in \partial \Omega)$

We focus on the following boundary conditions:

- Dirichlet: $u(t, x)$ is specified for $x \in \partial \Omega$
- Neumann: $\nabla u(t, x) \cdot \mathbf{n}(x)$ is specified for $x \in \partial \Omega$

We focus on homogeneous BCs (that is, $u=0$ or $\nabla u \cdot \mathbf{n}=0$).
The idea of separation of variables is to look for solutions of the form $u(t, x)=p(t) q(x)$.

Example. Consider the heat equation (with some BCs):

$$
u_{t}=\Delta u \Longleftrightarrow p^{\prime}(t) q(x)=p(t) \Delta q(x) \Longleftrightarrow \frac{-p^{\prime}(t)}{p(t)}=\frac{-\Delta q(x)}{q(x)}
$$

Thus we look for non-trivial p, q so that

$$
\frac{-p^{\prime}(t)}{p(t)}=\lambda=\frac{-\Delta q(x)}{q(x)} \quad \text { for some } \quad \lambda .
$$

In particular, we look for λ and q such that

$$
-\Delta q=\lambda q
$$

This is the eigenfunction/eigenvalue problem for $-\Delta$.
However there is an additional twist: the eigenfunction must satisfy the BCs for u to be a solution.

Depending on the BCs you may find different eigenvalues/eigenfunctions.
Now suppose q_{λ} is an eigenfunction of Δ with eigenvalue λ (satisfying the BCs).

Then we get a solution

$$
u_{\lambda}(t, x)=p_{\lambda}(t) q_{\lambda}(x)
$$

where $p_{\lambda}(t)=e^{-\lambda t}$. Note u_{λ} satisfies the PDE and BCs.
What about the IC, say $u(0)=f$? In general we won't have $f=q_{\lambda}$ for any λ.

Key observation: $\sum_{\lambda} c_{\lambda} u_{\lambda}$ still solves the PDE and BCs.
Thus IF we could write

$$
f(x)=\sum_{\lambda} c_{\lambda} q_{\lambda}(x),
$$

then we could solve the PDE/BC/IC by writing

$$
u(t, x)=\sum_{\lambda} c_{\lambda} p_{\lambda}(t) q_{\lambda}(x) .
$$

We are led to the following problems:

1. Solve the eigenvalue problem for $-\Delta$ with prescribed BCs.
2. Write functions satisfying $B C s$ as a linear combination of eigenfunctions.

If we can solve 1 and 2 , then we can use separation of variables to solve the PDE/BC/IC.

We restrict attention to the case $\Omega=[0, L] \subset \mathbb{R}$.
You will address Problem 1 (homework) and find:
(i) (Dirichlet) eigenvalues $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$, eigenfunctions $q_{n}(x)=\sin \left(\frac{n \pi}{L} x\right)$ ($n>0$)
(ii) (Neumann) eigenvalues are $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$, eigenfunctions $q_{n}(x)=$ $\cos \left(\frac{n \pi}{L} x\right)(n \geq 0)$

6.3 Fourier Series

We discuss Problem 2. In fact, we will show:
Theorem 6.3.1. If $F:[-L, L] \rightarrow \mathbb{C}$ is periodic (that is, $F(-L)=F(L)$) and smooth, then we can write $F(x)$ in a Fourier series:

$$
F(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{i n \pi}{L} x}
$$

In fact, this will imply (see homework):

Corollary 6.3.2.

(i) if $f:(0, L) \rightarrow \mathbb{R}$ satisfies homogeneous Dirichlet BCs, then $f(x)=$ $\sum_{n=1}^{\infty} \tilde{c_{n}} \sin \left(\frac{n \pi}{L} x\right)$
(ii) if $f:(0, L) \rightarrow \mathbb{R}$ satisfies homogeneous Neumann BCs, then $f(x)=$ $\sum_{n=0}^{\infty} \tilde{c_{n}} \cos \left(\frac{n \pi}{L} x\right)$.

For (i)/(ii), extend f to $(-L, L)$ by odd/even reflection and show that the Fourier expansion reduces to a sine/cosine series.

We turn to the Theorem.
We rephrase the Theorem in these terms. Defining the vector space

$$
X=\{F:[-L, L] \rightarrow \mathbb{C} \mid F \text { is periodic and smooth }\}
$$

Theorem 1 says: the set $\left\{e^{\frac{i n \pi}{L} x}\right\}_{n \in \mathbb{Z}}$ forms a basis for X.
(In fact we will see that they form an orthonormal basis if we define the right inner product.)

Notation: $e_{n}(x):=e^{\frac{i n \pi}{L} x}$.
With

$$
X=\{f:[-L, L] \rightarrow \mathbb{C} \mid f \text { is periodic and smooth }\}
$$

the Theorem says: the set $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ forms a basis for X.
Our first task is to figure out what the c_{n} 'should' be.
Key observation: $\left\{e_{n}\right\}$ forms an orthonormal set with respect to the inner product

$$
\langle f, g\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) \overline{g(x)} d x, \quad f, g \in X .
$$

Indeed, for $n \neq m$ we have

$$
\left\langle e_{n}, e_{m}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} e^{\frac{i(n-m) \pi}{L} x} d x=\frac{1}{2 L}\left[\frac{L}{i \pi(n-m)} e^{\frac{i(n-m) \pi}{L} x}\right]_{-L}^{L}=0,
$$

since $e^{i(n-m) \pi}=e^{-i(n-m) \pi}$. Moreover

$$
\left\langle e_{n}, e_{n}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} 1 d x=1
$$

Thus $\left\{e_{n}\right\}$ is an orthonormal set.
So if $\left\{e_{n}\right\}$ formed a basis, we would have

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e_{n}(x) \quad \text { with } \quad c_{n}=\left\langle f, e_{n}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) \overline{e_{n}}(x) d x .
$$

Motivated by this computation, for $f \in X$ we define $S_{N} f$ by

$$
S_{N} f(x)=\sum_{n=-N}^{N}\left\langle f, e_{n}\right\rangle e_{n}(x) .
$$

Our goal is to show that $S_{N} f \rightarrow f$ as $N \rightarrow \infty$. (Question: in what sense?)

Let us first study $S_{N} f$.

$$
\begin{aligned}
S_{N} f(x) & =\sum_{n=-N}^{N}\left\langle f, e_{n}\right\rangle e_{n}(x)=\frac{1}{2 L} \sum_{n=-N}^{N} \int_{-L}^{L} f(y) \overline{e_{n}}(y) e_{n}(x) d y \\
& =\int_{-L}^{L} f(y)\left(\frac{1}{2 L} \sum_{n=-N}^{N} e_{n}(x-y)\right) d y=f * D_{N}(x),
\end{aligned}
$$

where

$$
D_{N}(x)=\frac{1}{2 L} \sum_{n=-N}^{N} e_{n}(x) \quad \text { for } \quad x \in[-L, L] . \quad \text { ('Dirichlet kernel') }
$$

If D_{N} formed approximate identities as $N \rightarrow \infty$, we would be done. Unfortunately, they don't. (They become very oscillatory for large N.)

Thus we don't get a simple proof that $S_{N} f(x) \rightarrow f(x)$ for each x.
However, if we define the Cesáro means

$$
\sigma_{N} f(x)=\frac{1}{N} \sum_{n=0}^{N-1} S_{n} f(x),
$$

then we find

$$
\sigma_{N} f(x)=f * F_{N}(x), \quad F_{N}(x)=\frac{1}{N} \sum_{n=0}^{N-1} D_{n}(x) . \quad \text { ('Fejér kernel') }
$$

It turns out that averaging eliminates the oscillation and F_{N} form approximate identities as $N \rightarrow \infty$.

Thus $\sigma_{N} f(x) \rightarrow f(x)$ as $N \rightarrow \infty$ (in fact, uniformly in x).
Conclusion 1. $S_{N} f \rightarrow f$ uniformly in an averaged sense.
Remark 6.3.3. Note

$$
\begin{equation*}
\sigma_{N} f=\frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=-n}^{n}\left\langle f, e_{m}\right\rangle e_{m}=\sum_{n=-N}^{N} b_{n} e_{n} \quad \text { for some } b_{n} \tag{*}
\end{equation*}
$$

As a consequence of Conclusion 1 and ($*$), we find: for any $\varepsilon>0$ there exists N and $\left\{b_{n}\right\}_{n=-N}^{N}$ such that

$$
\left|f(x)-\sum_{n=-N}^{N} b_{n} e_{n}(x)\right|<\varepsilon \quad \text { for } \quad x \in(-L, L) .
$$

Our next goal is to show 'mean-square (L^{2}) convergence' of $S_{N} f$. We can define a norm on X via

$$
\|f\|^{2}=\langle f, f\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) \overline{f(x)} d x=\frac{1}{2 L} \int_{-L}^{L}|f(x)|^{2} d x .
$$

This is called the L^{2}-norm. We will show:

$$
\lim _{N \rightarrow \infty}\left\|f-S_{N} f\right\|=0
$$

This says that $S_{N} f \rightarrow f$ in the L^{2}-norm.
For $f:[-L, L] \rightarrow \mathbb{C}$ periodic and smooth we defined

$$
S_{N} f(x)=\sum_{n=-N}^{N}\left\langle f, e_{n}\right\rangle e_{n}(x),
$$

where

$$
e_{n}(x)=e^{\frac{i n \pi}{L} x}, \quad\langle f, g\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) \overline{g(x)} d x .
$$

The 'Cesáro means' converge to f uniformly, which implies
For any $\varepsilon>0$ there exists M and $\left\{b_{n}\right\}_{n=-M}^{M}$ such that

$$
\begin{equation*}
\left|f(x)-\sum_{n=-M}^{M} b_{n} e_{n}(x)\right|<\varepsilon \quad \text { for } \quad x \in(-L, L) \tag{*}
\end{equation*}
$$

Goal.

$$
\lim _{N \rightarrow \infty}\left\|f-S_{N} f\right\|=0, \quad \text { where } \quad\|f\|=\langle f, f\rangle^{1 / 2}
$$

Proof. Let $\varepsilon>0$. We need to find M so that $\left\|f-S_{N} f\right\| \leq \varepsilon$ for $N \geq M$.
Key facts: for any M
A. $\left(f-S_{M} f\right) \perp e_{n} \quad$ for any $-M \leq n \leq M$
B. $\left(f-S_{M} f\right) \perp \sum_{n=-M}^{M} c_{n} e_{n} \quad$ for any $\left\{c_{n}\right\}$
C. $\left\|f-S_{N} f\right\| \leq\left\|f-S_{M} f\right\|$ for $N>M$.

For (A) we note

$$
\begin{aligned}
\left\langle f-S_{M} f, e_{n}\right\rangle & =\left\langle f, e_{n}\right\rangle-\left\langle\sum_{m=-M}^{M}\left\langle f, e_{m}\right\rangle e_{m}, e_{n}\right\rangle=\left\langle f, e_{n}\right\rangle-\sum_{m=-M}^{M}\left\langle f, e_{m}\right\rangle\left\langle e_{m}, e_{n}\right\rangle \\
& =\left\langle f, e_{n}\right\rangle-\left\langle f, e_{n}\right\rangle \underbrace{\left\langle e_{n}, e_{n}\right\rangle}_{=1}=0 .
\end{aligned}
$$

Now (B) follows from (A).
For (C) we note

$$
f-S_{M} f=f-S_{N} f+\sum_{M<|n| \leq N}\left\langle f, e_{n}\right\rangle e_{n}
$$

Using (B) and the Pythagorean theorem we have

$$
\left\|f-S_{M} f\right\|^{2}=\left\|f-S_{N} f\right\|^{2}+\left\|\sum_{M<|n| \leq N}\left\langle f, e_{n}\right\rangle e_{n}\right\|^{2} \geq\left\|f-S_{N} f\right\|^{2} .
$$

Now let $\varepsilon>0$. We choose M and b_{n} so that (*) holds.
Squaring and integrating, (*) implies

$$
\left\|f-\sum_{n=-M}^{M} b_{n} e_{n}\right\|<\varepsilon
$$

But now we write

$$
f-\sum_{n=-M}^{M} b_{n} e_{n}=f-S_{M} f+\sum_{n=-M}^{M}\left[\left\langle f, e_{n}\right\rangle-b_{n}\right] e_{n}
$$

so that using (B) and the Pythagorean theorem we find

$$
\varepsilon^{2}>\left\|f-\sum_{n=-M}^{M} b_{n} e_{n}\right\|^{2}=\left\|f-S_{M} f\right\|^{2}+\left\|\sum_{n=-M}^{M}\left[\left\langle f, e_{n}\right\rangle-b_{n}\right] e_{n}\right\|^{2} \geq\left\|f-S_{M} f\right\|^{2}
$$

That is,

$$
\left\|f-S_{M} f\right\|<\varepsilon
$$

Using (C), we conclude $\left\|f-S_{N} f\right\|<\varepsilon$ for all $N \geq M$.

Remark 6.3.4. Using the 'key facts' above we can show

$$
\|f\|^{2}=\left\|f-S_{N} f\right\|^{2}+\sum_{n=-N}^{N}\left|\left\langle f, e_{n}\right\rangle\right|^{2} .
$$

Thus

$$
\sum_{n=-\infty}^{\infty}\left|\left\langle f, e_{n}\right\rangle\right|^{2}=\|f\|^{2} \quad \text { ('Parseval's identity'). }
$$

In particular,

$$
\left\langle f, e_{n}\right\rangle \rightarrow 0 \quad \text { as } \quad n \rightarrow \pm \infty \quad \text { ('Riemann-Lebesgue lemma') }
$$

Using the Riemann-Lebesgue lemma and a more careful analysis of the Dirichlet kernel, one can show that if f is differentiable at x_{0} then $S_{N} f\left(x_{0}\right) \rightarrow$ $f\left(x_{0}\right)$ pointwise.

However, beware: if f is merely continuous then its Fourier series may diverge at a point. (Beyond the scope of this course.)

Example 6.3.1. Consider

$$
\begin{cases}u_{t}-u_{x x}=0 & (t, x) \in(0, \infty) \times(0, L) \tag{*}\\ u(0, x)=f(x) & x \in[0, L] \\ \partial_{x} u(t, 0)=\partial_{x} u(t, L)=0 .\end{cases}
$$

Writing $u(t, x)=p(t) q(x)$ leads to the eigenvalue problem

$$
\frac{-p^{\prime}(t)}{p(t)}=\lambda=\frac{-q^{\prime \prime}(x)}{q(x)}, \quad q^{\prime}(0)=q^{\prime}(L)=0
$$

The eigenfunctions are $q_{n}(x)=\cos \left(\frac{n \pi}{L} x\right)$ for $n \geq 0$, with eigenvalues $\left(\frac{n \pi}{L}\right)^{2}$.
So we get a family of solutions $u_{n}(t, x)=e^{-(n \pi / L)^{2} t} \cos \left(\frac{n \pi}{L} x\right), n \geq 0$.
If we could write

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n} \cos \left(\frac{n \pi}{L} x\right) \tag{**}
\end{equation*}
$$

then we can solve (*) via

$$
u(t, x)=\sum_{n=0}^{\infty} c_{n} e^{-(n \pi / L)^{2} t} \cos \left(\frac{n \pi}{L} x\right)
$$

Extending f to $[-L, L]$ by even reflection and using the Fourier series, one can find

$$
c_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x .
$$

(See Homework 5 Problem 5.)
Then for reasonable f the series expansion in ($* *$) will be valid.

Chapter 7

The Fourier Transform

7.1 The Fourier Transform

The theory of Fourier series says that for $f:[-L, L] \rightarrow \mathbb{C}$ periodic and smooth we can write f as a linear combination of waves of frequencies $\frac{n}{2 L}$,

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty}\left\langle f, e_{n}\right\rangle e^{\frac{i n \pi}{L} x}, \tag{*}
\end{equation*}
$$

where the Fourier coefficients are given by

$$
\left\langle f, e_{n}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-\frac{i n \pi}{L} x} d x .
$$

The Fourier transform extends these ideas to the case $L \rightarrow \infty$: for f : $\mathbb{R} \rightarrow \mathbb{C}$ we define $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ (formally) by

$$
\widehat{f}(\xi)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(x) e^{-i x \xi} d x
$$

Thus $\widehat{f}(\xi)$ is the 'Fourier coefficient' at a frequency $\xi \in \mathbb{R}$.
Question. Can we recover f from \widehat{f} ? Do we have an analogue of $(*)$?
Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ has compact support, say $f(x)=0$ for $|x|>M$. Choose $L>M$. Then

$$
\left\langle f, e_{n}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-\frac{i n \pi}{L} x} d x=\frac{\pi}{L} \frac{1}{2 \pi} \int_{\mathbb{R}} f(x) e^{-\frac{i n \pi}{L} x} d x=\frac{1}{(2 \pi)^{1 / 2}} \frac{\pi}{L} \widehat{f}\left(\frac{n \pi}{L}\right) .
$$

Thus for fixed x, we have

$$
f(x)=\frac{1}{(2 \pi)^{1 / 2}} \sum_{n=-\infty}^{\infty} \frac{\pi}{L} \widehat{f}\left(\frac{n \pi}{L}\right) e^{\frac{i n \pi}{L} x} .
$$

Let us write $\varepsilon=\frac{\pi}{L}$ and $G(y)=\widehat{f}(y) e^{i y x}$ and send $L \rightarrow \infty($ that is, $\varepsilon \rightarrow 0$). Then

$$
f(x)=\frac{1}{(2 \pi)^{1 / 2}} \sum_{n=-\infty}^{\infty} \varepsilon G(\varepsilon n) \rightarrow \frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} G(\xi) d \xi=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} \widehat{f}(\xi) e^{i x \xi} d y
$$

We arrive (formally) at the Fourier inversion formula

$$
f(x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} \widehat{f}(\xi) e^{i x \xi} d \xi, \quad \widehat{f}(\xi)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(x) e^{-i x \xi} d x .
$$

We turn now to the details.
Definition 7.1.1. (Schwartz space)

$$
\mathcal{S}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}): x^{k} f^{(\ell)}(x) \text { is bounded for all } k, \ell \geq 0 .\right\}
$$

If $f \in \mathcal{S}$ then f is absolutely integrable, and so \widehat{f} is a bounded function $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$. In fact we will show $\widehat{f} \in \mathcal{S}$.

