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Abstract. We survey some known results concerning the asymptotic behavior

of solutions to defocusing nonlinear Schrödinger equations. In particular, we
discuss the H1 scattering theory for intercritical NLS, as well as the scattering

theory in weighted spaces for the mass-subcritical case. We also discuss an

instance of modified scattering in the long-range case.

1. Introduction

In this note, we survey some results concerning the asymptotic behavior of solu-
tions to nonlinear Schrödinger equations (NLS). In particular, we study the initial-
value problem for power-type equations of the form{

(i∂t + ∆)u = µ|u|pu,
u(0) = u0.

(1.1)

Here u : Rt × Rdx → C is a complex-valued function of space-time with d ≥ 1. The
coefficient µ ∈ {±1} corresponds to the defocusing and focusing cases, respectively;
we will be concerned primarily with the defocusing case. Restrictions on the power
of the nonlinearity p > 0 and conditions on the initial data u0 will be discussed
below.

The equation (1.1) enjoys several symmetries and conservation laws. The fol-
lowing non-exhaustive list, which we will return to in Section 5, will be relevant in
the sequel.

• The time translation symmetry u(t, x) 7→ u(t+t0, x) for t0 ∈ R corresponds
to the conservation of the energy (or Hamiltonian), defined by the sum of
the kinetic and potential energy:

E [u(t)] :=

∫
Rd

1
2 |∇u(t, x)|2 + µ

p+2 |u(t, x)|p+2 dx. (1.2)

• The space translation symmetry u(t, x) 7→ u(t, x + x0) for x0 ∈ Rd corre-
sponds to the conservation of the momentum, defined by

P[u(t)] := 2 Im

∫
Rd
ū(t, x)∇u(t, x) dx. (1.3)
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• The gauge symmetry u(t, x) 7→ eiθu(t, x) for θ ∈ R corresponds to the
conservation of the mass, defined by

M[u(t)] :=

∫
Rd
|u(t, x)|2 dx. (1.4)

• The scaling symmetry

u(t, x) 7→ uλ(t, x) := λ
2
pu(λ2t, λx) for λ > 0 (1.5)

leads to a notion of criticality for (1.1) in the following sense. If one selects

initial data u0 from a homogeneous Sobolev space Ḣs(Rd) for some s ∈ R,
then

‖uλ0‖Ḣs(Rd) = λs−( d2−
2
p )‖u0‖Ḣs(Rd).

Defining the critical regularity for (1.1) by

sc = d
2 −

2
p , (1.6)

one verifies that the Ḣsc(Rd)-norm is invariant under scaling. Choosing
s = sc gives the critical initial-value problem for (1.1), while choosing
s > sc or s < sc gives subcritical and supercritical problems, respectively.

Special cases of (1.1) arise when one of the conserved quantities is invariant
under the scaling (1.5).

• The mass-critical case is given by p = 4
d . In this case, one has sc = 0 and

M[uλ] ≡M[u].
• The energy-critical case is given by p = 4

d−2 in dimensions d ≥ 3. In this

case, one has sc = 1 and E [uλ] ≡ E [u].

We typically do not speak of the ‘momentum-critical’ case, which would correspond
to p = 4

d−1 , due to the fact that the momentum is not a coercive quantity. Nonethe-
less, as we will see below, identities related to the conservation of momentum play
an important role in the analysis of solutions to the nonlinear equation.

The critical initial-value problem for (1.1), especially in the mass- and energy-
critical cases, has been the catalyst for a great deal of mathematical development
in the field of dispersive equations. Such problems are well beyond the scope of
this note; we refer the reader to [15] for exposition on these more advanced topics.
We will consider only subcritical problems in the energy-subcritical regime (i.e.
sc < 1), which greatly simplifies the well-posedness theory (see Section 4). We will
also primarily consider the defocusing case, which corresponds to choosing µ = 1 in
(1.1) and guarantees that the energy (1.2) controls both of its constituent pieces.
In particular, we will only consider problems for which we are guaranteed to have
global (in time) solutions (see Theorem 4.2); our primary interest will then be to
study the behavior of solutions as t→ +∞ (say).

Specifically, we will consider the question of scattering : given a global solution
u(t) to (1.1), does there exist a solution v(t) to the linear Schrödinger equation

(i∂t + ∆)v = 0

such that

lim
t→∞

‖u(t)− v(t)‖ = 0

in a suitable norm? Scattering is essentially the simplest possible long-time behav-
ior: the nonlinear effects simply become negligible as t→∞.
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As we will see, scattering will typically follow from appropriate decay estimates
for solutions to the nonlinear equation. This may refer either to pointwise-in-time
decay estimates for Lrx-norms of the solution, or to global space-time bounds in
mixed Lebesgue spaces of the form LqtL

r
x (see Section 2 for this notation). In

either case, the heuristic is as follows: if the solution ever becomes small, then
the nonlinearity |u|pu will be even smaller. In particular, one may be able to get
so much control over the nonlinearity that it can be shown to become negligible.
However, as we will see, this heuristic may break down if the power p becomes too
small.

The primary tools available for establishing decay to nonlinear solutions are a
collection of estimates known as virial or Morawetz estimates, which follow from
identities related to the conservation of momentum. It is in proving these estimates
that the defocusing nature of the nonlinearity plays the largest role. We discuss
Morawetz and virial estimates in Section 5.

We now briefly describe the main results we will cover in this note.

1.1. Intercritical NLS. We first consider the defocusing intercritical NLS in di-
mensions d ≥ 3; this corresponds to critical regularities sc ∈ (0, 1), or equivalently

4
d < p < 4

d−2 . (1.7)

We consider initial data u0 ∈ H1(Rd), which guarantees the existence of a unique,
global solution u(t) with finite mass and energy (see Section 4).

We present a result due originally to Ginibre and Velo [10], namely, that scat-
tering holds in H1 (see Theorem 6.4). We present a proof closer in spirit to that of
Tao, Visan, and Zhang [19], which relies on the interaction Morawetz estimate (see
Section 5).

1.2. Mass-subcritical NLS. We next study the mass-subcritical NLS, which cor-
responds to critical regularities sc < 0, or equivalently

0 < p < 4
d . (1.8)

In this case, initial data u0 ∈ L2(Rd) leads to a unique, global solution u(t) of finite
mass, even in the focusing case (cf. Section 4). To study the question of scattering,
however, it is natural to restrict to the defocusing problem and to prescribe initial
data in the weighted Sobolev space Σ, defined by the norm

‖u‖2Σ := ‖u‖2L2(Rd) + ‖∇u‖2L2(Rd) + ‖xu‖2L2(Rd). (1.9)

In particular, these assumptions suffice to access the so-called pseudoconformal
energy estimate (see Section 5).

• We will first prove a result of Tsutsumi and Yajima [20], which states that
for 2

d < p < 4
d , scattering holds in L2 (see Theorem 7.3). This is called the

short-range case.
• We will next prove a result of Cazenave and Weissler [5], which states that

scattering holds in a stronger topology for a restricted range of p in the
short-range case (see Theorem 7.5).
• We will then prove a result of Strauss and Barab [1], [21], which states that

for 0 < p ≤ 2
d , scattering cannot hold in L2 unless the solution is identically

zero (see Theorem 7.7). This is called the long-range case.
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1.3. Modified scattering. Finally, we will consider the borderline case p = 2
d . In

light of Theorem 7.7, scattering does not hold; however, in this case it is possible to
identify a suitable correction to linear scattering and to prove a form of ‘modified’
scattering.

Currently, results are only available in low dimensions d ∈ {1, 2, 3} and for small
solutions in suitable weighted Sobolev spaces. The exception to this is dimension
d = 1, in which case the equation is completely integrable; one can then establish
a large data result via inverse scattering techniques.

For technical simplicity, we will consider the problem in dimension d = 1 for small
data in Σ. At least four published proofs exist to treat this case (due to Hayashi
and Naumkin [11], Kato and Pusateri [13], Lindblad and Soffer [16], and Ifrim and
Tataru [12]), but all have a similar flavor: one proceeds by a bootstrap argument,
where the estimates only close if one incorporates an appropriate correction term.
See Theorem 8.1.

1.4. Outline of the paper.

• In Section 2, we set up notation to be used throughout the rest of the paper.
• In Section 3, we collect some useful information about the underlying linear

Schrödinger equation.
• In Section 4, we discuss the well-posedness theory for (1.1).
• In Section 5, we discuss conservation laws and their relatives, the Morawetz

and virial identites.
• In Section 6, we consider the defocusing intercritical problem.
• In Section 7, we consider the mass-subcritical problem.
• In Section 8, we discuss modified scattering.

Throughout the note, we also point out some extensions of results, as well as
open problems.

