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Abstract. We review the various ‘PDE proofs’ of sharp L∞ decay and modified scattering for

the one-dimensional cubic nonlinear Schrödinger equation with small initial data in a weighted

Sobolev space. We conclude with a discussion of the proof of this result using techniques related
to complete integrability.

1. Introduction

In this paper we will discuss the one-dimensional cubic nonlinear Schrödinger equation (NLS)

i∂tu = −∂2
xu+ |u|2u, (1)

where u = u(t, x) is a complex-valued function on R× R. This equation is one of the most widely-
studied dispersive equations, arising naturally in many physical models. We have chosen the + sign
for the nonlinearity, resulting in the defocusing equation. Choosing the − sign leads to the focusing
equation, which is particularly important in physical settings as it supports solitary wave solutions
(in contrast to the defocusing case). In this paper, the difference between these cases will not be so
important, as we will typically focus on small solutions (which excludes solitary waves anyway) and
utilize primarily perturbative techniques that do not distinguish between the two cases.

In addition to its physical relevance, the 1d cubic NLS has received a lot of attention due to the
fact that it is completely integrable. In particular, it can be solved via inverse scattering, and in fact
these techniques may be used to describe the long-term behavior of solutions. There are additionally
several arguments using PDE methods (i.e. arguments that do not rely on complete integrability)
that demonstrate the long-time behavior of solutions, although these are all restricted to the case
of small solutions. In this paper, we will review all of these PDE arguments, in addition to a rough
sketch of the approach using inverse scattering.

Solutions to the underlying linear Schrödinger equation

i∂tu = −∂2
xu, u|t=0 = ϕ (2)

have the following asymptotic behavior as t→∞, obtained by explicit computation or by stationary
phase:

u(t, x) ∼ (2it)−1/2eix
2/4tϕ̂( x2t ),

where ϕ̂ denotes the Fourier transform of ϕ. We say that a solution to a nonlinear Schrödinger
equation scatters if it behaves like a solution to (2) as t → ∞. The asymptotic behavior for (1)
is different than that of the underlying linear equation, although solutions do exhibit the same
decay rate of t−1/2. To describe the asymptotic behavior, one must incorporate a logarithmic phase
correction—we call this modified scattering. In particular, one has the following:

Theorem 1.1. Let ϕ be a Schwartz function and suppose u0 = εϕ. If ε > 0 is sufficiently small,
then the solution to (1) with initial data u|t=0 = u0 exists for all time and obeys the decay estimate

sup
x∈R
|u(t, x)| . ε(1 + t)−

1
2 for all t > 0.

Furthermore, there exists ψ such that

u(t, x) = (2it)−
1
2 e

ix2

4t −
i
2 |ψ( x2t )|2 log tψ( x2t ) + o(t−

1
2 ) (3)

1
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in L∞ as t→∞.

Remark. One can improve the decay/regularity conditions on the initial data above. A natural
space for this problem is the weighted Sobolev space H1,1. One can also quantify the error in the
asymptotic formula above. The proofs we present can obtain t−

1
2−δ for some small δ (e.g. δ = 1

20 ).

The optimal error estimate is O(t−1 log t), cf. [4].

We have stated the result only for small initial data, which is the only case currently within reach
without relying on complete integrability. For large data, techniques capitalizing on the complete
integrability of (1) yield a similar (in fact, more precise) statement concerning the asymptotic
behavior of solutions in the defocusing case. These techniques can also recover the long-time behavior
(even in the presence of solitons) in the focusing case. We discuss these techniques in Section 8 below.

All of the ‘PDE proofs’ of Theorem 1.1 rely essentially on a combination of an energy-type estimate
and an ODE-type analysis, which together yield the desired decay and asymptotic behavior. The
energy-type norm in question is

‖J(t)u(t)‖L2(R), where J(t) = x+ 2it∂x.

The operator J(t) is connected to the Galilean symmetry of the equation. For solutions to the
linear equation (2), this norm is exactly conserved. For solutions as in Theorem 1.1, one shows

that the norm is bounded by tCε
2

by using energy-type estimates, exploiting in a crucial way the
gauge-invariance of the nonlinearity |u|2u. The other norm one considers is a dispersive-type norm,
namely,

‖u(t)‖L∞(R),

which one aims to prove decays like t−1/2. The ODE-type analysis comes into play when estimating
this norm; in particular, to establish the decay one needs to use an integrating factor to remove a
non-integrable term from the ODE. The use of the integrating factor leads to the phase correction
in the asymptotic formula for the solution.

The rest of the paper is organized as follows. In Section 2 we will introduce notation and collect
some preliminary lemmas. In Section 3, we discuss the proof of Theorem 1.1 due to Hayashi and
Naumkin [13], which is an ODE-type argument for the profile f(t) = e−it∆u(t). In Section 4, we
discuss the argument of Lindblad and Soffer [18]. Their argument is based on energy estimates for

the related function w(t) defined via u(t, x) = (2it)−1/2eix
2/4tw(t, x2t ). In Section 5, we discuss a

slight refinement of the analysis of [18] that relaxes the conditions imposed on the initial data. In
Section 6, we discuss the proof of Ifrim and Tataru, which is based on a wave packet decomposition
for the solution u(t). In the special case of NLS, the variable describing the wave packet coefficients
turns out to be the same as the variable used in Section 5. In Section 7 we discuss the proof of Kato

and Pusateri, who analyzed the Fourier transform of the profile (i.e. f̂(t)) in the framework of the
space-time resonance method. Finally, in Section 8, we give a sketch of the argument of Deift and
Zhou [4], who utilized the complete integrability of the equation and studied the problem via inverse
scattering.

The arguments presented below all have their relative strengths and weaknesses. For example,
the arguments of [13, 14] can be applied to establish modified scattering for the long-range NLS
in higher dimensions d ∈ {2, 3}, whereas the arguments of [17, 18] utilize the polynomial structure
of |u|2u and [4] requires complete integrability (which only holds in 1d). Similarly, the arguments
of [13,14] work with essentially optimal regularity/decay assumptions for the initial data, while [4,17]
need H1,1 data and [18] requires even stronger conditions (although the argument becomes simpler).
Additionally, [4,13,18] rely strongly on the structure of the equation (using either a factorization of
the free propagator or the complete integrability), whereas the methods of [14,17] have proven to be
fairly flexible and applicable to a wide range of models (see [5,8–10,12,15,20] for a few such examples).
Finally, only [4] seems to be able to handle the case of large initial data, whereas [13, 14, 17, 18] are
all restricted to the small-data setting.
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2. Preliminaries

We introduce the time-dependent modulation and dilation operators M(t) and D(t), where

[M(t)f ](x) = eix
2/4tf(x) and [D(t)f ](x) = (2it)−1/2f( x2t ).

We write either U(t) or eit∆ for the free Schrödinger propagator, defined as the Fourier multiplier
operator

U(t) = F−1e−itξ
2

F .

Here F denotes the Fourier transform; we may also denote Ff by f̂ .
The physical-space representation of this operator is given by convolution with a complex Gauss-

ian; that is, the integral kernel is given by

eit∆(x, y) = (4πit)−1/2ei|x−y|
2/4t.

This explicit formula shows that the propagator admits the factorization

U(t) = M(t)D(t)FM(t), (4)

which will play a key role throughout this paper.
We next introduce the Galilean operator J(t) = x + 2it∂x. On one hand, direct computation

shows that

J(t) = M(t)2it∂xM(−t).