Lemma 7.1.2. Let $f \in \mathcal{S}(\mathbb{R})$.

- if $g(x)=f^{\prime}(x)$ then $\widehat{g}(\xi)=i \xi \widehat{f}(\xi)$
- if $g(x)=-i x f(x)$ then $\widehat{g}(\xi)=\frac{d}{d \xi} \widehat{f}(\xi)$

Proof. If $g(x)=f^{\prime}(x)$, then

$$
\begin{aligned}
\widehat{g}(\xi) & =\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} e^{-i x \xi} f^{\prime}(x) d x \\
& =-\frac{1}{(2 \pi)^{1 / 2}}\left[\int_{\mathbb{R}} \frac{d}{d x}\left(e^{-i x \xi}\right) f(x) d x+\left[f(x) e^{-i x \xi}\right]_{x=-\infty}^{\infty}\right] \\
& =\frac{1}{(2 \pi)^{1 / 2}} i \xi \int_{\mathbb{R}} e^{-i x \xi} f(x) d x=i \xi \widehat{f}(\xi) .
\end{aligned}
$$

If $g(x)=-i x f(x)$, then
$\widehat{g}(\xi)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}}-i x f(x) e^{-i x \xi} d x=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(x) \frac{d}{d \xi}\left(e^{-i x \xi}\right) d x=\frac{d}{d \xi} \widehat{f}(\xi)$.
Remark 7.1.3. We can now see the connection of the \mathcal{F} to PDE: it interchanges derivatives and multiplication by x.

Proposition. If $f \in \mathcal{S}$ then $\widehat{f} \in \mathcal{S}$.

Proof. Using the lemma, for any $f \in \mathcal{S}$ and any $k, \ell \geq 0$ we have

$$
\xi^{k}\left(\frac{d}{d \xi}\right)^{\ell} \widehat{f}(\xi)=\widehat{g}(\xi), \quad \text { where } \quad g=\left(\frac{1}{i} \frac{d}{d x}\right)^{k}(-i x)^{\ell} f \in \mathcal{S}
$$

As $g \in \mathcal{S}$, we have \widehat{g} is bounded. We conclude $\widehat{f} \in \mathcal{S}$.
Thus if we write $\mathcal{F} f=\widehat{f}$, we have $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$. In fact:
Theorem. $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ is a bijection, and the Fourier inversion formula holds.

Lemma. (Multiplication formula) If $f, g \in \mathcal{S}$ then

$$
\int_{\mathbb{R}} f(x) \widehat{g}(x) d x=\int_{\mathbb{R}} \widehat{f}(y) g(y) d y
$$

Proof.

$$
\begin{aligned}
\int_{\mathbb{R}} f(x) \widehat{g}(x) d x & =(2 \pi)^{-1 / 2} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x) e^{-i x y} g(y) d y d x \\
& =(2 \pi)^{-1 / 2} \int_{\mathbb{R}} g(y)\left(\int_{\mathbb{R}} f(x) e^{-i x y} d x\right) d y=\int_{\mathbb{R}} \widehat{f}(y) g(y) d y
\end{aligned}
$$

Lemma.

- if $g(x)=f(-x)$ then $\widehat{g}(\xi)=\widehat{f}(-\xi)$
- if $g(x)=f(x-h)$ then $\widehat{g}(\xi)=e^{-i h \xi} \widehat{f}(\xi)$
- if $g(x)=f(\lambda x)$ then $\widehat{g}(\xi)=\frac{1}{\lambda} \widehat{f}\left(\frac{\xi}{\lambda}\right)$

Proof.

$$
\begin{gathered}
\int_{\mathbb{R}} f(-x) e^{-i x \xi} d x=\int_{\mathbb{R}} f(y) e^{i y \xi} d x=\int_{\mathbb{R}} f(y) e^{-i y(-\xi)} d x . \quad(y=-x) \\
\int_{\mathbb{R}} f(x-h) e^{-i x \xi} d x=\int_{\mathbb{R}} f(y) e^{-i(y+h) \xi} d y=e^{-i h \xi} \int_{\mathbb{R}} f(y) e^{-i y \xi} d y . \quad(y=x-h) \\
\int_{\mathbb{R}} f(\lambda x) e^{-i x \xi} d x=\frac{1}{\lambda} \int_{\mathbb{R}} f(y) e^{-i y \xi / \lambda} d y . \quad(y=\lambda x)
\end{gathered}
$$

Corollary. If $g(y)=f(x-y)$ then $\widehat{g}(y)=e^{-i x y} \widehat{f}(-y)$.
Recall:
Schwartz space:

$$
\mathcal{S}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}): x^{k} f^{(\ell)}(x) \text { is bounded for all } k, \ell \geq 0 .\right\}
$$

Fourier transform: $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ defined by

$$
\mathcal{F} f(\xi)=\widehat{f}(\xi)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} f(x) e^{-i x \xi} d x
$$

Our first goal is the following
Theorem. $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ is a bijection and the Fourier inversion formula holds:

$$
f(x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} \widehat{f}(\xi) e^{i x \xi} d \xi
$$

So far we proved:
(i) $\quad \int_{\mathbb{R}} f(x) \widehat{g}(x) d x=\int_{\mathbb{R}} \widehat{f}(x) g(x) d x$.
(ii) if $g(y)=f(x-y)$ then $\widehat{g}(y)=e^{-i x y} \widehat{f}(-y)$
(iii) if $g(y)=f(\lambda y)$ then $\widehat{g}(y)=\frac{1}{\lambda} \widehat{f}\left(\frac{y}{\lambda}\right)$.

Lemma. Let $f(x)=e^{-x^{2} / 2}$. Then $f \in \mathcal{S}$ and $\widehat{f}=f$.
Proof. (You check that $f \in \mathcal{S}$.) We have

$$
f^{\prime}(x)=-x f(x)=\frac{1}{i}(-i x f(x))
$$

Thus

$$
i \xi \widehat{f}(\xi)=\frac{1}{i} \frac{d}{d \xi} \widehat{f}(\xi) . \Longrightarrow \frac{d}{d \xi} \widehat{f}=-\xi \widehat{f}
$$

so

$$
\widehat{f}(\xi)=e^{-\xi^{2} / 2} \widehat{f}(0)
$$

Now we note

$$
\widehat{f}(0)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} e^{-x^{2} / 2} d x=1
$$

We define $K(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2}$. For $\varepsilon>0$ we define $K_{\varepsilon}(x)=\frac{1}{\varepsilon} K\left(\frac{x}{\varepsilon}\right)$. Then

- K_{ε} form approximate identities as $\varepsilon \rightarrow 0$,
- Using (iii): if $G_{\varepsilon}(x)=K(\varepsilon x)$, then $\widehat{G_{\varepsilon}}=K_{\varepsilon}$.

Proof of Theorem. We first show the inversion formula.
Let $f \in \mathcal{S}, x \in \mathbb{R}$, and $\varepsilon>0$. Let $g(y)=f(x-y)$.

$$
\begin{aligned}
f * K_{\varepsilon}(x) & =\int_{\mathbb{R}} f(x-y) K_{\varepsilon}(y) d y=\int_{\mathbb{R}} g(y) \widehat{G_{\varepsilon}}(y) d y \\
& =\int_{\mathbb{R}} \widehat{g}(y) G_{\varepsilon}(y) d y=\int_{\mathbb{R}} e^{-i x y} \widehat{f}(-y) K(\varepsilon y) d y \\
& =\int_{\mathbb{R}} \widehat{f}(y) e^{i x y} K(-\varepsilon y) d y .
\end{aligned}
$$

Now send $\varepsilon \rightarrow 0$. Then $f * K_{\varepsilon}(x) \rightarrow f(x)$, while $K(-\varepsilon y) \rightarrow K(0)=(2 \pi)^{-1 / 2}$.
Thus

$$
f(x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} \widehat{f}(y) e^{i x y} d y .
$$

We can now see that \mathcal{F} is a bijection: we define $\mathcal{F}^{*}: \mathcal{S} \rightarrow \mathcal{S}$ by

$$
\mathcal{F}^{*} g(x)=\frac{1}{(2 \pi)^{1 / 2}} \int_{\mathbb{R}} g(\xi) e^{i x \xi} d \xi
$$

The Fourier inversion formula says that $\mathcal{F}^{*} \circ \mathcal{F}=I d$ on \mathcal{S}.
Combining this with the fact that $\mathcal{F}^{*} f(y)=\mathcal{F} f(-y)$, we can see that $\mathcal{F} \circ \mathcal{F}^{*}=I d$.

We conclude that $\mathcal{F}^{*}=\mathcal{F}^{-1}$ and \mathcal{F} is a bijection on \mathcal{S}.
We next prove the Plancherel theorem for the Fourier transform.
As before, we introduce the L^{2} inner product and norm on $\mathcal{S}(\mathbb{R})$ by defining

$$
\begin{aligned}
& \langle f, g\rangle=\int_{\mathbb{R}} f(x) \overline{g(x)} d x \text { for } f, g \in \mathcal{S} \\
& \|f\|=\sqrt{\langle f, f\rangle}=\left(\int_{\mathbb{R}}|f(x)|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

Theorem 7.1.4 (Plancherel). For $f, g \in \mathcal{S}$ we have $\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle$. In particular $\|f\|=\|\widehat{f}\|$.

Remark 7.1.5. This says that \mathcal{F} is a unitary transformation.
Lemma. $\mathcal{F}(f * g)(\xi)=(2 \pi)^{1 / 2} \widehat{f}(\xi) \widehat{g}(\xi)$.

Proof.

$$
\begin{aligned}
\mathcal{F}(f * g)(\xi) & =(2 \pi)^{-1 / 2} \int_{\mathbb{R}}(f * g)(x) e^{-i x \xi} d x \\
& =(2 \pi)^{-1 / 2} \int_{\mathbb{R}} g(y) e^{-i y \xi}\left(\int_{\mathbb{R}} f(x-y) e^{-i(x-y) \xi} d x\right) d y \\
& =(2 \pi)^{1 / 2} \widehat{f}(\xi) \widehat{g}(\xi) .
\end{aligned}
$$

Proof of Theorem. Let $f, g \in \mathcal{S}$. Define $G(x)=\overline{g(-x)}$. Then $\widehat{G}(\xi)=$ $\overline{\hat{g}(\xi)}$. Then

$$
\begin{aligned}
\int_{\mathbb{R}} f(x) \bar{g}(x) d x & =f * G(0)=(2 \pi)^{-1 / 2} \int_{\mathbb{R}} \mathcal{F}(f * G)(\xi) d \xi \\
& =\int_{\mathbb{R}} \widehat{f}(\xi) \widehat{G}(\xi) d \xi=\int_{\mathbb{R}} \widehat{f}(\xi) \overline{\widehat{g}(\xi)} d \xi .
\end{aligned}
$$

7.2 Higher Dimensions

We next discuss the Fourier transform in higher dimensions. Let $d \geq 1$. A multi-index α is an element of \mathbb{N}^{d}, where $\mathbb{N}=\{0,1,2, \ldots\}$.

For $\alpha=\left(\alpha_{1}, \ldots \alpha_{d}\right)$, we define

$$
\begin{aligned}
|\alpha| & =\sum_{i=1}^{d}\left|\alpha_{i}\right|, \\
x^{\alpha} & =x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}, \\
\partial^{\alpha} f & =\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{d}^{\alpha_{d}}} .
\end{aligned}
$$

Definition 7.2.1 (Schwartz space). $\mathcal{S}\left(\mathbb{R}^{d}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{d}\right): x^{\alpha} \partial^{\beta} f\right.$ is bounded for all $\left.\alpha, \beta\right\}$
For $f \in \mathcal{S}$ we define

$$
\widehat{f}(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(x) e^{-i x \cdot \xi} d x
$$

Then \mathcal{F} is a bijection on \mathcal{S} (in fact unitary) and the Fourier inversion formula holds:

$$
f(x)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} \widehat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

We have the Fourier transform $\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)$:

$$
\mathcal{F} f(\xi)=\widehat{f}(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(x) e^{-i x \cdot \xi} d x
$$

This is a bijection, and $\mathcal{F}^{-1}: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)$ is given by

$$
\mathcal{F}^{-1} f(x)=\check{f}(x)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(x) e^{i x \cdot \xi} d x .
$$

In particular we have the Fourier inversion formula:

$$
f(x)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} \widehat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

We have also the Plancherel theorem

$$
\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle, \quad\langle f, g\rangle=\int_{\mathbb{R}^{d}} f(x) \overline{g(x)} d x
$$

and the convolution identities

$$
\mathcal{F}(f * g)(\xi)=(2 \pi)^{d / 2} \widehat{f}(\xi) \widehat{g}(\xi), \quad \mathcal{F}^{-1}(\widehat{f} \widehat{g})(x)=(2 \pi)^{-d / 2}(f * g)(x)
$$

7.3 Application to PDEs

Let us finally discuss the application of the Fourier transform to PDEs.
Similar to the $1 d$ case we have the following:

- if $g(x)=\partial^{\alpha} f(x)$ then $\widehat{g}(\xi)=(i \xi)^{\alpha} \widehat{f}(\xi)$
- if $g(x)=(-i x)^{\alpha} f(x)$ then $\widehat{g}(\xi)=\partial^{\alpha} \widehat{f}(\xi)$

Here $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$, with $|\alpha|=\sum_{i=1}^{d}\left|\alpha_{i}\right|, \quad x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}$, $\partial^{\alpha} f=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1} \ldots \partial x_{d}^{\alpha_{d}}}}$.
Example 7.3.1. Consider $\alpha=(1,0, \ldots, 0)$. We have

$$
\mathcal{F}\left(\frac{\partial f}{\partial x_{1}}\right)(\xi)=i \xi_{1} \widehat{f}(\xi) .
$$

Similarly with $\alpha=(2,0, \ldots, 0)$ we get

$$
\mathcal{F}\left(\frac{\partial^{2} f}{\partial x_{1}^{2}}\right)(\xi)=-\xi_{1}^{2} \widehat{f}(\xi)
$$

Thus we find

$$
\mathcal{F}(-\Delta f)(\xi)=|\xi|^{2} \widehat{f}(\xi)
$$

Example 7.3.2 (Laplace/Poisson equation). Consider the equation $-\Delta u=f$ on \mathbb{R}^{d}. Taking the Fourier transform, we find

$$
\mathcal{F}(-\Delta u)(\xi)=\widehat{f}(\xi) \quad \Longleftrightarrow \quad|\xi|^{2} \widehat{u}(\xi)=\widehat{f}(\xi) \quad \Longleftrightarrow \quad \widehat{u}(\xi)=\widehat{f}(\xi) \frac{1}{|\xi|^{2}}
$$

Thus the solution is given by

$$
u(x)=\mathcal{F}^{-1}\left[\widehat{f}(\xi) \frac{1}{\mid \xi \xi^{2}}\right](x)=(2 \pi)^{-d / 2}\left[f * \mathcal{F}^{-1}\left(\frac{1}{|\xi|^{2}}\right)\right](x)
$$

Evidently the fundamental solution is given by

$$
\Phi(x)=(2 \pi)^{-d / 2} \mathcal{F}^{-1}\left(\frac{1}{|\xi|^{2}}\right)(x) .
$$

However, notice that $\frac{1}{|\xi|^{2}}$ is not a Schwartz function. Thus to make sense of this we need to extend our theory of the Fourier transform.
Example 7.3.3 (Heat equation).

$$
\begin{cases}u_{t}-\Delta u=0 & (t, x) \in(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=f(x) & x \in \mathbb{R}^{d} .\end{cases}
$$

We apply the Fourier transform in the x variables only. We find

$$
\widehat{u}_{t}(t, \xi)=\mathcal{F}(\Delta u)(t, \xi) \quad \Longleftrightarrow \quad \widehat{u}_{t}(t, \xi)=-|\xi|^{2} \widehat{u}(t, \xi) .
$$

For each ξ, this is an ODE in t that we can solve:

$$
\widehat{u}(t, \xi)=\widehat{u}(0, \xi) e^{-t|\xi|^{2}}=e^{-t|\xi|^{2}} \widehat{f}(\xi)
$$

Thus

$$
u(t, x)=\mathcal{F}^{-1}\left[\widehat{f} e^{-t|\xi|^{2}}\right](x)=(2 \pi)^{-d / 2}\left[f * \mathcal{F}^{-1}\left(e^{-t|\xi|^{2}}\right)\right](x) .
$$

Evidently $(2 \pi)^{-d / 2} \mathcal{F}^{-1}\left(e^{-t|\xi|^{2}}\right)(x)$ is the fundamental solution, and hence we must have

$$
\begin{equation*}
(2 \pi)^{-d / 2} \mathcal{F}^{-1}\left(e^{-t|\xi|^{2}}\right)(x)=(4 \pi t)^{-d / 2} e^{-|x|^{2} / 2 t} . \tag{*}
\end{equation*}
$$

In fact, recall that we showed $\mathcal{F}\left(e^{-x^{2} / 2}\right)(\xi)=e^{-\xi^{2} / 2}$ in $d=1$.
In the same way we have $\mathcal{F}\left(e^{-|x|^{2} / 2}\right)(\xi)=e^{-|\xi|^{2} / 2}$ in dimension d.
Thus $\mathcal{F}\left(e^{-|x|^{2} / 2 t}\right)(\xi)=t^{d / 2} e^{-t|\xi|^{2} / 2} \quad$ (see Homework 6 Problem 5)
We conclude $\mathcal{F}^{-1}\left(e^{-t|\xi|^{2} / 2}\right)(x)=t^{-d / 2} e^{-|x|^{2} / 2 t}$, which gives $(*)$.