All of the results we present in this paper have appeared previously in the lit-
erature. Some of the proofs we present are new, while others remain fairly faithful
to the original proofs. We hope that this survey will succeed in presenting clear
and streamlined proofs of several interesting results from a modern and unified
perspective.

2. Notation

We write A . B or B & A to denote A ≤ CB for some C > 0 that may depend
on the dimension, the power p of the nonlinearity, or implicit constants in various
functional inequalities. If A . B . A, we write A ∼ B.

For a function f : Rd → C, we write ‖f‖Lrx(Rd) or ‖f‖Lrx for the Lr-norm of f ,

1 ≤ r ≤ ∞. For a function u : I × Rd → C for some interval I ⊂ R, we write

‖u‖LqtLrx(I×Rd) =
∥∥ ‖u(t)‖Lrx(Rd)

∥∥
Lqt (I)

where 1 ≤ q, r ≤ ∞.
For r ∈ [1,∞], we let r′ ∈ [1,∞] denote the Hölder dual of r, that is, the solution

to 1
r + 1

r′ = 1.
We denote by Fu = û the Fourier transform of a function u, defined by

Fu(ξ) = û(ξ) = (2π)−
d
2

∫
Rd
e−ix·ξu(x) dx,
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and we let F−1f = f̌ denote the inverse Fourier transform. For a given function
m : Rd → R, we may define the Fourier multiplier operator m(i∇) = F−1m(ξ)F .
In particular, m(i∇)f = m̌ ∗ f .

Special cases include the fractional derivatives |∇|s corresponding to m(ξ) = |ξ|s
for s ∈ R, along with the free Schrödinger propagator eit∆ corresponding to m(ξ) =

e−it|ξ|
2

(see Section 3). We also define 〈∇〉s to be the Fourier multiplier operator
with symbol m(ξ) = (1 + |ξ|2)

s
2 .

These derivative operators define the homogeneous and inhomogeneous Sobolev
spaces Ḣs and Hs via the norms

‖f‖Ḣs(Rd) = ‖|∇|sf‖L2
x(Rd), ‖f‖Hs(Rd) = ‖〈∇〉sf‖L2

x(Rd).

3. The linear Schrödinger equation

Solutions to the linear Schrödinger equation{
(i∂t + ∆)v = 0,

v(0) = φ
(3.1)

are given by v(t) = eit∆φ, where eit∆ = F−1e−it|ξ|
2F is the linear Schrödinger

propagator. More generally, variation of parameters implies that the solution to
the inhomogeneous Schrödinger equation{

(i∂t + ∆)v = F,

v(0) = φ
(3.2)

is given by

v(t) = eit∆φ− i
∫ t

0

ei(t−s)∆F (s) ds.

Using the definition of eit∆ and Plancherel’s theorem, it is clear that

‖eit∆φ‖L2
x(Rd) ≡ ‖φ‖L2

x(Rd). (3.3)

In physical space, one can derive the formula

[eit∆φ](x) = (4πit)−
d
2

∫
Rd
ei|x−y|

2/4tφ(y) dy for all t 6= 0. (3.4)

From this identity, one can read off the dispersive estimate

‖eit∆φ‖L∞x (Rd) . |t|−
d
2 ‖φ‖L1

x(Rd) for all t 6= 0. (3.5)

Interpolating with (3.3) yields a more general class of dispersive estimates, namely

‖eit∆φ‖Lrx(Rd) . |t|−( d2−
d
r )‖φ‖Lr′x (Rd) for all t 6= 0, (3.6)

where 2 ≤ r ≤ ∞.
These estimates may also be used to establish global space-time bounds for solu-

tions to the linear Schrödinger equation, as well as for solutions to inhomogeneous
Schrödinger equations. Such estimates are known as Strichartz estimates; they play
a key role in the well-posedness theory for (1.1).

To properly state the estimates, we introduce the following terminology: we call
a pair of exponents (q, r) admissible if

2 ≤ q, r ≤ ∞, 2
q + d

r = d
2 , (d, q, r) 6= (2, 2,∞).

We call a pair (α, β) dual admissible if (α′, β′) is admissible.
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Theorem 3.1 (Strichartz estimates, [9], [14], [22]). Let (q, r) be an admissible pair
and (α, β) a dual admissible pair. Then

‖eit∆φ‖LqtLrx(I×Rd) . ‖φ‖L2
x(Rd),∥∥∥∥∫ t

0

ei(t−s)∆F (s) ds

∥∥∥∥
LqtL

r
x(I×Rd)

. ‖F‖Lαt Lβx(I×Rd)

for any interval I ⊂ R.

From (3.4), we can also read off a very useful factorization of eit∆, namely,

eit∆ = M(t)D(t)FM(t), (3.7)

where
M(t) = ei|x|

2/4t and [D(t)f ] = (2it)−
d
2 f( x2t ).

In particular, (3.7) and the dominated convergence theorem imply the following
lemma, which describes the asymptotics of solutions to (3.1):

Lemma 3.2 (Fraunhofer formula). For any φ ∈ L2
x(Rd),

lim
t→∞

‖eit∆φ−M(t)D(t)Fφ‖L2
x

= 0.

Finally, we introduce the operator

J(t) := x+ 2it∇, (3.8)

which will play an important role in the scattering theory in weighted spaces. By
direct computation and (3.7), we have

J(t) = M(t)2it∇M(−t) = eit∆xe−it∆. (3.9)

In particular,
J(t)eit∆φ = eit∆xφ,

which suggests some physical interpretation for J(t), namely, it measures how the
center of mass evolves for linear solutions.

Control over J(t) in L2
x implies decay as |t| → ∞; we leave this fact as an exercise

to the reader.

Exercise. Let d ≥ 3. Show that

‖f‖
L

2d
d−2
x (Rd)

. |t|−1‖J(t)f‖L2
x(Rd).

4. Well-posedness

In this section, we briefly discuss the basic questions of existence and uniqueness
of solutions to (1.1). As discussed in the introduction, we will restrict our discussion
to energy-subcritical nonlinearities (i.e. sc < 1) and we will select initial data from
the space H1(Rd). This makes (1.1) a subcritical problem and results in a simple
well-posedness theory. Much more detail can be found, for example, in the book of
Cazenave [3].

By a solution to (1.1) on an interval I 3 0, we mean a function u : I × Rd
satisfying the Duhamel formula

u(t) = eit∆u0 − iµ
∫ t

0

ei(t−s)∆(|u|pu)(s) ds, t ∈ I, (4.1)

such that u ∈ CtH1
x(K × Rd) and 〈∇〉u ∈ LqtLrx(K × Rd) for all admissible (q, r)

and all compact K ⊂ I. We call u global if I = R.
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Theorem 4.1 (Local well-posedness). Let p > 0 satisfy{
p < 4

d−2 d ≥ 3,

p <∞ d ∈ {1, 2},
(4.2)

so that in particular sc < 1. For any u0 ∈ H1
x(Rd), there exists a unique solution u

to (1.1) on some interval I 3 0, where the length of I depends only on ‖u0‖H1
x(Rd).

The proof relies on a fixed point argument using Strichartz estimates, treating
the nonlinearity as a perturbation of the linear equation. In particular, one can
prove the desired estimates by choosing the time interval sufficiently small. In the
subcritical case, the length of the interval depends only on the norm of the initial
data; this is in contrast to the critical case (i.e. u0 ∈ Ḣsc), where the length of the
interval actually depends on the profile of the initial data.

For u0 ∈ H1
x and sc < 1, solutions have finite mass and energy. Indeed, in this

range the potential energy is controlled via the Gagliardo–Nirenberg inequality
by the mass and the kinetic energy. In the defocusing case, the conservation of
mass and energy then implies that the solution u(t) remains uniformly bounded
in H1

x throughout its existence. In particular, one can iterate the subcritical local
existence result to deduce the following global-in-time result.

Theorem 4.2 (Global well-posedness in the defocusing case). Let p > 0 satisfy
(4.2) and µ = 1. For any u0 ∈ H1

x(Rd), there exists a unique global solution u to
(1.1). Furthermore, u(t) remains uniformly bounded in H1

x.

Remark 4.3. In the mass-subcritical case p < 4
d , the length of the local interval

of existence depends only on ‖u0‖L2
x
. In particular, by the conservation of mass,

initial data in L2
x lead to global solutions even in the focusing case. In contrast,

solutions to (1.1) in the focusing case with sc ∈ (0, 1) may blow up in finite time
(see the exercise after Lemma 5.3).

Remark 4.4. If one chooses u0 ∈ Σ (see (1.9)), then the corresponding solution u
belongs to CtΣ. One can prove this by commuting the vector field J (cf. (3.8)) with
the equation and applying standard persistence of regularity arguments. Note that
one should not expect xu(t) to remain bounded in L2

x (as we expect the solution
to spread out); however, one can sometimes prove that J(t)u(t) remains bounded
in L2

x.

