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Abstract. We discuss recent results on the scattering/blow-up dichotomy be-

low the ground state threshold for the focusing nonlinear Schrödinger equation
with an inverse-square potential and a nonlinearity that is mass-supercritical

and energy-subcritical.

1. Introduction

Nonlinear Schrödinger equations (NLS) with power-type nonlinearities com-
prise a class of PDE of wide mathematical and physical interest. The most basic
equations of this type take the form

i∂tu = −∆u+ µ|u|pu, (1.1)

where u : Rt × Rdx → C, p > 0, and µ ∈ {±1} (giving the defocusing and focusing
cases, respectively). One may also consider such equations in the presence of an
external potential, in which case −∆ is replaced by a Schrödinger operator of the
form −∆ + V . In this article, we consider the case of an inverse-square potential
V (x) = a|x|−2.

More precisely, we consider the Schrödinger operator

La = −∆ + a|x|−2, a > −(d−22 )2, (1.2)

in dimensions d ≥ 3, defined via the Friedrichs extension with domain C∞c (Rd\{0}).
The restriction on a comes from the sharp Hardy inequality—it guarantees that La
is a positive operator. The operator La appears in a variety of physical settings
and is an interesting borderline case from the mathematical point of view.

The addition of an external potential to (1.1) often breaks symmetries of the
underlying equation, resulting in new analytic challenges. The inverse-square po-
tential breaks space-translation symmetry; however, one feature of this particular
model is that it retains the scaling symmetry

u(t, x) 7→ λ
2
pu(λ2t, λx). (1.3)

This suggests that one cannot generally rely on perturbative techniques, as the
potential and the Laplacian are of equal strength at every scale.
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Two cases of (1.1) have received a great deal of attention, singled out by the fact
that in these cases the equation has a conserved quantity that is invariant under the
scaling symmetry of the equation. These are the mass- and energy-critical NLS,
corresponding to p = 4

d and p = 4
d−2 (in dimensions d ≥ 3), respectively. The

intercritical case refers to p ∈ ( 4
d ,

4
d−2 ).

For the NLS with an inverse-square potential, scattering in the defocusing
energy-critical case was established in [12], while scattering/blowup dichotomies
below the ground state threshold in the focusing intercritical setting were estab-
lished in [9,10]. These parallel results previously obtained for the standard NLS
(see e.g. [1, 3–8]). In fact, a wealth of refined results have been established for
(1.1); accordingly, there are many directions of research to be pursued for the
inverse-square potential.

To treat the nonlinear equation with an inverse-square potential firstly requires
a good linear theory (e.g. Strichartz estimates [2]), as well as a set of harmonic
analysis tools adapted to the inverse-square potential (see [12]). With these in-
gredients, many of the strategies developed to treat (1.1) (e.g. the concentration
compactness approach to induction on energy) can be adapted to attack problems
involving the inverse-square potential.

The results discussed in this article, which appeared originally in [9,10], concern
the long-time behavior of solutions to the intercritical focusing NLS with an inverse
square potential:

i∂tu = Lau− |u|pu, (1.4)

where u : Rt × Rdx → C, 4
d < p < 4

d−2 and d ≥ 3.

For a ∈ (−(d−22 )2, 0], equation (1.4) admits a global but non-scattering solution

of the form u(t) = eitQa, where Qa (the ‘ground state’) solves the elliptic problem

−LaQa −Qa + |Qa|pQa = 0. (1.5)

The functions Qa may be constructed as optimizers to the Gagliardo–Nirenberg
inequality

‖f‖p+2
Lp+2 ≤ Ca‖f‖

4−(d−2)p
2

L2 ‖f‖
dp
2

Ḣ1
a

, (1.6)

where Ḣ1
a is the homogeneous Sobolev space defined in terms of the operator La1.

For a > 0, the sharp constant Ca is equal to C0; however, no optimizers exist2.
The functions Qa, which lead to global but non-scattering solutions to (1.4),

provide a natural threshold below which one can prove a simple scattering/blow-up
dichotomy.

Theorem 1.1 (Scattering/blowup dichotomy, [9,10]). Suppose d ≥ 3, 4
d < p <

4
d−2 , and a > −(d−22 )2 are as in (1.9) below, and let u0 ∈ H1(Rd).