Example 7.3.4 (Wave equation).

$$
\begin{cases}u_{t t}-\Delta u=0 & (t, x) \in(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=f(x), u_{t}(0, x)=g(x) & x \in \mathbb{R}^{d}\end{cases}
$$

Taking the Fourier transform in the x variables:

$$
\widehat{u}_{t t}(t, \xi)=-|\xi|^{2} \widehat{u}(t, \xi) .
$$

For each ξ this is an ODE that we can solve:

$$
\widehat{u}(t, \xi)=A(\xi) \cos (t|\xi|)+B(\xi) \sin (t|\xi|) .
$$

Imposing the initial conditions:

$$
\widehat{f}(\xi)=\widehat{u}(0, \xi)=A(\xi)
$$

while

$$
\widehat{u}_{t}(t, \xi)=-|\xi| A(\xi) \sin (t|\xi|)+|\xi| B(\xi) \cos (t|\xi|),
$$

so

$$
\widehat{g}(\xi)=\widehat{u}_{t}(0, \xi)=|\xi| B(\xi)
$$

Thus

$$
\widehat{u}(t, \xi)=\widehat{f}(\xi) \cos (t|\xi|)+\widehat{g}(\xi) \frac{\sin (t|\xi|)}{|\xi|}=\widehat{f}(\xi) \partial_{t}\left[\frac{\sin (t|\xi|)}{|\xi|}\right]+\widehat{g}(\xi) \frac{\sin (t|\xi|)}{|\xi|} .
$$

Defining

$$
W(t, x)=(2 \pi)^{-d / 2} \mathcal{F}^{-1}\left[\frac{\sin (t|\xi|)}{|\xi|}\right](x)
$$

we get

$$
u(t, x)=\left[f * \partial_{t} W(t, \cdot)\right](x)+[f * W(t, \cdot)](x) .
$$

Evidently the the fundamental solution is given by W.
Once again, however, $\frac{\sin (t|\xi|)}{\xi}$ is not a Schwartz function, and hence to make sense of this we need to extend our theory of the Fourier transform.

7.4 Tempered Distributions

We now extend the theory of the Fourier transform.

Definition 7.4.1. A tempered distribution is a functional $u: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow$ \mathbb{C} that is
(i) linear, i.e. $u(\alpha f+\beta g)=\alpha u(f)+\beta u(g)$
(ii) continuous, i.e. if $f_{k} \rightarrow f$ then $u\left(f_{k}\right) \rightarrow u(f)$.

We denote the space of tempered distributions by $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. In this context elements of \mathcal{S} are called test functions. The space \mathcal{S}^{\prime} is the 'dual space' of \mathcal{S}.

As before, we can embed \mathcal{S} into \mathcal{S}^{\prime} : for $u \in \mathcal{S}$ we can define $T u \in \mathcal{S}^{\prime}$ by

$$
T u(f)=\int_{\mathbb{R}^{d}} u(x) f(x) d x .
$$

The map T is injective (cf. Homework 1 Problem 8). Thus we need not even distinguish between u and $T u$.

In fact, we can define $T u \in \mathcal{S}^{\prime}$ for any 'locally integrable' function u, which includes many more functions than just Schwartz functions.

As before, we use integration by parts to motivate the definition of derivatives of distributions:

$$
\int_{\mathbb{R}^{d}} \partial^{\alpha} u(x) f(x) d x=(-1)^{|\alpha|} \int_{\mathbb{R}^{d}} u(x) \partial^{\alpha} f(x) d x \quad \text { for } u, f \in \mathcal{S} .
$$

So we define:

$$
\partial^{\alpha} u(f):=(-1)^{|\alpha|} u\left(\partial^{\alpha} f\right) .
$$

Similarly we can define $f * u \in \mathcal{S}^{\prime}$ for $f \in \mathcal{S}$ and $u \in \mathcal{S}^{\prime}$ as follows.
First, if $f, u, g \in \mathcal{S}$ then

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}(f * u)(x) g(x) d x & =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} u(y) f(x-y) g(x) d y d x \\
& =\int_{\mathbb{R}^{d}} u(y)\left(\int_{\mathbb{R}^{d}} \tilde{f}(y-x) g(x) d x\right) d y \quad(\tilde{f}(x):=f(-x)) \\
& =\int_{\mathbb{R}^{d}} u(y)(\tilde{f} * g)(y) d y .
\end{aligned}
$$

Thus we define

$$
(f * u)(g)=u(\tilde{f} * g) .
$$

In fact, we can define $f * u$ as a function for $f \in \mathcal{S}$ and $u \in \mathcal{S}^{\prime}$ via the formula

$$
(f * u)(x)=u\left(\widetilde{\tau_{x}} f\right), \quad \tau_{x} f(y)=f(y-x) .
$$

Finally for $u \in \mathcal{S}^{\prime}$ and a function f we define $f u \in \mathcal{S}^{\prime}$ by $[f u](g)=u(f g)$.

We now turn to the theory of the Fourier transform on tempered distributions.

Recall that for $u, f \in \mathcal{S}$ we have the multiplication identity:

$$
\int_{\mathbb{R}^{d}} \widehat{u}(x) f(x) d x=\int_{\mathbb{R}^{d}} u(x) \widehat{f}(x) d x
$$

Moreover for $f \in \mathcal{S}$ we have $\widehat{f} \in \mathcal{S}$.
This motivates the following:
Definition 7.4.2. For $u \in \mathcal{S}^{\prime}$ we define $\widehat{u}: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ by $\quad \widehat{u}(f)=u(\widehat{f})$.
We also write $\widehat{u}=\mathcal{F} u$.
As $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}$ is linear and continuous, we find that $\widehat{u} \in \mathcal{S}^{\prime}$. Thus $\mathcal{F}: \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$.

Similarly we can define $\mathcal{F}^{*}: \mathcal{S}^{\prime} \rightarrow \mathcal{S}^{\prime}$ by $\mathcal{F}^{*} u(f)=u\left(\mathcal{F}^{-1} f\right)$. Then

$$
\mathcal{F}^{*} \widehat{u}(f)=\widehat{u}\left(\mathcal{F}^{-1} f\right)=u\left(\mathcal{F \mathcal { F }}^{-1} f\right)=u(f) \quad \Longrightarrow \quad \mathcal{F}^{*} \widehat{u}=u
$$

Similarly $\mathcal{F F}^{*}(u)=u$. Thus $\mathcal{F}^{*}=\mathcal{F}^{-1}$ and \mathcal{F} is a bijection on \mathcal{S}^{\prime}.
Moreover, all of the nice algebraic properties of \mathcal{F} continue to hold on \mathcal{S}^{\prime}.
A. $\widehat{\partial^{\alpha} u}=(i \xi)^{\alpha} \widehat{u}$
B. $\left(\widehat{-i x)^{\alpha}} u=\partial^{\alpha} \widehat{u}\right.$
C. $\mathcal{F}(f * u)=(2 \pi)^{d / 2} \widehat{f} \widehat{u}$

Moral. You can safely do 'formal' computations with the Fourier transform even if you are not working with Schwartz functions.

Proof: for (A) we have:

$$
\begin{aligned}
\widehat{\partial^{\alpha} u}(f) & =\partial^{\alpha} u(\widehat{f})=(-1)^{|\alpha|} u\left(\partial^{\alpha} \widehat{f}\right) \\
& =(-1)^{|\alpha|} u\left(\left(\widehat{-i x)^{\alpha}} f\right)=\widehat{u}\left((i x)^{\alpha} f\right)\right. \\
& =(i x)^{\alpha} \widehat{u}(f)
\end{aligned}
$$

For (B) we have:

$$
\begin{aligned}
\widehat{(-i x)^{\alpha}} u(f) & =(-i x)^{\alpha} u(\widehat{f})=(-1)^{|\alpha|} u\left((i x)^{\alpha} \widehat{f}\right) \\
& =(-1)^{|\alpha|} u\left(\widehat{\partial^{\alpha} f}\right)=(-1)^{-|\alpha|} \widehat{u}\left(\partial^{\alpha} f\right) \\
& =\partial^{\alpha} \widehat{u}(f) .
\end{aligned}
$$

For (C) we first note that for $f, g \in \mathcal{S}$:

$$
\underbrace{\mathcal{F}^{-1}(\widehat{f} * \widehat{g})=(2 \pi)^{d / 2} f g}_{\text {as before }} \Longrightarrow \widehat{f} * \widehat{g}=(2 \pi)^{d / 2} \mathcal{F}(f g)
$$

We also note that for $f \in \mathcal{S}$:

$$
\mathcal{F}^{-1} \tilde{f}=\widehat{f} \Longrightarrow \tilde{f}=\widehat{\widehat{f}}
$$

Thus

$$
\begin{aligned}
\mathcal{F}(f * u)(g) & =(f * u)(\widehat{g})=u(\tilde{f} * \widehat{g}) \\
& =u(\widehat{\widehat{f}} * \widehat{g})=(2 \pi)^{d / 2} u(\mathcal{F}(\widehat{f} g)) \\
& =(2 \pi)^{d / 2} \widehat{u}(\widehat{f} g)=(2 \pi)^{d / 2}[\widehat{f} \widehat{u}](g) .
\end{aligned}
$$

Example 7.4.1. Consider $\delta_{0} \in \mathcal{S}^{\prime}$ defined by $\delta_{0}(f)=f(0)$. Then $\widehat{\delta_{0}}=$ $(2 \pi)^{-d / 2}$ as a distribution:

$$
\widehat{\delta_{0}}(f)=\delta_{0}(\widehat{f})=\widehat{f}(0)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x) d x
$$

So the Fourier transform of δ_{0} is a constant. More generally, using (A) we see that the polynomials are given by the Fourier transforms of δ_{0} and its derivatives.

7.5 Duhamel's Principle

We turn to inhomogeneous problems.
Example 7.5.1 (Inhomogeneous heat equation).

$$
\begin{cases}u_{t}-\Delta u=F & (t, x) \in(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=f(x) & x \in \mathbb{R}^{d}\end{cases}
$$

for some $F=F(t, x)$.
We first revisit the homogeneous problem, that is, $F \equiv 0$. We solved this via the Fourier transform:

$$
\widehat{u}(t, \xi)=e^{-|\xi|^{2} t} \widehat{f}(\xi) \Longrightarrow u(t)=f *(2 \pi)^{-d / 2} \mathcal{F}^{-1}\left(e^{-|\xi|^{2} t}\right)=f * \Phi(t)
$$

In particular, if we define the operator $H(t)$ by

$$
[H(t) f](x)=[f * \Phi(t, \cdot)](x) .
$$

then we get that $u(t, x)=[H(t) f](x)$ solves the heat equation with $u(0)=f$.
We call $H(t)$ a convolution operator.
Notice that

$$
\begin{equation*}
\widehat{H(t) f}(\xi)=e^{-|\xi|^{2} t} \widehat{f}(\xi), \quad \text { i.e. } \quad H(t)=\mathcal{F}^{-1} e^{-|\xi|^{2} t} \mathcal{F} \tag{*}
\end{equation*}
$$

Recalling that " $\mathcal{F}(\Delta)=-|\xi|^{2}$ " we introduce the notation

$$
H(t)=e^{t \Delta}=\mathcal{F}^{-1} e^{-|\xi|^{2} t} \mathcal{F} . \quad(*)
$$

We also call $H(t)$ a Fourier multiplier operator.
This is actually great notation, since $\partial_{t}\left[e^{t \Delta} f\right]=\Delta\left[e^{t \Delta} f\right]$.
We turn to the case $F \neq 0$. We use 'Duhamel's principle' (i.e. variation of parameters).

We look for a solution of the form $u(t)=e^{t \Delta}[v(t)]$. In this case by the "chain rule"

$$
u_{t}=\Delta e^{t \Delta} v+e^{t \Delta} v_{t}=\Delta u+e^{t \Delta} v_{t} .
$$

Thus $u_{t}=\Delta u+F$ provided

$$
e^{t \Delta} v_{t}=F, \quad \text { that is, } \quad v_{t}=e^{-t \Delta} F
$$

and $u(0)=f$ if and only if $v(0)=f$. So we should let

$$
v(t, x)=v(0, x)+\int_{0}^{t} e^{-s \Delta} F(s, x) d s=f(x)+\int_{0}^{t} e^{-s \Delta} F(s, x) d s
$$

And so

$$
\begin{aligned}
u(t, x)=e^{t \Delta} v(t, x) & =e^{t \Delta} f(x)+e^{t \Delta} \int_{0}^{t} e^{-s \Delta} F(s, x) d s \\
& =e^{t \Delta} f(x)+\int_{0}^{t} e^{t \Delta} e^{-s \Delta} F(s, x) d s \\
& =\underbrace{e^{t \Delta} f(x)}_{\text {homogeneous part }}+\underbrace{\int_{0}^{t} e^{(t-s) \Delta} F(s, x) d s}_{\text {inhomogeneous part }}
\end{aligned}
$$

In particular

$$
e^{t \Delta} f(x)=(4 \pi t)^{-d / 2} \int_{\mathbb{R}^{d}} e^{-|x-y|^{2} / 4 t} f(y) d y
$$

$$
\int_{0}^{t} e^{(t-s) \Delta} F(s, x) d s=\int_{0}^{t} \int_{\mathbb{R}^{d}}(4 \pi(t-s))^{-d / 2} e^{-|x-y|^{2} / 4(t-s)} F(s, y) d y
$$

Example 7.5.2 (Inhomogeneous wave equation).

$$
\begin{cases}u_{t t}-\Delta u=F & (t, x) \in(0, \infty) \times \mathbb{R}^{d} \\ u(0, x)=f(x), & x \in \mathbb{R}^{d}, \\ u_{t}(0, x)=g(x) & x \in \mathbb{R}^{d}\end{cases}
$$

For the homogeneous case $F \equiv 0$ we have

$$
\partial_{t}\binom{u}{u_{t}}=\binom{u_{t}}{\Delta u}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
\Delta & 0
\end{array}\right)}_{:=A}\binom{u}{u_{t}}
$$

Then the solution is given by

$$
\binom{u}{u_{t}}=e^{t A}\binom{f}{g}
$$

where

$$
e^{t A}:=\left(\begin{array}{cc}
\mathcal{F}^{-1} & 0 \\
0 & \mathcal{F}^{-1}
\end{array}\right) e^{t A(\xi)}\left(\begin{array}{cc}
\mathcal{F} & 0 \\
0 & \mathcal{F}
\end{array}\right), \quad A(\xi)=\left(\begin{array}{cc}
0 & 1 \\
-|\xi|^{2} & 0
\end{array}\right)
$$

We turn to the case $F \neq 0$. We look for a solution of the form

$$
\binom{u}{u_{t}}=e^{t A}\binom{v}{w}
$$

Then

$$
\begin{aligned}
\partial_{t}\binom{u}{u_{t}} & =e^{t A}\binom{v_{t}}{w_{t}}+A e^{t A}\binom{v}{w}=e^{t A}\binom{v_{t}}{w_{t}}+A\binom{u}{u_{t}} \\
& =e^{t A}\binom{v_{t}}{w_{t}}+\binom{u_{t}}{\Delta u} \underbrace{=}_{\text {want }}\binom{u_{t}}{\Delta u+F}
\end{aligned}
$$

Thus we want

$$
e^{t A}\binom{v_{t}}{w_{t}}=\binom{0}{F} \Longrightarrow \partial_{t}\binom{v}{w}=e^{-t A}\binom{0}{F}
$$

Therefore we should take

$$
\binom{v(t)}{w(t)}=\binom{v(0)}{w(0)}+\int_{0}^{t} e^{-s A}\binom{0}{F(s)} d s
$$

Imposing the initial conditions and applying $e^{t A}$ we find

$$
\binom{u(t)}{u_{t}(t)}=\underbrace{e^{t A}\binom{f}{g}}_{\text {homogeneous part }}+\underbrace{\int_{0}^{t} e^{(t-s) A}\binom{0}{F(s)} d s}_{\text {inhomogeneous part }} .
$$

One can compute that

$$
e^{t A(\xi)}=\left(\begin{array}{cc}
\cos (t|\xi|) & |\xi|^{-1} \sin (t|\xi|) \\
-|\xi| \sin (t|\xi|) & \cos (t|\xi|)
\end{array}\right)
$$

Defining $|\nabla|:=\mathcal{F}^{-1}|\xi| \mathcal{F}$, we write

$$
e^{t A}=\left(\begin{array}{cc}
\cos (t|\nabla|) & |\nabla|^{-1} \sin (t|\nabla|) \\
-|\nabla| \sin (t|\nabla|) & \cos (t|\nabla|)
\end{array}\right)
$$

Using these expressions one can write down a formula for the solution to the inhomogeneous wave equation.

Chapter 8

The Method of Characteristics

So far we have only discussed linear PDE. We introduce the method of characteristics, which is capable of treating some nonlinear PDE as well.

8.1 The Method of Characteristics

The idea is to try to solve the PDE along certain curves ('characteristics'). This converts the PDE into a system of ODEs.

Setup. A general first order PDE in a domain $\Omega \subset \mathbb{R}^{d}$ can be written

$$
F(x, u, \nabla u)=0 \quad \text { in } \Omega,
$$

with some boundary condition

$$
u=g \quad \text { on } \Gamma \subset \partial \Omega .
$$

Plan. For $x \in \Omega$ we look for a curve $x(s) \subset \Omega$ joining some $x_{0} \in \Gamma$ to x such that we can compute $z(s):=u(x(s))$.