On the other hand, a simple ODE argument shows that we may write

J(t) = U(t)xU(−t). (5)

Both of these representations of J(t) will be useful throughout this paper.
The focus on this paper is on the long-time behavior of solutions. Thus, our discussion of well-

posedness and related issues will be rather brief: Solutions to (1) with L2 initial data may be con-
structed by a contraction mapping argument utilizing Strichartz estimates; in particular, solutions
are constructed to obey the Duhamel formula

u(t) = eit∆u0 − i
∫ t

0

ei(t−s)∆(|u|2u)(s) ds. (6)

The time of existence depends only on the L2-norm, which is conserved under (1); thus, by it-
erating the local well-posedness result one can obtain a global-in-time solution, which belongs to
Ct(R;L2(R)). By persistence of regularity/decay arguments, one also sees that nicer data leads to
nicer solutions. For example, data in the weighted Sobolev space H1,1 leads to solutions belonging
to Ct(R;H1,1(R)). Note, however, that while the Ḣ1-norm of solutions remains bounded in time
(by conservation of energy), the weighted L2-norm does not.

For a textbook treatment of well-posedness and related issues, see [2].
We will use just a bit of Littlewood–Paley theory. We denote the Littlewood–Paley projection

to frequency N ∈ 2Z by PN . We similarly have the projection operators P≤N and P>N . These
operators are bounded on all Lp spaces and obey a set of standard ‘Bernstein estimates’, e.g.

‖PNf‖Lp(Rd) . N
d
q−

d
p ‖f‖Lq(Rd) for q ≤ p

and

‖PNf‖Lp(Rd) . N
−s‖|∇|sf‖Lp(Rd).

For more details, see (for example) [22].



4 JASON MURPHY

3. The argument of [13]

In this section we describe the argument of Hayashi and Naumkin [13] for the proof of Theorem 1.1.
Recall that we assume u0 = εϕ for some Schwartz function ϕ. For convenience, let us additionally
assume that ‖ϕ‖H1,1 ≤ 1 and ‖ϕ‖L∞ ≤ 1.

The argument of Hayashi and Naumkin [13] relies on a bootstrap estimate involving the energy-
type norm, which is allowed to grow slowly, and the L∞-norm, which should decay at a rate of
t−1/2.

The energy-type norm in question is given by J(t)u(t) in L2. Because of a chain-rule identity for
the operator J(t) (cf. (7) below), control over the L∞-norm can easily be transferred to control over
the L2-norm of Ju.

Lemma 3.1 (Energy estimate). Suppose that u : [0, T ]× R→ C is a solution to (1) obeying

‖xu0‖L2 ≤ ε and sup
t∈[0,T ]

(1 + t)
1
2 ‖u(t)‖L∞ ≤ Aε.

Then for all t ∈ [0, T ],

‖J(t)u(t)‖L2 ≤ ε · (1 + t)3A2ε2

Proof. We begin by applying J(t) to the Duhamel formula (6) and utilizing the identities

J(t)U(t) = U(t)x, J(t)U(t− s) = U(t− s)J(s).

This leads to

‖J(t)u(t)‖L2 ≤ ‖xu0‖L2 +

∫ t

0

‖J(s)[|u|2u](s)‖L2 ds.

Now, a computation shows

J(s)[|u|2u] = 2J(s)u− u2J(s)u. (7)

Thus, continuing from above,

‖J(t)u(t)‖L2 ≤ ε+ 3

∫ t

0

‖u(s)‖2L∞‖J(s)u(s)‖L2 ds

≤ ε+ 3A2ε2

∫ t

0

(1 + s)−1‖J(s)u(s)‖L2 ds.

Therefore by Gronwall’s inequality, we have

‖J(t)u(t)‖L2 ≤ ε · (1 + t)3A2ε2 ,

as desired. �

Our next goal is to estimate the L∞-norm of u(t). We will do so through an ODE argument
involving the Fourier transform of the ‘profile’ of u. We let

f(t) := U(−t)u(t) and f̃(t) := FM(t)U(−t)u(t).

Then, using (4) and writing

u(t) = U(t)U(−t)u(t) = M(t)D(t)f̃(t),

we compute

i∂tf(t) = U(−t){|u|2u} = (2t)−1[FM(t)]−1{|f̃ |2f̃}.
Defining

I(t) = FM(t)F−1, I(t) = FM(t)F−1,

we find
i∂tf̂(t) = (2t)−1I(t){|f̃ |2f̃}

= (2t)−1|f̂ |2f̂ + (2t)−1
[
|f̃ |2f̃ − |f̂ |2f̂

]
+ (2t)−1

[
I(t)− 1

]
|f̃ |2f̃ .

(8)
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We now employ an integrating factor to remove the first term on the right-hand side of this equation.
With

g(t) = eiΘ(t)f̂(t), Θ(t) :=

∫ t

1

(2s)−1|f̂(s)|2 ds, (9)

we get

i∂tg(t) = (2t)−1eiΘ(t)

{[
|f̃ |2f̃ − |f̂ |2f̂

]
+
[
I(t)− 1

]
|f̃ |2f̃

}
Lemma 3.2 (Controlling error terms). For 0 < a < 1

4 and t ≥ 1,∥∥[|f̃ |2f̃ − |f̂ |2f̂]+
[
I(t)− 1

]
|f̃ |2f̃

∥∥
L∞ .a t

−a{‖u(t)‖L2 + ‖J(t)u(t)‖L2

}3
.

Proof. We begin by observing that by Hausdorff–Young and Cauchy–Schwarz,

‖f̂(t)‖L∞ + ‖f̃(t)‖L∞ . ‖U(−t)u(t)‖L1

. ‖u(t)‖L2 + ‖xU(−t)u(t)‖L2

. ‖u(t)‖L2 + ‖J(t)u(t)‖L2 .

Next, for 0 < a < 1
4 , again by Hausdorff–Young and Cauchy–Schwarz,

‖f̃(t)− f̂(t)‖L∞ = ‖[I(t)− 1]f̂(t)‖L∞

. ‖[M(t)− 1]f‖L1

. |t|−a‖|x|2aU(−t)u(t)‖L1

. |t|−a
{
‖u(t)‖L2 + ‖J(t)u(t)‖L2

}
.

Estimating similarly,

‖[I(t)− 1]|f̃ |2f̃‖L∞ . |t|−a‖|x|2aF−1|f̃ |2f̃‖L1

. t−a
{
‖f̃ |2f̃‖L2 + ‖∇(|f̃ |2f̃)‖L2

}
. t−a

{
‖f̃‖2L∞

[
‖u‖L2 + ‖∇f̃‖L2

]}
. t−a

{
‖u(t)‖L2 + ‖J(t)u(t)‖L2

}3
.

This completes the proof. �

Corollary 3.3 (Dispersive bound). Suppose that u is a solution to (1) obeying

sup
t∈[0,T ]

(1 + t)−δ‖J(t)u(t)‖L2 ≤ Bε and sup
t∈[0,1]

‖u(t)‖L∞ ≤ Cε

for some 0 < δ < 1
12 . Then there exists A > 0 such that for all t ∈ [1, T ],

‖u(t)‖L∞ ≤ Aε(1 + t)−
1
2 .

Proof. We let t ≥ 1 and write

u(t) = U(t)U(−t) = M(t)D(t)f̂(t) +M(t)D(t)[I(t)− 1]f̂(t). (10)

Then, estimating as in Lemma 3.2 for the second term, we get have

‖u(t)‖L∞ . t−
1
2 ‖f̂(t)‖L∞ + t−

1
2−a{‖u(t)‖L2 + ‖J(t)u(t)‖L2}

. t−
1
2 ‖g(t)‖L∞ + εt−

1
2−a+δ

for any 0 < a < 1
4 , where g is as in (9). Thus it remains to estimate g in L∞.

By Lemma 3.2 and hypothesis, we have

‖∂tg‖L∞ . ε3t−1−a+3δ,
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so that choosing 3δ < a < 1
4 , we get

‖g(t)‖L∞ ≤ ‖f(1)‖L∞ + Cε3

∫ t

1

s−1−a+3δ ds

≤ Bε+ Cε3 · 1
a−3δ [1− t−(a−3δ)] . ε

uniformly in t ∈ [1, T ], as desired. �

Using Lemma 3.1 and Corollary 3.3, a continuity argument leads to the following.