There exists a unique maximal-lifespan solution u to (1.4) with u|t=0 = u0. If
u0 is below the ground state threshold, in the sense that

M(u0)
4−p(d−2)

dp−4 Ea(u0) < M(Qa∧0)
4−p(d−2)

dp−4 Ea∧0(Qa∧0), (1.7)

where M and Ea are defined in (1.10) and a ∧ 0 = min{a, 0}, then the following
dichotomy holds:

1For a > −( d−2
2

)2, the spaces Ḣ1
a and Ḣ1 are equivalent by the sharp Hardy inequality.

2This is due to the lack of compactness coming from space translation. When a ≤ 0, the

compactness can be restored via radial rearrangements and the Riesz rearrangement inequality.
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(i) If

‖u0‖
4−p(d−2)

dp−4

L2 ‖u0‖Ḣ1
a
< ‖Qa∧0‖

4−p(d−2)
dp−4

L2 ‖Qa∧0‖Ḣ1
a∧0
, (1.8)

then u is global in time and scatters in both time directions; that is, there
exist solutions v± to the linear equation i∂tv± = Lav± such that

lim
t→±∞

‖u(t)− v±(t)‖H1 = 0.

(ii) If

‖u0‖
4−p(d−2)

dp−4

L2 ‖u0‖Ḣ1
a
> ‖Qa∧0‖

4−p(d−2)
dp−4

L2 ‖Qa∧0‖Ḣ1
a∧0
,

and u0 is radial or xu0 ∈ L2, then u blows up in finite time in both time
directions.

Remark 1.2. The precise set of (d, p, a) under consideration is the following:{
a > −(d−22 )2 for d = 3 and 4

3 < p ≤ 2,

a > −(d−22 )2 + (d−22 −
1
p )2 for 3 ≤ d ≤ 6 and 2

d−2 ∨
4
d < p < 4

d−2 ,
(1.9)

where x∨y = max{x, y}. These constraints come from the H1 local well-posedness
theory and are related to the issue of equivalence of Sobolev spaces defined in terms
of La and the standard Sobolev spaces. We discuss the local theory in Section 2.

Remark 1.3. The conserved mass and energy of a solution u to (1.4) are
defined by

M(u) =

∫
Rd

|u|2 dx, Ea(u) =

∫
Rd

1
2 |∇u|

2 + a
2|x|2 |u|

2 − 1
p+2 |u|

p+2 dx, (1.10)

respectively. Note that M(u0), |Ea(u0)| < ∞ for u0 ∈ H1 (cf. (1.6) above). The
power appearing in (1.7) is chosen to make the product invariant under the scaling
symmetry (1.3).

Remark 1.4. The analogue of Theorem 1.1 for equation (1.1) was originally
established in [4,6–8], and the proof of Theorem 1.1 follows a similar overall strat-
egy. However, because of the broken space-translation symmetry, it is important
to understand the sense in which (1.1) may be ‘embedded’ into (1.4) in certain
limiting regimes; in particular, one needs to use the analogous result for (1.1) as
a black box in order to treat the equation with broken symmetry. For a further
discussion, see Lemma 3.4.

In the rest of this article, we describe the proof of Theorem 1.1. The starting
point is the following virial identity, which follows from a direct computation using
(1.4): Let u be a solution to (1.4) and

V (t) :=

∫
|u(t, x)|2|x|2 dx.

Then

V ′(t) = 4Im

∫
ū∇u · x dx,

V ′′(t) = 8‖u(t)‖2
Ḣ1

a
− 4pd

p+2‖u(t)‖p+2
Lp+2 .

(1.11)

Combining this identity with the sharp Gagliardo–Nirenberg inequality (1.6), one
deduces that in scenario (i) of Theorem 1.1 one has V ′′(t) > 0, while in scenario
(ii) one has V ′′(t) < 0. In particular, in scenario (i), one may expect the solution
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to spread out and scatter (V (t) → ∞), while in scenario (ii), one may expect the
solution to concentrate and blow up in finite time (V (t)→ 0 in finite time).

In fact, using the virial identity to establish blow-up in scenario (ii) is fairly
standard, and so for the remainder of the article we will focus on proving scattering
in scenario (i).