8.1.1 The Linear Case.

First we consider F of the form

$$
\left\{\begin{array}{lr}
F(u, \nabla u)=a(x) u(x)+b(x) \cdot \nabla u(x)=0 & \text { on } \Omega, \\
u=g & \text { on } \Gamma \subset \partial \Omega .
\end{array}\right.
$$

Suppose u is a solution and let $x(s)$ be a curve. Define

$$
z(s)=u(x(s)), \quad p(s)=\nabla u(x(s)) .
$$

Notice that

$$
\dot{z}(s)=\nabla u(x(s)) \cdot \dot{x}(s)=p(s) \cdot \dot{x}(s) .
$$

The PDE along $x(s)$ reads

$$
p(s) \cdot b(x(s))=-a(x(s)) z(s) .
$$

Thus if we let $x(s)$ solve

$$
\begin{equation*}
\dot{x}(s)=b(x(s)), \quad x(0) \in \Gamma \tag{1}
\end{equation*}
$$

we get

$$
\left\{\begin{array}{l}
\dot{z}(s)=-a(x(s)) z(s) \tag{2}\\
z(0)=g(x(0))
\end{array}\right.
$$

Equations (1) and (2) are an 'upper triangular' system of ODEs for $x(s), z(s)$.
Example 8.1.1. (Transport equation) Consider the equation

$$
\left\{\begin{array}{l}
u_{t}(t, y)+c \cdot \nabla u(t, y)=0, \quad c \in \mathbb{R}^{d} \\
u(0, y)=g(y)
\end{array}\right.
$$

Write

$$
\left\{\begin{array}{lll}
x=(t, y), & \nabla u=\left(u_{t}, \nabla_{y} u\right), & b=(1, c), \\
\Omega=\mathbb{R}_{+}^{d+1}, & \Gamma=\left\{(0, y): y \in \mathbb{R}^{d}\right\} . &
\end{array}\right.
$$

The PDE then reads

$$
b \cdot \nabla u(x)=0 .
$$

That is, $a(x)=0$ and $b(x) \equiv b$. Then

$$
\begin{aligned}
& \dot{x}(s)=b \Longrightarrow x(s)=x(0)+s b, \quad x(0)=\left(0, y_{0}\right) \in \Gamma \\
& \dot{z}(s)=0 \Longrightarrow z(s)=z(0), \quad \text { that is } \quad u(x(s))=g\left(y_{0}\right)
\end{aligned}
$$

Now given $x=(t, y)$ we wish to find $x(0)=\left(0, y_{0}\right) \in \Gamma$ and s such that

$$
x(s)=x=(t, y), \quad \text { that is } \quad(t, y)=\left(0, y_{0}\right)+s(1, c) .
$$

Thus we should take

$$
s=t \quad \text { and } \quad y=y_{0}+c t, \quad \text { i.e. } \quad y_{0}=y-c t .
$$

Hence

$$
u(t, y)=u(x(t))=g\left(y_{0}\right)=g(y-c t) .
$$

8.1.2 The Quasilinear Case.

A first-order PDE is quasilinear if it is 'linear in the highest order term':

$$
\left\{\begin{array}{lr}
F(x, u, \nabla u)=a(x, u(x))+b(x, u(x)) \cdot \nabla u(x)=0 & \text { on } \Omega \\
u=g & \text { on } \Gamma \subset \partial \Omega .
\end{array}\right.
$$

Again we define

$$
z(s)=u(x(s)), \quad p(s)=\nabla u(x(s)) .
$$

Then

$$
\dot{z}(s)=p(s) \cdot \dot{x}(s)
$$

as before. Then the PDE along $x(s)$ reads

$$
p(s) \cdot b(x(s), z(s))=-a(x(s), z(s)) .
$$

Thus if we let

$$
\begin{equation*}
\dot{x}(s)=b(x(s), z(s)), \quad x(0) \in \Gamma \tag{1}
\end{equation*}
$$

then we get

$$
\begin{equation*}
\dot{z}(s)=-a(x(s), z(s)), \quad z(0)=g(x(0)) . \tag{2}
\end{equation*}
$$

Equations (1) and (2) are a coupled system of ODEs for $x(s)$ and $z(s)$.
Example 8.1.2. Let $\Omega=\{(t, x): t>0, x \in \mathbb{R}\}$ and $\Gamma=\partial \Omega$. Consider

$$
\left\{\begin{array}{lc}
u_{t}+u_{y}-u^{2}=0 & (t, y) \in \Omega \\
u(0, y)=g(y) & y \in \mathbb{R} .
\end{array}\right.
$$

As before we write $x=(t, y)$. Then $a(u)=-u^{2}$ and $b=(1,1)$.
We have

$$
\dot{x}(s)=b \Longrightarrow x(s)=x(0)+s b, \quad x(0)=\left(0, y_{0}\right) \in \Gamma .
$$

We can also solve

$$
\dot{z}(s)=[z(s)]^{2}, \quad z(0)=g\left(y_{0}\right) .
$$

We find

$$
z(s)=\frac{z(0)}{1-s z(0)}=\frac{g\left(y_{0}\right)}{1-s g\left(y_{0}\right)} .
$$

Now given (t, x) we look for $x(0)=\left(0, y_{0}\right) \in \Gamma$ and s such that

$$
x(s)=x=(t, y), \quad \text { that is } \quad(t, y)=\left(0, y_{0}\right)+s(1,1) .
$$

Thus we should take

$$
s=t \quad \text { and } \quad y=y_{0}+t, \quad \text { i.e. } \quad y_{0}=y-t .
$$

Thus

$$
u(t, y)=u(x(s))=z(s)=\frac{g\left(y_{0}\right)}{1-s g\left(y_{0}\right)}=\frac{g(y-t)}{1-t g(y-t)} .
$$

(Note that this only works as long as $\operatorname{tg}(y-t) \neq 1$.
It is possible to proceed in the 'fully nonlinear' case but we will not pursue it here. In this case one needs to derive an ODE for $p(s)$ as well and work with the full system of 'characteristic ODEs'.

8.2 Scalar Conservation Laws

We continue to discuss the method of characteristics in the setting of "scalar conservation laws". These are PDE of the form

$$
\begin{cases}u_{t}+[F(u)]_{y}=0 & (t, y) \in(0, \infty) \times \mathbb{R} \tag{1}\\ u(0, y)=g(y) & y \in \mathbb{R}\end{cases}
$$

The name refers to the fact that solutions formally satisfy $\partial_{t} \int u(t, y) d y=0$.
In particular we discuss some potential issues that arise when applying the method of characteristics.

We consider Burger's equation:

$$
\begin{cases}u_{t}+\frac{1}{2}\left(u^{2}\right)_{y}=0 & (t, y) \in(0, \infty) \times \mathbb{R} \\ u(0, y)=g(y) & y \in \mathbb{R}\end{cases}
$$

This equation appears as a simplified model in fluid mechanics.
We rewrite the equation as

$$
0=u_{t}+u u_{y}=(1, u) \cdot\left(u_{t}, u_{y}\right) .
$$

We let $x=(t, y)$ and $\nabla u=\left(u_{t}, u_{y}\right)$. We also write $\Omega=(0, \infty) \times \mathbb{R}$ and $\Gamma=\{t=0\} \times \mathbb{R}$.

This is a quasilinear PDE:

$$
\underbrace{(1, u(x))}_{b(u) \text { from above }} \cdot \nabla u=0 .
$$

We define

$$
z(s)=u(x(s)), \quad p(s)=\nabla u(x(s))
$$

and need to solve the characteristic ODEs

$$
\dot{x}(s)=(1, z(s)), \quad x(0) \in \Gamma \quad \text { and } \quad \dot{z}(s)=0, \quad z(0)=g(x(0)) .
$$

We find:

$$
\begin{aligned}
z(s) & =z(0)=g(x(0)) \\
\dot{x}(s)=(1, g(x(0))) & \Longrightarrow x(s)=x(0)+s(1, g(x(0))) .
\end{aligned}
$$

Given $x=(t, y)$ we look for $x(0)=\left(0, y_{0}\right) \in \Gamma$ and s such that

$$
x(s)=(t, y), \quad \text { that is } \quad(t, y)=\left(0, y_{0}\right)+s\left(1, g\left(y_{0}\right)\right) .
$$

Thus we should take $s=t$, and we need to find y_{0} such that

$$
y=y_{0}+t g\left(y_{0}\right) .
$$

In particular we will have

$$
\begin{equation*}
u(t, y)=g\left(y_{0}\right), \quad \text { provided } \quad y=y_{0}+\operatorname{tg}\left(y_{0}\right) . \tag{*}
\end{equation*}
$$

The initial value $g\left(y_{0}\right)$ is carried along the characteristic $\left(t, y_{0}+t g\left(y_{0}\right)\right)$. (Draw picture.)
Example 8.2.1 (Formation of shocks). Let

$$
g(y)= \begin{cases}1 & y \leq 0 \\ 1-y & 0 \leq y \leq 1 \\ 0 & y \geq 1\end{cases}
$$

(Draw picture, y versus $g(y)$ and t versus y.)
There is a problem at $t=1$, since the characteristics cross.
Until $t=1$ we can solve as follows:

$$
u(t, y)=\left\{\begin{array}{ll}
1 & y<t \\
\frac{1-y}{1-t} & t \leq y \leq 1 \\
0 & y>1
\end{array} \quad\right. \text { (check!) }
$$

Notice that the characteristics meet along the curve $t=2 y-1$, that is, $y(t)=\frac{1}{2}(t+1)$. This curve is called a shock.

To extend the solution past $t=1$ we can define

$$
u(t, y)= \begin{cases}1 & y<\frac{1}{2}(t+1) \\ 0 & y>\frac{1}{2}(t+1)\end{cases}
$$

This is a discontinuous solution, but there is a sense in which it is the most 'physical' solution.

Example 8.2.2 (Rarefaction waves). Let

$$
g(y)= \begin{cases}0 & y<0 \\ 1 & y \geq 0\end{cases}
$$

In this case we find (draw picture):

$$
u(t, y)= \begin{cases}0 & y<0 \\ 1 & y>t\end{cases}
$$

Note that the characteristics give information for $0<y<t$.
We could try defining a shock:

$$
u(t, y)= \begin{cases}0 & y<t / 2 \\ 1 & y>t / 2\end{cases}
$$

However, there is a way that we can define a continuous solution, namely

$$
u(t, y)=\left\{\begin{array}{ll}
0 & y<0, \\
1 & y>t \\
\frac{y}{t} & 0<y<t
\end{array} \quad \quad\right. \text { (check!) }
$$

This is called a rarefaction wave, and it is a 'better' solution than the shock solution.

Thus we have two potential problems.

1. crossing characteristics
2. incomplete characteristics

In the first case a 'shock' forms and we will have discontinuous solutions. What conditions should be satisfied along the shock?

In the second case we have a lack of uniqueness. How should we define the solution?

Definition 8.2.1. A bounded function $u:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ is an integral solution to (1) if

$$
\int_{0}^{\infty} \int_{\mathbb{R}} u \varphi_{t}+F(u) \varphi_{y} d y d t+\int_{\mathbb{R}} g(y) \varphi(0, y) d y=0
$$

for all $\varphi \in C_{c}^{\infty}([0, \infty) \times \mathbb{R})$.
Any smooth bounded solution is an integral solution (homework), but this definition allows for solutions that are not necessarily smooth.

If u is a smooth integral solution on $\Omega \subset(0, \infty) \times \mathbb{R}$ then u is an actual solution to (1) on Ω.

We continue studying scalar conservation laws and discuss some conditions regarding 'shock' solutions.

8.2.1 Rankine-Hugoniot Condition for Shocks.

Suppose u is an integral solution to

$$
\begin{cases}u_{t}+[F(u)]_{y}=0 & (t, y) \in(0, \infty) \times \mathbb{R} \tag{1}\\ u(0, y)=g(y) & y \in \mathbb{R}\end{cases}
$$

That is, u is bounded and

$$
\int_{0}^{\infty} \int_{\mathbb{R}} u \varphi_{t}+F(u) \varphi_{y} d y d t+\int_{\mathbb{R}} g(y) \varphi(0, y) d y=0
$$

for all $\varphi \in C_{c}^{\infty}([0, \infty) \times \mathbb{R})$.
Suppose $\Omega \subset(0, \infty) \times \mathbb{R}$ and

$$
C=\{(t, y): y=s(t)\}
$$

is a curve (maybe a 'shock') that divides Ω into Ω_{ℓ} and Ω_{r}.
Suppose u is smooth on Ω_{ℓ} and Ω_{r} (not necessarily on C).
In particular, u solves (1) pointwise on Ω_{ℓ} and Ω_{r}.
Denote the limits of u on C from the left/right by u_{ℓ}, u_{r}.
Let $\varphi \in C_{c}^{\infty}(\Omega)$. As u is an integral solution, we have

$$
\begin{equation*}
0=\iint_{\Omega_{\ell}} u \varphi_{t}+F(u) \varphi_{y} d y d t+\iint_{\Omega_{r}} u \varphi_{t}+F(u) \varphi_{y} d y . \tag{*}
\end{equation*}
$$

We will now integrate by parts - the boundary terms will tell us what is happening on C.

We need to compute the normal vector $\mathbf{n}=\left(n_{t}, n_{y}\right)$ on C (pointing from Ω_{ℓ} into Ω_{r}, say).

As the tangent vector $\mathbf{T}=\left(T_{t}, T_{y}\right)$ is given by $(1, \dot{s}(t))$, we have that

$$
\mathbf{n}=\left(n_{t}, n_{y}\right)=\frac{1}{\sqrt{1+[\dot{s}(t)]^{2}}}(-\dot{s} \dot{(t)}, 1) .
$$

Now we integrate by parts:

$$
\iint_{\Omega_{\ell}} u \varphi_{t}+F(u) \varphi_{y} d y d t=\underbrace{-\iint_{\Omega_{\ell}} u_{t} \varphi+[F(u)]_{y} \varphi d y d t}_{=0}+\int_{C} u_{\ell} \varphi n_{t}+F\left(u_{\ell}\right) \varphi n_{y} d S
$$

Similarly

$$
\iint_{\Omega_{\ell}} u \varphi_{t}+F(u) \varphi_{y} d y d t=-\int_{C} u_{r} \varphi n_{t}+F\left(u_{r}\right) \varphi n_{y} d S .
$$

The minus sign comes from the definition of \mathbf{n}.
Using (*) we find

$$
\int_{C}\left[u_{\ell} n_{t}+F\left(u_{\ell}\right) n_{y}\right] \varphi d S=\int_{C}\left[u_{r} n_{t}+F\left(u_{r}\right) n_{y}\right] \varphi d S
$$

Since this holds for any $\varphi \in C_{c}^{\infty}(\Omega)$ we conclude

$$
u_{\ell} n_{t}+F\left(u_{\ell}\right) n_{y}=u_{r} n_{t}+F\left(u_{r}\right) n_{y} \quad \text { on } \quad C,
$$

that is:

$$
\left[F\left(u_{\ell}\right)-F\left(u_{r}\right)\right] n_{y}+\left(u_{\ell}-u_{r}\right) n_{t}=0 \quad \text { on } \quad C .
$$

Recalling $\left(n_{t}, n_{y}\right) \propto(-\dot{s}, 1)$ we get

$$
F\left(u_{\ell}\right)-F\left(u_{r}\right)=\dot{s}\left(u_{\ell}-u_{r}\right) \quad \text { on } \quad C=\{(t, y): y=s(t)\} .
$$

This is the Rankine-Hugoniot condition.

8.2.2 Entropy Solutions

We know that as t increases, we may encounter shocks/discontinuities. We would like to impose a condition that guarantees that we don't encounter shocks if t decreases. The entropy condition is the following: if $C=$ $\{(t, y): y=s(t)\}$ is a curve of discontinuities along which u has left and right limits u_{ℓ}, u_{r} then

$$
F^{\prime}\left(u_{\ell}\right)>\dot{s}>F^{\prime}\left(u_{r}\right) .
$$

To make sense of this, we notice that the characteristic ODEs for

$$
\begin{gathered}
u_{t}+[F(u)]_{y}=u_{t}+F^{\prime}(u) u_{y}=\left(1, F^{\prime}(u)\right) \cdot\left(u_{t}, u_{y}\right)=0 \quad \text { are } \\
\dot{x}(s)=\left(1, F^{\prime}(z(s))\right), \quad x(0)=\left(0, y_{0}\right), \quad \dot{z}(s)=0
\end{gathered}
$$

So

$$
\begin{gathered}
x(s)=\left(s, y_{0}+s F^{\prime}\left(g\left(y_{0}\right)\right)\right), \quad u(x(s)) \equiv g\left(y_{0}\right) \\
\Longrightarrow \dot{x}(s)=\left(1, F^{\prime}\left(g\left(y_{0}\right)\right)\right),
\end{gathered}
$$

The speed of the characteristic hitting C from the left is $F^{\prime}\left(u_{\ell}\right)$. Similarly $F^{\prime}\left(u_{r}\right)$ from the right.

Thus the picture is as follows, which rules out the 'non-physical' case. (Draw picture.)

Exercise: check whether or not the Rankine-Hugoniot and entropy conditions are satisfied for the solutions to Burger's equation we discussed last lecture.

Example 8.2.3. Previously we solved Burger's equation $u_{t}+\frac{1}{2}\left(u^{2}\right)_{y}=0$ with

$$
u(0, y)=g(y)= \begin{cases}1 & y \leq 0 \\ 1-y & 0 \leq y<1 \\ 0 & y \geq 1\end{cases}
$$

We found that a shock formed at $t=1$, and for $t>1$ defined

$$
u(t, y)= \begin{cases}1 & y<(t+1) / 2 \\ 0 & y>(t+1) / 2\end{cases}
$$

Note $\dot{s}=\frac{1}{2}, u_{\ell}=1$ and $u_{r}=0$, and $F\left(u_{\ell}\right)-F\left(u_{r}\right)=\frac{1}{2}$. Thus the Rankine Hugoniot condition is satisfied.

Definition 8.2.2. An integral solution satisfying the Rankine-Hugoniot and entropy conditions is called a entropy solution.

It turns out that (under reasonable assumptions on F) one can show existence/uniqueness of entropy solutions.

To pursue this in detail requires a study of "Hamilton-Jacobi equations". (Buzzwords: calculus of variations*, Lagrangian, Euler-Lagrange equations*, Hamiltonian, Legendre transform, Hopf-Lax formula, Lax-Oleiknik formula)

We will not pursue this direction, but see your homework for the computation of some solutions in the case of Burger's equation.

Chapter 9

Calculus of Variations

We begin a brief study of the 'calculus of variations'. The idea is that some PDE arise naturally when considering certain 'optimization' problems. In particular, solving a PDE may be equivalent to minimizing an appropriate 'functional'. This provides a different approach for finding solutions to ODEs/PDEs.

9.1 Several Examples

Example 9.1.1. What is the shortest (smooth) curve joining $(0,0)$ to $(1,1)$ in \mathbb{R}^{2} ?

To pose this problem more precisely, we define

$$
\begin{gathered}
\mathcal{A}=\left\{v \in C^{\infty}([0,1]): v(0)=0, v(1)=1\right\}, \\
\ell[v]=\int_{0}^{1} \sqrt{1+\left(v^{\prime}\right)^{2}} d t \quad \text { (arc-length). }
\end{gathered}
$$

Goal. Find necessary and sufficient conditions for $u \in \mathcal{A}$ to satisfy

$$
\begin{equation*}
\ell[u]=\min _{v \in \mathcal{A}} \ell[v] . \tag{*}
\end{equation*}
$$

Theorem 9.1.1. If $u \in \mathcal{A}$ satisfies $(*)$, then $u^{\prime \prime}=0$. (Hence u is a line, as expected!)