5. Conservation laws and Morawetz/virial identities

In this section, we give (formal) proofs of the conservation laws mentioned in
Section 1. We then discuss the related Morawetz and virial identities, and deduce
some estimates for solutions to the defocusing equation.

Throughout the section, we assume that the solutions under consideration are
smooth and decaying enough to justify all the formal computations we carry out.
Such assumptions may be removed by standard limiting arguments. See, for in-
stance, the book of Cazenave [3].

Throughout this section, subscripts denote derivatives and repeated indices are
summed. Thus ∆u = ujj , |∇u|2 = ukūk, and so on.

Lemma 5.1 (Conservation laws). The energy, momentum, and mass of solutions
to (1.1) defined in (1.2)–(1.4) are conserved in time.
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Proof. We compute using (1.1). First,

∂t[
1
2 |∇u|

2 + µ
p+2 |u|

p+2] = ∂j Im[−ujkūk + µ|u|puūj ],

which implies the conservation of energy. Next,

∂t[2 Im ūuk] = −2pµ
p+2 ∂k|u|

p+2 + ∂jjk|u|2 − 4 Re ∂j(ūjuk), (5.1)

which implies the conservation of momentum. Finally,

∂t|u|2 = −2∂k Im(ūuk), (5.2)

which implies the conservation of mass. �

We now turn to a discussion of Morawetz/virial identities. The idea is to pair the
momentum with a well-chosen vector field (typically of the form ∇a for some weight
function a) and to attempt to demonstrate some monotonicity in time. We begin
by considering the classical picture and making a few motivating computations.

Example 5.1. Consider the following simple model for a particle in Rd under the
influence of a potential V : Rd → R:{

ẋ = p,

ṗ = −∇V (x),
(5.3)

where ˙ denotes d
dt and x, p : R → Rd. Suppose that the potential is repulsive, in

the sense that

∇V (q) · q ≤ 0 for all q ∈ Rd.
Simple computations then show

d
dt [p · x] = |p|2 − x · ∇V (x) ≥ 0,

and
d
dt [p ·

x
|x| ] = 1

|x|
[
|p|2 − (p · x|x| )

2
]
− x · ∇V (x) ≥ 0.

In the case of (1.1) with a defocusing nonlinearity, we will also be able to demon-
strate monotonicity when we pair the momentum with the vector fields x and x

|x| .

We begin by proving a Morawetz identity with a general weight function.

Lemma 5.2 (Morawetz identity). Let a : Rd → R and let u : I × Rd → C be a
solution to (1.1). Define the Morawetz quantity

M0
a (t) = 2 Im

∫
ū∇u · ∇a dx. (5.4)

Then

M0
a (t) = d

dt

∫
|u|2a dx (5.5)

and
d
dtM

0
a (t) =

∫
2µp
p+2 |u|

p+2∆a+ |u|2(−∆∆a) + 4 Re ajkūjuk dx. (5.6)

Proof. First note (5.5) follows from (5.2). Next, (5.6) follows from (5.1) and inte-
gration by parts. �

For specific choices of the weight a, (5.6) implies some useful identities. The
first, known as the virial identity, results from taking a(x) = |x|2.
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Lemma 5.3 (Virial identity). Let u : I × Rd → C solve (1.1). Then

d2

dt2

∫
|x|2|u|2 dx = d

dt2 Im

∫
ū∇u · (2x) dx =

∫
4µdp
p+2 |u|

p+2 + 8|∇u|2 dx. (5.7)

Proof. This follows from (5.5) and (5.6), using the weight a(x) = |x|2. Indeed, in
this case we have

∇a = 2x, ajk = 2δjk, ∆a = 2d, ∆∆a = 0,

from which the identity follows. �

Exercise. Suppose µ = −1 and sc ∈ [0, 1]. Suppose u0 ∈ Σ satisfies E [u0] < 0. Use
the virial identity to prove that the solution to (1.1) with initial data u0 blows up
in finite time in both time directions.

5.1. Pseudoconformal energy estimate. We can also use the virial identity to
derive the so-called pseudoconformal energy estimate, which is related to controlling
the L2-norm of the quantity J(t)u(t) = (x + 2it∇)u(t), which was introduced in
Section 3. This estimate will play an important role in the scattering theory for
the mass-subcritical NLS, and thus we restrict attention to the case p < 4

d .

Lemma 5.4 (Pseudoconformal energy estimate). Suppose µ = 1, p < 4
d , and

u0 ∈ Σ. Let u ∈ CtΣ(R×Rd) be the unique, global solution to (1.1) with u(0) = u0

given in Section 4. Then

‖J(t)u(t)‖2L2
x

+ t2‖u(t)‖p+2

Lp+2
x
. t2−

dp
2 for all t ≥ 1,

where the implicit constant depends on ‖u(1)‖Σ.

Remark 5.5. Note that this estimate does not prove that J(t)u(t) remains bounded
in L2

x. It does, however, give a decay rate for the potential energy of the solution
that matches the rate for linear solutions (cf. (3.6)).

Proof. We first recall J = x+ 2it∇ and write∫
|Ju|2 dx =

∫
|x|2|u|2 − 2t Im(ū∇u · 2x) + 4t2|∇u|2 dx.

By the virial identity (5.7),

d
dt

∫
|x|2|u|2 − 2t Im(ū∇u · 2x) dx = −

∫
4µdpt
p+2 |u|

p+2 + 8t|∇u|2.

Thus, noting that conservation of energy gives

4t2 d
dt

∫
|∇u|2 = −8t2 d

dt

∫
µ
p+2 |u|

p+2 dx,

we deduce

d
dt

∫
|Ju|2 dx = −

∫
4µdpt
p+2 |u|

p+2 dx− 8t2 d
dt

∫
µ
p+2 |u|

p+2 dx.

Hence, if we define

e(t) :=

∫
|Ju|2 + 8µt2

p+2 |u|
p+2 dx,

then

e′(t) = 4µt(4−dp)
p+2

∫
|u|p+2 dx =

2− dp2
t

8µt2

p+2

∫
|u|p+2 dx. (5.8)
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Now note that Gronwall’s inequality implies

t2‖u(t)‖p+2

Lp+2
x
. t2−

dp
2 ,

where the implicit constant depends on e(1) . ‖u(1)‖Σ. Inserting this estimate
back into (5.8) yields

e(t) . t2−
dp
2 ,

which implies the result. �

5.2. The Lin–Strauss Morawetz estimate. Next we prove an estimate (known
as the Lin–Strauss Morawetz estimate, the radial Morawetz estimate, or the clas-
sical Morawetz estimate [17]) that results from using Lemma 5.2 with the weight
a(x) = |x|.

Lemma 5.6 (Lin–Strauss Morawetz). Let d ≥ 3 and µ = 1. Let u : I × Rd → C
be a solution to (1.1). Then∫

I

∫
Rd

|u(t, x)|p+2

|x|
dx dt . ‖u‖2L∞t H1

x(I×Rd). (5.9)

Remark 5.7. In fact, one can replace the right-hand side by

‖|∇|1/2u‖2L∞t L2
x(I×Rd),

although we will not need this refinement.

Proof of Lemma 5.6. We will apply (5.6) with a(x) = |x|. In this case,

∇a = x
|x| , ajk = 1

|x|
[
δjk − xj

|x|
xk
|x|
]
, ∆a = d−1

|x| , −∆∆a =

{
8πδ d = 3,
(d−1)(d−3)
|x|3 d > 3.

(5.10)
In particular,

sup
t∈I
|M0

a (t)| . ‖u‖2L∞t H1
x(I×Rd),

which will give rise to the right-hand of (5.9).
To get the left-hand side of (5.9), we will establish a lower bound for d

dtM
0
a and

integrate over I. In fact, using (5.6) and (5.10)

d
dtM

0
a =

∫
2µp(d−1)
p+2

|u|p+2

|x| + |u|2(−∆∆a) + 4
|x| | /∇0u|2 dx,

where
/∇0u = ∇u−∇u · x|x|

x
|x|

is the angular component of ∇u. In particular,∫
I

d
dtM

0
a dt &

∫
I

∫
Rd

|u|p+2

|x|
dx dt,

giving the left-hand side of (5.9). �

The presence of the weight |x|−1 in (5.9) means that this estimate is best-suited
for preventing concentration at the origin. In particular, this result suffices to estab-
lish some global space-time bounds for radial solutions to the defocusing equation,
which can only concentrate at the origin. These estimates will in turn will imply
scattering in the intercritical regime (cf. Proposition 6.6).
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Corollary 5.8 (Space-time bounds for radial solutions). Let d ≥ 3, µ = 1, and
sc ∈ (0, 1). Let u0 ∈ H1 be radial and let u be the corresponding global solution
given by Theorem 4.2. Then

‖u‖q
Lqt,x(R×Rd)

. ‖u‖2+ 2
d−1

L∞t H
1
x(R×Rd)

. 1, where q = p+ 2 + 2
d−1 .

