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THRESHOLD FOR THE FOCUSING NLS
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Abstract. These notes were originally written to accompany a lecture
at Fuzhou University and Fujian Normal University in June, 2018.

We consider the focusing cubic nonlinear Schrödinger equation (NLS)
in three space dimensions. We discuss the problem of scattering below
the ground state threshold. We first discuss the original proof due to
Duyckaerts, Holmer, and Roudenko, which employed the concentration-
compactness approach to induction on energy. We then discuss recent
work of the author (joint with Dodson) giving simplified proofs of the
same result that avoid the use of concentration-compactness. Finally, we
discuss the analogous problem for the case of NLS with an inverse-square
potential.

1. Introduction

We study the focusing cubic nonlinear Schrödinger equation (NLS) in
three dimensions: {

i∂tu = −∆u− |u|2u,
u(0, x) = u0(x) ∈ H1(R3).

(1.1)

We will also consider the cubic NLS in the presence of an inverse-square
potential, which has the form

i∂tu = Lau− |u|2u, La = −∆ + a|x|−2. (1.2)

Using Strichartz estimates, one can show that this equation is locally
well-posed in H1. Furthermore, any solution that remains bounded in H1

extends to a global solution. For sufficiently small data, solutions scatter;
in particular, there exists u+ ∈ H1 such that

lim
t→∞
‖u(t)− eit∆u+‖H1 = 0,

where eit∆ = F−1e−it|ξ|
2F is the free Schrödinger group. More generally,

one can prove that a solution may be extended as long as its L5
t,x-norm

remains finite, and that a global solution with finite L5
t,x-norm on R × R3

scatters.
1
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The equation (1.1) enjoys several symmetries and corresponding conser-
vation laws. Among them are the mass, energy, and momentum, defined
via

M(u) =

∫
|u|2 dx,

E(u) =

∫
1
2 |∇u|

2 − 1
4 |u|

4 dx,

P (u) = 2 Im

∫
ū∇u dx.

The fact that solutions with H1 data have finite energy is a consequence
of the Gagliardo–Nirenberg inequality, which we write in its sharp form as
follows:

‖f‖4L4 ≤ C0‖f‖L2‖∇f‖3L2 for any f ∈ H1(R3). (1.3)

The equation (1.1) admits a global but nonscattering solution of the form
u(t, x) = eitQ(x), where Q (the ground state) is the unique, positive, radial,
decaying solution to

−∆Q+Q−Q3 = 0.

In fact, Q may be constructed as an optimizer of the Gagliardo–Nirenberg
inequality. As we will see, Q can be used to describe a threshold between
scattering and blowup behavior for solutions to (1.1). In particular, we will
discuss the following theorem. In the following, we define

K(u) = ‖u‖L2‖∇u‖L2 .

Theorem 1.1. Let M(u0)E(u0) < M(Q)E(Q). Let u be the corresponding
solution to (1.1).

• If K(u0) < K(Q), then u scatters.
• If K(u0) > K(Q), then u blows up in finite time.

We will focus primarily on the scattering result.

This theorem is due originally to Holmer and Roudenko in the radial case
and Duyckaerts, Holmer, and Roudenko in the non-radial case. We will first
discuss the proofs given by these authors, which involve the concentration-
compactness approach to induction on energy. We will then discuss new,
simplified proofs of these results, which is joint work with B. Dodson. In
particular, these proofs avoid the use of concentration-compactness entirely.
Finally, we will discuss an analogue of Theorem 1.1 for (7.1), which is joint
work with R. Killip, M. Visan, and J. Zheng.

The conditions in Theorem 1.1 may be pictured as follows:
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From the picture (and, more precisely, a continuity argument) we see
that sub-threshold solutions remain uniformly bounded in H1 and hence
are global.

2. Virial identity

The starting point for understanding Theorem 1.1 is the virial identity.
We suppose u is a solution to (1.1) and define

V (t) = 2 Im

∫
ū∇u · ∇a(x) dx = d

dt

∫
|u|2a(x) dx

for a weight a(x). If we let a(x) = |x|2, then a computation using (1.1) and
integration by parts yields

V ′(t) = 8‖∇u(t)‖2L2 − 6‖u(t)‖4L4 .