Because we work with merely H1 data, one cannot implement the virial identity
directly—indeed, none of the quantities appearing in the identity are necessarily
finite. We therefore follow the concentration compactness approach to induction on
energy: we reduce the problem of proving scattering to the problem of precluding
the existence of a special type of non-scattering solution. In particular, we reduce
to the problem of precluding solutions satisfying (1.7) and (1.8) that have a pre-
compact orbit in H1; for such solutions, a localized version of the virial identity
may be implemented in order to reach a contradiction (see Section 3.1).

The main problem therefore reduces to proving the existence of compact ‘min-
imal blowup solutions’ under the assumption that Theorem 1.1(i) fails. We will
discuss this problem in Section 3; it is here that the broken translation symmetry
present in (1.4) plays its most important role.

2. Linear and local theory

In order to treat the nonlinear problem (1.4), it is important to have (i) good
estimates for the underlying linear equation and (ii) harmonic analysis tools adapted
to the Schrödinger operator La.

Strichartz estimates for the linear propagator e−itLa were established in [2]:

Theorem 2.1 (Strichartz estimates, [2]). Let a > −(d−22 )2 and d ≥ 3. Let
(q, r) and (q̃, r̃) be admissible pairs, i.e.

2 ≤ q, q̃ ≤ ∞ and 2
q + d

r = 2
q̃ + d

r̃ = d
2 ,

with (q, q̃) 6= (2, 2). Suppose u : I × Rd → C solves

(i∂t − La)u = F.

Then for any t0 ∈ I, the following estimate holds:

‖u‖Lq
tL

r
x(I×Rd) . ‖u(t0)‖L2

x(Rd) + ‖F‖
Lq̃′

t L
r̃′
x (I×Rd)

.

One constructs solutions to (1.4) via a fixed point argument and Strichartz
estimates; in particular, solutions satisfy the Duhamel formula

u(t) = e−itLau0 + i

∫ t

0

e−i(t−s)La(|u|pu)(s) ds.

One closes the estimates in spaces of the form CtH
1
a ∩ L

q
tH

1,r
a , where (q, r) is an

admissible pair and Hs,r
a denotes the Sobolev space defined in terms of La, i.e.

‖f‖Hs,r
a (Rd) = ‖(1 + La)

s
2 f‖Lr(Rd).

In particular, one needs to estimate
√
La(|u|pu) in some dual Strichartz space.

For this purpose, it is useful to substitute
√
La with ∇, use the chain rule, and

subsequently exchange ∇ with
√
La again. For this to work, however, one needs to

know that Sobolev spaces defined in terms of La are equivalent to those defined in
terms of ∆. The sharp range of exponents for which this is the case was worked
out in [11]:
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Lemma 2.2 (Equivalence of Sobolev spaces, [11]). Let d ≥ 3, a > −(d−22 )2,
and

ρ = d−2
2 −

[(
d−2
2

)2
+ a
] 1

2 .

Let 0 < s < 2. If 1 < p <∞ satisfies s+ρ
d < 1

p < min{1, d−ρd }, then

‖|∇|sf‖Lp
x
.d,p,s ‖(La)

s
2 f‖Lp

x
for all f ∈ C∞c (Rd\{0}).

If max{ sd ,
ρ
d} <

1
p < min{1, d−ρd }, then

‖(La)
s
2 f‖Lp

x
.d,p,s ‖|∇|sf‖Lp

x
for all f ∈ C∞c (Rd\{0}).

Using these ideas, one can establish an H1 well-posedness theory for (1.4), at
least for (d, p, a) obeying (1.9). With

q0 = p(d+2)
2 ,

we have the following result.

Theorem 2.3 (Local well-posedness). Let t0 ∈ R, u0 ∈ H1, and suppose
(d, p, a) satisfy (1.9).

• There exist T = T (‖u0‖H1) > 0 and a unique solution u to (1.1) on
(t0 − T, t0 + T ) with u(t0) = u0. In particular, if u remains uniformly
bounded in H1 throughout its lifespan, then u extends to a global solution.

• Furthermore, there exists η0 > 0 so that if

‖e−i(t−t0)Lu0‖Lq0
t,x((t0,∞)×Rd) < η for some 0 < η < η0,

then u is forward global and obeys

‖u‖Lq0
t,x((t0,∞)×Rd) . η.

The analogous statement holds backward in time and on all of R.
• Finally, for any ψ ∈ H1 there exists a solution to (1.1) that scatters to ψ

as t→∞, and the analogous statement holds backward in time.