Proof. First note that by uniqueness and the invariance of ∆ under rotations, radial
initial data lead to radial solutions; in particular, u(t) is radial for each t ∈ R.

The key to deducing a space-time bound from (5.9) is the following radial Sobolev
embedding estimate:

‖|x|
d−1
2 f‖L∞x (Rd) . ‖f‖H1

x(Rd) for all radial f. (5.11)

With (5.11) in hand, we now use (5.9) to estimate∫∫
|u|p+2+ 2

d−1 dx dt .
∫∫ ∣∣|x| d−1

2 u
∣∣ 2
d−1 |u|p+2

|x| dx dt

. ‖|x|
d−1
2 u‖

2
d−1

L∞t,x
‖u‖2L∞t H1

x
. ‖u‖2+ 2

d−1

L∞t H
1
x
,

where all norms are over R×Rd. The result now follows by recalling that the global
solutions given by Theorem 4.2 are bounded in H1. �

Exercise. Prove (5.11).

5.3. The interaction Morawetz estimate. As mentioned above, the Lin–Strauss
Morawetz estimate is best-suited for preventing concentration at the origin. To
treat non-radial solutions, it would be better to use an estimate that prevents
concentration anywhere in Rd. Such an estimate exists: it is the interaction
Morawetz inequality, discovered originally by the ‘I-team’ of Colliander, Keel, Staffi-
lani, Takaoka, and Tao [6].

To prove this estimate, one centers the classical Morawetz action at an arbitrary
point in Rd and averages against the mass density. In particular, we fix d ≥ 3 and
a(x) = |x|. For y ∈ Rd, we define

My
a (t) := 2 Im

∫
ū∇u · ∇a(x− y) dx,

and we define the interaction Morawetz action by

Mint(t) :=

∫
My
a (t)|u(t, y)|2 dy.

Lemma 5.9 (Interaction Morawetz). Let d ≥ 3, µ = 1, and a(x) = |x|. Suppose
u : I × Rd → C is a solution to (1.1). Then∫∫∫

|u(t, x)|2(−∆∆a)(x− y)|u(t, y)|2 dx dy dt . ‖u‖4L∞t H1
x(I×Rd). (5.12)

Remark 5.10. In fact, one can replace the right-hand side by

‖u‖2L∞t L2
x(I×Rd)‖|∇|

1/2u‖L∞t L2
x(I×Rd),

but we will not need this refinement.

Proof of Lemma 5.9. We first note that

sup
t∈I
|Mint(t)| . ‖u‖4L∞t H1

x(I×Rd),
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which will give the right-hand side of (5.12).
As in the proof of Lemma 5.6, to get the left-hand side we will compute a lower

bound for d
dtMint. We compute, using (5.10), (5.2), and (5.6):

d
dtMint =

∫∫
2µ(d−1)p
p+2

|u(y)|2|u(x)|2
|x−y| + |u(y)|2(−∆∆a)(x− y)|u(x)|2 dx dy

+

∫∫
4|u(y)|2| /∇yu(x)|2

|x−y| dx dy (5.13)

−
∫∫

2 Im ūuk(x)ak(x− y)2 Im ∂yj (ūuj(y)) dx dy, (5.14)

where
/∇yu(x) = ∇u(x)−∇u(x) · x−y|x−y|

x−y
|x−y| .

We now claim that (5.13) + (5.14) ≥ 0. To see this, we integrate by parts, and use
(5.10) and Cauchy–Schwarz to compute

−(5.14) = 4

∫∫
Im(ūuk)(x)ajk(x− y) Im(ūuj)(y) dx dt

= 4

∫∫
1
|x−y|

[
Im(ū /∇yu)(x) · Im(ū /∇xu)(y)

]
dx dy

≤ 4

∫∫
1
2

|u(y)|2| /∇yu(x)|2

|x−y| + 1
2
|u(x)|2| /∇xu(y)|2

|x−y| dx dy

≤ (5.13).

Thus,

d
dtMint(t) ≥

∫∫
|u(y)|2(−∆∆a)(x− y)|u(x)|2 dx dy.

The result follows. �

Using Lemma 5.9, we can deduce global space-time bounds for arbitrarily solu-
tions to the defocusing equation. In particular, we have the following.

Corollary 5.11 (Space-time bounds for arbitrary solutions). Let d ≥ 3, µ = 1,
and sc ∈ (0, 1). Let u0 ∈ H1 and let u be the corresponding global solution to (1.1)
given by Theorem 4.2. Then

‖u‖
Ld+1
t L

2(d+1)
d−1

x (R×Rd)

. ‖u‖L∞t H1
x(R×R3) . 1.

Proof. To begin, we recall that Theorem 4.2 guarantees that solutions are uniformly
bounded in H1, which is the second part of the statement.

First, using (5.10), we note that when d = 3 the estimate (5.12) immediately
yields

‖u‖L4
t,x(R×R3) . ‖u‖L∞t H1

x(R×R3),

which is the desired result.
For d ≥ 4, we note that

F−1(|ξ|−(d−3)) = c|x|−3 for some constant c > 0. (5.15)

Using this and Plancherel’s theorem, we find

LHS(5.12) =

∫∫
|u|2| · |−3 ∗ |u|2 dx dt ∼

∫∫
|u|2|∇|−(d−3)|u|2 dx dt

∼ ‖|∇|−( d−3
2 )|u|2‖2L2

t,x
.
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We now appeal to a technical result (Lemma A.3) and use the interaction
Morawetz estimate (5.12) to get the bound

‖|∇|−( d−3
4 )u‖4L4

t,x
. ‖|∇|−( d−3

2 )|u|2‖2L2
t,x
. ‖u‖4L∞t H1

x
.

Thus, in dimensions d ≥ 4, the interaction Morawetz estimate implies control over
negative order derivatives of the solution. On the other hand, in the present setting,
one can also control ∇u in L2

x. Using interpolation (see Lemma A.4), one finds

‖u‖
Ld+1
t L

2(d+1)
d−1

x

. ‖|∇|−( d−3
4 )u‖

4
d+1

L4
t,x
‖∇u‖

d−3
d+1

L∞t L
2
x
,

from which the result follows. �

Exercise. Prove (5.15).

Remark 5.12. Interaction Morawetz estimates are available in dimensions d ∈
{1, 2}, as well (see e.g. [7], [18]).

6. Intercritical NLS

In this section, we prove that scattering holds in H1 for the defocusing inter-
critical NLS in dimensions d ≥ 3; recall that intercritical refers to the restriction
0 < sc < 1, or equivalently 4

d < p < 4
d−2 . Before stating the result, we give the

precise definition of H1 scattering.

Definition 6.1. A global solution u to (1.1) scatters in H1 (forward in time) if
there exists a unique u+ ∈ H1 such that

lim
t→∞

‖u(t)− eit∆u+‖H1
x(Rd) = 0.

Remark 6.2. Recall from Section 3 that eit∆u+ is the solution to the linear
Schrödinger equation (3.1) with initial data u+.

Remark 6.3. Of course, one can consider scattering in the backward time direc-
tion, as well, but we focus on the forward time direction for simplicity.

Theorem 6.4 (Scattering for intercritical NLS). Let d ≥ 3, µ = 1, and 4
d < p <

4
d−2 . Fix u0 ∈ H1 and let u be the corresponding global solution to (1.1) given by

Theorem 4.2. Then u scatters in H1.

Remark 6.5. Theorem 6.4 is originally due to Ginibre and Velo [10]; a simplified
proof (similar in spirit to the one given here) appears in [19].

As mentioned in the introduction, the key to proving scattering is to establish
decay for the solution. The following proposition will make this idea precise. We
first introduce a bit of notation: for a pair of exponents (q, r), we define the scaling

s(q, r) := d
2 − ( 2

q + d
r ). (6.1)

In particular, the LqtL
r
x-norm of a function scales the same way as the L∞t Ḣ

s(q,r)
x -

norm under the rescaling (1.5). Note that admissible pairs (q, r) (as defined in
Section 3) satisfy s(q, r) = 0.
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Proposition 6.6 (Space-time bounds imply scattering). Let u be as in Theo-
rem 6.4. Suppose

u ∈ LqtLrx(R× Rd) with max{p, 1} ≤ q <∞ and s(q, r) ∈ (0, 1). (6.2)

Then u scatters in H1.