Roughly speaking, one expects that if V ′(t) > 0 then the solution will
scatter. For example, if we could show V ′(t) & ‖u(t)‖4L4 , then upon inte-
grating and using the fundamental theorem of calculus we would arrive at
the a priori estimate ∫∫

|u|4 dx dt . sup
t
|V (t)|.

Then (if supt |V (t)| were finite!) we could deduce global space-time bounds,
from which we may expect to prove scattering.
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This computation is connected to the ground state Q through the sharp
Gagliardo–Nirenberg inequality. In particular, one can show that if

M(u)E(u) < M(Q)E(Q) and K(u) < K(Q),

then V ′(t) > 0.

(Similarly, when K(u) > K(Q), we can prove V ′ < 0, which then implies
blowup in finite time. Indeed, the second derivative of the positive quantity∫
|u|2|x|2 dx is strictly negative.)

The problem with the computation above is that none of the quantities
are necessarily finite for data in H1; indeed, we do not necessarily have
xu0 ∈ L2. Even if we take this as an additional assumption, the quantity
V (t) will grow in time, and hence we will not arrive at any useful space-time
estimates.

The resolution of this issue is to use a truncated version of the |x|2 weight
and introduce a weight of the form a(x) = |x|2χR, in such a way that |x|2
becomes constant after |x| > R for some large R.

However, doing this introduces error terms into the virial computation
that must be controlled in order to arrive at a useful estimate. In particular,
one must be able to make terms like∫

|x|>R
|∇u(t, x)|2 dx

small by choosing R sufficiently large; the difficulty is that this must be done
uniformly in time. This is where the concentration-compactness approach
proves to be very useful. In particular, this strategy reduces the proof of
Theorem 1.1 to the preclusion of a special type of (sub-threshold) solution
that enjoys exactly the type of compactness properties that are useful in the
setting of localized virial computations. This is sometimes called the ‘Kenig–
Merle’ roadmap. Ultimately, the localized virial is used to contradict the
existence of such a solution, thus completing the proof of the main result.

3. Concentration compactness

Theorem 3.1 (Existence of minimal blowup solutions). Suppose Theo-
rem 1.1 fails. Then there exists Ec ∈ (0,M(Q)E(Q)) and a global solution
u to (1.1) satisfying:

• M(u) = 1, ‖∇u(0)‖L2 < K(Q), and E(u) = Ec,
• u blows up in both time directions:

‖u‖L5
t,x((−∞,0)×R3) = ‖u‖L5

t,x((0,∞)×R3) =∞,
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• there exists x : R→ R3 such that

{u(t, · − x(t)) : t ∈ R}

is pre-compact in H1(R3).

Remark 3.2. The quantity Ec in Theorem 3.1 is defined to be minimal
in the following sense: if M(u0)E(u0) < Ec and K(u0) < K(Q), then the
solution with initial data u0 is global and scatters.

With Theorem 3.1 in place, one can use a localized virial identity (and
the sub-threshold assumption) to reach a contradiction; basically, one shows
that the solution tends to zero in some averaged sense as t → ∞, which
cannot be the case for the solution at hand.

To carry out this argument, one needs to control terms like∫
|x|>R

|∇u(t, x)|2 dx

for R sufficiently large, uniformly in t.

In the radial case, one must have x(t) ≡ 0, and hence these terms can be
controlled by precompactness in H1.

In the non-radial case, one needs a further argument. In particular, ex-
ploiting the Galilei symmetry, one can define another blowup solution

ũ(t, x) = eixξ0−it|ξ0|
2
u(t, x− 2ξ0t), ξ0 = −2[M(u)]−1P (u).

Computing the mass/energy of ũ, one sees that if P (u) 6= 0, then ũ would
be a blowup solution strictly below u, contradicting minimality of Ec. Thus
one concludes that P (u) = 0. Using this and an argument involving the
‘truncated position’, one can deduce x(t) = o(t). This control over x(t) is
sufficient to run a localized virial argument.