Proposition 3.4 (Bounds). Let u be the global-in-time solution to (1) with u0 = εϕ for some ϕ ∈ S
with ‖ϕ‖H1,1 ≤ 1. If ε is sufficiently small, then u(t) obeys

sup
t∈[0,∞)

‖u(t)‖L∞ ≤ Cε(1 + t)−
1
2 and sup

t∈[0,∞)

‖J(t)u(t)‖L∞ ≤ Cε(1 + t)
1
20

for some C > 0.

In particular, we deduce the desired L∞ decay for the solution. To complete the proof of The-
orem 1.1, it remains to establish the desired asymptotic behavior. For this, we return to the ODE
argument given above. The difference is that now we have the desired bounds for u(t) in place. In
particular, we find that ‖∂tg‖L∞ is integrable, which implies the existence of a limit for g(t), say g∞
(with an explicit rate of convergence).

Next, using the convergence of g(t), we can deduce that

Θ(t) = Θ+ + 1
2 |g∞|

2 log t+ o(1) as t→∞

for some Θ+ ∈ L∞, where Θ(t) is as in (9). As f̂ = e−iΘg, we deduce

f̂(t) = e−
i
2 |ψ|

2 log tψ + o(1) as t→∞,
where ψ := e−iΘ+g∞. Finally, since

u(t) = M(t)D(t)f̂(t) + o(t−
1
2 )

(cf. (10)), this asymptotic behavior for f̂ implies the desired asymptotic behavior for the solution
u(t). This completes the sketch of the proof of Theorem 1.1 as given in [13].

4. The Argument of [18]

We next discuss the argument due to Lindblad and Soffer [18]. This time, we introduce the
variable w(t) given by

u(t) = M(t)D(t)w(t).

Then the L∞ decay of u is equivalent to L∞ boundedness of w(t).

The variable w(t) will play a role similar to that of f̂(t) in the previous section. In fact, this vari-

able also appeared in the previous section, where we encountered w(t) = f̃(t) = FM(t)U(−t)u(t).
A direct computation shows that u solving (1) is equivalent to w solving the PDE

i∂tw = − 1
2t2 ∂

2
xw + 1

2t |w|
2w. (11)

Using the integrating factor eiΞ(t), where now

Ξ(t) =

∫ t

1

1
2s |w(s)|2 ds,

we can deduce that

‖w(t)‖L∞ ≤ ‖w(1)‖L∞ +

∫ t

1

1
2s2 ‖∂

2
xw(s)‖L∞ ds. (12)

To control the norm appearing in the integral, the strategy of Lindblad and Soffer is to employ
energy estimates. In particular, by Sobolev embedding it suffices to control up to three derivatives
of w in L2.
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Differentiating (11) leads to

(i∂t + 1
2t2 ∂

2
x)∂kxw = 1

2t∂
k
x(|w|2w), k ∈ {0, 1, 2, 3}. (13)

In particular, integrating by parts, we get

∂t〈∂kxw, ∂kxw〉 = − i
2t 〈∂

k
xw, ∂

k
x(|w|2w)〉,

where 〈·, ·〉 denotes the L2 inner product. Thus

‖∂kxw(t)‖L2 ≤ ‖∂kxw(1)‖L2 +

∫ t

1

1
2s‖∂

k
x(|w|2w)‖L2 ds. (14)

We next need the following chain-rule estimate:

Lemma 4.1. For k ∈ {0, 1, 2, 3},
‖∂kx(|w|2w)‖L2 . ‖w‖2L∞‖∂kxw‖L2 .

Proof. The cases k ∈ {0, 1} follow immediately from Hölder’s inequality and the chain rule. For the
case k = 2, we distribute the derivatives and observe that the desired inequality follows from

‖∂xw‖L2 . ‖w‖
1
2

L∞‖∂2
xw‖

1
2

L2 , (15)

which in turn follows from an integration by parts. Similarly, for the case k = 3, we distribute the
derivatives and need to establish the estimates

‖(∂xw)3‖L2 . ‖w‖2L∞‖∂3
xw‖L2 and ‖w∂xw(∂2

xw)‖L2 . ‖w‖2L∞‖∂3
xw‖L2 .

These estimates follow from interpolation, specifically the estimates

‖∂xw‖L6 . ‖w‖
2
3

L∞‖∂3
xw‖

1
3

L2 and ‖∂2
xw‖L3 . ‖w‖

1
3

L∞‖∂3
xw‖

2
3

L2 . (16)

This completes the proof. �

Returning to (14), we deduce

‖∂kxw(t)‖L2 ≤ ‖∂kxw(1)‖L2 + C

∫ t

1

1
2s‖w(s)‖2L∞‖∂kxw(s)‖L2 ds. (17)

We now claim that we can use (17) and (12) to run a continuity argument, which (choosing data
of size 0 < ε� 1 in all relevant norms) yields the bounds

‖w(t)‖L∞ ≤ Cε and ‖∂2
xw(t)‖L∞ ≤ Ct 1

2 (18)

uniformly in t ≥ 1.
Indeed, if we assume that ‖w(t)‖L∞ ≤ 10ε on some interval [1, T ], then (17) and Gronwall’s

inequality imply

‖∂3
xw(t)‖L2 ≤ εt100Cε2 for t ∈ [1, T ],

and hence (using the 1d Sobolev embedding ‖f‖L∞ ≤ ‖f‖1/2L2 ‖∂xf‖1/2L2 )

‖∂2
xw(t)‖L∞ ≤ εt100Cε2 for t ∈ [1, T ].

Plugging this back into (12) and choosing 100Cε2 < 1
2 , we find

‖w(t)‖L∞ ≤ 2ε for t ∈ [1, T ].

In particular, this type of self-improving estimate shows that we can run a continuity argument and
obtain the bounds in (18). As observed above, the L∞-boundedness of w(t) immediately implies the
sharp L∞ decay for u(t).

Next, we discuss the asymptotic behavior of the solution. As before, with the bounds in place,
the estimates above demonstrate that the L∞ norm of the time derivative of eiΞ(t)w(t) is integrable,
and hence we obtain a limit. Proceeding just as in the previous section, we can obtain a profile ψ
such that

w(t) = e−i
i
2 |ψ|

2 log tψ + o(1) as t→∞,
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which once again leads to the modified asymptotics for u(t). Indeed, this time we have the exact
identity u(t) = M(t)D(t)w(t).

5. A slight refinement of [18]

The argument of Lindblad and Soffer is a bit simpler than that of Hayashi and Naumkim; however,
it requires stronger conditions on the initial data. In particular, the argument of Lindblad and Soffer
requires three derivatives of w to belong to L∞, which in particular would require 〈x〉3u0 to belong
to L∞. On the other hand, the argument of Hayashi and Naumkin (as presented) required only
H1,1 data. In fact, without too many changes, their argument can handle Hs,s data for any s > 1

2 .
In the argument, one would need to replace the J operator with its fractional power, defined by

Js(t) = U(t)|x|sU(−t) = M(t)(−4t2∆)
s
2M(−t).

In place of the pointwise chain-rule identity (7), one would need to utilize the second identity for
Js(t) above and use the fractional chain rule of [3]. Otherwise, the rest of the argument goes through.

In this section I will present an argument that utilizes the same variable w(t) as in Lindblad–
Soffer, but readily handles data from H1,1. As usual, we seek to run a continuity argument that
simultaneously establishes the bounds

‖J(t)u(t)‖L2 . εtδ and ‖u(t)‖L∞ . εt−
1
2

for t ≥ 1 and some 0 < δ � 1. Given these bounds, we also need to demonstrate the desired
asymptotic behavior. As we can readily utilize the energy-type estimate of Lemma 3.1 to control
the Ju in L2, I will focus on estimating the L∞-norm. As in the previous argument, it suffices to
bound the L∞-norm of w(t), where

w(t) = FM(t)U(−t)u(t), so that u(t) = M(t)D(t)w(t).