Proof. First, suppose s(q, r) = sc. That is, the solution obeys critical spacetime
bounds, in the sense that the LqtL

r
x-norm is invariant under the rescaling (1.5).

We first establish that

〈∇〉u ∈ LatLbx(R× Rd) (6.3)

for an appropriate admissible pair (a, b). In particular, we choose a satisfying

max{ 1
2 −

p
q , 0} ≤

1
a ≤ min{1− p

q ,
1
2}. (6.4)

This only requires p ≤ q and in particular implies 2 ≤ a ≤ ∞. We can therefore
choose b so that (a, b) is admissible, i.e. s(a, b) = 0.

We next define the exponent pair (α, β) via the scaling relations

1
α = p

q + 1
a ,

1
β = p

r + 1
b .

The scaling conditions s(q, r) = sc and s(a, b) = 0 guarantee that s(α′, β′) =
0. Furthermore, (6.4) guarantees that 1 ≤ α ≤ 2, so that (α′, β′) is in fact an
admissible pair.

Thus, on any interval I ⊂ R, we may apply Strichartz estimates (Theorem 3.1)
and the chain rule to estimate

‖〈∇〉u‖LatLbx(I×Rd) . ‖〈∇〉u‖L∞t L2
x(I×Rd) + ‖〈∇〉(|u|pu)‖Lαt Lβx(I×Rd)

. ‖〈∇〉u‖L∞t L2
x(I×Rd) + ‖u‖p

LqtL
r
x(I×Rd)

‖〈∇〉u‖LatLbx(I×Rd).

Now fix ε > 0. Recalling (6.2) (and in particular that q < ∞), we can break R
into finitely many intervals I such that

‖u‖p
LqtL

r
x(I×Rd)

< ε

on each interval. Choosing ε sufficiently small, the above estimate implies

‖〈∇〉u‖LatLbx(I×Rd) . ‖〈∇〉u‖L∞t L2
x(I×Rd) . 1

on each interval, which in turn implies (6.3).
We can now establish scattering by showing that {e−it∆u(t) : t ∈ R} is Cauchy

in H1 as t→∞. Indeed, estimating via Strichartz as above,

‖e−it∆u(t)− e−is∆u(s)‖H1
x(Rd) . ‖u‖

p
LqtL

r
x((s,t)×Rd)

‖〈∇〉u‖LatLbx((s,t)×Rd) → 0

as s, t→∞. Again, we rely on the fact that q <∞.
We now turn to the general case s(q, r) ∈ (0, 1). We recall that by uniform

H1-boundedness, we have

u ∈ L∞t L2
x and u ∈ L∞t L

2d
d−2
x ;

indeed, the second bound follows from Sobolev embedding. Noting that s(∞, 2) = 0
and s(∞, 2d

d−2 ) = 1, we deduce by interpolation with u ∈ LqtLrx that u ∈ Lqct Lrcx (R×
Rd) for some (qc, rc) satisfying s(qc, rc) = sc (see the exercise below). Moreover,
the interpolation guarantees that p ≤ q < qc < ∞. Thus we have reduced to the
first case described above, so that scattering follows. �
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Exercise. Suppose that u ∈ Lqjt L
rj
x , with 1 ≤ qj , rj ≤ ∞, for j ∈ {1, 2}. Denote

sj = s(qj , rj) and suppose without loss of generality that s1 < s2. Prove that for
any s ∈ (s1, s2), there exists 1 ≤ q, r ≤ ∞ with s(q, r) = s such that u ∈ LqtLrx.

We can now quickly dispense with the proof of Theorem 6.4.

Proof of Theorem 6.4. By the interaction Morawetz inequality, specifically Corol-

lary 5.11, we have u ∈ Ld+1
t L

2(d+1)
d−1

x (R× Rd). Noting that

s(d+ 1, 2(d+1)
d−1 ) = d−2

d+1 ∈ (0, 1)

and p < d+1 for all p under consideration, Proposition 6.6 implies that the solution
scatters in H1. �

Remark 6.7. Note that the Lin–Strauss Morawetz estimate (specifically, Corol-
lary 5.8) implies scattering in the radial case. Indeed, one gets u ∈ Lqt,x(R × Rd)
with q = p+ 2 + 2

d−1 . Clearly p < q, while a bit of computation shows that

s(q, q) ∈ (0, 1) ⇐⇒ 4
d −

2
d−1 < p < 4

d−2

(
1 + d

2d−2

)
.

In our presentation of the proof of scattering, it is not clear that the radial case
is any ‘easier’. To see where the radial assumption actually simplifies matters,
compare the proofs of Corollary 5.8 and Corollary 5.11.

7. Mass-subcritical NLS

In this section we discuss the mass-subcritical case, which refers to sc < 0 or
equivalently p < 4

d . As discussed in Section 4, solutions to (1.1) are global (even

in the focusing case) for any initial data in L2
x. However, we will consider only

the defocusing problem and data in the weighted space Σ defined in (1.9), as this
assumption gives us access to the pseudoconformal energy estimate (Lemma 5.4).

We will consider scattering in two different topologies.

Definition 7.1. A global solution u to (1.1) scatters in L2 (forward in time) if
there exists a unique u+ ∈ L2 such that

lim
t→∞

‖u(t)− eit∆u+‖L2
x

= 0.

The solution scatters in Σ (forward in time) if there exists unique u+ ∈ Σ such that

lim
t→∞

‖e−it∆u(t)− u+‖Σ = 0.

Remark 7.2. It is not clear whether scattering in Σ is equivalent to the statement
that

lim
t→∞

‖u(t)− eit∆u+‖Σ = 0.

For this question, we refer the reader to papers of Bégout [2], who has some positive
results under restrictions on d and p.

The main nonlinear tool we have for studying the scattering theory in weighted
spaces is the pseudoconformal energy estimate, Lemma 5.4. In particular, this

estimate gives a decay rate of t−
dp
2 for the potential energy. This power of t is

integrable as t → ∞ precisely when p > 2
d . Thus, one is led to suspect that if

p > 2
d , the nonlinear effects become negligible as t → ∞, while if 0 < p ≤ 2

d the

nonlinearity has some net effect as t→∞. In particular, p = 2
d becomes a natural

candidate for the threshold for whether or not scattering occurs.
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In fact, we will prove positive scattering results in the range 2
d < p < 4

d (known
as the short range case); we will prove that no (linear) scattering is possible when
0 < p ≤ 2

d (known as the long range case).

7.1. The short-range case. We first present a result of Tsutsumi and Yajima
[20], which establishes scattering in L2

x in the short range case.

Theorem 7.3 (L2-scattering). Let 2
d < p < 4

d and µ = 1. Let u0 ∈ Σ and take
u to be the corresponding global solution to (1.1) given by Theorem 4.2. Then u
scatters in L2.

The drawback of this result is that while initial data is taken from u0 ∈ Σ,
scattering is only shown to hold in L2. The strength of this result is that it treats
all possible p for which linear scattering is possible (cf. Theorem 7.7 below).

Proof of Theorem 7.3. We take advantage of the fact that the asymptotics of the
linear Schrödinger equation in the L2-topology are slightly simplified. In particular,
using Lemma 3.2, we see that to prove scattering in L2, it suffices to show that
there exists unique W ∈ L2 such that

lim
t→∞

‖u(t)−M(t)D(t)W‖L2
x

= 0, (7.1)

where we recall the notation from (3.7). Indeed, then scattering in L2 holds with
u+ = F−1W .

To this end, we define the function w(t) via

u(t) := M(t)D(t)w(t) (7.2)

and endeavor to show that w has a limit in L2 as t→∞.
For this, we first note that as u solves (1.1), the function w solves the equation

(i∂t + 1
2t2 ∆)w = (2t)−

dp
2 |w|pw. (7.3)

We can also translate the result of the pseudoconformal energy estimate (Lemma 5.4)
into information about w, namely:

‖∇w(t)‖L2
x
. t1−

dp
4 and ‖w(t)‖Lp+2

x
. 1 for t ≥ 1. (7.4)

To see this, one can use (3.7) (for example). Note also that by conservation of mass,
w(t) is uniformly bounded in L2.

We first show that w(t) converges weakly in L2 as t→∞. By L2-boundedness,
it suffices to test against a Schwartz function ϕ (say). Using Hölder’s inequality,
integration by parts, (7.3), (7.4), and the condition p > 2

d , we estimate

|〈w(t)− w(s), ϕ〉| .
∫ t

s

τ−2|〈∆w(τ), ϕ〉|+ τ−
dp
2 |〈(|w|pw)(τ), ϕ〉| dτ

.
∫ t

s

τ−2‖∇w(τ)‖L2
x
‖∇ϕ‖L2

x
+ τ−

dp
2 ‖w(τ)‖p+1

Lp+2
x
‖ϕ‖Lp+2

x
dτ

.
∫ t

s

τ−1− dp4 + τ−
dp
2 dτ → 0 as s, t→∞.