Using persistence of regularity arguments, one can also show that if u(t0) ∈ H1

and u obeys Lq0t,x-bounds on some interval I 3 t0, then in fact (1+La)
1
2u is bounded

in every Strichartz norm on I. Consequently, if u remains uniformly bounded in
Lq0t,x throughout its lifespan, then u is global and scatters.

Related to the local theory is the stability theory for (1.4), which concerns
approximate solutions ũ to (1.4) and will be important in Section 3.

Theorem 2.4 (Stability). Let (d, p, a) satisfy (1.9). Let ũ solve

i∂tũ = Laũ− |ũ|pũ+ e

on an interval I for some function e. Suppose

‖u0‖H1 + ‖ũ(t0)‖H1 ≤ E, ‖ũ‖Lq0
t,x(I×Rd) ≤ L.

There exists ε0(E,L) > 0 so that if 0 < ε < ε0 and

‖u0 − ũ(t0)‖H1 + ‖|∇|sce‖N(I) < ε,

where sc = d
2 −

2
p and N is a sum of dual Strichartz spaces, then there exists a

solution u to (1.4) with u(t0) = u0 satsifying

‖(La)
sc
2 [u− ũ]‖S(I) . ε, ‖(1 + La)

1
2u‖S(I) .E,L 1

for any Strichartz space S.
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Remark 2.5. The parameter sc is the critical regularity associated to (1.4).
For 4

d < p < 4
d−2 , we have 0 < sc < 1.

2.1. Harmonic analysis adapted to La. In the following, it will be im-
portant to have a set of harmonic analysis tools adapted to La. Such a toolkit
was developed in [11], where the central ingredient was a Mihklin-type multiplier
theorem for functions of La.

We make use of Littlewood–Paley projections defined via the heat kernel:

P aN := e−La/N
2

− e−4La/N
2

for N ∈ 2Z.

In order to state results, it is convenient to define

q̃ :=

{
∞ if a ≥ 0,
d
ρ if − (d−22 )2 < a < 0,

where ρ = d−2
2 −

[(
d−2
2

)2
+ a
] 1

2 .

We write q̃′ for the dual exponent to q̃. We summarize the tools we need in the
following:

Lemma 2.6 (Harmonic analysis tools, [11]). For q̃′ < q ≤ r < q̃,

f =
∑
N∈2Z

P aNf as elements of Lrx.

Furthermore, we have the following Bernstein estimates:

(i) The operators P aN are bounded on Lrx.

(ii) The operators P aN map Lqx to Lrx, with norm O(N
d
q−

d
r ).

(iii) For any s ∈ R,

Ns‖P aNf‖Lr
x
∼
∥∥(La)

s
2P aNf

∥∥
Lr

x
.

Finally, for 0 ≤ s < 2, we have the square function estimate:∥∥∥∥(∑
N∈2Z

N2s|P aNf |2
)1

2
∥∥∥∥
Lr

x

∼ ‖(La)
s
2 f‖Lr

x
.

3. Construction and exclusion of minimal blowup solutions

As described in the introduction, the most important step in the proof of The-
orem 1.1(i) is to show that if the result fails, there exists a minimal blowup solution
with certain compactness properties. In this section, we sketch the proof of this
fact. At the end of the section, we also sketch the proof that such solutions cannot
exist, completing the sketch of the proof of Theorem 1.1(i).

We first define

L(E) := sup
{
‖u‖Lq0

t,x(I×Rd)

}
, q0 = p(d+2)

2 ,

where the supremum is taken over all maximal-lifespan solutions u : I × Rd such
that

M(u)
4−p(d−2)

dp−4 Ea(u) ≤ E and ‖u(t)‖
4−p(d−2)

dp−4

L2
x

‖u(t)‖Ḣ1
a
< Ka

for some t ∈ I. Recall from Theorem 2.3 that uniform boundedness of the Lq0t,x-
norm throughout the maximal lifespan of a solution implies scattering. Recall also
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that L(E) is finite for all E sufficiently small. Thus if Theorem 1.1(i) fails, there
exists some critical Ec such that

0 < Ec < M(Qa∧0)
4−p(d−2)

dp−4 Ea∧0(Qa∧0)

and

L(E) <∞ for E < Ec, L(E) =∞ for E > Ec.
The main result of this section is the following:

Theorem 3.1 (Existence of minimal blowup solutions). Suppose Theorem 1.1(i)
fails. Then there exists a global solution v to (1.4) satisfying

M(v) = 1, Ea(v) = Ec, ‖v‖Lq0
t,x((−∞,0)×Rd) = ‖v‖Lq0

t,x((0,∞)×Rd) =∞.