Note that by (5), we have

‖Ju‖L2 = ‖∇w‖L2 and ‖u‖L2 = ‖w‖L2 .

In particular, the estimate of Lemma 3.1 shows that

‖∇w(t)‖L2 ≤ Cε(1 + t)Cε
2‖w‖L∞ uniformly in t ≥ 1, (19)

where the space-time L∞-norm of w is over [1, t]× R.
We begin with the following frequency localized estimate, which is a consequence of Bernstein

estimates:

‖PNw(t)‖L∞
x
. N−

1
2 ‖∇w(t)‖L2

x
. (20)

In particular, using (20) and summing, we get

‖P>√tw(t)‖L∞ . t−
1
4 ‖∇w(t)‖L2 ,

which (under the bootstrap assumption that the weighted norm of u grows like tδ) is already an
acceptable bound.

We therefore turn to the low frequency piece and consider the equation satisfied by

wlo(t) := P≤
√
tw(t).

Note that frequency projections commute with spatial derivatives; however, since the projection is
time-dependent, the time derivative may land on the projection. In particular, recalling (11), we
find that wlo solves

i∂twlo − 1
2t |wlo|

2wlo = − 1
2t2 ∆wlo + 1

2t3/2
P̃√t∇w + 1

2t

[
P≤
√
t(|w|

2w)− |wlo|2wlo
]

= − 1
2t2 ∆wlo + 1

2t3/2
P̃√t∇w

+ 1
2t

[
−P>√t(|w|

2w) + |w|2w − |wlo|2wlo
]
,
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where the Fourier multiplier of P̃1 is the derivative of the multiplier for P1, and is in particular
supported near |ξ| ∼ 1.

We now employ an integrating factor and set v(t) = eiΦ(t)wlo(t), with

Φ(t) =

∫ t

1

|wlo(s)|2 ds2s ,

which solves

i∂tv(t) = eiΦ(t)
{
− 1

2t2 ∆wlo + 1
2t3/2

P̃√t∇w + 1
2t

[
−P>√t(|w|

2w) + |w|2w − |wlo|2wlo
]
}.

We estimate the Laplacian term via Bernstein estimates. Note that as the low frequency projection
is present, we can estimate this term without assuming additional regularity on w (in contrast to
the approach of [18]). In particular, we estimate

t−2‖∆wlo‖L∞ + t−
3
2 ‖P̃√t∇w‖L∞ . t−

5
4 ‖∇w(t)‖L2 .

Next, arguing via Bernstein as above and using the chain rule, we have

‖P>√t(|w|
2w)‖L∞ . t−

1
4 ‖∇(|w|2w)‖L2

x
. t−

1
4 ‖w‖2L∞‖∇w‖L2 .

In the remaining term, there is always a copy of P>
√
tw (or its complex conjugate); thus this term

is controlled by

‖w‖2L∞
x
‖P>√tw‖L∞

x
. t−

1
4 ‖w‖2L∞‖∇w‖L2 .

Collecting the estimates above, we deduce

‖w(t)‖L∞
x
. ‖w(1)‖L∞

x
+ ‖P>√tw(t)‖L∞

x

+

∫ t

1

s−
5
4 ‖∇w(s)‖L2 + s−

5
4 ‖w(s)‖2L∞‖∇w(s)‖L2 ds.

. ε+ t−
1
4 ‖∇w(t)‖L2 +

∫ t

1

s−
5
4 ‖∇w(s)‖L2 [1 + ‖w(s)‖2L∞ ] ds (21)

Combining the estimates in (19) and (21), we find that by choosing ε > 0 sufficiently small we
can close a continuity argument and establish the desired bounds, as before.

Once the estimates are in place, we can argue further to obtain the asymptotic behavior. As
before, the estimates suffice to extract a limit for eiΦwlo and then to describe the behavior of eiΦ

itself. Due to the explicit decay of P>
√
tw, this is enough to describe the asymptotic behavior of

w(t). In particular, we can once again deduce the existence of a profile ψ so that

w(t) = e−
i
2 |ψ|

2 log tψ + o(1)

as t→∞. Recalling u(t) = M(t)D(t)w(t), we recover the result.

6. The Argument of [14]

In this section, we discuss the argument of Ifrim and Tataru [14], which relies on the idea of a
wave packet decomposition for the solution to (1). In this setting, wave packets refer to approx-
imate solutions to the underlying linear equation associated with a given velocity and scale. In
the special case of the linear Schrödinger equation, the factorization U(t) = M(t)D(t)FM(t) and
corresponding approximation U(t) ≈ M(t)D(t)F makes it straightforward to identify a good wave
packet approximation. In particular, we may choose initial data of the form eivxφ(xλ ), representing
a bump centered at the origin with a physical scale λ, concentrated in frequency around v. Then
the solution to the linear Schrödinger equation may be approximated as

eit∆[eivxφ(xλ )] ≈ λt− 1
2 eix

2/4tφ̂
[
λ
t (x− 2tv)

]
. (22)
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In particular, if we are interested in a wave packet decomposition up to time t, we should use wave
packets that remain coherent up until this time, which suggests that we use the scale λ ∼ t 1

2 . With
this in mind, we define the family of wave packets to be

Ψv(t, x) = eix
2/4tχ(x−2vt√

t
), v ∈ R,

where χ is some Schwartz function that is normalized to obey
∫
χ = 1. Indeed, one can check that

this choice of Ψv approximately solves the linear Schrödinger equation, with O(1/t) errors obeying
the same localization properties as Ψv itself.

The wave packet decomposition of a solution u to (1) is defined via the coefficients

γ(t, v) := 〈u(t, ·),Ψv(t, ·)〉L2 .

In fact, γ(t, v) is an object we have already studied, albeit in a different form.

Lemma 6.1. Recalling the variable w(t) = FM(t)U(−t)u(t) from the previous sections, we may
write

γ(t, v) = wlo(t, v) = [P≤
√
tw](t, v).

Proof. We perform the change of variables y = x
2t to compute

γ(t, v) = 〈M(t)D(t)w(t),Ψv(t, ·)〉 = c
〈
w(t, ·),

√
tχ(
√
t(· − v)

〉
= {w(t, ·) ∗ [

√
tχ(
√
t·)]}(v) = wlo(t, v),

as desired. In particular, here we have chosen χ to be the inverse Fourier transform of the standard
Littlewood–Paley multiplier. �

As in the previous section we now see that the decay and asymptotic behavior of u may be
understood through the behavior of γ via u(t) ≈M(t)D(t)γ(t).

In particular, the authors of [14] show that ‖∂vγ‖L2 is controlled by the weighted norm, which
is controlled through an energy estimate and Gronwall’s inequality under the assumption of sharp
L∞ decay for u. Additionally, they show that the difference between u(t) and M(t)D(t)γ(t) is
quantitatively small, with the error measured in terms of the weighted norm. Then, as in many of
the arguments above, the key boils down to controlling the L∞ norm of γ and subsequently deducing
the long-time behavior, which is achieved through analysis of the ODE

i∂tγ = (2t)−1|γ|2γ +O(t−1−).

As we have carried out the details in the previous section (albeit from a slightly different perspective,
e.g. quoting ‘Bernstein estimates’ in place of directly estimating convolutions), we will omit the
details here.

7. The argument of [17]

The final ‘PDE proof’ of Theorem 1.1 that we will present is due to Kato and Pusateri [17]. It is

based off of the analysis of f̂(t), where as before f is the profile f(t) = U(−t)u(t). In these variables,
we are interested in proving the estimates

‖f̂(t)‖L∞ . ε and ‖∂ξ f̂(t)‖L2 = ‖J(t)u(t)‖L2 . tδ

for some small δ > 0, uniformly over t ≥ 1 (cf. (5)). With these estimates in place and the
decomposition (10), we can establish sharp L∞ decay for u, as desired.