In particular, there exists a unique W in L2 so that w(t) converges to W weakly in
L2 as t→∞.
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We now upgrade to strong convergence. To begin, we use weak convergence to
note

lim
t→∞
〈w(t)−W,w(t)−W 〉 = lim

t→∞
lim
s→∞
〈w(t)− w(s), w(t)〉.

We now estimate similarly to the above:

|〈w(t)− w(s), w(t)〉| .
∫ s

t

τ−2‖∇w(τ)‖L2
x
‖∇w(t)‖L2

x

+ τ−
dp
2 ‖w(τ)‖p+1

Lp+2
x
‖w(t)‖Lp+2

x
dτ

.
∫ t

s

τ−1− dp4 t1−
dp
4 + τ−

dp
2 dτ → 0 as s, t→∞.

In particular w(t)→W strongly in L2, which completes the proof. �

Remark 7.4. The original proof in [20] uses the pseudoconformal transformation,
which is not discussed in this note but is closely related to the transformation
u 7→ w in (7.2). The author has never been able to find a proof of Theorem 7.3
that proceeds directly by showing {e−it∆u(t)} has a strong limit in L2

x as t→∞.

One curious feature of the proof of Theorem 7.3 is that one does not rely on
critically-scaling global space-time bounds for the solutions. This is in contrast to
the ‘modern’ approach to scattering; see, for example, the proofs in Section 6.

In fact, it is a bit remarkable that one can address the full range p > 2
d , which

corresponds to sc > −d2 , in light of the fact that the lowest ‘regularity’ associated
with the space Σ is sc = −1. Of course, scattering is only shown to hold in the
L2-topology.

If one did have critical space-time bounds, one could expect scattering to hold
in the Σ topology (at least for sc > −1, i.e. p > 4

d+2 ). In fact, the pseudoconformal

energy estimate (Lemma 5.4) does imply some space-time bounds for the solution:

‖u(t)‖Lp+2
x
. t−

dp
2(p+2) =⇒ u ∈ LqtLp+2

x for all 2(p+2)
dp < q ≤ ∞.

(Strictly speaking, we use H1 bounds and the Gagliardo–Nirenberg inequality to
control the Lp+2-norm near t = 0.) Note that the scaling associated to these spaces
is given by

s(q, p+ 2) ∈ ( −dp2(p+2) ,
dp

2(p+2) ) for 2(p+2)
dp < q ≤ ∞,

where we recall the notation from (6.1). Thus, the pseudoconformal energy estimate
implies critical space-time bounds for the solution whenever

− dp
2(p+2) < sc = −( 2

p −
d
2 ), i.e. p > α(d) := 2−d+

√
d2+12d+4
2d .

The exponent α(d) is known as the Strauss exponent. As the preceding discussion
suggests, scattering in Σ holds above the exponent. In particular, we have the
following result due to Cazenave and Weissler [5].

Theorem 7.5 (Scattering in weighted spaces). Let d ≥ 3, α(d) < p < 4
d , and

µ = 1. Let u0 ∈ Σ and let u be the corresponding solution to (1.1) given by
Theorem 4.2. Then u scatters in Σ.
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Proof. We argue as in Proposition 6.2. By the discussion preceding the statement
of Theorem 7.5, the assumption p > α(d) and pseudoconformal energy estimate
(Lemma 5.4) imply the following critical space-time bounds for the solution u:

u ∈ LqtLp+2
x (R× Rd), q := 2p(p+2)

4−p(d−2) .

Arguing as in Proposition 6.2, we may find an admissible pair (a, b) and a dual
admissible pair (α, β) satisfying the scaling relations

1
α = p

q + 1
a ,

1
β = p

p+2 + 1
b . (7.5)

This only requires p ≤ q, which is equivalent to dp > 0. We now claim that

Ju, 〈∇〉u ∈ LatLbx(R× Rd),

where we recall J is as in (3.8). Indeed, the proof that 〈∇〉u ∈ LatLbx is exactly like
the proof of (6.3). The proof that Ju ∈ LatLbx will be similar, once we observe that
J essentially obeys a chain rule and that we can establish uniform bounds for Ju
in L2. We turn to the details.

First, to shorten formulas we introduce the notation

‖u‖X(I) = ‖u‖L∞t L2
x(I×Rd) + ‖u‖LatLbx(I×Rd).

Now fix ε > 0 and (noting q <∞) divide R into finitely many intervals I = [t0, t1]
such that

‖u‖p
LqtL

p+2
x (I×Rd)

< ε.

Using (3.9) and Strichartz estimates (Theorem 3.1), we first note

‖J(t)ei(t−t0)∆u(t0)‖X(I) . ‖J(t0)u(t0)‖L2
x
. (7.6)

For the nonlinearity, we use (3.9), the gauge-invariance of |u|pu, and (7.5) to
estimate

‖J(|u|pu)‖Lβx = ‖2it∇
(
|M(−t)u|pM(−t)u

)
‖Lβx . ‖u‖

p

Lp+2
x
‖Ju‖Lbx . (7.7)

Thus, using J(t)ei(t−s)∆ = ei(t−s)∆J(s), (7.6), Strichartz estimates (Theorem 3.1),
and (7.5), we can estimate

‖Ju‖X(I) . ‖J(t0)u(t0)‖L2
x

+ ‖J(|u|pu)‖Lαt Lβx(I×Rd)

. ‖J(t0)u(t0)‖L2
x

+ ‖u‖p
LqtL

p+2
x (I×Rd)

‖Ju‖LatLbx(I×Rd)

. ‖J(t0)u(t0)‖L2
x

+ ε‖Ju‖X(I).

Thus

‖Ju‖L∞t L2
x([t0,t1]×Rd) + ‖Ju‖LatLbx([t0,t1]×Rd) . ‖J(t0)u(t0)‖L2

x
.

Starting at t0 = 0, say, this allows us to deduce that

‖Ju‖LatLbx(I×Rd) . 1

uniformly on each interval. This implies Ju ∈ LatLbx(R× Rd).
We can now deduce scattering in Σ. Indeed, scattering in H1 follows as in the

proof of Proposition 6.2. For the weighted term, we estimate as above to find

‖xe−it∆u(t)− xe−is∆u(s)‖L2
x
. ‖J(|u|pu)‖Lαt Lβx((s,t)×Rd)

. ‖u‖LqtLp+2
x ((s,t)×Rd)‖Ju‖LatLbx((s,t)×Rd) → 0

as s, t→∞. �
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Remark 7.6. It is possible to prove scattering in Σ down to p > 4
d+2 for sufficiently

small initial data. In this case, one can use Strichartz estimates and a bootstrap
argument as in the preceding argument to prove control over a certain critically-
scaling Lorentz-space modified space-time norm, which in turn implies scattering.
The question of scattering in Σ below the Strauss exponent for arbitrary data is
still open.

7.2. The long-range case. We next turn to the case 0 < p ≤ 2
d and prove that

scattering in L2 only occurs for the trivial zero solution. As in the proof of The-
orem 7.3, key ingredients include the estimates for nonlinear solutions given by
the pseudoconformal energy estimate (Lemma 5.4) and the Fraunhofer formula
describing the asymptotics of the linear Schrödinger equation (Lemma 3.2).

The following result is due to Strauss and Barab [1], [21].

Theorem 7.7 (No L2-scattering in the long-range case). Let 0 < p ≤ 2
d and

µ = 1. Let u0 ∈ Σ and take u to be the corresponding global solution to (1.1) given
by Theorem 4.2. If u scatters in L2, then u ≡ 0.

Proof. Suppose u scatters to some function u+ in L2, i.e.

lim
t→∞

‖u(t)− eit∆u+‖L2
x

= 0. (7.8)

Suppose towards a contradiction that u0 6= 0. Note that

‖u0‖L2
x

= ‖u+‖L2
x
> 0.

Fix ε > 0. By density, we can find a Schwartz function φ such that

‖u+ − φ‖L2
x
< ε.

In particular, choosing ε sufficiently small, we can guarantee that φ 6= 0.
Using (7.8), we find that for T = T (ε) sufficiently large, we have

‖u(t)− eit∆φ‖L2
x
≤ 2ε for all t ≥ T. (7.9)

Set v(t) = eit∆φ; in particular v solves (i∂t + ∆)v = 0. Note that

sup
t≥T
|〈u(t), v(t)〉| ≤ 2‖u0‖2L2

x
, (7.10)

where 〈·, ·〉 denotes the L2 inner product.
Using (1.1), we can compute

i∂t〈u, v〉 =

∫
|u|puv̄ dx =

∫
|v|p+2 dx+

∫ (
|u|pu− |v|pv

)
v̄ dx.

for each t ≥ T . We will establish a lower bound for the first integral and an upper
bound for the second integral that will lead to a contradiction to (7.10).