Remark 9.1.2.

1. The equation $u^{\prime \prime}=0$ is called the Euler-Lagrange equation for (*).
2. With the theorem, have we attained the goal?

Proof of Theorem. Suppose that $u \in \mathcal{A}$ satisfies (*).
Take any $\varphi \in C_{c}^{\infty}((0,1))$. In particular, $\varphi(0)=\varphi(1)=0$. Consider the function

$$
i(\varepsilon)=\ell[u+\varepsilon \varphi] .
$$

Note that $u+\varepsilon \varphi \in \mathcal{A}$ for each ε.
Thus by (*) we have that i has a minimum at $\varepsilon=0$. In particular $i^{\prime}(0)=0$.

We now compute:

$$
\begin{gathered}
i(\varepsilon)=\int_{0}^{1} \sqrt{1+\left(u^{\prime}+\varepsilon \varphi^{\prime}\right)^{2}} d t \\
i^{\prime}(\varepsilon)=\int_{0}^{1} \frac{\left(u^{\prime}+\varepsilon \varphi^{\prime}\right) \varphi^{\prime}}{\sqrt{1+\left(u^{\prime}+\varepsilon \varphi^{\prime}\right)^{2}}} d t \\
0=i^{\prime}(0)=\int_{0}^{1} \frac{u^{\prime} \varphi^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}} d t=-\int_{0}^{1}\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime} \varphi d t+\underbrace{\left.\frac{u^{\prime} \varphi}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right|_{t=0} ^{1}}_{\varphi(0)=\varphi(1)=0}
\end{gathered}
$$

Since this holds for all $\varphi \in C_{c}^{\infty}((0,1))$ we conclude that

$$
0=\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\frac{u^{\prime \prime}}{\left(1+\left(u^{\prime}\right)^{2}\right)^{3 / 2}} .
$$

Since $1+\left(u^{\prime}\right)^{2}>0$ we conclude $u^{\prime \prime}=0$.
Example 9.1.2. Let $\Omega \subset \mathbb{R}^{2}$. What is the 'flattest membrane' over Ω with prescribed boundary conditions on $\partial \Omega$? That is, given g what is the 'flattest' $v: \bar{\Omega} \rightarrow \mathbb{R}$ such that $v=g$ on $\partial \Omega$?

The deviation of v from being flat is measured by ∇v. Inspired by this, we introduce the following 'Dirichlet' energy functional

$$
E[v]=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x
$$

where $\quad v \in \mathcal{A}=\left\{v \in C^{\infty}(\bar{\Omega}): v=g\right.$ on $\left.\partial \Omega\right\}$.
Goal. Find necessary and sufficient conditions for $u \in \mathcal{A}$ to satisfy

$$
\begin{equation*}
E[u]=\min _{v \in \mathcal{A}} E[v] . \tag{*}
\end{equation*}
$$

Theorem. (Dirichlet's principle) A function $u \in \mathcal{A}$ satisfies (*) if and only if u solves

$$
\begin{cases}-\Delta u=0 & \text { on } \Omega \tag{**}\\ u=g & \text { on } \partial \Omega .\end{cases}
$$

Remark 9.1.3. Laplace's equation is the 'Euler-Lagrange' equation for (*).
Proof of Theorem. Suppose u solves ($* *$). Let $v \in \mathcal{A}$. Then

$$
0=\int_{\Omega} \Delta u(u-v) d x=-\int_{\Omega} \nabla u \cdot \nabla(u-v) d x+\underbrace{\int_{\partial \Omega}(u-v) \nabla u \cdot \mathbf{n} d S}_{u=v=g \text { on } \partial \Omega} .
$$

Thus

$$
\int_{\Omega}|\nabla u|^{2} d x=\int_{\Omega} \nabla u \cdot \nabla v d x \leq \int_{\Omega} \frac{1}{2}|\nabla u|^{2}+\frac{1}{2}|\nabla v|^{2} d x \quad\left(|a \cdot b| \leq|a||b| \leq \frac{1}{2}|a|^{2}+\frac{1}{2}|b|^{2}\right)
$$

and so

$$
\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x \leq \frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x, \quad \text { that is, } \quad E[u] \leq E[v] .
$$

Thus u satisfies (*).
Next, suppose $u \in \mathcal{A}$ satisfies $(*)$. We wish to show that $-\Delta u=0$ in Ω.
As u is smooth it suffices to show that for any $\varphi \in C_{c}^{\infty}(\Omega)$, we have

$$
-\int_{\Omega} \Delta u(x) \varphi(x) d x=0
$$

Let $\varphi \in C_{c}^{\infty}(\Omega)$. In particular, $\varphi=0$ on $\partial \Omega$. Consider the function

$$
i(\varepsilon)=E[u+\varepsilon \varphi] .
$$

Note that $u+\varepsilon \varphi \in \mathcal{A}$ for each ε.
By (*) we have that i has a minimum at $\varepsilon=0$. In particular $i^{\prime}(0)=0$.
We compute:

$$
\begin{gathered}
i(\varepsilon)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+2 \varepsilon \nabla u \cdot \nabla \varphi+\varepsilon^{2}|\nabla \varphi|^{2} d x, \\
i^{\prime}(\varepsilon)=\int_{\Omega} \nabla u \cdot \nabla \varphi+\varepsilon|\nabla \varphi|^{2} d x \\
0=i^{\prime}(0)=\int_{\Omega} \nabla u \cdot \nabla \varphi d x=-\int_{\Omega} \Delta u \varphi d x+\underbrace{\int_{\partial \Omega} \nabla u \varphi \cdot \mathbf{n} d S}_{\varphi=0 \text { on } \partial \Omega}=-\int_{\Omega} \Delta u \varphi d x .
\end{gathered}
$$

Remark 9.1.4. The dimension $d=2$ played no role in the arguments above. It simply allowed for a convenient physical motivation.

One can show similarly that Poisson's equation $-\Delta u=f$ is the EulerLagrange equation for

$$
\tilde{E}[v]=\int_{\Omega} \frac{1}{2}|\nabla v|^{2}-v f d x .
$$

(See homework.)
Example 9.1.3. We consider a 'constrained' minimization problem for the Dirichlet energy functional. In particular we let $\Omega \subset \mathbb{R}^{d}$,

$$
\mathcal{A}=\left\{v \in C^{\infty}(\bar{\Omega}): v=0 \text { on } \partial \Omega\right\}, \quad E[v]=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x,
$$

and we wish to solve the problem:

$$
\begin{array}{ll}
\text { minimize : } & E[v] \text { over } \quad v \in \mathcal{A} \\
\text { subject to : } & \underbrace{\int_{\Omega}|v|^{2} d x}_{:=\|v\|^{2}}=1 . \tag{*}
\end{array}
$$

Theorem. If u is a minimizer of $(*)$, then u solves

$$
-\Delta u=\lambda u, \quad \lambda=\|\nabla u\|^{2}=2 E[u] .
$$

That is, u is an eigenfunction of $-\Delta$ with (lowest) eigenvalue λ. (We call u a ground state eigenfunction.)

Proof. Suppose u is a minimizer. As before, we let $\varphi \in C_{c}^{\infty}(\Omega)$ and consider $u+\varepsilon \varphi$.

We would like to say $E[u+\varepsilon \varphi$] has a minimum at $\varepsilon=0$, but we don't know whether $\|u+\varepsilon \varphi\|=1$.

To remedy this we instead define

$$
i(\varepsilon)=E\left[\frac{u+\varepsilon \varphi}{\|u+\varepsilon \varphi\|}\right]=\frac{\frac{1}{2} \int_{\Omega}|\nabla(u+\varepsilon \varphi)|^{2} d x}{\int_{\Omega}|u+\varepsilon \varphi|^{2} d x}=\frac{\frac{1}{2}\|\nabla(u+\varepsilon \varphi)\|_{2}^{2}}{\|u+\varepsilon \varphi\|^{2}}
$$

and it follows that $i^{\prime}(0)=0$.
A computation (quotient rule...) shows
$i^{\prime}(\varepsilon)=\frac{\|u+\varepsilon \varphi\|_{2}^{2}\left[\int_{\Omega} \nabla u \cdot \nabla \varphi+\varepsilon|\nabla \varphi|^{2} d x\right]-\|\nabla(u+\varepsilon \varphi)\|^{2}\left[\int_{\Omega} u \varphi+\varepsilon|\varphi|^{2} d x\right]}{\|u+\varepsilon \varphi\|^{4}}$

$$
\Longrightarrow \quad 0=i^{\prime}(0)=\int_{\Omega} \nabla u \cdot \nabla \varphi d x-\|\nabla u\|^{2} \int_{\Omega} u \varphi d x=-\int_{\Omega} \Delta u \varphi d x-\|\nabla u\|^{2} \int_{\Omega} u \varphi d x .
$$

As this holds for every $\varphi \in C_{c}^{\infty}(\Omega)$, we conclude

$$
-\Delta u=\lambda u, \quad \lambda=\|\nabla u\|_{2}^{2}=2 E[u] .
$$

Remark 9.1.5. 1. The eigenvalue problem for $-\Delta$ already arose in the setting of separation of variables.
2. From Homework 5 you know that all eigenvalues of $-\Delta$ (with homogeneous Dirichlet BCs) are real. In fact, they are positive. To see this, suppose u is a (real-valued) eigenfunction with eigenvalue $\lambda \in \mathbb{R}$. Then
$\lambda u=-\Delta u \Longrightarrow \lambda \int_{\Omega} u^{2} d x=-\int_{\Omega} \Delta u u d x=\int_{\Omega}|\nabla u|^{2} d x \Longrightarrow \lambda=\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x}>0$.
So far we have characterized the lowest eigenvalue $\lambda_{1}>0$. One can show that there are at most countably many eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots$ and $\lambda_{k} \rightarrow \infty \quad$ (beyond the scope of this course)

How can we characterize the other eigenvalues?
We 'project away' the subspace spanned by a ground state eigenfunction u_{1} and solve the resulting constrained minimization problem.

Let u_{1} be a ground state eigenfunction, so that $-\Delta u_{1}=\lambda_{1} u_{1}$ and $\left\|u_{1}\right\|=$ 1.

Recall the notation

$$
\langle f, g\rangle=\int_{\Omega} f g d x, \quad\|f\|=\sqrt{\langle f, f\rangle} .
$$

Example 4. Consider the problem

$$
\begin{array}{ll}
\operatorname{minimize}: & E[v] \quad \text { over } \quad v \in \mathcal{A} \\
\text { subject to : } & \|v\|=1, \quad\left\langle v, u_{1}\right\rangle=0 . \quad(* *)
\end{array}
$$

Theorem. If u is a minimizer of $(* *)$ then

$$
-\Delta u=\lambda u, \quad \lambda=\|\nabla u\|^{2}=2 E[u] \geq \lambda_{1} .
$$

Proof. Suppose u is a minimizer.
Let $\varphi \in C_{c}^{\infty}(\Omega)$ and define $\tilde{\varphi}=\varphi-\left\langle\varphi, u_{1}\right\rangle u_{1}$. (This guarantees that $\left\langle\tilde{\varphi}, u_{1}\right\rangle=0$.)

As u is a minimizer, we have that the function

$$
i(\varepsilon)=E\left[\frac{u+\varepsilon \tilde{\varphi}}{\|u+\varepsilon \tilde{\varphi}\|}\right]=\frac{\frac{1}{2} \int_{\Omega}|\nabla(u+\varepsilon \tilde{\varphi})|^{2} d x}{\int_{\Omega}|u+\varepsilon \tilde{\varphi}|^{2} d x}
$$

has a minimum at $\varepsilon=0$. We compute exactly as in Example 3 to discover

$$
\int_{\Omega} \nabla u \cdot \nabla \tilde{\varphi} d x=\|\nabla u\|^{2} \int_{\Omega} u \tilde{\varphi} d x .
$$

We compute:

$$
\begin{aligned}
\int_{\Omega} \nabla u \cdot \nabla \tilde{\varphi} d x & =\int_{\Omega} \nabla u \cdot \nabla \varphi d x-\left\langle\varphi, u_{1}\right\rangle \int_{\Omega} \nabla u \cdot \nabla u_{1} d x \\
& =\int_{\Omega}-\Delta u \varphi d x+\left\langle\varphi, u_{1}\right\rangle \int_{\Omega} u \Delta u_{1} d x \\
& =\int_{\Omega}-\Delta u \varphi d x-\underbrace{\lambda_{1}\left\langle\varphi, u_{1}\right\rangle \int_{\Omega} u u_{1} d x}_{=0}
\end{aligned}
$$

Similarly

$$
\int_{\Omega} u \tilde{\varphi} d x=\int_{\Omega} u \varphi d x-\underbrace{\left\langle\varphi, u_{1}\right\rangle \int_{\Omega} u u_{1} d x}_{=0} .
$$

So once again we have

$$
\int_{\Omega}-\Delta u \varphi d x=\|\nabla u\|^{2} \int_{\Omega} u \varphi d x
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$, which implies

$$
-\Delta u=\lambda u, \quad \lambda=\|\nabla u\|^{2}=2 E[u] .
$$

Moreover we must have $\lambda \geq \lambda_{1}$, since we are minimizing the same energy functional over a smaller set of functions.

Remark 9.1.6. 1. Proceeding in this way we can characterize higher eigenvalues.
2. We have left completely open the problem of proving the existence of minimizers.
3. Another important issue we won't discuss: 'completeness' of the eigenfunctions.

Chapter 10

Numerical Methods

We begin a very brief introduction into some numerical methods.

10.1 Finite Difference Schemes

We next discuss finite difference schemes. For example, consider a PDE for $(t, x) \in[0, \infty) \times[0, L]$. In order to use the computer, we need to discretize the domain.

For $J \in \mathbb{N}$ we can approximate $[0, L]$ by $\left\{x_{j}\right\}_{j=0}^{J}$, where

$$
x_{j}=j \Delta x, \quad J \Delta x=L .
$$

Similarly given $N \in \mathbb{N}$ and $\Delta t>0$ we can approximate $[0, N \Delta t]$ by $\left\{t_{n}\right\}_{n=0}^{N}$, where

$$
t_{n}=n \Delta t .
$$

We approximate a solution $u(t, x)$ on $[0, N \Delta t] \times[0, L]$ by the $(N+1) \times$ $(J+1)$ matrix

$$
\left\{u\left(t_{n}, x_{j}\right): n=0, \ldots, N, \quad j=0, \ldots J\right\}
$$

In order to "solve" the PDE, we also need to approximate the derivatives of u. Several options are available, all of which come from the Taylor series expansion for u :

$$
\begin{aligned}
\partial_{x} u\left(x_{j}\right) & \approx \delta_{x}^{-} u\left(x_{j}\right):=\frac{u\left(x_{j}\right)-u\left(x_{j-1}\right)}{\Delta x} & & \text { (backward difference) } \\
& \approx \delta_{x}^{+} u\left(x_{j}\right):=\frac{u\left(x_{j+1}\right)-u\left(x_{j}\right)}{\Delta x} & & \text { (forward difference) } \\
& \approx \delta_{x} u\left(x_{j}\right):=\frac{u\left(x_{j+1}\right)-u\left(x_{j-1}\right)}{2 \Delta x} & & \text { (centered difference). }
\end{aligned}
$$

The first two have errors like Δx, while the third has an error like $(\Delta x)^{2}$. Similarly,
$\partial_{x x} u\left(x_{j}\right) \approx \delta_{x}^{2} u\left(x_{j}\right):=\frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{(\Delta x)^{2}} \quad$ (centered second difference)
with errors like $(\Delta x)^{2}$.
Example 10.1.1 (Heat equation). Consider

$$
\begin{cases}u_{t}=u_{x x} & (t, x) \in(0, \infty) \times(0, L) \tag{*}\\ u(0, x)=f(x) & x \in[0, L], \\ u(t, 0)=u(t, L)=0 & t \in(0, \infty)\end{cases}
$$

Given $J, \Delta x$ and $N, \Delta t$ we can approximate this problem for $(t, x) \in[0, N \Delta t] \times$ $[0, L]$ as follows:

$$
\begin{cases}\delta_{t}^{+} u\left(t_{n}, x_{j}\right)=\delta_{x}^{2} u\left(t_{n}, x_{j}\right) & n=0, \ldots, N-1, \quad j=1, \ldots J-1 \\ u\left(t_{0}, x_{j}\right)=f\left(x_{j}\right) & j=0, \ldots, J \\ u\left(t_{n}, 0\right)=u\left(t_{n}, x_{J}\right)=0 & n=0, \ldots, N .\end{cases}
$$

We need to compute $u\left(t_{n}, x_{j}\right)$ for $n=0, \ldots, N$ and $j=0, \ldots, J$.
The initial condition gives us $u\left(t_{0}, x_{j}\right)=f\left(x_{j}\right)$ for $j=0, \ldots, J$.
The boundary condition gives us $u\left(t_{n}, 0\right)=u\left(t_{n}, x_{J}\right)=0$ for $n=0, \ldots N$.
Defining $r=\frac{\Delta t}{(\Delta x)^{2}}$ the equation gives (after rearranging):

$$
\begin{equation*}
u\left(t_{n+1}, x_{j}\right)=(1-2 r) u\left(t_{n}, x_{j}\right)+r u\left(t_{n}, x_{j+1}\right)+r u\left(t_{n}, x_{j-1}\right) . \tag{**}
\end{equation*}
$$

for $n=0, \ldots, N-1$ and $j=1, \ldots, J-1$.
We can compute $u\left(t_{n+1}, \cdot\right)$ directly from $u\left(t_{n}, \cdot\right)$ (i.e. the scheme is explicit).

Moreover we know $u\left(t_{0}, \cdot\right)$, so by induction we can compute $u\left(t_{n}, \cdot\right)$ for each n.

Furthermore we expect the solution to converge to a solution to $(*)$ as $\Delta t, \Delta x \rightarrow 0$.

Problem. On a computer we cannot actually compute $u\left(t_{n}, x_{j}\right)$ to perfect accuracy! Instead we can only compute $\tilde{u}\left(t_{n}, x_{j}\right)=u\left(t_{n}, x_{j}\right)+e\left(t_{n}, x_{j}\right)$, where e measures the error. We can only trust the computer if we can bound $e\left(t_{n}, \cdot\right)$ as n increases. This is the question of the numerical stability of the scheme.