As usual, we can deal with the weighted norm by an energy estimate, and so we will focus on
how to control the L∞ norm and derive the asymptotic behavior. For this, we write the Duhamel
formula (6) (starting at t = 1, say) and apply FU(−t) to both sides. This leads to

f̂(t) = f̂(1)− i
∫ t

1

eisξ
2

F
(
|u|2u

)
(s) ds.
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Now, observing û(s, ξ) = e−isξ
2

f̂(s, ξ), we write

F
(
|u|2u

)
(s, ξ) = 1

2π

∫∫
e−is(ξ−η)2+is(η−σ)2−isσ2

f̂(ξ − η) ˆ̄f(η − σ)f̂(σ) dσ dη.

Inserting this into the formula above and simplifying the phase, we deduce

f̂(t, ξ) = f̂(1, ξ)− i
2π

∫ t

1

∫∫
e2isη[ξ−σ]f̂(ξ − η) ˆ̄f(η − σ)f̂(σ) dσ dη ds

= f̂(1, ξ)− i
2π

∫ t

1

∫∫
e2isησ f̂(ξ − η) ˆ̄f(η − ξ + σ)f̂(ξ − σ) dσ dη ds.

At this point, we have arrived at an integral that is amenable to a stationary phase type analysis. In
particular, we expect a main contribution from any stationary phase points, while oscillation away
from these points should yield decay through integration by parts. This strategy for the analysis
of dispersive PDE has been developed in recent years and is known as the method of space-time
resonances (as introduced in [11]). It has proven to be a robust technique for establishing decay
estimates for small solutions for many different models, including even some quasilinear systems (see
e.g. [5]).

In the present setting, the phase is simple enough that one can utilize Plancherel’s theorem and
compute a bit more explicitly. To this end, we introduce

F (s, ξ, η, σ) = f̂(ξ − η) ˆ̄f(η − ξ + σ)f̂(ξ − σ) (23)

and denote by Fη,σ the two-dimensional Fourier transform in the variables η, σ. Then we may
rewrite the integral as ∫ t

1

∫∫
Fη,σ[e2isησ]F−1

η,σ[F ](s, ξ, η, σ) dη dσ ds.

Now, on the one hand, we have by a direct computation

Fη,σ[e2isησ] = 1
2se
−i ησ2s .

On the other hand,

1
2π

∫∫
F−1
η,σ[F ](s, ξ, η, σ) dη dσ = F (s, ξ, 0, 0) = |f̂(s, ξ)|2f̂(s, ξ).

Thus, we arrive at

f̂(t, ξ) = f̂(1, ξ)− i
∫ t

1

1
2s |f̂(s, ξ)|2f̂(s, ξ) ds

+

∫ t

1

1
2s

∫∫
[e−i

ησ
2s − 1]F−1

η,σ[F ](s, ξ, η, σ) dη dσ ds.

Upon taking the time derivative, we are led to

i∂tf̂ = 1
2t |f̂ |

2f̂ + 1
2tR,

with

R(t, ξ) =

∫∫
[e−i

ησ
2t − 1]F−1

η,σ[F ](t, ξ, η, σ) dη dσ. (24)

Evidently, this is the same ODE as the one appearing in (8). Now the path to complete the argument
is clear. In particular, we employ the same integrating factor as we did for (8) to remove the first
term, and then endeavor to exhibit time decay in R(t, ξ). With the desired estimates in place, we
can derive the asymptotic behavior as before. Therefore we will focus only on the estimation of the
remainder term R(t, ξ).
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Lemma 7.1. We have the following estimate on (24): Fix 0 < a < 1
4 . Then

‖R(t)‖L∞
ξ
.a t

−a{‖u(t)‖L2 + ‖J(t)u(t)‖L2}3,

uniformly in t ≥ 1.

Proof. We begin by estimating

|R(t, ξ)| . t−a
∫∫
|σ|a|η|a|F−1

η,σ[F ](t, ξ, η, σ)| dη dσ

for any 0 < a < 1
2 . Now, writing

F−1
σ,η[F ] = F−1

σ

{
F−1
η

[
f̂(ξ − η)f̂(ξ − η − σ)

]
f̂(ξ − σ)

}
and computing explicitly, we can deduce the pointwise estimate

|F−1
σ,η[F ](ξ, η, σ)| .

∫
|f(x− η)| |f(x)| |f(x− σ)| dx,

and hence (choosing 0 < a < 1
4 and applying Cauchy–Schwarz),

|R(t, ξ)|

. t−a
∫∫∫

(|x− η|a + |x|a)(|x− σ|a + |x|a)|f(x− η)| |f(x)| |f(x− σ)| dx dη dσ

. t−a‖(1 + |x|)2af‖2L1‖f‖L1

. t−a‖(1 + |x|)f‖3L2 . t−a{‖u(t)‖L2 + ‖J(t)u(t)‖L2}3,
which is the desired estimate. �

Under an appropriate bootstrap estimate on the growth of ‖Ju‖L2 , the estimate on the remainder

allows us to close the argument, controlling the L∞ norm of f̂ and eventually deducing the asymptotic
behavior of solutions, as above. This completes the proof sketch of the argument of [17].

8. Inverse scattering

In this section, we discuss the approach of Deift and Zhou [4], which capitalizes on the complete
integrability of the 1d cubic NLS through the use of inverse scattering. We change convention slightly
and consider the equation

i∂tu = −∂2
xu+ 2|u|2u. (25)

The formulation of NLS as a completely integrable model was worked out in [1,24], and derivations
of the correct long-time behavior (including the logarithmic phase correction) were originally given
in several works [16, 19, 25]. In [4], Deift and Zhou proved that the long-time asymptotic formula
holds with precise error estimates by using their technique of nonlinear steepest descent.

We will present a very rough sketch of this approach, first discussing the complete integrability
of NLS and then deriving an asymptotic formula for solutions. We will try to emphasize the main
ideas as we have understood them, but we will make few attempts at proofs or complete technical
details. Similarly, we will be most interested in deriving an asymptotic formula comparable to (3)
(i.e. including the logarithmic phase correction), but will not focus on some of the additional phase
factors appearing in the precise asymptotic expansion of the solution. For those interested in learning
more about these techniques, we hope the present discussion can serve as a rough outline to be filled
in by studying other references in this field. In particular, we refer the reader to [6] for a more
detailed review article, to [4] for a rigorous proof of the main result, and to [7] for another proof
using δ̄-methods. See also the lecture notes [21] and the textbook [23] for pedagogical treatments
of this subject. These last two references motivated much of the presentation here, especially [21]
for the formulation of NLS as a completely integrable equation and [23] for the section on nonlinear
steepest descent.
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8.1. Complete integrability. The starting point for our discussion is to recall the classical problem
of recovering a potential from the scattering data for the corresponding Schrödinger operator. That
is, given knowledge of the spectrum and (generalized) eigenfunctions of −∂2

x + u(x), how can one
recover the potential u? In the context of (25), the associated scattering problem is given in terms
of a first order matrix-valued operator L = L(u), namely,

L = iσ3
d
dx + U, where σ3 =

[
1 0
0 −1

]
and U =

[
0 −iu
iū 0

]
.

The potential u = u(t, x) will be given by the solution to (25) at each fixed time, and we consider the
generalized eigenvalue problem LΨ = λΨ. It turns out that for the defocusing equation, it is enough
to consider continuous spectrum. In the focusing case, one must also contend with the presence of
discrete spectrum, corresponding to the presence of soliton solutions.