Moreover, the orbit {v(t)}t∈R is precompact in H1.

In fact, Theorem 3.1 can be deduced from the following lemma:

Lemma 3.2. Let (d, p, a) satisfy (1.9). Suppose un is a sequence of solutions to
(1.4) such that

M(un) ≡ 1, Ea(un)↗ Ec,
and suppose tn are such that

‖un(tn)‖
4−p(d−2)

dp−4

L2 ‖un(tn)‖Ḣ1
a
< ‖Qa∧0‖

4−p(d−2)
dp−4

L2 ‖Qa∧0‖Ḣ1
a∧0
, (3.1)

lim
n→∞

‖un‖Lq0
t,x({t>tn}×Rd) = lim

n→∞
‖un‖Lq0

t,x({t<tn}×Rd) =∞. (3.2)

Then {un(tn)} converges along a subsequence in H1.

Proof of Theorem 3.1. Assume that Theorem 1.1(i) fails. Applying a rescal-
ing, we may find a sequence of solutions un and times tn as in Lemma 3.2. Let v
be the solution to (1.1) with initial data given by the subsequential limit of un(tn).
Another application of Lemma 3.2 to v(τn) (for an arbitrary sequence τn) demon-
strates the precompactness. �

We turn to a discussion of the proof of Lemma 3.2. To begin, we remark that
the solutions un are global. In fact, using

M(un)
4−p(d−2)

dp−4 Ea(un) < M(Qa∧0)
4−p(d−2)

dp−4 Ea∧0(Qa∧0)

and (3.1), the sharp Gagliardo–Nirenberg inequality implies that (3.1) holds through-
out the lifespan of un. Thus the un remain uniformly bounded in H1 and hence
(by Theorem 2.3) are global.

The proof of Lemma 3.2 proceeds in several steps.
Step 1. After translating so that tn ≡ 0, the first step is to expand the H1-

bounded sequence {un(0)} in a linear profile decomposition, which provides a way
of quantifying any possible lack of compactness in the sequence.

Lemma 3.3 (Linear profile decomposition). Passing to a subsequence, there
exist J∗ ∈ {0, 1, 2, . . . ,∞}, {φj}J∗j=1 ⊂ H1, and {(tjn, xjn)}J∗j=1 ⊂ R × Rd such that
for each J ,

un(0) =

J∑
j=1

φjn + rJn , (3.3)
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where φjn = [eit
j
nL

nj
a φj ](· − xjn), with Lnj

a := −∆ + a

|x+xj
n|2
. The remainder rJn

satisfies (
e−it

J
nLarJn

)
(x+ xJn) ⇀ 0 weakly in H1,

lim
J→J∗

lim sup
n→∞

‖e−itLarJn‖Lq0
t,x(R×Rd) = 0.

The parameters (tjn, x
j
n) are asymptotically orthogonal: for any j 6= k,

lim
n→∞

(
|tjn − tkn|+ |xjn − xkn|

)
=∞. (3.4)

Furthermore, for each j, we may assume that either tjn → ±∞ or tjn ≡ 0, and either
|xjn| → ∞ or xjn ≡ 0. Finally, we have the following decoupling:

lim
n→∞

{
‖(La)

s
2un(0)‖2L2

x
−

J∑
j=1

‖(La)
s
2φjn‖2L2

x
− ‖(La)

s
2 rJn‖2L2

x

}
= 0, s ∈ {0, 1},

lim
n→∞

{
‖un(0)‖p+2

Lp+2
x
−

J∑
j=1

‖φjn‖
p+2

Lp+2
x
− ‖rJn‖

p+2

Lp+2
x

}
= 0.

Using the energy decoupling and the sharp Gagliardo–Nirenberg inequality, one
can verify that each profile carries positive energy. Note that with this decompo-
sition, the proof of Lemma 3.2 boils down to proving J = 1, t1n ≡ 0, x1n ≡ 0, and
r1n → 0 strongly in H1. Before proceeding to this, we say a few words about the
proof of Lemma 3.3.