10.2 Numerical Stability

We try to answer this via von Neumann stability analysis: First we note that if u and \tilde{u} satisfy ($* *$), then so does e. (The problem is linear!)

Idea. Expand e in a Fourier series:

$$
e\left(t_{n}, x_{j}\right)=\sum_{k} p_{k}\left(t_{n}\right) \underbrace{e^{i \frac{k \pi}{L} x_{j}}}_{:=q_{k}\left(x_{j}\right)} \text {. }
$$

Goal. Bound each $p_{k}\left(t_{n}\right)$.
After some rearranging, $(* *)$ yields the following for the coefficients:
$\frac{p_{k}\left(t_{n+1}\right)}{p_{k}\left(t_{n}\right)}=\frac{(1-2 r) q_{k}\left(x_{j}\right)+r q_{k}\left(x_{j+1}\right)+r q_{k}\left(x_{j-1}\right)}{q_{k}\left(x_{j}\right)}=\lambda_{k} \quad$ for some constant λ_{k}.
In particular

$$
p_{k}\left(t_{n+1}\right)=\lambda_{k} p_{k}\left(t_{n}\right) \Longrightarrow p_{k}\left(t_{n}\right)=\lambda_{k}^{n} p_{k}\left(t_{0}\right),
$$

and hence we find that stability requires $\left|\lambda_{k}\right| \leq 1$ for each k.
However, using the equation for the q_{k} 's (and Euler's formula $e^{i \theta}=$ $\cos (\theta)+i \sin (\theta))$ we find

$$
\lambda_{k}=1-2 r\left(1-\cos \left(\frac{k \pi}{L} \Delta x\right)\right) .
$$

It follows that stability holds if and only if

$$
r=\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}
$$

We will next discuss another scheme (an implicit scheme called the Crank-Nicolson scheme) that features unconditional stability.
(Demonstrate)
We continue our discussion of finite difference schemes.
Recall the notation:

$$
\begin{aligned}
\delta_{t}^{+} u\left(t_{n}\right) & :=\frac{u\left(t_{n+1}\right)-u\left(t_{n}\right)}{\Delta t}, \\
\delta_{x}^{2} u\left(x_{j}\right) & :=\frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{(\Delta x)^{2}} .
\end{aligned}
$$

Example 2. (Crank-Nicolson) We revisit the heat equation:

$$
\begin{cases}u_{t}=u_{x x} & (t, x) \in(0, \infty) \times(0, L) \\ u(0, x)=f(x) & x \in[0, L] \\ u(t, 0)=u(t, L)=0 & t \in(0, \infty)\end{cases}
$$

Previously we considered the explicit scheme

$$
\delta_{t}^{+} u\left(t_{n}, x_{j}\right)=\delta_{x}^{2} u\left(t_{n}, x_{j}\right)
$$

and saw that it was stable if and only if

$$
r:=\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2} .
$$

Now let $\theta \in(0,1)$ and instead consider the scheme

$$
\delta_{t}^{+} u\left(t_{n}, x_{j}\right)=(1-\theta) \delta_{x}^{2} u\left(t_{n}, x_{j}\right)+\theta \delta_{x}^{2} u\left(t_{n+1}, x_{j}\right) .
$$

(Setting $\theta=0$ recovers the previous scheme.)
For $\theta>0$ this scheme is implicit, since $u\left(t_{n+1}, \cdot\right)$ appears on the RHS.
This makes it harder to compute, since we have to solve systems of linear equations.

On the other hand, we will show that for $\theta \geq \frac{1}{2}$ the scheme is stable regardless of the value of r. We call such a scheme unconditionally stable.

The case $\theta=\frac{1}{2}$ is called the Crank-Nicolson scheme.
Proof of stability. As before, we use von Neumann stability analysis and expand the numerical error e in a Fourier series:

$$
e\left(t_{n}, x_{j}\right)=\sum_{k} p_{k}\left(t_{n}\right) q_{k}\left(x_{j}\right), \quad q_{k}(x)=e^{i \frac{\pi k}{L} x} .
$$

Applying the scheme to $e\left(t_{n}, x_{j}\right)$ and rearranging leads to $\frac{p_{k}\left(t_{n+1}\right)-p_{k}\left(t_{n}\right)}{(1-\theta) p_{k}\left(t_{n}\right)+\theta p_{k}\left(t_{n+1}\right)}=r \frac{q_{k}\left(x_{j+1}\right)-2 q_{k}\left(x_{j}\right)+q_{k}\left(x_{j-1}\right)}{q_{k}\left(x_{j}\right)}=\lambda_{k} \quad$ for some constant λ_{k}.

In particular one finds

$$
\frac{p_{k}\left(t_{n+1}\right)}{p_{k}\left(t_{n}\right)}=1+\frac{\lambda_{k}}{1-\lambda_{k} \theta} \Longrightarrow p_{k}\left(t_{n}\right)=\left(1+\frac{\lambda_{k}}{1-\lambda_{k} \theta}\right)^{n} p_{k}\left(t_{0}\right)=\mu_{k}^{n} p_{k}\left(t_{0}\right),
$$

and as before we need $\left|\mu_{k}^{n}\right| \leq 1$ for stability.
Now, the equation for the q_{k} implies

$$
\lambda_{k}=-2 r\left(1-\cos \left(\frac{k \pi}{L} \Delta x\right)\right) \leq 0 .
$$

This implies $\mu_{k} \leq 1$.
However, we still need $\mu_{k} \geq-1$. Rearranging, one finds that this is equivalent to the condition

$$
\left|\lambda_{k}\right|(1-2 \theta) \leq 2 .
$$

Notice that if $\theta \geq \frac{1}{2}$ then this condition is satisfied, since the LHS ≤ 0.
Conclusion. For $\theta \geq \frac{1}{2}$, the scheme is stable (regardless of the value of $r=\frac{\Delta t}{(\Delta x)^{2}}$. .

10.3 Finite Element Method

Example 3. (finite element method) Let $\Omega \subset \mathbb{R}^{d}$ and consider Poisson's equation

$$
\begin{cases}-\Delta u=f & \text { on } \Omega \tag{*}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

One can attempt to use finite difference schemes to solve this (see Strauss 8.4).

It turns out that for irregular/curved domains Ω, this is not very efficient.
The finite element method provides an alternative.
The idea is to use a 'weak' formulation of (*). In particular, u solves (*) if and only if we have

$$
\int_{\Omega}-\Delta u \varphi d x=\int_{\Omega} f \varphi d x \text { for all 'test functions' } \varphi \text {. }
$$

Equivalently:

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x \text { for all } \varphi \cdot(* *)
$$

If we could construct u satisfying $(* *)$, then we would have $-\Delta u\left(x_{0}\right)=$ $f\left(x_{0}\right)$ by the usual approximate identity argument, that is, by taking a sequence φ_{n} converging to $\delta_{x_{0}}$.

The idea is therefore to choose a set of test functions $\left\{\varphi_{j}\right\}_{j=1}^{N}$ such that " $\varphi_{j} \approx \delta_{x_{j}}$ " for some $x_{j} \in \Omega$. We will then approximate the solution by

$$
u(x) \approx \tilde{u}(x)=\sum_{j=1}^{N} u_{j} \varphi_{j}(x) \quad \text { for some }\left\{u_{j}\right\}_{j=1}^{N} .
$$

Key idea. We will choose the u_{j} such that $(* *)$ is satisfied when tested against each φ_{k}. Then \tilde{u} should (hopefully) be a good approximate solution to (*).

In particular, imposing ($* *$) with $u=\tilde{u}$ and $\varphi=\varphi_{k}$ gives

$$
\sum_{j=1}^{N} u_{j} \underbrace{\int_{\Omega} \nabla \varphi_{j} \cdot \nabla \varphi_{k} d x}_{:=m_{j k}}=\underbrace{\int_{\Omega} f \varphi_{k} d x}_{:=f_{k}}
$$

This is a linear equation of the form $M \vec{u}=\vec{f}$, and hence we determine u_{j} by solving

$$
\vec{u}=M^{-1} \vec{f},
$$

where M, \vec{f} are given in terms of the φ_{j} and the data f.
The problem has now been reduced to linear algebra! (And the computation of $m_{j k}, f_{k}$.)

In practice, one must decide how to choose the functions φ_{j}.
If $\Omega \subset \mathbb{R}^{2}$ one commonly approximates Ω by a "triangulated" domain $\tilde{\Omega}$. Letting $\left\{x_{j}\right\}_{j=1}^{N}$ denote the interior vertices, one defines φ_{j} to be a linear function such that $\varphi_{j}\left(x_{j}\right)=1$ but $\varphi_{j}=0$ at every other vertex.

Chapter 11

Topics from Physics

11.1 Classical Mechanics

At the heart of classical mechanics is Newton's law: $F=m a$. To be more precise, we let $x(t) \in \mathbb{R}^{d}$ denote the position of a particle P of mass $m>0$ at time t. Then $\dot{x}(t)$ denotes the velocity of P, and $\ddot{x}(t)$ denotes its acceleration. Newton's law reads $m \ddot{x}(t)=F(x(t))$, where F describes the force acting on P.

Defining the momentum of P by $p(t)=m \dot{x}(t)$, we get the first-order system of ODEs

$$
\left\{\begin{array}{l}
\dot{x}(t)=\frac{1}{m} p(t) \\
\dot{p}(t)=F(x(t)) .
\end{array}\right.
$$

The force F is called conservative if $\int_{C} F=0$ for any closed loop $C \subset \mathbb{R}^{d}$. It turns out that this is equivalent to saying $F(x)=-\nabla V(x)$ for some V called the potential energy function.

We call the force attractive if $F(x) \cdot x<0$ and repulsive if $F(x) \cdot x>0$.
So for a particle under the influence conservative forces the classical picture is the following:

$$
(*) \quad\left\{\begin{array}{l}
\dot{x}(t)=\frac{1}{m} p(t), \quad x(0)=x_{0} \\
\dot{p}(t)=-\nabla V(x(t)), \quad p(0)=p_{0} .
\end{array}\right.
$$

The pair $(x(t), p(t)) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ gives us a complete description of the particle. (We call $\mathbb{R}^{d} \times \mathbb{R}^{d}$ the phase space or state space of the particle). In particular, every physical "observable" Q is some function of $x(t)$ and $p(t)$.

The most basic examples are the position and momentum themselves. Perhaps the most important example is the energy (or Hamiltonian) of the particle, which is given by the sum of the kinetic energy and the potential energy:

$$
H(x(t), p(t))=\frac{1}{2 m}|p(t)|^{2}+V(x(t)) .
$$

The Hamiltonian 'drives the dynamics'. Indeed (*) is equivalent to Hamilton's equations

$$
\begin{cases}\dot{x}(t)=+\frac{\partial H}{\partial p}, & x(0)=x_{0}, \\ \dot{p}(t)=-\frac{\partial H}{\partial x}, & p(0)=p_{0} .\end{cases}
$$

Notice that we have conservation of energy:

$$
\begin{aligned}
\partial_{t} H(x(t), p(t)) & =\frac{1}{m} p(t) \cdot \dot{p}(t)+\nabla V(x(t)) \cdot \dot{x}(t) \\
& =-\dot{x}(t) \cdot \nabla V(x(t))+\nabla V(x(t)) \cdot \dot{x}(t)=0,
\end{aligned}
$$

so that

$$
H(x(t), p(t)) \equiv H\left(x_{0}, p_{0}\right)=: E .
$$

Note $E<0$ is certainly possible.
If $d=3$ one can also consider the angular momentum of the particle:

$$
L(t)=x(t) \times p(t) \quad \text { (cross product). }
$$

Example 11.1.1 (Free particle). If $V \equiv 0$ then $p(t) \equiv p_{0}$ and $x(t)=x_{0}+\frac{p_{0}}{m} t$.
In this case the energy is pure kinetic energy.
Notice that (in general) $\lim _{t \rightarrow \infty}|x(t)|=\infty$. We say the particle scatters.

Example 11.1.2 (Harmonic oscillator). $V(x)=\frac{1}{2} k|x|^{2}$ for some $k>0 \quad(F(x)=$ $-k x)$

For $d=1$ one can work out the solutions explicitly (sines and cosines).
Solutions are oscillatory, transferring energy back and forth between kinetic and potential energy.

Solutions are bound: Indeed, since $V(x) \rightarrow \infty$ as $|x| \rightarrow \infty$ it would require infinite energy to have $\lim _{t \rightarrow \infty}|x(t)|=\infty$.
Example 11.1.3 (Finite well). Consider

$$
V(x)= \begin{cases}\frac{1}{2} k|x|^{2} & |x| \leq r_{0} \\ \frac{1}{2} k\left|r_{0}\right|^{2} & |x|>r_{0} .\end{cases}
$$

The behavior of the particle depends on its energy.
If $E>\frac{1}{2} k\left|r_{0}\right|^{2}$ then the particle will eventually 'escape the well', at which point it will behave like a free particle and scatter. In particular $\lim _{t \rightarrow \infty}|x(t)|=\infty$.

If $E<\frac{1}{2} k\left|r_{0}\right|^{2}$ then if the particle ever finds itself in the well, it will not be able to escape. In particular it will be bound.

In general, one has the following:

- If $E>\lim _{|x| \rightarrow \infty} V(x)$, then the particle scatters.
- Otherwise the particle may be bound.

Example 4. (gravity) Suppose we fix a "point mass" P^{\prime} of mass M at the origin. The Newtonian model of gravity models the effect of P^{\prime} on P via

$$
V(x(t))=-G M m \frac{1}{|x(t)|}, \quad \text { i.e. } \quad F(x(t))=-G M m \frac{x(t)}{|x(t)|^{3}},
$$

where G is the "gravitational constant". The function $V(x)=-\frac{1}{|x|}$ is called the Newtonian potential. Note that F is an attractive force.

Question. (escape velocity) Fix $x_{0} \neq 0$. How large does $\left|p_{0}\right|$ need to be in order for $x(t)$ to scatter?
(Answer: choose p_{0} large enough that $E>0$.)

11.2 Quantum Mechanics

Recall: classical mechanics models a particle P under conservative forces $(F=-\nabla V)$ by states $(x(t), p(t)) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$, with dynamics governed by Newton's law/Hamilton's equations.

Classical mechanics works well in many settings, but breaks down in many limiting regimes.

We next discuss quantum mechanics, where the fundamental law (i.e. Newton's law) is replaced by a new one, namely the Schrödinger equation:

$$
(*) \quad \begin{cases}i \hbar \Psi_{t}=-\frac{\hbar^{2}}{2 m} \Delta \Psi+V(x) \Psi & (t, x) \in \mathbb{R} \times \mathbb{R}^{d} \\ \Psi(0, x)=\Psi_{0}(x) & x \in \mathbb{R}^{d} .\end{cases}
$$

(Here $i=\sqrt{-1}$ and \hbar is Planck's constant.)
To be more precise, suppose P is a particle of mass m in the presence of a potential $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

The quantum mechanics model describes P as an element $\Psi \in L^{2}\left(\mathbb{R}^{d}\right)$, called the state of P.

If P is in the state Ψ_{0} at time $t=0$, then the state of P at later times is determined by solving the Schrödinger equation. We call $\Psi(t, x)$ the wave function of P.

In this model the particle does not have a well-defined position or momentum. Instead, $\Psi(x)$ is the 'position distribution' of P and $\Phi(\xi)=$ $\hbar^{-d / 2} \widehat{\Psi}\left(\frac{\xi}{\hbar}\right)$ is the 'momentum distribution' of P.

In particular we have the following interpretations:

$$
\begin{aligned}
& \int_{\Omega}|\Psi(x)|^{2} d x=\text { probability that the position of } P \text { is in } \Omega, \\
& \int_{\Omega^{\prime}}|\Phi(\xi)|^{2} d \xi=\text { probability that the momentum of } P \text { is in } \Omega^{\prime} .
\end{aligned}
$$

According to this interpretation, the initial state Ψ_{0} should be "normalized", that is:

$$
\int_{\mathbb{R}^{d}}\left|\Psi_{0}\right|^{2} d x=1
$$

(Exercise: show that the Schrödinger equation preserves this property.)
Position and momentum have new interpretations under this model.
In general, an "observable" Q is modelled as a hermitian operator on L^{2}, with the following statistical interpretation: if P is in the state Ψ then the expected value of Q is

$$
\mathbf{E}(Q)=\langle\Psi, Q \Psi\rangle=\int_{\mathbb{R}^{d}} \overline{\Psi(x)}[Q \Psi](x) d x .
$$

(Here hermitian means that $\langle\Psi, Q \Psi\rangle=\langle Q \Psi, \Psi\rangle$.)
Position and momentum are modelled by the operators

$$
[x \Psi](x)=x \Psi(x), \quad[p \Psi](x)=-i \hbar \nabla \Psi(x) .
$$

(Exercise: check that x, p are self-adjoint.)
As in classical mechanics, other observables can be written as combinations of x and p.