To begin, we fix k > 0 and use Hölder’s inequality to deduce the lower bound(∫
|v(t)|p+2 dx

) 1
p+2

&

(∫
|x|≤kt

|v(t)|2 dx
) 1

2

t−
dp

2(p+2) .

We now note that as φ 6= 0, for k = k(φ) sufficiently large, we can guarantee that∫
|ξ|≤k

|φ̂(ξ)|2 dξ & 1,
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so that by the Fraunhofer formula (Lemma 3.2) and a change of variables, we can
choose T possibly even larger to guarantee that∫

|v(t)|p+2 dx & t−
dp
2 for all t ≥ T.

On the other hand, using Hölder’s inequality, the dispersive estimate (3.6), the
pseudoconformal energy estimate (Lemma 5.4), and (7.9), we have∣∣∣∣∫ (|u|pu− |v|pv)v̄ dx

∣∣∣∣ . ‖(up + vp)(u− v)v‖L1
x

. ‖u− v‖L2
x
(‖u‖p

Lp+2
x

+ ‖v‖p
Lp+2
x

)‖v‖
L

2(p+2)
2−p

x

. εt−
dp
2

for all t ≥ T .
In particular, choosing ε sufficiently small, we can combine the estimates above

to deduce

|〈u(t), v(t)〉 − 〈u(T ), v(T )〉| &
∫ t

T

τ−
dp
2 dτ

for all t ≥ T . However, as p ≤ 2
d , the integral on the right-hand diverges as t→∞;

this contradicts (7.10) and completes the proof. �

8. Modified scattering

It is an interesting question to describe the long-time asymptotics of solutions
to (1.1) in the long range case 0 < p ≤ 2

d . So far, the only results available are

in the borderline case p = 2
d in dimensions d ∈ {1, 2, 3}. In the special case p = 2

in d = 1, the equation is completely integrable and can be treated via inverse
scattering techniques, even for large data in the defocusing case [8]. Otherwise,
results are restricted to the small data regime. The restriction on dimension is easy
to explain: the critical regularity associated to p = 2

d is sc = −d2 , and the analysis

generally requires one to take |sc| derivatives of the nonlinearity |u| 2du. Thus, the
analysis breaks down if d

2 > 1 + 2
d , i.e. d > 3. (See, however, the recent work of

Cazenave and Naumkin [4].)
We focus on the particular case d = 1 and p = 2 for the sake of simplicity, but

the arguments generalize easily to d ∈ {2, 3}. We consider initial data in Σ; in
general, the sharpest results available consider initial data in the space Σγ defined
via the norm

‖f‖2Σγ = ‖〈∇〉γf‖2L2
x

+ ‖|x|γf‖L2
x

for γ > d
2 .

The original proof of Hayashi and Naumkin [11] is based on studying the dy-
namics of Fe−it∆u(t), which approximately solves an ODE. One can show that
solutions to the ODE remain bounded by using an appropriate integrating factor;
it is the presence of this integrating factor that leads to the modification to linear
asymptotics. To prove that the ODE accurately models the PDE requires good

bounds on the solution, including L∞x -bounds decaying like t−
d
2 . Note that this

rate matches that of solutions to the linear equation; cf. (3.5). One also proves
control over Ju in L2

x, showing in particular that this quantity grows like a very
small power of t. In the general case, one controls a power of J , namely Jγ for
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γ > d
2 ; note that the identities (3.9) suggest how to define powers of J . In prac-

tice, the requisite bounds are proven via a bootstrap argument, where a small data
assumption allows for the estimates to close.

We turn to the details. The following theorem is originally due to Hayashi and
Naumkin [11], but alternate proofs (ultimately of a similar spirit) have been given
by Kato and Pusateri [13], Lindblad and Soffer [16], and Ifrim and Tataru [12].
We give an alternate proof that employs the variables we used in the proof of
Theorem 7.3. While our proof is closest in spirit to [11], it is also related to the
proof in [12] (see Remark 8.3 below).

Theorem 8.1 (Modified scattering). Let d = 1, p = 2 and µ ∈ {±1}. Let u0 ∈ Σ,
and let u be the corresponding global solution to (1.1). If ‖u0‖Σ is sufficiently small,
then there exists W ∈ L∞ so that

lim
t→∞

‖u(t)−M(t)D(t)e−i
µ
2 |W |

2 log tW‖L∞x = 0,

where M(t) and D(t) are as in (3.7).

Remark 8.2. Comparing with Lemma 3.2, we see that there is only a modification
in the phase compared to linear scattering. We also note that the convergence also
holds in L2

x, which we leave as an exercise to the motivated reader.

Proof. Denote ε = ‖u0‖Σ and let δ > 0 to be determined below.
The proof is based off of a bootstrap argument controlling two norms of the

solution, namely,

‖u(t)‖X := sup
s∈[0,t]

{
‖u(s)‖L2

x
+〈s〉−δ‖J(s)u(s)‖L2

x

}
, ‖u(t)‖S := sup

s∈[0,t]

〈s〉 12 ‖u(s)‖L∞x ,

where J is as in (3.8). Note that by conservation of mass, the L2-component of
the X-norm is clearly under control. Furthermore, by local theory and the Sobolev
embedding L∞x ⊂ H1

x, one has

sup
t∈[0,1]

{
‖u(t)‖X + ‖u(t)‖S

}
. ε. (8.1)

Applying the ‘chain rule’ for J as in (7.7), we can estimate

‖Ju(t)‖L2
x
. ε+

∫ t

1

s‖u(s)‖2L∞x ‖Ju(s)‖L2
x

ds
s ,

and hence by Gronwall’s inequality, we can deduce

‖u(t)‖X . ε〈t〉C‖u(t)‖2S (8.2)

for some absolute constant C > 0 and for all t ≥ 1. This shows that control over
the S-norm gives control over the X-norm. To close a bootstrap argument, we will
prove a converse to this.

To this end, we proceed as in the proof of Theorem 7.3 and define w(t) via

u(t) = M(t)D(t)w(t),

which then solves

(i∂t + 1
2t2 ∆)w = µ

2t |w|
2w

and satisfies

‖∇w‖L2
x

= ‖Ju‖L2
x
, ‖w(t)‖L∞x ∼ t

1
2 ‖u(t)‖L∞x , ‖w(t)‖L2

x
= ‖u(t)‖L2

x
.
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We need to prove uniform bounds for w in L∞x for t ≥ 1. To this end, we will
perform a frequency decomposition of w. For the relevant background, see the
appendix.

We begin with the following frequency localized estimate, which is a consequence
of Bernstein estimates (Lemma A.1):

‖PNw(t)‖L∞x . N
− 1

2 ‖∇w(t)‖L2
x
. tδN−

1
2 ‖u(t)‖X for t ≥ 1. (8.3)

This (along with another application of Bernstein estimates) firstly implies that

‖w(t)‖L∞x . ‖P≤1w(t)‖L∞x +
∑
N>1

‖PNw(t)‖L∞x

. ‖w(t)‖L2
x

+ tδ‖u(t)‖X
∑
N>1

N−
1
2

. tδ‖u(t)‖X for t ≥ 1.

This bound will be convenient below, but it is not good enough on its own.
Let t ≥ 1. Using (8.3) above and summing over high frequencies, we first have

‖P>√tw(t)‖L∞x . t
− 1

4 +δ‖u(t)‖X .

We now consider the equation satisfied by

wlo(t) := P≤
√
tw(t).

Frequency projections commute with spatial derivatives (all Fourier multiplier op-
erators commute); however, since the projection is time-dependent, the time deriv-
ative may land on the projection. We find that wlo solves

i∂twlo − µ
2t |wlo|

2wlo = − 1
2t2 ∆wlo + 1

2t3/2
P̃√t∇w + µ

2t

[
P≤
√
t(|w|

2w)− |wlo|2wlo
]

= − 1
2t2 ∆wlo + 1

2t3/2
P̃√t∇w

+ µ
2t

[
−P>√t(|w|

2w) + |w|2w − |wlo|2wlo
]
,

where the Fourier multiplier of P̃1 is ϕ′, which is supported near |ξ| ∼ 1 (see the
appendix).

Now introduce the integrating factor

B(t) = exp
{
iµ

∫ t

1

|wlo(s)|2 dss
}

and define v(t) = B(t)wlo(t).

Then

i∂tv(t) = B(t)
{
− 1

2t2 ∆wlo+ 1
2t3/2

P̃√t∇w+ µ
2t

[
−P>√T (|w|2w)+ |w|2w−|wlo|2wlo

]
}.