To prove Theorem 3.1 requires concentration-compactness techniques.
Assuming Theorem 1.1 fails, we take a sequence of solutions un that asymp-
totically blow up their L5

t,x-norm (in both the past and future of some se-
quence tn). The key is then to show for such a sequence, we have that
{un(tn, x− xn)} converges along a subsequence in H1; indeed, the solution
u with the limit as its initial data satisfies the conclusions of Theorem 3.1.
To check the compactness, for example, one applies the same argument to
u(τn) for an arbitrary sequence τn.

We turn to the question of convergence. Normalizing tn to 0, we apply a
‘linear profile decomposition’ (adapted to theH1 → L5

t,x Strichartz estimate)
to the sequence of initial data un(0).
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Proposition 3.3 (Linear profile decomposition). Passing to a subsequence,
there exist J∗ ∈ {0, 1, 2 . . . ,∞}, non-zero profiles {φj}J∗j=1, and parameters

{(tjn, xjn)}J∗j=1 satisfying the following.

For each finite 0 ≤ J ≤ J∗, we have

fn =
J∑
j=1

φjn + rJn , where φjn(x) = e−it
j
n∆φj(x− xjn) and rJn ∈ H1.

The following decouplings hold for 0 ≤ J ≤ J∗:

lim
n→∞

[
‖fn‖2Ḣs −

J∑
j=1

‖φjn‖2Ḣs − ‖rJn‖2Ḣs

]
= 0, s ∈ {0, 1},

lim
n→∞

[
‖fn‖4L4 −

J∑
j=1

‖φjn‖4L4 − ‖rJn‖4L4

]
= 0.

The remainder satisfies (eit
j
n∆rJn)(x+ xJn) ⇀ 0 weakly in H1 and

lim
J→J∗

lim sup
n→∞

‖eit∆rJn‖L5
t,x(R×R3) = 0.

The parameters (tjn, x
j
n) are orthogonal in the sense that for j 6= k we have

lim
n→∞

(
|tjn − tkn|+ |xjn − xkn|

)
=∞. (3.1)

Furthermore, for each j we may assume that either tjn → ±∞ or tjn ≡ 0,

and either |xjn| → ∞ or xjn ≡ 0. If the fn are radial, then we have xn ≡ 0.

Briefly, the linear profile decomposition is proved by ‘removing one bubble
at a time’ until the Strichartz norm is depleted. The bubbles are found firstly
with a refined Strichartz estimate, which identifies a scale for concentration,
and then essentially Hölder’s inequality, which identifies a point in space-
time for concentration.

The decoupling statements and the sharp Gagliardo–Nirenberg inequality
imply that each profile must carry positive energy. To prove convergence,
one needs to show that in fact J∗ = 1, t1n ≡ 0, and r1

n → 0 in H1.

We will assume towards a contradiction that J∗ > 1. In particular, each
profile carries strictly less than the critical energy, and hence we can con-
struct a scattering nonlinear solution associated to each profile:

Lemma 3.4. Let φjn be as in Proposition 3.3. Suppose that M(φj)E(φj) <

Ec and K(φ) < K(Q) in the case tjn ≡ 0, and 1
2K(φ)2 < M(Q)E(Q) in

the case tjn → ±∞. Then there exists a global solution vjn to (1.1) with

vjn(0) = φjn satisfying ‖〈∇〉vjn‖S(R) . 1 for any Strichartz norm S.
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One just takes the solution with data φj and then incorporates the sym-
metries.

We now define

uJn(t) =

J∑
j=1

vjn(t) + eit∆rJn ,

Using orthogonality of the parameters, one can show that uJn is an approx-

imate solution to (1.1). Furthermore, because each vjn scatters, one can
also show that uJn satisfies good space-time bounds. Therefore, since uJn
agrees with un at time zero (by construction), we can apply stability theory
for (1.1) to deduce that the un obey good space-time bounds. This is a
contradiction!

We conclude that J∗ = 1, and another contradiction argument relying on
stability implies t1n ≡ 0. Finally, energy decoupling already implies rn → 0 in

Ḣ1, while the minimality of Ec (and another contradiction argument using
stability) guarantees rn → 0 in L2 as well.