For example, the energy/Hamiltonian was given by $H(x, p)=\frac{1}{2 m} p \cdot p+$ $V(x)$. Similarly in quantum mechanics the Hamiltonian is given by

$$
H \Psi=\frac{-i \hbar}{2 m} \nabla \cdot(-i \hbar \nabla \Psi)+V(x) \Psi=-\frac{\hbar^{2}}{2 m} \Delta \Psi+V(x) \Psi .
$$

As in the classical setting, the Hamiltonian drives the dynamics. Indeed, (*) is equivalent to

$$
i \hbar \partial_{t} \Psi=H \Psi
$$

If $d=3$ we can also define angular momentum. Since we had $L=$ $x \times p$, we define

$$
L \Psi=-i \hbar x \times \nabla \Psi .
$$

Example 1. (free particle) Suppose $V \equiv 0$. Then (*) becomes

$$
\left\{\begin{array}{l}
i \Psi_{t}=-k \Delta \Psi, \quad k=\frac{\hbar}{2 m} \\
\Psi(0, x)=\Psi_{0}(x) .
\end{array}\right.
$$

Applying the Fourier transform:

$$
i \widehat{\Psi}_{t}(t, \xi)=k|\xi|^{2} \Psi(t, \xi)
$$

We find

$$
\widehat{\Psi}(t, \xi)=e^{-i k t|\xi|^{2}} \widehat{\Psi}(0, \xi)=e^{-i k t|\xi|^{2}} \widehat{\Psi_{0}}(\xi)
$$

We therefore write

$$
\Psi(t)=e^{i k t \Delta} \Psi_{0}, \quad e^{i k t \Delta}=\mathcal{F}^{-1} e^{-i k t|\xi|^{2}} \mathcal{F}
$$

Question. How does this compare to the classical picture?
In the classical setting we found $x(t)=x_{0}+\frac{p_{0}}{m} t, \quad p(t) \equiv p_{0}$.
In the quantum setting we cannot specify both x_{0} and p_{0}. As a substitute, consider an initial state

$$
\Psi_{0}(x)=c e^{-\left|x-x_{0}\right|^{2} / 2} e^{i x \cdot \xi_{0}}
$$

where c is chosen so that $\left\|\Psi_{0}\right\|=1$. Then

$$
\widehat{\Psi_{0}}(\xi)=c e^{-\left|\xi-\xi_{0}\right|^{2} / 2} e^{-i \xi \cdot x_{0}} \Longrightarrow \Phi_{0}(\xi)=\hbar^{-d / 2} \widehat{\Psi_{0}}\left(\frac{\xi}{\hbar}\right)=c \hbar^{-d / 2} e^{-\left|\xi-\hbar \xi_{0}\right|^{2} / 2 \hbar^{2}} e^{-i \xi \cdot x_{0} / \hbar}
$$

Thus Φ_{0} is concentrated where $\xi \sim p_{0}$ provided we choose $\xi_{0}=\frac{p_{0}}{\hbar}$.
From above we have $\widehat{\Psi}(t, \xi)=e^{-i k t|\xi|^{2}} \widehat{\Psi_{0}}(\xi)$, so $\widehat{\Psi}$ remains concentrated where $\xi \sim \xi_{0}$.

Equivalently Φ remains concentrated near $\xi \sim p_{0}$.
Taking the inverse Fourier transform we have

$$
\Psi(t, x)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} e^{-i k t|\xi|^{2}} \widehat{\Psi_{0}}(\xi) d \xi
$$

Since $\widehat{\Psi_{0}}$ is concentrated where $\xi \sim \xi_{0}$ we use Taylor's theorem and approximate

$$
|\xi|^{2} \approx\left|\xi_{0}\right|^{2}+2 \xi_{0} \cdot\left(\xi-\xi_{0}\right) .
$$

Thus

$$
\begin{aligned}
\Psi(t, x) & \approx(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} e^{\left.-\left.i k t| | \xi_{0}\right|^{2}+2 \xi_{0} \cdot\left(\xi-\xi_{0}\right)\right]} \widehat{\Psi_{0}}(\xi) d \xi \\
& =(2 \pi)^{-d / 2} e^{-i k t\left|\xi_{0}\right|^{2}} e^{i x \cdot \xi_{0}} \int_{\mathbb{R}^{d}} e^{i\left(x-2 t k \xi_{0}\right) \cdot\left(\xi-\xi_{0}\right)} \widehat{\Psi_{0}}\left(\xi-\xi_{0}+\xi_{0}\right) d \xi \\
& =(2 \pi)^{-d / 2} e^{-i k t\left|\xi_{0}\right|^{2}+i x \cdot \xi_{0}} \int_{\mathbb{R}^{d}} e^{i\left(x-2 t k \xi_{0}\right) \cdot\left(\xi-\xi_{0}\right)} \mathcal{F}\left[e^{-i \xi_{0} \cdot x} \Psi_{0}\right]\left(\xi-\xi_{0}\right) d \xi \\
& =e^{-i k t\left|\xi_{0}\right|^{2}+i x \cdot \xi_{0}}\left[e^{-i \xi_{0}\left(x-2 t k \xi_{0}\right)} \Psi_{0}\left(x-2 t k \xi_{0}\right)\right] \\
& =e^{i t k\left|\xi_{0}\right|^{2}} \Psi_{0}\left(x-2 t k \xi_{0}\right) .
\end{aligned}
$$

Thus Ψ travels with speed $2 k \xi_{0}=\frac{\hbar \xi_{0}}{m}=\frac{p_{0}}{m}$, in agreement with the classical picture!

Recall the Schrödinger equation

$$
(*) \quad\left\{\begin{array}{l}
i \hbar \Psi_{t}=H \Psi \\
\Psi(0)=\Psi_{0} \in L^{2}\left(\mathbb{R}^{d}\right) .
\end{array}\right.
$$

Here $\Psi(t, x)$ is the wave function of a particle in the presence of a potential $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$, and

$$
H=-\frac{\hbar^{2}}{2 m} \Delta+V(x)
$$

is the Hamiltonian (or 'energy' observable).
Above we used the Fourier transform to study the case of a free particle $V \equiv 0$. We recovered some qualitative information in agreement with the classical picture.

In the case $V \not \equiv 0$, one often uses separation of variables.
Looking for a solution of $(*)$ of the form $\Psi(t, x)=p(t) q(x)$ leads to

$$
\frac{i \hbar p^{\prime}(t)}{p(t)}=\frac{-\frac{\hbar^{2}}{2 m} \Delta q(x)+V(x) q(x)}{q(x)}=\lambda \quad \text { for some } \quad \lambda \in \mathbb{C} .
$$

In particular, we are led to the eigenvalue problem for the Hamiltonian:

$$
[H q](x)=\lambda q(x) . \quad(* *)
$$

Remark 11.2.1. (i) Operators of the form $H=-\Delta+V$ are called Schrödinger operators.
(ii) For any λ we can solve $i \hbar p^{\prime}(t)=\lambda p(t)$ via $p_{\lambda}(t)=c_{\lambda} e^{-i \lambda t / \hbar}$, so the interesting problem is $(* *)$.

Thus, we have the following

Possible strategy:

- Find the eigenvalues λ_{n} and (orthogonal) eigenfunctions q_{n} for ($* *$).
- Show that any $\Psi_{0} \in L^{2}$ can be written as $\Psi_{0}(x)=\sum_{n} c_{n} q_{n}(x)$.
- Solve $(*)$ via $\Psi(t, x)=\sum_{n} c_{n} p_{n}(t) q_{n}(x)$.

In some cases, this strategy works beautifully (e.g. infinite well, harmonic oscillator, Coulomb potential, ...). We will do an example in detail in what follows.

Note that (L^{2}-)eigenfunctions q_{n} are steady-state solutions to (*). If a particle has state q_{n} then measurement of the energy will yield λ_{n} (see below). We call such states determinate states for the energy.

Possible issues:

- What if the 'eigenvalues' are no longer discrete?
- What if the 'eigenfunctions' do not belong to L^{2} ?

These issues are really 'two sides of the same coin'. They are connected to the "spectral theory" of Schrödinger operators.

To make a long story short, the solution to both issues is to replace the sums by integrals. The "eigenfunctions" are still useful in building up states $\Psi(t, x)$ mathematically, but they no longer represent possible states themselves.

Before moving on to examples, we discuss some general principles of the quantum mechanics model.

Recall that observables are modelled by hermitian operators Q on L^{2}. If P is in state Ψ then the expected value of Q is

$$
\mathbf{E}(Q)=\langle\Psi, Q \Psi\rangle=\int_{\mathbb{R}^{d}} \bar{\Psi}(x)[Q \Psi](x) d x .
$$

(In fact, this definition makes sense for any operator Q.)
If Q is hermitian then

$$
\overline{\mathbf{E}(Q)}=\overline{\langle\Psi, Q \Psi\rangle}=\langle Q \Psi, \Psi\rangle=\langle\Psi, Q \Psi\rangle=\mathbf{E}(Q)
$$

Thus $\mathbf{E}(Q) \in \mathbb{R}$, as one would expect.
For $\lambda \in \mathbb{R}$ we define $Q-\lambda$ by $(Q-\lambda) \Psi=Q \Psi-\lambda \Psi$. If Q is hermitian, so is $Q-\lambda$. (check!)

The variance of Q, defined by $\sigma_{Q}^{2}=\mathbf{E}\left((Q-\mathbf{E}(Q))^{2}\right)$, is computed by $\sigma_{Q}^{2}=\left\langle\Psi,(Q-\mathbf{E}(Q))^{2} \Psi\right\rangle=\langle(Q-\mathbf{E}(Q)) \Psi,(Q-\mathbf{E}(Q)) \Psi\rangle=\|(Q-\mathbf{E}(Q)) \Psi\|^{2}$.

The commutator of two observables Q, Q^{\prime} is the operator defined by $\left[Q, Q^{\prime}\right]=Q Q^{\prime}-Q^{\prime} Q$. (Remark: $\mathbf{E}\left(\left[Q, Q^{\prime}\right]\right)$ is pure imaginary. Check!)

For any state Ψ and any two observables Q, Q^{\prime}, the uncertainty principle holds:

$$
\sigma_{Q}^{2} \sigma_{Q^{\prime}}^{2} \geq\left(-\frac{i}{2} \mathbf{E}\left(\left[Q, Q^{\prime}\right]\right)\right)^{2} .
$$

A determinate state for an observable Q is a state $\Psi \in L^{2}$ such that $\sigma_{Q}^{2}=0$. Equivalently:

$$
(Q-\mathbf{E}(Q)) \Psi=0, \quad \text { or } \quad Q \Psi=\mathbf{E}(Q) \Psi .
$$

That is, determinate states are L^{2}-eigenvectors; the expected values are the eigenvalues.

The set of λ such that $Q-\lambda$ is not (boundedly) invertible is called the spectrum of Q, denoted $\sigma(Q)$. The set of $\lambda \in \sigma(Q)$ with L^{2}-eigenvectors is the discrete spectrum; the set of $\lambda \in \sigma(Q)$ without L^{2}-eigenvectors is the continuous spectrum.

Eigenvalue problem

Consider the eigenvalue problem $H q=\lambda q$ in three dimensions, where

$$
H=-\frac{\hbar^{2}}{2 m} \Delta+V(x), \quad V: \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

Let us only consider radial potentials, i.e. $V=V(|x|)$, and let $\kappa=\frac{\hbar^{2}}{2 m}$. We introduce spherical coordinates:

$$
\left(x_{1}, x_{2}, x_{3}\right)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)
$$

Then

$$
\Delta=r^{-2}\left[\partial_{r}\left(r^{2} \partial_{r}\right)+(\sin \theta)^{-1} \partial_{\theta}\left(\sin \theta \partial_{\theta}\right)+(\sin \theta)^{-2} \partial_{\phi \phi}\right] .
$$

We use separation of variables and look for a solution of the form

$$
q(r, \theta, \phi)=a(r) b(\theta, \phi) .
$$

Then $H q=\lambda q$ becomes

$$
-\kappa r^{-2}\left[b \partial_{r}\left(r^{2} a_{r}\right)+a\left\{(\sin \theta)^{-1} \partial_{\theta}\left(\sin \theta b_{\theta}\right)+(\sin \theta)^{-2} b_{\phi \phi}\right\}\right]+V(r) a b=\lambda a b .
$$

Rearranging and multiplying by $\frac{r^{2}}{\kappa a b}$:

$$
\underbrace{\frac{1}{a} \partial_{r}\left(r^{2} a_{r}\right)-\frac{r^{2}}{\kappa}[V(r)-\lambda]}_{\text {radial equation }}=\underbrace{-\frac{1}{b}\left[(\sin \theta)^{-1} \partial_{\theta}\left(\sin \theta b_{\theta}\right)+(\sin \theta)^{-2} b_{\phi \phi}\right]}_{\text {angular equation }}=\mu \kappa
$$

for some $\mu \in \mathbb{C}$.
We now study the angular equation, which does not depend on V (since V is radial).

We use separation of variables (again) and look for a solution of the form

$$
b(\theta, \phi)=f(\theta) g(\phi)
$$

Multiplying by $-\sin ^{2} \theta$ and rearranging yields

$$
\frac{1}{f} \sin \theta \partial_{\theta}\left(\sin \theta f^{\prime}(\theta)\right)+\mu \sin ^{2} \theta=-\frac{1}{g} g^{\prime \prime}(\phi)=\alpha
$$

for some $\alpha \in \mathbb{C}$.
We solve $\quad g^{\prime \prime}=-\alpha g \quad$ via $\quad g(\phi)=e^{ \pm i \sqrt{\alpha} \phi}$.
Since we want $g(\phi+2 \pi)=g(\phi)$, we need $e^{2 \pi i \sqrt{\alpha}}=1$, and hence

$$
\sqrt{\alpha}=m \quad \text { for some } \quad m \in\{0\} \cup \mathbb{N} .
$$

Rearranging the f equation gives

$$
\frac{\partial_{\theta}\left(\sin \theta f^{\prime}\right)}{\sin \theta}+\left[\mu-\frac{m^{2}}{\sin ^{2} \theta}\right] f=0 .
$$

If we define $z=\cos \theta$ and suppose $f(\theta)=h(z)$, this becomes

$$
\left\{\begin{array}{l}
\left(1-z^{2}\right) h^{\prime \prime}-2 z h^{\prime}+\left[\mu-\frac{m^{2}}{1-z^{2}}\right] h=0 \quad(*)_{m} \quad(\text { check! }) \\
h(z) \text { finite at } z= \pm 1
\end{array}\right.
$$

The case $m=0$ is Legendre's equation; the others are associated Legendre equations.

We first solve $(*)_{0}$. We will generate solutions to $(*)_{m}$ below.
We employ the power series method and write

$$
h(z)=\sum_{k=0}^{\infty} c_{k} z^{k}, \quad h^{\prime}(z)=\sum_{k=0}^{\infty} k c_{k} z^{k-1}, \quad h^{\prime \prime}(z)=\sum_{k=0}^{\infty} k(k-1) c_{k} z^{k-2} .
$$

Then $(*)_{0}$ becomes (after rearranging)

$$
\sum_{k=0}^{\infty}\left\{(k+2)(k+1) c_{k+2}-[k(k+1)-\mu] c_{k}\right\} z^{k}=0
$$

Thus h is a solution provided

$$
c_{k+2}=\frac{k(k+1)-\mu}{(k+2)(k+1)} c_{k}, \quad c_{0}, c_{1} \text { arbitrary } .
$$

Note that if $\mu=\ell(\ell+1)$ for some $\ell \in\{0\} \cup \mathbb{N}$ then $c_{\ell+2}=c_{\ell+4}=\cdots=0$.
Thus for $\mu=\ell(\ell+1)$ we can (by choosing $c_{0}=0$ or $c_{1}=0$) find a degree ℓ polynomial solution h_{0}^{ℓ}, where h_{0}^{ℓ} is odd for ℓ odd and even for ℓ even. (These are the Legendre polynomials.)

If μ is not of this form then solutions exist but are badly behaved at $z=1$ or $z=-1$.

We turn to $(*)_{m}$ for $m>0$. Recall $\quad \mu=\ell(\ell+1), \quad \ell \in\{0\} \cup \mathbb{N}$.
As h_{0}^{ℓ} solves $(*)_{0}$ then the function $h_{m}^{\ell}=\frac{\partial^{m}}{\partial z^{m}} h_{0}^{\ell}$ solves

$$
\left(1-z^{2}\right) h_{m}^{\prime \prime}-2(m+1) z h_{m}^{\prime}+[\ell(\ell+1)-m(m+1)] h_{m}=0,
$$

and it follows that the associated Legendre function

$$
H_{m}^{\ell}:=\left(1-z^{2}\right)^{m / 2} h_{m}^{\ell}
$$

satisfies $(*)_{m}$. (Check these!)
Note that we should restrict to $m \leq \ell$ to guarantee $h_{m}^{\ell} \neq 0$ (recall h_{0}^{ℓ} is a degree ℓ polynomial).

Conclusion. For $\ell \in\{0\} \cup \mathbb{N}$ and $m \in\{0, \ldots, \ell\}$ we can solve the angular equation with $\mu=\ell(\ell+1)$ with

$$
b_{ \pm m}^{\ell}(\theta, \phi)=e^{ \pm i m \phi} H_{m}^{\ell}(\cos (\theta)) .
$$

These functions (after normalization) are called spherical harmonics.
The number ℓ is called the azimuthal quantum number, while m is called the magnetic quantum number.
(The spherical harmonics are determinate states for angular momentum.)
We return to the eigenvalue problem $H q=\lambda q$, where

$$
H=-\kappa \Delta+V(x),
$$

with $\kappa=\frac{\hbar^{2}}{2 m}$ and $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ radial.
Employing spherical coordinates and looking for solutions of the form

$$
q(r, \theta, \phi)=a(r) b(\theta, \phi)
$$

led to the "angular equation" for b, which we solved via spherical harmonics $b_{ \pm m}^{\ell}$, and the radial equation

$$
\left\{\begin{array}{l}
r^{2} a^{\prime \prime}+2 r a^{\prime}-\frac{r^{2}}{\kappa}[V(r)-\lambda] a=\ell(\ell+1) a \\
\ell \in\{0\} \cup \mathbb{N}, \quad \lim _{r \rightarrow \infty} a(r)=0,
\end{array}\right.
$$

to which we turn now.
Introducing the function $u(r)=r a(r)$ and rearranging yields

$$
\begin{gather*}
u^{\prime \prime}-\frac{1}{\kappa}[V(r)-\lambda] u=\frac{\ell(\ell+1)}{r^{2}} u \\
\rightsquigarrow-\kappa u^{\prime \prime}+\left[V(r)+\kappa \frac{\ell(\ell+1)}{r^{2}}\right] u=\lambda u \tag{**}
\end{gather*}
$$

This is the eigenvalue problem for a one-dimensional Schrödinger operator on $(0, \infty)$ with potential

$$
\tilde{V}(r)=V(r)+\kappa \frac{\ell(\ell+1)}{r^{2}}
$$

Example. QM models an electron in orbit around a proton with the Coulomb potential:

$$
V(x)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{|x|}, \quad \text { i.e. } \quad V(r)=-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r} .
$$

where e is the charge of the electron and ε_{0} is the permittivity of vacuum (in SI units).

We are interested in the discrete spectrum, corresponding to "bound states". Eigenvalues are real (they are expected values of the Hamiltonian), and because $\lim _{r \rightarrow \infty} V(r)=0$ one can show they are contained in $(-\infty, 0)$. (Beyond the scope of this course.)