To prove Lemma 3.3, one successively extracts bubbles of Strichartz-norm con-
centration from the sequence {un(0)}, each with a well-defined position in space-
time and scale. The starting point is a refined Strichartz estimate of the following
form:

‖e−itLaun(0)‖Lq0
t,x(R×Rd) . ‖un(0)‖θ

Ḣsc
a

sup
N∈2Z

‖e−itLaP aNun(0)‖1−θ
L

q0
t,x(R×Rd)

,

which allows one to identify a scale N−1n responsible for Lq0t,x-norm concentration.
This estimate is proved by employing harmonic analysis tools adapted to La, specif-
ically the square function estimate and Bernstein estimates of Lemma 2.6. After
identifying a scale, one can use Hölder’s inequality, Strichartz estimates, and Bern-
stein estimates to identify a location in space-time (τn, xn) where concentration
occurs.

Because the sequence is H1-bounded, one can prove upper and lower bounds
for the scale N−1n ; thus without loss of generality Nn ≡ 1 (say). One can also
arrange that xn → x∞ ∈ Rd\{0} or |xn| → ∞, and that τn → τ∞ ∈ [−∞,∞]. The
first profile φ1 is obtained as the weak limit of the sequence

[e−itnLaun(0)](x+ xn),

where tn ≡ 0 if τ∞ ∈ R and τn = tn otherwise. After removing this first bubble
from the sequence, one repeats the argument to extract the second bubble, and
so on. One can then prove that the sequence of profiles, space-time positions,
and remainders obtained in this way satisfy the conclusions of Lemma 3.3. At a
technical level, one encounters some issues related to the fact that translation does
not commute with La, resulting in the need to prove some convergence properties
for certain linear operators.
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Step 2. Having written un(0) in the form (3.3), the next step is to construct
nonlinear profiles associated to each φj . If xjn ≡ 0 and tjn ≡ 0, we let vj be the
solution to (1.4) with vj(0) = φj ; if instead tjn → ±∞ we use Theorem 2.3 to
find a solution that scatters to e−itLaφj as t → ±∞. In either case, we then set
vjn(t, x) = vj(t+ tjn, x).

If |xjn| → ∞, however, we encounter a significant obstacle: because translation
symmetry is broken in (1.4), we cannot simply construct the solution vj with data
φj and then define vjn via translation by xjn. Indeed, vjn would fail to be a solution.

The following result shows that we may construct nonlinear solutions corre-
sponding to profiles with |xjn| → ∞, provided they are below the Euclidean ground
state. Furthermore, these solutions are global and scatter.

Lemma 3.4 (Embedding of nonlinear profiles). Let (d, p, a) satisfy (1.9). Sup-
pose tn ≡ 0 or tn → ±∞ and assume |xn| → ∞. Let φ in H1 and define

φn(x) = [e−itnL
n
aφ](x− xn), Lna := −∆ + a

|x+xn|2 .

Suppose

M(φ)
4−p(d−2)

dp−4 E0(φ) < M(Q0)
4−p(d−2)

dp−4 E0(Q0),

‖φ‖
4−p(d−2)

dp−4

L2 ‖φ‖Ḣ1 < ‖Q0‖
4−p(d−2)

dp−4

L2 ‖Q0‖Ḣ1 ,

in the case tn ≡ 0 and

1
2‖φ‖

2[4−p(d−2)]
dp−4

L2 ‖φ‖2
Ḣ1 < M(Q0)

4−p(d−2)
dp−4 E0(Q0)

in the case tn → ±∞. Then there exists a global solution vn to (1.4) with vn(0) = φn
satisfying ‖(1 + La)

1
2 vn‖S(R) for any Strichartz norm S.

The key to Lemma 3.4 is to observe that as |x| → ∞, the effect of the potential
becomes increasingly weak. In particular, we expect that the desired solution vn
should approximately solve the free NLS. Indeed, roughly speaking, the idea of the
proof of Lemma 3.4 is as follows:

Using the assumption that φ is below the Euclidean ground state, one can use
the results of [1,4,7] to construct scattering solutions ṽn to the free NLS (1.1) with
data φn. Relying on convergence results for various linear operators (related to
the sense in which Lna ‘converges’ to −∆ when |xn| → ∞), one can prove that the
ṽn approximately solve (1.4). Thus, using the stability result (Theorem 2.4), one
can construct a true solution vn to (1.4) with data φn; furthermore, this solution
inherits good space-time bounds from ṽn.