As u will evolve in time according to (25), we must also incorporate some time evolution into the
eigenvalue problem (in a consistent way). This can be achieved by imposing

∂tΨ = [−2iλ2σ3 + 2λU1 + U2]Ψ, where U1 =

[
0 u
ū 0

]
, U2 =

[
−i|u|2 i∂xu
−i∂xū i|u|2

]
. (26)

In this case one finds that (25) is equivalent to the consistency condition ∂txΨ = ∂xtΨ. We refer the
reader to [1] for a systematic discussion relating time-dependent eigenvalue problems and completely
integrable PDE.

The connection between the solution u to (25) (acting as the potential) and the scattering problem
for L = L(u) is described in terms of two nonlinear maps, namely, the direct and inverse scattering
maps.

To define the direct scattering map, one constructs 2× 2 matrix-valued solutions (Jost solutions)
Ψ± to LΨ = λΨ obeying limx→±∞Ψ±(x, λ)eixλσ3 = I (the identity matrix). Observing that the
determinant of any solution is independent of x, and that Ψ± must differ by a constant matrix
(which must then be independent of x), we deduce that there exists T = T (λ) such that Ψ+(x, λ) =
Ψ−(x, λ)T (λ). This matrix satisfies detT (λ) = 1 and can be shown to have the form

T (λ) =

[
a(λ) b(λ)

b(λ) a(λ)

]
. (27)

The direct scattering map is the map R sending u = u(x) to the reflection coefficient r = r(λ),

defined by r(λ) = −b(λ)

a(λ)
. By construction, we always have ‖r‖L∞ < 1.

We can also describe the direct scattering map a bit more concretely. In particular, if we define
the matrix N = N(x, λ) via Ψ+ = e−iλxσ3N , then N satisfies

d
dxN =

[
0 e2iλxu
e−2iλxū 0

]
N,

with N → I as x→∞ and N → T (λ) as x→ −∞. In particular, N can be constructed by solving
the integral equation

N(x, λ) = I −
∫ ∞
x

[
0 e2iλyu(y)
e−2iλyū(y) 0

]
N(y, λ) dy.

This can be solved via iteration, and in particular we can write series expansions for the entries of N .
The function a(λ) is obtained via limx→−∞N11(x, λ), while b(λ) is obtained via limx→−∞N21(x, λ).
These entries can be expressed as

N11(x, λ) = 1 +

∞∑
n=1

A2n(x, λ), N21(x, λ) = −
∞∑
n=0

A2n+1(x, λ),

where each An is an n-dimensional integral over the region {x < y1 < · · · < yn} involving n copies
of u (or ū) and a suitable phase function. For example, the very first term in the series is given by
A1(λ, x) =

∫∞
x
ū(y)e−2iλy dy, which we will return to below.
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The inverse scattering map aims to recover the potential u from a given reflection coefficient
r = R(u). For this, one again considers the problem LΨ = zΨ (for z ∈ C), where L is defined
as before in terms of the unknown potential u. If one factors Ψ(x, z) = M(x, z)e−ixzσ3 , then the
equation for Ψ is equivalent to the following equation for M :

d
dxM = −iz adσ3(M) + U1M, adσ3(M) := [σ3,M ]. (28)

One can build special solutions M±(x, z) to this equation (Beals–Coifman solutions) that are piece-
wise analytic on C\R, converge to the identity as x → ∞, are bounded as x → −∞, and have
distinct boundary values M±(x, λ) as z approaches the real line from above/below. The boundary
values satisfy a jump condition M+(x, λ) = M−(x, λ)V (x, λ), where the jump matrix V depends
only on the reflection coefficient, as follows:

V (x, λ) =

[
1− |r(λ)|2 −r(λ)e−2iλx

r(λ)e2iλx 1

]
.

In particular, the solutionsM± satisfy a Riemann–Hilbert problem (i.e. the problem of reconstructing
a piecewise analytic function in the plane from its jump across a contour) defined purely in terms of
r. To define the inverse scattering map r 7→ u, we therefore need to describe (i) why this Riemann–
Hilbert problem has a solution and (ii) how the potential u can be recovered from this solution.

(i) By factoring the jump matrix V , we can turn this multiplicative Riemann–Hilbert problem
into an additive one, which can then be solved with Cauchy integrals. In particular, we can write
V = (I − w−x )−1(I + w+

x ), where

w+
x =

[
0 0

e2iλxr 0

]
, w−x =

[
0 −e−2iλxr̄
0 0

]
.

The jump condition then becomes

M+(I + w+
x )−1 = M−(I − w−x )−1 =: µ, (29)

and one can check that M+ −M− = µ[w+
x + w−x ]. In particular, using some complex analysis we

can write an implicit formula for the solution:

M(x, z) = I + 1
2πi

∫
R

µ(x, s)[w+
x (s) + w−x (s)]

s− z
ds. (30)

By introducing the Cauchy operators C±f(λ) = limε↓0
1

2πi

∫ f(s)
s−[λ±iε] ds, we can use this formula to

deduce an implicit formula for µ, namely, the Beals–Coifman singular integral equation:

µ = I + Cw(µ), Cw(·) := C+(·w−x ) + C−(·w+
x ).

To deduce the existence of a unique solution to this singular integral equation, one basically just
needs to observe that ‖Cw‖L2→L2 = ‖r‖L∞ < 1, so that I − Cw can be inverted.

(ii) To derive the formula for recovering u from the solution M of the Riemann–Hilbert problem,

we consider an expansion of M around z = ∞, say M(x, z) = I + m0(x)
z + m1(x)

z2 + . . . . The
equation (28) yields a system of equations for the mj (namely, iadσ3(m0) = U1, with m′j(x) =
−iadσ3(mj+1) + Umj for j ≥ 1). In particular, we find

u(x) = 2im12
0 (x) = lim

z→∞
2izM12(x, z),

which finally defines the inverse scattering map. Using (30), we may also writemj(x) = 1
2πi

∫
sjµ(s, x)[w−x (s)+

w+
x (s)] ds, which leads to another expression for u(x), namely

u(x) = − 1
π

∫
e−2ixsr(s)µ11(x, s) ds. (31)

We have already discussed how to incorporate the time evolution into the generalized eigenvalue
problem. However, for the computation of the direct and inverse scattering map, what is most
relevant is how the scattering data itself (i.e. the reflection coefficient) evolves. The compete
integrability of (25) manifests in the fact that the reflection coefficient obeys a simple, unitary
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evolution. To derive the equation, we recall the Jost solutions Ψ± = Ψ±(t, x, λ) associated to the
solution u = u(t) to (25). At each time, these obey Ψ+ ∼ e−iλxσ3 and ∂tΨ

+ → 0 as x→∞, as well
as Ψ+ ∼ e−iλxσ3T (t, λ) as x → −∞; here T is as in (27), but now a = a(t, λ) and b = b(t, λ) are
defined through the time-dependent u(t). We now consider a second solution Ψ, which necessarily
has the form Ψ = Ψ+C(t) for some matrix C(t). Differentiating this relation with respect to t and
recalling (26), we deduce

∂tΨ
+C + Ψ+∂tC = −2iλ2σ3Ψ+C + o(1) as x→ ±∞.

Sending x → ∞, we can deduce C ′(t) = −2iλ2σ3C(t). Sending instead x → −∞ and inserting
the expression for C ′(t), we can then deduce ∂tT = −2iλ2adσ3(T ). This implies ∂ta = 0 and

∂tb = 4iλ2b, which yields r(t, λ) = e4iλ2tr(0, λ).

8.2. Nonlinear steepest descent. We now turn to the question of the long-time behavior of
solutions. While the direct and inverse scattering maps are fairly complicated nonlinear maps, we
might firstly try to approximate these maps by their derivatives at zero (particularly if we are
studying small solutions, as above). Returning to the description of these maps above, this leads
to the approximations r(t, λ) ∼

∫
ū(t, y)e−2iλy dy and u(t, x) ∼

∫
r̄(t, s)e−2ixs ds, which are directly

connected to the Fourier and inverse Fourier transforms. Recalling the explicit time evolution of
the reflection coefficient, we find that this naive approach leads to the guess that small solutions to
(25) behave approximately like solutions to the linear Schrödinger equation. This is incorrect, as we
know, and so we will need to take a closer look at these maps (particularly the inverse scattering
map). Before moving on, however, we remark that the direct/inverse scattering maps can indeed be
thought of as nonlinear versions of the Fourier/inverse Fourier transforms. For example, these maps
interchange decay and regularity, and (as we saw above) transform the nonlinear PDE into a simple
ODE evolution for the reflection coefficient.