Thus we conclude the sketch of the proof of Theorem 3.1.

4. New approach

Next, we discuss a new and simpler approach for proving Theorem 1.1.
In particular, this approach avoids the use of concentration-compactness
completely. This is joint work with B. Dodson.

Generally speaking, the strategy is as follows:

• Find a weaker scattering criterion.
• Prove refined versions of localized virial identities.
• Use localized virial identities to prove directly that the appropriate

scattering criterion holds.

Analogous to the original proof of Theorem 1.1, we first considered the
radial case and then extended the result to the non-radial case.

In the following, we will always assume that we have a global H1-bounded
subthreshold solution u to (1.1).

5. The radial case

The radial case is particularly simple due to the compactness afforded by
the radial Sobolev embedding.

We begin with a scattering criterion due to Tao.
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Proposition 5.1 (Scattering criterion, radial case). Suppose u is a global
radial solution satisfying

‖u‖L∞t H1
x
≤ E.

There exist ε(E) > 0 and R(E) > 0 so that if

lim inf
t→∞

∫
|x|≤R

|u(t, x)|2 dx ≤ ε,

then u scatters forward in time.

The proof of Proposition 5.1 is relatively simple. It is a perturbative
argument relying only on Strichartz estimates, the dispersive estimate, the
local form of mass conservation, and the radial Sobolev inequality.

We turn to a refined localized virial identity. Here we introduce

V (t) = 2 Im

∫
ū∇u · ∇a dx

as above, but instead of using a(x) = |x|2, we use a modified weight that
was originally introduced by Ogawa and Tsutsumi. It smoothly transitions
between |x|2 and the Morawetz weight |x|. In particular, we let

a(x) =

{
|x|2 |x| ≤ R/2
2R|x| |x| > R

for some large R to be determined, and we will in a in the remaining regions
so that it satisfies ∂ra, ∂

2
ra ≥ 0 and |∂αa| .α R|x|−|α|+1 for |α| ≥ 1.

With this choice of a, we have sup |V (t)| . R.

Computing the time derivative, we find that the main contribution to V ′

is given by ∫
|x|≤R/2

8|∇u|2 − 6|u|4 dx &
∫
|x|≤R/2

|u|4 dx,

provided we choose R = R(M(u)) sufficiently large.

This relies on the sharp Gagliardo–Nirenberg inequality and the sub-
threshold assumption, and integration by parts (one needs to show that
K(χRu(t)) < K(Q) for all t).

As for the error terms, either they have a good sign (because of the
presence of the Morawetz weight) or they are controlled by∫

|x|>R/2

R
|x| |u|

4 + R
|x|3 |u|

2 dx . R−2M(u)[1 + ‖u‖2L∞t H1
x
],

where we use the radial Sobolev embedding

‖xf‖L∞(R3) . ‖f‖H1(R3).

In particular, these are uniformly small provided R is chosen large enough.
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Applying the fundamental theorem of calculus, we arrive at the Morawetz
estimate

1
T

∫ T

0

∫
|x|≤R

|u(t, x)|4 dx dt . R
T + 1

R2 ,

which implies that there exist Rn, tn →∞ so that

lim
n→∞

∫
|x|≤Rn

|u(tn, x)|4 dx = 0.

By Hölder’s inequality, this implies mass evacuation and completes the proof.

6. The non-radial case

In the non-radial case, we will use the following scattering criterion.

Proposition 6.1 (Scattering criterion, non-radial case). Suppose u is a
global solution satisfying

‖u‖L∞t H1
x
≤ E.

There exists ε(E) and T0(E) such that the following holds: If

∀a ∈ R ∃t0 ∈ (a, a+ T0) : ‖u‖
L5
t,x([t0−T

1
3
0 ,t0]×R3)

≤ ε,

then u scatters forward in time.

In other words, if “on any sufficiently large window, there exists a suf-
ficiently large interval on which the norm is sufficiently small”, then the
solution scatters. It is not quite as catchy as “mass evacuation”, but it
works well for the non-radial case.

This result is also perturbative, relying only on dispersive and Strichartz
estimates.