We now estimate the right-hand side in L∞. Note that |B(t)| ≡ 1.
Using Bernstein estimates (Lemma A.1),

t−2‖∆wlo‖L∞x + t−
3
2 ‖P̃√t∇w‖L∞x . t

− 5
4 ‖∇w(t)‖L2 . t−

5
4 +δ‖u(t)‖X .

Next, arguing via Bernstein as above and using the chain rule, we have

‖P>√t(|w|
2w)‖L∞x . t

− 1
4 ‖∇(|w|2w)‖L2

x
. t−

1
4 ‖w‖2L∞x ‖∇w‖L2

x
. t−

1
4 +3δ‖u‖3X .

In the remaining term, there is always a copy of P>
√
tw (or its complex conjugate);

thus this term is controlled by

‖w‖2L∞x ‖P>
√
tw‖L∞x . t

− 1
4 +3δ‖u‖3X .
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Thus

‖w(t)‖L∞x . ‖w(1)‖L∞x + ‖P>√tw(t)‖L∞x +

∫ t

1

s−
5
4 +δ‖u(s)‖X + s−

5
4 +3δ‖u(s)‖3X ds

. ε+ t−
1
4 +δ‖u(t)‖X + t−

1
4 +3δ‖u(t)‖3X . (8.4)

Now recall that
t
1
2 ‖u(t)‖L∞x ∼ ‖w(t)‖L∞x .

Thus, choosing δ sufficiently small (say δ = 1
16 ) and ε sufficiently small, a continuity

argument using (8.2) and (8.4) now implies

sup
t∈[0,∞)

{
‖u(t)‖X + ‖u(t)‖S

}
. ε. (8.5)

Remark 8.3. The functions P≤
√
tw(t) are the same as the ‘wave-packets’ appearing

in [12].

With (8.5) in hand (along with the estimates proved above), we can now establish
the asymptotics. Recalling the notation and the estimates from above, we have

‖∂tv(t)‖L∞x . t
−1− 1

16 , ‖v‖L∞t,x . 1, ‖w(t)− wlo(t)‖L∞x . t
− 3

16 . (8.6)

Thus {v(t) : t ≥ 0} is Cauchy in L∞x as t → ∞, which implies that there exists
W0 ∈ L∞ so that

lim
t→∞

‖v(t)−W0‖L∞x = lim
t→∞

‖wlo(t)−B(t)−1W0‖L∞x ,

and hence
lim
t→∞

‖w(t)−B(t)−1W0‖L∞x = 0. (8.7)

In fact, we have quantitative rates of convergence as t→∞.
We now take a closer look at B(t)−1. We first recall |v| = |wlo|, and we define

Ψ(t) via ∫ t

1

|wlo(s)|2 ds2s =: 1
2 |v(t)|2 log t+ Ψ(t). (8.8)

We claim that {Ψ(t) : t ≥ 0} is Cauchy in L∞x as t→∞. In fact, a bit of rearranging
shows

Ψ(t)−Ψ(s) =

∫ t

s

(
|v(τ)|2 − |v(t)|2

)
dτ
2τ + 1

2

(
|v(s)|2 − |v(t)|2

)
log s,

and as (8.6) implies∣∣|v(t2)|2 − |v(t1)|2
∣∣ . t− 1

16
1 for t2 > t1 > 1,

the claim follows. In particular, there exists Φ ∈ L∞ so that

lim
t→∞

Ψ(t) = Φ.

This implies

lim
t→∞

‖B(t)−1W0 − e−i
µ
2 |W0|2 log t−iµ2 ΦW0‖L∞x = 0,

and hence continuing from (8.7), we finally deduce

lim
t→∞

‖u(t)−M(t)D(t)e−i
µ
2 |W0|2 log t−iµ2 ΦW0‖L∞x = 0.

The result now follows with W = e−i
µ
2 ΦW0. �

Exercise. Show that the convergence in Theorem 8.1 holds in L2
x, as well.
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Appendix A. A few technical results

We record here a few technical harmonic analysis results. We will need the
standard Littlewood–Paley projections PN , where N ∈ 2Z. These are defined as
Fourier multiplier operators PN = F−1ϕ( ξN )F , where ϕ is a smooth cutoff to an
annulus |ξ| ∼ 1. One can also define projections P≤N and P>N .

These operators are bounded on Sobolev spaces and obey the following standard
Bernstein estimates:

Lemma A.1. For 1 ≤ p ≤ q ≤ ∞ and f : Rd → C:

‖PNf‖Lpx . N
−s‖|∇|sPNf‖Lpx ,

‖PNf‖Lqx . N
d
p−

d
q ‖PNf‖Lpx .

The primary technical tool we will use in this section is the Littlewood–Paley
square function estimate.

Lemma A.2 (Square function estimate). For any 1 < r <∞,

‖f‖Lrx(Rd) ∼ ‖Sf‖Lrx(Rd), Sf(x) :=

(∑
N∈2Z

|PNf(x)|2
) 1

2

.

More generally, for 1 < r <∞ and s ∈ R,

‖|∇|sf‖Lrx(Rd) ∼
∥∥∥∥(∑

N

N2s|PNf(x)|2
) 1

2
∥∥∥∥
Lrx(Rd)

.

The following technical lemma helps deduce a suitable lower bound for the left-
hand side of the interaction Morawetz inequality (5.12). This lemma appears orig-
inally in the thesis of Visan [23]

Lemma A.3. The following estimate holds:

‖|∇|−( d−3
4 )f‖4L4

t,x
. ‖|∇|−( d−3

2 )|f |2‖2L2
t,x
.

Proof. As these operators correspond to convolution with positive kernels (cf. (5.15)
and (A.1)), it suffices to consider positive Schwartz functions f . The estimate will
follow from the pointwise inequality

|S(|∇|−( d−3
4 )f)(x)|2 .

(
|∇|−( d−3

2 )|f |2
)
(x).

We work at an individual frequency, writing

PN (|∇|−( d−3
4 )f)(x) =

∫
e−ix·ξ|ξ|−( d−3

4 )ϕ( ξN )f̂(ξ) dξ

=: N−( d−3
4 )

∫
e−ix·ξϕ̃( ξN )f̂(ξ) dξ.

Thus, we have

PN (|∇|−( d−3
4 )f)(x) ∼ N

3(d+1)
4

∫
f(x− y)F−1ϕ̃(Ny) dy.

Using the rapid decay of F−1ϕ̃, we can estimate

|PN (|∇|−( d−3
4 )f)(x)| . N

3(d+1)
4

∫
|y|.N−1

f(x− y) dy.
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Thus, by Cauchy–Schwarz,

|S(|∇|−( d−3
4 )f)(x)|2 .

∑
N

N
3(d+1)

2

∣∣∣∣∫
y|.N−1

f(x− y) dy

∣∣∣∣2
.
∑
N

N
d+3
2

∫
|y|.N−1

|f(x− y)|2 dy

.
∫
|y|−( d+3

2 )|f(x− y)|2 dy .
(
|∇|−

d−3
2 |f |2

)
(x),

where in the last step we use

F−1(|ξ|−( d−3
2 )) = c|x|−( d+3

2 ) for some c > 0, (A.1)

which (like (5.15)) we leave as an exercise to the reader. The result follows. �

The following interpolation lemma also plays a role in deducing useful bounds
in the interaction Morawetz inequality.

Lemma A.4. Let 1 < r, r1, r2 <∞, s1, s2 > 0, and θ ∈ (0, 1) satisfy

1
r = θ

r1
+ 1−θ

r2
, −s1θ + (1− θ)s2 = 0.

Then

‖f‖Lrx . ‖|∇|
−s1f‖θ

L
r1
x
‖|∇|s2f‖1−θ

L
r2
x
.

Proof. This follows, for example, by complex interpolation. However, we can also
give a direct proof using the square function estimate and Hölder’s inequality:
writing fN := PNf and using

|fN |2 = (N−2s1 |fN |2)θ(N2s2 |fN |2)1−θ,

we have

‖f‖Lrx ∼
∥∥∥∥(∑

N

(N−2s1 |fN |2)θ(N2s2 |fN |2)1−θ
) 1

2
∥∥∥∥
Lrx

.

∥∥∥∥(∑
N

N−2s1 |fN |2
) θ

2
(∑

N

N2s2 |fN |2
) 1−θ

2
∥∥∥∥
Lrx

.

∥∥∥∥(∑
N

N−2s1 |fN |2
) 1

2
∥∥∥∥θ
L
r1
x

∥∥∥∥(∑
N

N2s2 |fN |2
) 1

2
∥∥∥∥1−θ

L
r2
x

.

The result follows. �
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