The precise description of the long-time behavior of solutions to (25) in works such as [4] is
expressed in terms of the reflection coefficient r0 of the initial condition; in particular, most of the

work consists in finding a suitable approximation of the inverse scattering map of r(t, λ) = e4iλ2tr0(λ)
for large times t. To this end, we return to the Riemann–Hilbert problem M+ = M−V , where
(incorporating the time dependence into the reflection coefficient) the jump matrix is given by

V (t, x, λ) =

[
1− |r0(λ)|2 −r0(λ)e−2itθ

r0(λ)e2itθ 1

]
, θ = θ(t, x, λ) = 2λ2 + λx

t . (32)

We will also need to extend this matrix analytically into the plane, in which case the (2, 1) entry

will contain the factor −r0(z̄). To extract the leading long-time behavior, the natural approach is
to localize around the stationary point for the phase, namely, z0 = − x

4t . However, because both
phases ±iθ appear in the matrix, it is not immediate how to exhibit decay away from z = z0.
Indeed, the + phase decays only when Im z · (Re z − z0) > 0, while the − phase decays only when
Im z · (Re z − z0) < 0. The resolution is to factor the jump matrix, as we now explain.

We first observe that we may factor V = AB, with

A =

[
1 −r0(z̄)e−2itθ

0 1

]
and B =

[
1 0
r0(z)e2itθ 1

]
.

For simplicity, let us assume r0(z) decays exponentially as |z| → ∞ in some strip | Im z| < 2η (which
holds, for example, provided u|t=0 is chosen to be an exponentially decaying Schwartz function).
Then the matrix M ′ defined to be MB−1 on 0 < Im z < η, MA on −η < Im z < 0, and M elsewhere,
has jumps given by B at Im z = η and A at Im z = −η, while the jump across the real axis has been
removed. We now observe that the matrix M ′ has the same asymptotic behavior as M as |z| → ∞
in the strip (which is what we need to recover the potential u), while the jump matrices A and B
decay to the identity matrix, at least in the region Re z > z0. This suggests that for Re z > z0, we
may utilize this factorization in order to localize the Riemann–Hilbert problem around z = z0. In
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practice, one opens contours at angles of ±π4 starting from z = z0, but we will not be too precise
about the implementation of this ‘lensing’ technique.

To obtain an analogous factorization in the region Re z < z0, we need the phases to appear in
the opposite order. To achieve this, we use the factorization V = LDU , with

L =

[
1 0
r0(z)
τ(z) e

2itθ 1

]
, D =

[
τ(z) 0
0 1

τ(z)

]
, U =

[
1 −r0(z̄)

τ(z) e−2itθ

0 1

]
,

where τ(z) := 1− r0(z)r0(z̄). Continuing from above, in the region Re z < z0 we define the matrix
M ′ to be MU−1 on 0 < Im z < η, ML on −η < Im z < 0, and M elsewhere. Then the jumps are
given by U at Im z = η, L at Im z = −η, and D along the real axis. Then M ′ still has the same
asymptotic behavior as M when |z| → ∞ in the strip, and the jump matrices L and U decay to the
identity away from z = z0. In fact, now the only jump matrix that is not decaying to the identity
is the matrix D. As this matrix is diagonal, we can solve the Riemann–Hilbert problem with this
jump matrix explicitly. In particular, the solution to ∆+ = D∆−, where D is as above on (−∞, z0)
and D = I on (z0,∞), is given by ∆ = diag{δ, δ−1}, where δ = δ(z; z0) = exp{C(−∞,z0) log τ(z)},
with C denoting the Cauchy integral CΓf(z) = 1

2πi

∫
Γ
f(s)
s−z ds. Noting that ∆ → I as z → ∞ we

see that M ′′ = M ′∆−1(z; z0) still has the same asymptotic behavior as M ′ (and hence as M) as
|z| → ∞, while the jumps for M ′′ are given by ∆(z; z0)X∆−1(z; z0), where X ∈ {A,B,L, U} along
the appropriate ray emanating from z0 (at angles e7iπ/4, eiπ/4, e5iπ/4, and e3iπ/4, respectively).

We will now introduce a localized version of the Riemann–Hilbert problem for M ′′, where each ma-
trix ∆X∆−1 is replaced with a matrix [X]∆ that is suitably localized around z0. We will then isolate
as much of the solution as we can (dealing with the parts that are independent of z and the phases
by hand), and then essentially reverse the lensing process above to reduce to a Riemann–Hilbert
problem containing a version of the original jump matrix (see (32)) that is now completely localized
at λ = z0 and absent the phases. This problem will be explicitly solvable by special functions, and
after solving it we will be able to build our approximate solution to the original Riemann–Hilbert
problem (and hence our approximation to u(t, x)). As the correct scale for localization of the phase

around z = z0 is |z − z0| ∼ t−
1
2 , we firstly introduce a new variable ξ =

√
8t(z − z0). Our approxi-

mation to M ′′(z) (and hence M(z)) will be given by Ψ( ξ√
8t

+ z0), where the parametrix Ψ is defined

as the solution to Ψ+(ξ) = Ψ−(ξ)[X]∆ with limξ→∞Ψ(ξ) = I and with [X]∆ is defined as follows:
We take X ∈ {A,B,L, U} along the appropriate ray as above, and define

[X]∆(ξ) = [∆](z; z0)[X](z)[∆]−1(z; z0), z = ξ√
8t

+ z0,

with [X] obtained from X by replacing r0(z) with r0(z0) and τ(z) with τ(z0) (but keeping the
phase), and

[∆](z; z0) = diag{(z − z0)
1

2πi log τ(z0), (z − z0)−
1

2πi log τ(z0)}.
This approximation to ∆(z; z0) arises from just the boundary term in an integration by parts in the
definition of ∆; in particular, it is actually too rough to capture the complete asymptotic formula
for u (it ends up missing an additional phase term). In [23], for example, one also appends the factor
∆r(z0; z0) := limz→z0 ∆(z; z0)[∆]−1(z; z0) to the above approximation of ∆. To simplify matters,
we will simply ignore this additional factor for now and return to this point below.

We now need to find an expression for limξ→∞ ξΨ12(ξ). Then (assuming one can control the
errors resulting from localization) we should have

u(t, x) ∼ lim
z→∞

zΨ12(z) = 1√
8t

lim
ξ→∞

ξΨ12( ξ√
8t

+ z0). (33)

We begin by observing that part of the jump matrices for Ψ have no dependence on ξ (or equivalently
on z), and that the part of jump matrices dependent on the phase can accounted for explicitly. In
particular, we rewrite the phases ±2itθ = ∓4itz2

0 ± 4it(z − z0)2 = ∓4itz2
0 ± iξ2/2 and note that the
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entries of [∆] along the diagonal are (
√

8tξ)±
1

2πi log τ(z0). Considering the parts that are independent
of ξ (or equivalently z), we define

Ψ′(ξ) = e−2itz20 adσ3 [(
√

8t)−
1

2πi log τ(z0) adσ3Ψ(ξ)],

where ec adσ3X = ecσ3Xe−cσ3 . Tracing through the definitions, we firstly observe that

Ψ′12(ξ) = (8t)−
1

2πi log τ(z0)e−4itz20Ψ12(ξ), (34)

which we will need to recover u. We can also see that Ψ′ solves the Riemann–Hilbert problem given
by

Ψ′+ = Ψ′−ξ
1

2πi log(z0) adσ3 [e−(iξ2/4) adσ3W ],

where W consists of the localized versions of A,B,L, U along appropriate rays, with the phases now
removed, and Ψ′ → I as ξ → ∞. Here we are using the fact that if Ψ solves a Riemann–Hilbert
problem with jump matrix X, then eadAΨ solves the Riemann–Hilbert problem with jump eadAX,
along with the fact that

e−(θ/2) adσ3

[
1 ceθ

0 1

]
=

[
1 c
0 1

]
.