To prove that the scattering criterion holds, we use an “interaction” ver-
sion of the virial/Morawetz hybrid used above. Essentially, we now use

V (t) =

∫∫
|u(y)|2∇a(x− y)2 Im ū∇u(x) dx dy,

that is, we center the old quantity at each y ∈ R3 and average against the
mass density. More precisely, we let χ = 1 for |x| < 1 − ε and χ = 0 for
|x| > 1 (for some small ε > 0, define

φ(x) = 1
R3

∫
R3

χ2(x−sR )χ2( sR) ds, ψ(x) = 1
|x|

∫ |x|
0

φ(r) dr,

and let ∇a(x−y) = ψ(x−y)(x−y). Then ψ is roughly constant for |x| ≤ R
and equals R|x|−1 for |x| > R, so that ∇a transitions from x to R x

|x| . In

particular, the weight is similar to the one used in the radial case.
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This time, the main contribution is given by∫
|χ(y−sR )u(y)|2{4|χ(x−sR )∇uξ(x)|2 − 3|χ(x−sR )u(x)|4} dx dy ds,

where uξ(x) = eixξu(x) is a boost of u (see below). This term can also
be shown to be coercive for R large enough (using the sharp Gagliardo–
Nirenberg inequality), with a lower bound of

c

∫
|χ(y−sR )u(y)|2|χ(x−sR )∇uξ(x)|2 dx dy ds.

In this case, computing the time derivative leads to terms at the Ḣ1 level,
which is potentially problematic if they need to regarded as error terms.
They combine to have the form∫

χ2(x−sR )χ2(y−sR ){|u(y)|2|∇u(x)|2 − Im[ū∇u](x) · Im[ū∇u](y)} dx dy,

which turns out to be Galilean invariant, i.e. invariant under u 7→ uξ for
any ξ. We choose

ξ = ξ(t, s, R) = −
∫
χ2(x−sR ) Im[ū∇u](x) dx∫
χ2(x−sR )|u(x)|2 dx

,

which removes the term ∫
χ2(x−sR ) Im[ū∇u](x) dx.

The other term appears as part of the main contribution!

The remaining error terms either have a good sign or can be handled
through a logarithmic averaging trick (due originally to the I-team).

As in the radial case, we average in time (over an interval of the form
(a, a+ T0)), as well as over R ∈ [R0, R0e

J ], which yields an estimate of the
form

1
R3

∫
|χ(y−sR )u(t1, y)|2|χ(x−sR )∇uξ1(t1, x)|2 dx dy ds� 1

for some t1 ∈ (a, a + T0) and some R; here ξ1 = ξ(t1, s, R). Splitting into
cubes and changing variables, we can reduce this to∑

z∈Z3

∫
|y−Rz|≤4R

|u(t1, y)|2 dy
∫
|x−Rz|≤4R

|∇uξ1(t1, x)|2 dx� 1. (∗)

We wish to estimate u in L5
t,x on an interval of the form (t1, t1 + T

1
3

0 ). It
is enough to estimate

uL(t) = ei(t−t1)∆u(t1).

The strategy is to split uL(t, x) =
∑

z v(z, t, x), where v(z, t, x) is localized to
|x−Rz| ≤ 4R. The estimate (*) is then essentially a ‘small data’ condition
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for v (roughly, it should control the Ḣ
1
2 -norm), which will allow us to prove

good bounds for v(z). Recombining (i.e. taking `5z-norms and using the
essentially non-overlapping decomposition of v) will yield good bounds for
uL.

Each v solves the equation

(i∂t + ∆)v(z) = 2∇uL · ∇[χR] + uL∆[χR].

So to estimate, we use the Duhamel formula and local smoothing estimates
for the inhomogeneous terms. To estimate the initial data term, we also
need to exploit Galilean invariance in order to to utilize (∗) appropriately.

A technical point: the small constant in (∗) should be thought of as
containing T−1

0 from the averaging in time. On the other hand, to control
the inhomogeneous terms we essentially have to give up the time integral;
thus it is important that we only need to estimate on an interval of length
T 1−

0 .

Collecting the above, we can control u in L5
t,x on a sufficiently long in-

terval, and hence the scattering criterion is satisfied and the theorem is
complete.