It is an important but simple observation that the ground state thresholds for
(1.4) are smaller than the thresholds for (1.1). In particular, because Ec is below
the threshold appearing in Theorem 1.1, we know that all of the profiles in the
decomposition of un(0) are in fact below the Euclidean threshold; thus we may use
Lemma 3.4 to construct nonlinear solutions associated to profiles with |xjn| → ∞.

Step 3. The third step is to establish that J∗ = 1, that is, there can be only one
profile. Equivalently, this means that one profile captures all of the critical energy.
This is achieved by a contradiction argument. If there were multiple profiles, then
each would carry strictly less than the critical energy Ec. In particular, by the
definition of Ec, the corresponding nonlinear profiles vjn would scatter and obey
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global space-time bounds. One then considers the following function:

uJn(t) =

J∑
j=1

vjn(t) + e−itLarJn .

This function has the following properties: (i) uJn agrees with the true solutions un
at time t = 0, (ii) uJn obeys global space-time bounds, and (iii) uJn approximately
solves (1.4). Indeed, (i) follows by construction. Along with the space-time bounds
obeyed by the vjn, the key ingredient to establishing (ii) and (iii) is the orthogonality
(3.4) satisfied by the profiles. Indeed, orthogonality is essential if one hopes to
(approximately) solve a nonlinear equation by a linear combination of solutions.
Using properties (i)–(iii), the stability result Theorem 2.4 implies uniform space-
time bounds for the solutions un, yielding a contradiction to (3.2).

Step 4. We have reduced the decomposition (3.3) to the form

un(0) = [eitnL
n
aφ](· − xn) + rn, Lna = −∆ + a

|x+xn|2 .

To complete the proof of Lemma 3.2, we need to show tn ≡ 0, xn ≡ 0, and rn → 0
in H1. In fact, by the energy decoupling one can see already that rn → 0 in Ḣ1.
To see that xn ≡ 0, we consider the alternative, namely |xn| → ∞. In this case, an
application of the embedding result Lemma 3.4 and the stability result Theorem 2.4
would imply uniform space-time bounds for the un, contradicting (3.2). Similarly,
if tn → ±∞, then an application of Theorem 2.4 (comparing un with the linear
solutions e−itLaun(0)) would contradict (3.2). Finally, to establish rn → 0 in L2,
it suffices to show ‖φ‖L2 = 1. In fact, if ‖φ‖L2 < 1, then the definition of Ec would
imply that φ leads to a scattering solution, and Theorem 2.4 would once again lead
to a contradiction to (3.2). Thus, we complete the sketch of the proof of Lemma 3.2,
and hence of Theorem 3.1.

3.1. Preclusion of minimal blowup solutions. To complete our discussion
of the proof of Theorem 1.1(i), it remains to describe how one can preclude the
existence of solutions as in Theorem 3.1. As mentioned in the introduction, the key
is to use a localized version of the virial identity, as follows.

Suppose toward a contradiction that v is a solution as in Theorem 3.1 and let
ε > 0. By precompactness, there exists R large enough that∫

|x|>R
|v(t, x)|2 + |∇v(t, x)|2 + |v(t, x)|p+2 dx < ε

uniformly in t ∈ R. As v is below the ground state threshold, one can use the sharp
Gagliardo–Nirenberg inequality and precompactness to deduce

8‖u(t)‖2
Ḣ1

a
− 4dp

p+2‖u(t)‖p+2
Lp+2 & ‖u(t)‖2

Ḣ1
a
& 1

uniformly in t ∈ R. For ε sufficiently small, one can combine these last two bounds
with identities related to (1.11) to deduce that

∂2t

∫
aR(x)|u(t, x)|2 dx & 1,∣∣∣∣∂taR(x)|u(t, x)|2 dx

∣∣∣∣ . R,
uniformly in t ∈ R, where aR(x) is a smooth function equal to |x|2 for |x| ≤ R and
constant for |x| ≥ 2R. Integrating over any interval of the form [0, T ] and using
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the fundamental theorem of calculus, one can deduce T . R (uniformly in T ).
Choosing T sufficiently large now leads to the desired contradiction and completes
the proof of Theorem 1.1(i).
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