With the Coulomb potential, (*) becomes

$$
u^{\prime \prime}=c^{2}\left[1-\frac{e^{2}}{4 c \pi \kappa \varepsilon_{0}} \frac{1}{c r}+\frac{\ell(\ell+1)}{(c r)^{2}}\right] u
$$

where $c^{2}=-\frac{\lambda}{\kappa}$. We define

$$
\rho=c r, \quad \frac{d}{d \rho}=\frac{1}{c} \frac{d}{d r}, \quad u(r)=w(\rho), \quad \rho_{0}=\frac{e^{2}}{4 c \pi \kappa \varepsilon_{0}} .
$$

Then

$$
\begin{equation*}
w^{\prime \prime}=\left[1-\frac{\rho_{0}}{\rho}+\frac{\ell(\ell+1)}{\rho^{2}}\right] w, \quad \quad^{\prime}=\frac{d}{d \rho} \tag{**}
\end{equation*}
$$

We revisit the power series method, but with a twist.
First, as $\rho \rightarrow \infty$ this ODE resembles $w^{\prime \prime}=w$, whose (decaying) solution is like $e^{-\rho}$.

Next, as $\rho \rightarrow 0$ this ODE resembles $w^{\prime \prime}=\frac{\ell(\ell+1)}{\rho^{2}} w$, whose (well-behaved) solution is like $\rho^{\ell+1}$.

Thus we look for w of the form

$$
w(\rho)=\rho^{\ell+1} e^{-\rho} v(\rho) .
$$

We compute

$$
\begin{aligned}
& w^{\prime}=\rho^{\ell} e^{-\rho}\left[\rho v^{\prime}+(\ell+1-\rho) v\right], \\
& w^{\prime \prime}=\rho^{\ell} e^{-\rho}\left\{\rho v^{\prime \prime}+2[\ell+1-\rho] v^{\prime}+\left[-2 \ell-2+\rho+\frac{\ell(\ell+1)}{\rho}\right] v\right\} .
\end{aligned}
$$

Then (**) becomes

$$
\rho v^{\prime \prime}+2(\ell+1-\rho) v^{\prime}+\left[\rho_{0}-2(\ell+1)\right] v=0 .
$$

Now we try to write

$$
v(\rho)=\sum_{k=0}^{\infty} c_{k} \rho^{k}, \quad v^{\prime}(\rho)=\sum_{k=0}^{\infty} k c_{k} \rho^{k-1}, \quad v^{\prime \prime}(\rho)=\sum_{k=0}^{\infty} k(k-1) c_{k} \rho^{k-2} .
$$

Inserting this into the ODE yields

$$
\sum\left\{k(k+1) c_{k+1}+2(\ell+1)(k+1) c_{k+1}-2 k c_{k}+\left[\rho_{0}-2(\ell+1)\right] c_{k}\right\} \rho^{k}=0 .
$$

Thus we should take

$$
c_{k+1}=\frac{2(k+\ell+1)-\rho_{0}}{(k+1)(k+2 \ell+2)} c_{k}, \quad c_{0} \text { arbitrary } .
$$

Now if $\rho_{0}=2\left(k^{*}+\ell+1\right)$ for some $k^{*} \in\{0\} \cup \mathbb{N}$, then $c_{k^{*}+1}=c_{k^{*}+2}=$ $\cdots=0$.
(If ρ_{0} is not of this form it turns out that the solution is badly behaved.)
In this case we call $n:=k^{*}+\ell+1$ the principle quantum number.
We denote the degree $n-\ell-1$ polynomial solution by $v_{n}^{\ell}(\rho)$ (called a

Laguerre polynomial).

Then

$$
\begin{aligned}
u_{n}^{\ell}(r)=w_{n}^{\ell}(\rho) & =\rho^{\ell+1} e^{-\rho} v_{n}^{\ell}(\rho), \quad \rho=c_{n} r=\sqrt{\frac{\left|\lambda_{n}\right|}{\kappa}} r \\
& \rightsquigarrow \quad a_{n}^{\ell}(r)=r^{\ell} e^{-c_{n} r} v_{n}^{\ell}\left(c_{n} r\right),
\end{aligned}
$$

where we can unravel the constants in

$$
2 n=\rho_{0}=\frac{e^{2}}{4 c_{n} \pi \kappa \varepsilon_{0}}, \quad c_{n}^{2}=-\frac{\lambda_{n}}{\kappa}, \quad \kappa=\frac{\hbar^{2}}{2 m_{e}}
$$

to compute λ_{n}. In particular:
Conclusion. The determinate energies of the hydrogen atom are

$$
\lambda_{n}=-\left[\left(\frac{e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{m_{e}}{2 \hbar^{2}}\right] \frac{1}{n^{2}} \quad \text { for } n \in \mathbb{N},
$$

and for each n there are $2 n^{2}$ (orthogonal) eigenvectors

$$
q_{n, \pm m}^{\ell}(r, \theta, \phi)=a_{n}^{\ell}(r) b_{ \pm m}^{\ell}(\theta, \phi),
$$

where $\ell \in\{0,1, \ldots, n-1\}, m \in\{0, \ldots, \ell\}$.

11.3 Electromagnetism

In classical electromagnetism, the electric field $E(t, x) \in \mathbb{R}^{3}$ and magnetic field $B(t, x) \in \mathbb{R}^{3}$ have the following interpretation: the force on a particle with charge q and velocity v is

$$
F=q(E+v \times B),
$$

while the behavior of E, B is determined by Maxwell's equations:

$$
\begin{cases}\nabla \cdot E=\frac{1}{\varepsilon_{0}} \rho & \text { (Gauss's law) } \\ \nabla \cdot B=0 & \\ \nabla \times E+\partial_{t} B=0 & \text { (Faraday's law) } \\ \nabla \times B-\mu_{0} \varepsilon_{0} \partial_{t} E=\mu_{0} J, & \text { (Ampere's law, with Maxwell's correction) }\end{cases}
$$

where $\rho=\rho(t, x) \in \mathbb{R}$ is the charge density, $J=J(t, x) \in \mathbb{R}^{3}$ is the current density, ε_{0} is the permittivity of vacuum, and μ_{0} is the permeability of vacuum.

Using Gauss's law and Ampere's law we can also deduce the continuity equation for ρ and J :

$$
\partial_{t} \rho+\nabla \cdot J=0
$$

Consider a region of space in which there is no charge or current ($\rho, J=$ $0)$. Note

$$
\nabla \times(\nabla \times E)=\nabla \times\left(-\partial_{t} B\right)=-\partial_{t}(\nabla \times B)=-\partial_{t}\left(\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t}\right)=-\mu_{0} \varepsilon_{0} \partial_{t t} E
$$

and

$$
\nabla \times(\nabla \times E)=-\Delta E+\nabla(\nabla \cdot E)=-\Delta E
$$

Rearranging yields

$$
\mu_{0} \varepsilon_{0} \partial_{t t} E-\Delta E=0 .
$$

Similarly (computing $\nabla \times(\nabla \times B)$ we find

$$
\mu_{0} \varepsilon_{0} \partial_{t t} B-\Delta B=0 .
$$

Conclusion. In regions of spacetime with no charge or current, the components of E and B satisfy the wave equation, with speed of propagation equal to $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$ (which happens to be the speed of light in vacuum).

One can also study Maxwell's equations using the potential formulation.

Lemma 11.3.1 (Helmholtz Theorem). If G is a (sufficiently nice, decaying) vector field then

$$
G=-\nabla g+\nabla \times H
$$

for some scalar field g and vector field H.
Corollary. If $\nabla \cdot G=0$ then $G=\nabla \times H$ and if $\nabla \times G=0$ then $G=-\nabla g$.

We apply these results to E and B. In particular, $\nabla \cdot B=0$ implies

$$
B=\nabla \times A \quad \text { for some magnetic potential } A .
$$

Combining this with Faraday's law yields $\nabla \times\left(E+\partial_{t} A\right)=0$, so that

$$
E+\partial_{t} A=-\nabla V \quad \text { for some electric potential } V .
$$

Plugging this into Gauss's law yields

$$
-\Delta V=\nabla \cdot E+\partial_{t} \nabla \cdot A=\frac{1}{\varepsilon_{0}} \rho+\partial_{t} \nabla \cdot A .
$$

(Note if $\partial_{t} B=0$ then $\partial_{t} A=0$ and this reduces to Coulomb's law from electrostatics.)

Using Ampere's law and $B=\nabla \times A$ yields

$$
\begin{aligned}
& \nabla \times(\nabla \times A)+\mu_{0} \varepsilon_{0} \partial_{t}\left[\partial_{t} A+\nabla V\right]=\mu_{0} J \\
\Longrightarrow & \mu_{0} \varepsilon_{0} \partial_{t t} A-\Delta A+\nabla\left[\nabla \cdot A+\mu_{0} \varepsilon_{0} \partial_{t} V\right]=\mu_{0} J .
\end{aligned}
$$

Thus, given ρ and J the equations for A and V are:

$$
(*)\left\{\begin{array}{l}
-\Delta V-\partial_{t} \nabla \cdot A=\frac{1}{\varepsilon_{0}} \rho \\
\mu_{0} \varepsilon_{0} \partial_{t t} A-\Delta A+\nabla\left(\nabla \cdot A+\mu_{0} \varepsilon_{0} \partial_{t} V\right)=\mu_{0} J
\end{array}\right.
$$

This looks horrible.
Key observation. (gauge invariance) Let $\lambda(t, x)$ be a scalar function. If we define

$$
\tilde{A}=A+\nabla \lambda, \quad \tilde{V}=V-\partial_{t} \lambda,
$$

then \tilde{A} and \tilde{V} yield the same fields E, B. Indeed,

$$
\begin{gathered}
\nabla \times \tilde{A}=\nabla \times A+0=B, \\
\partial_{t} \tilde{A}+\nabla \tilde{V}=\partial_{t} A+\partial_{t} \nabla \lambda+\nabla V-\partial_{t} \nabla \lambda=\partial_{t} A+\nabla V=-E .
\end{gathered}
$$

Thus we have some freedom in how we choose A, V, which may simplify $(*)$.

Example 1. If we choose A to satisfy the Coulomb gauge condition

$$
\nabla \cdot A=0
$$

then $(*)$ becomes

$$
\left\{\begin{array}{l}
-\Delta V=\frac{1}{\varepsilon_{0}} \rho, \\
\mu_{0} \varepsilon_{0} \partial_{t t} A-\Delta A=\mu_{0} J-\mu_{0} \varepsilon_{0} \partial_{t} \nabla V .
\end{array}\right.
$$

Example 2. If we choose A to satisfy the Lorentz gauge condition

$$
\nabla \cdot A=-\mu_{0} \varepsilon_{0} \partial_{t} V,
$$

then (*) becomes

$$
\left\{\begin{aligned}
\mu_{0} \varepsilon_{0} \partial_{t t} V-\Delta V & =\frac{1}{\varepsilon_{0}} \rho, \\
\mu_{0} \varepsilon_{0} \partial_{t t} A-\Delta A & =\mu_{0} J .
\end{aligned}\right.
$$

Once again we get the (inhomogeneous) wave equation, with speed of propagation equal to c.

It is generally accepted that the laws of physics should be invariant under space translation, space rotation, and time translation.

The laws of Newtonian physics (and its descendants) are also invariant under Galilean transformations, such as

$$
\left(t, x_{1}, x_{2}, x_{3}\right) \mapsto\left(t, x_{1}-v t, x_{2}, x_{3}\right) \quad \text { for } v \in \mathbb{R} .
$$

The laws of electromagnetism are not. Instead, they are invariant under Lorentz transformations, such as

$$
\left(t, x_{1}, x_{2}, x_{3}\right) \mapsto\left(\frac{t-\left(v x_{1} / c^{2}\right)}{\sqrt{1-(v / c)^{2}}}, \frac{x_{1}-v t}{\sqrt{1-(v / c)^{2}}}, x_{2}, x_{3}\right), \quad v \in \mathbb{R}, \quad|v|<c .
$$

(These arise when one takes as an axiom that the speed of light is the same for any inertial observer.)

Einstein's insight was that the laws of mechanics should be modified to be invariant under Lorentz transformations. (This led to the theory of relativity.)

11.4 Elementary Particles

The QM model improves the classical model at microscopic length scales.

Relativity substitutes Galilean invariance with Lorentz invariance, which improves the classical mechanics model at high velocities.

The QM model still respects Galilean invariance.
The modification of QM to a model that respects Lorentz invariance is known as relativistic quantum mechanics.

Classical mechanics: (Lagrangian version) If P is a particle of (rest) mass m in the presence of a potential V, we define the Lagrangian by

$$
L(x, v)=\frac{1}{2} m v \cdot v-V(x) .
$$

The momentum is given by $p=\nabla_{v} L(x, \dot{x})$ and $\dot{p}=-\nabla V(x)$ is the EulerLagrange equation for the functional $\int L(x(t), \dot{x}(t)) d t$. The energy is given by

$$
H=p \cdot \dot{x}-L(x, \dot{x})=\frac{1}{2 m}|p|^{2}+V(x) .
$$

Relativistic mechanics: (for free particle, i.e. $V \equiv 0$) Define the Lagrangian by

$$
L(x, v)=-m c^{2} \sqrt{1-|v|^{2} / c^{2}} .
$$

- analogue of arc length integral, but with Lorentz invariance
- constant $m c^{2}$ chosen to recover classical mechanics if $|v| \ll c \quad$ (cf. Taylor expansion)

The momentum is

$$
p=\nabla_{v} L(x, \dot{x})=\frac{m \dot{x}}{\sqrt{1-|\dot{x}|^{2} / c^{2}}},
$$

and $\dot{p}=0$ is the Euler-Lagrange equation for the functional $\int L(x(t), \dot{x}(t)) d t$. The energy is given by

$$
H=p \cdot \dot{x}-L(x, \dot{x})=c \sqrt{|p|^{2}+m^{2} c^{2}} .
$$

Quantisation: To get the "quantum version" we make the following replacements:

$$
i \hbar \partial_{t}=H, \quad p=-i \hbar \nabla
$$

Formally this becomes

$$
i \hbar \partial_{t}=c \sqrt{(-i \hbar \nabla) \cdot(-i \hbar \nabla)+m^{2} c^{2}}=c \sqrt{-\hbar^{2} \Delta+m^{2} c^{2}} .
$$

Squaring both sides:

$$
-\hbar^{2} \partial_{t t}=c^{2}\left(-\hbar^{2} \Delta+m^{2} c^{2}\right) .
$$

Thus we derive the Klein-Gordon equation

$$
\frac{1}{c^{2}} \partial_{t t} \Psi-\Delta \Psi+\frac{m^{2} c^{2}}{\hbar^{2}} \Psi=0 . \quad \text { (KG) }
$$

Evidently squaring loses something vital, because KG does not accurately model the electron.
(However, it can be used to accurately model "spinless pions".)
Dirac equation. The idea of Dirac was to use an equation of the form

$$
i \hbar \partial_{t} \Psi=H \Psi
$$

where H was a first order differential operator satisfying

$$
\begin{equation*}
H^{2}=c^{2}\left[-\hbar^{2} \Delta+m^{2} c^{2}\right] . \tag{*}
\end{equation*}
$$

Writing

$$
H=-i c \hbar\left(\alpha_{1} \partial_{1}+\alpha_{2} \partial_{2}+\alpha_{3} \partial_{3}\right)+m c^{2} \beta
$$

one finds

$$
\begin{aligned}
H^{2}= & \left.-c^{2} \hbar^{2}\left[\sum_{j=1}^{3} \alpha_{j}^{2} \partial_{j}^{2}+\left(\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{1}\right) \partial_{1} \partial_{2}+\left(\alpha_{1} \alpha_{3}+\alpha_{3} \alpha_{1}\right) \partial_{1} \partial_{3}+\left(\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{2}\right) \partial_{2} \partial_{3}\right)\right] \\
& -i c^{3} \hbar m\left[\left(\alpha_{1} \beta+\beta \alpha_{1}\right) \partial_{1}+\left(\alpha_{2} \beta+\beta \alpha_{2}\right) \partial_{2}+\left(\alpha_{3} \beta+\beta \alpha_{3}\right) \partial_{3}\right]+m^{2} c^{4} \beta^{2} .
\end{aligned}
$$

Imposing $(*)$, one finds the following conditions need to be satisfied:

$$
\begin{aligned}
& \alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=0 \quad(j \neq k), \\
& \alpha_{k} \beta+\beta \alpha_{k}=0, \\
& \alpha_{j}^{2}=1, \quad \beta^{2}=1 .
\end{aligned}
$$

While this is impossible to achieve if $\alpha_{j}, \beta \in \mathbb{C}$, it is possible if they are matrices!

This is now a purely algebraic problem, a solution to which is given by the following 4×4 matrices:

$$
\alpha_{j}=\left(\begin{array}{ll}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right),
$$

where I_{2} is the 2×2 identity matrix and σ_{j} are the 2×2 Pauli matrices are defined by

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Note that for the PDE to make sense, we must have $\Psi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}^{4}$.
We arrive at the Dirac equation for a free particle of mass m :

$$
\begin{equation*}
i \hbar \partial_{t} \Psi=-i \hbar c \sum_{j=1}^{3} \alpha_{j} \partial_{j} \Psi+m c^{2} \beta \Psi \tag{D}
\end{equation*}
$$

An alternate form is follows. Defining the Dirac matrices

$$
\gamma_{0}=\beta, \quad \gamma_{j}=\beta \alpha_{j}=\left(\begin{array}{lr}
0 & \sigma_{j} \\
-\sigma_{j} & 0
\end{array}\right) \quad(j=1,2,3)
$$

and noting $\beta^{2}=I$, we can multiply (D) on the left by β and arrive at the following:

$$
i \hbar\left[\frac{1}{c} \gamma_{0} \partial_{t} \Psi+\sum_{j=1}^{3} \gamma_{j} \partial_{j} \psi\right]=m c \Psi, \quad \Psi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{C}^{4}
$$

(This is often written more succinctly as $i \hbar \gamma^{\mu} \partial_{\mu} \Psi=m c \Psi$, but we have not introduced relativistic tensor notation or the Einstein summation convention.)

The Dirac equation provides one of the best models for certain types of elementary particles (including electrons, quarks, ...).