7. NLS with an inverse-square potential

We return now to the NLS with an inverse-square potential, i.e.

i∂tu = Lau− |u|2u, La = −∆ + a|x|−2. (7.1)

Here a > −1
4 , which guarantees positivity of La. This equation is also locally

well-posed in H1, with small-data scattering, and L5
t,x scattering criterion,

and global existence for solutions obeying uniform H1 bounds throughout
their lifespan. The proof of these facts is analogous to the free case, with
the key ingredients being (i) Strichartz estimates adapted to e−itLa and (ii)
a result concerning equivalence of Sobolev spaces (allowing for interchange
of (−∆)s and Lsa for suitable s and Lebesgue exponents).

The energy now takes the form

Ea(u) =

∫
1
2 |
√
Lau|2 − 1

4 |u|
4 dx = 1

2‖u‖
2
Ḣ1

a
− 1

4‖u‖
4
L4
x
,

and the relevant (sharp) Gagliardo–Nirenberg inequality has the form

‖f‖4L4 ≤ Ca‖f‖3Ḣ1
a
‖f‖L2 .

In this case, one finds that for −1
4 < a ≤ 0, there is an optimizer Qa

satisfying

LaQ+Q−Q3 = 0,
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while for a > 0 one has Ca = C0 but the sharp constant is never attained.
With this in mind, we define

Ea =

{
M(Q)Ea(Qa) a ≤ 0,

M(Q)E(Q) a = 0,

and

Ka(u) = ‖u‖L2‖u‖Ḣ1
a
, Ka =

{
Ka(Qa) a ≤ 0,

K(Q) a > 0
.

We can then prove the following analogue to Theorem 1.1:

Theorem 7.1. Let u0 ∈ H1 satisfy M(u0)Ea(u0) < Ea. Let u be the corre-
sponding solution to (7.1). If Ka(u0) < Ka, then u is global and scatters.

The proof follows the concentration compactness approach sketched in
Section 3. In particular, one uses a contradiction argument. Let us briefly
go through the main steps of the argument, outlining what changes in the
case of the inverse-square potential.

First, some additional technical difficulties arise in the linear profile de-
composition, related to the failure of broken translation symmetry. In par-
ticular, one needs to introduce the operators Lna satisfying

La[φ(x− xn)] = [Lnaφ](x− xn)

and then understand the sense in which these converge to some ‘limiting’
operator if xn → x0 or |xn| → ∞.

It is in the construction of the minimal blowup solution that the most
significant challenge arises. Specifically, the construction of nonlinear pro-

files (Lemma 3.4) in the case when |xjn| → ∞ poses a new problem, as one
cannot simply use the profile φj and then incorporate the space-translation.
Indeed, space-translation symmetry is broken for this equation. Instead, one

observes that in the regime |xjn| → ∞, the equation is well-approximated by
the NLS without potential. Thus, one can use a solution to the free NLS
(given by Theorem 1.1) to construct an approximate solution to (7.1) with
good space-time bounds; an application of stability theory then yields a true
solution (with good space-time bounds). This again requires understanding
the convergence of the operators Lna ; it also requires that the threshold for
(7.1) is strictly below that of the threshold for (1.1), which can be verified
directly by comparing the sharp constants in the corresponding Gagliardo–
Nirenberg inequalities.

This argument also shows that the minimal blowup solution constructed
must have x(t) ≡ 0 (indeed, in the profile decomposition we cannot have

|xjn| → ∞ for any profile, for otherwise the corresponding nonlinear profile
in the argument above is a scattering solution).
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It therefore remains to preclude a compact solution in H1. For this, we
again use the virial identity. As the virial identity is ultimately linked to
scaling, which is preserved in (7.1), we find that an analogous virial identity
holds for (7.1) without any new error terms arising from the potential. [This
is in contrast to other external potentials, for which one typically needs to
impose a ‘repulsive’ condition x · ∇V (x) ≤ 0.] In particular, we deduce the
same contradiction as before, by employing a localized virial argument and
compactness to deduce that the minimal blowup solution must be identically
zero, yielding a contradiction.
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