(and similarly for the other localized matrices).
We are now two transformations away from arriving at a Riemann–Hilbert problem whose jump

matrix is simply given by V (0, 0, z0) (cf. (32) above) on the real axis. We basically need to undo
the lensing process above, now that we have completely localized the jump matrices and removed
the phases. The first transformation is to set

Ψ′′ = Ψ′ξ±
1

2πi log(z0) adσ3 [e−i(ξ
2/4)(±W )]

for arg ξ ∈ (−π4 ,
π
4 ) ∪ ( 3π

4 ,
5π
4 ), W is the appropriate choice of localized matrix (e.g. the localization

of B when arg ξ ∈ (0, π4 )), and the ± sign is chosen when ± Im ξ > 0. This moves the jumps of Ψ′

from the rays to the real axis, and in particular we claim that the jump condition is

Ψ′′+ = Ψ′′−e
−(iξ2/4)adσ3 [ξ

1
2πi log τ(z0)
− V (0, 0, z0)ξ

− 1
2πi log τ(z0)

+ ],

with Ψ′′ → I as ξ →∞. Indeed, in this case the jump across the real axis is computed by the inverse
of the limit from below times the limit from above. When Re ξ > 0, we have (using the principal

branch of the logarithm) that ξ
1

2πi log τ(z0) is continuous across the real axis, while for Re ξ < 0 we

have ξ
1

2πi log τ(z0)
+ ξ

− 1
2πi log τ(z0)
− = τ(z0). This accounts for the removal of the term τ(z0) and the

recovery of the 1− |r0(z0)|2 term to obtain the matrix V (0, 0, z0) in the region Re ξ < 0.

Finally, the matrix Ψ̃ = Ψ′′ξ
1

2πi log τ(z0)e−(iξ2/4)σ3 solves Ψ̃+ = Ψ̃−V (0, 0, z0). We will construct
a solution to this problem with the asymptotic expansion

Ψ̃ = ξ
1

2πi log τ(z0)e−(iξ2/4)σ3 [I + 1
ξϕ(z0) + · · · ] as ξ →∞, (35)

so that limξ→∞ ξΨ′′12(ξ) = ϕ12(z0). As Ψ′′ = Ψ′ on iR+, this also yields limξ→∞ ξΨ′12(ξ) = ϕ12,
which (recalling (33) and (34)) leads to

u(t, x) ∼ 1√
8t

(8t)
1

2πi log τ(z0)e4itz20ϕ12(z0)

∼ t− 1
2 eix

2/4te−
i

2π log[1−|r0(− x
4t )|2] log 8tϕ12(− x

4t ).
(36)

We are already getting close to the familiar asymptotic formula (3); however, we need to understand
the form of the matrix ϕ. At this point we can also mention what we have lost by failing to use the
more precise approximation to ∆(z; z0). In particular, the expression above is missing an additional
phase factor of the form exp{− i

π

∫ z0
−∞ log(s− z0) dds [log(1− |r0(s)|2)] ds} (see [4, 6, 23]).

We turn to the problem satisfied by Ψ̃ and the behavior of the matrix ϕ. We first observe that
since the jump matrix is independent of ξ, the quantity ∂ξΨ̃ · Ψ̃−1 has no jump on the real axis. On

the other hand, using the leading order term of Ψ̃ we see that this quantity is O(ξ), and hence (by
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Liouville’s theorem) must be a degree one polynomial. Inserting the desired asymptotic expansion

of Ψ̃, we deduce ∂ξΨ̃ · Ψ̃−1 = − i
2ξσ3 + i

2 [σ3, ϕ], which leads to a differential equation for Ψ̃, namely

∂ξΨ̃ =

[
−i ξ2 iϕ12

−iϕ21 i ξ2

]
Ψ̃.

It turn outs that one can take −iϕ21 = iϕ12, so let us make this replacement now. We next expand
the first column and differentiate with respect to ξ once more, leading to decoupled second order

differential equations for both Ψ̃11 and Ψ̃21, namely, y′′(ξ) = (− ξ
2

4 −
i
2 ∓ |ϕ12|2)y(ξ), respectively.

These are solvable with a special function, namely, the parabolic cylinder function Dν(·). In par-

ticular, Ψ̃11 = a11Di|ϕ12|2(eiπ/4ξ) and Ψ̃21 = a21D−1+i|ϕ12|2(eiπ/4ξ) for some constants aij , where

Dν solves D′′ν + (−ξ2/4 + 1/2 + ν)Dν = 0. Arguing the same way for the second column, we are

led to write Ψ̃ as a matrix product Ψ̃ = Λ(ξ) · S(ξ), where Λ is the matrix containing the parabolic
cylinder functions and the unknown constants {aij}2i,j=1 (which, in particular, enforces the differ-
ential equations) and S(ξ) will be a piecewise constant matrix defined separately on ± Im ξ > 0
(which will ultimately enforce the jump condition). The key now is to recall that we must also
impose the desired asymptotic behavior (35). To do this, one can first make suitable choices for aij
and S(ξ) in terms of the unknown ϕ12. This forces S(ξ) to have a particular form (given in terms
of ϕ12), and compatibility with the jump condition S+(ξ) = S−(ξ)V (0, 0, z0) finally determines
the form that ϕ12 must take. In particular, one finally deduces that |ϕ12|2 = − 1

2π log(τ(z0)) and

argϕ12 = π
4 +arg Γ(i|ϕ12|2)−arg r0(z0). We refer the reader to [6,23] for more details on this point.

Now that we have determined ϕ12, we can return to (36) above and write

u(t, x) ∼ ct− 1
2 eix

2/4teiα(− x
4t )e−i|ϕ12(− x

4t )|2 log tϕ12(− x
4t ),

where ϕ12 is defined in terms of r0 as above and we have collected various additional phases in
the factor α. Defining ψ(y) = ϕ12(−y2 ) and observing (from the explicit expressions appearing
in [4,6,23]) that α(y) should have some limit as y →∞, we can see that this formula is compatible
with the one established in the small-data setting (see (3) and recall we have replaced the nonlinearity
|u|2 with 2|u|2). This was essentially our goal in this section. Of course, one can also carry out the
arguments above in more detail to get the values of c and α (in terms of r0 and absolute constants)
with complete precision; we again refer the reader to [4, 6, 23]. We can also specialize the formula
above to the setting of small initial data to compare with Theorem 1.1 more directly. In this case
we observe that |ϕ12|2 = − 1

2π log(1−|r0|2) ∼ 1
2π |r0|2. Recalling the first order approximation of the

reflection coefficient and its connection to the Fourier transform, we can deduce that in this setting
we recover |ϕ12|2 ∼ |ψ|2 ∼ |û0|2. This is consistent with the asymptotic formula appearing in (3),
where the profile is in fact given by the Fourier transform of the data (similar to the linear case),
albeit up to some (constant) phase.

The last ingredient missing from the discussion above is the rigorous error analysis, allowing for
comparison between the original and the localized Riemann–Hilbert problems. We will not discuss
the details here, but will only mention that by recasting the Riemann–Hilbert problems as singular
integral equations (see e.g. the connection between M and µ above), the problem can (in part) be
reduced to establishing suitable boundedness properties of Cauchy integral operators. We refer the
reader to [4] for the details. This concludes our discussion of the argument of [4].
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