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We study the initial-value problem for defocusing nonlinear Schrédinger equations of the

form
(10 + A)u = |ulPu,

u(0) = wup.
Here u : R, x R? — C is a complex-valued function of time and space. We choose initial

data uo from the critical Sobolev space HS(R%), where s, := 4_

AL

We adapt techniques that were originally developed to treat the mass- and energy-critical
equations to the case of ‘non-conserved’ critical regularity. In particular, we follow the

minimal counterexample approach to the induction on energy technique of Bourgain.

For a range of (d, s.), we prove that any solution that remains bounded in the critical
Sobolev space H Je must exist globally in time, obey spacetime bounds, and scatter to a free
solution. In certain cases, the main result applies only to radial solutions. An equivalent
formulation of the main result is the statement that any solution that fails to scatter must

blow up its H*-norm.
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CHAPTER 1

Introduction

We study the initial-value problem for defocusing power-type nonlinear Schrodinger equa-
tions (NLS):

(10 + A)u = |ulPu,

u(0) = wup.

(1.1)

Here u : R; x R? — C is a complex-valued function of time and space and p > 0.

From a physical perspective, nonlinear Schrédinger equations serve as simple models for
a variety of wave-like behaviors, including light in nonlinear media [30, 60], Bose-Einstein
condensates [24], and even rogue water waves in the ocean [23, 27]. Mathematically, the sim-
ple structure of NLS makes it well-suited for rigorous analysis, while the variety of behaviors

exhibited by solutions makes it a good model for more general dispersive systems.

The equation (1.1) enjoys a scaling symmetry, namely
u(t, ) = A\YPu(N, ),

which defines an important notion of criticality for the equation. In particular, the only
homogeneous L2-based Sobolev space of initial data whose norm is left invariant by this
rescaling is H% (R?%), where the critical regularity is defined by s, := d/2 — 2/p. In this
thesis, we study the critical problem for NLS, that is, we choose ug € H(R?). (Choosing
uy € H*(R?) for s > s, results in the well-understood subcritical problem, while choosing

uy € H*(R?) for s < s, results in the famously intractable supercritical problem.)

We begin by discussing two special cases of NLS that have received the most attention in

the past, as they feature a conserved quantity at the level of the critical regularity. These are



the mass-critical NLS, which corresponds to choosing p = 4/d, and the energy-critical NLS,
which corresponds to choosing p = 4/(d — 2) (in dimensions d > 3). For the mass-critical
NLS, the critical regularity is s, = 0, and the conserved quantity is the mass, defined by
Mu(t)] := lu(t, z)|* dx.
R
For the energy-critical NLS, the critical regularity is s, = 1, and the conserved quantity is

the energy, defined by
Elu(t)] := /]Rd UVu(t,z)” + $|u(t, ) [P d.

Thanks to the work of many mathematicians over the last 10-15 years, it is now known
that for the defocusing mass- and energy-critical NLS, arbitrary data in the critical Sobolev
space lead to global solutions that obey spacetime bounds and scatter to free solutions.
The energy-critical case was handled first by Bourgain [3], Grillakis [26], and Tao [62] for
radial data, and subsequently by Colliander—Keel-Staffilani-Takaoka—Tao [15], Ryckman—
Visan [52], and Visan [68, 69] for arbitrary data. The mass-critical case was treated first by
Tao—Visan—Zhang [65], Killip—Visan-Zhang [44], and Killip-Tao—Visan [37] for radial data,
and subsequently by Dodson [18, 19, 20] for arbitrary data. Killip—Visan [43] and Visan [70]
have also revisited the energy-critical problem in light of new techniques developed to treat

the mass-critical NLS.

A key ingredient in the defocusing mass- and energy-critical cases is a certain degree a
priori control over solutions that follows from the conservation laws. In particular, one gets
uniform in time HjC—bounds. However, due to the critical nature of the problems, these
bounds alone are not enough even to deduce global existence (much less spacetime bounds
or scattering). A further significant difficulty then stems from the fact that none of the
known a priori monotonicity formulae (that is, Morawetz estimates) scale like the mass or
energy, and hence cannot be used directly. It was Bourgain’s induction on energy technique
that showed how one can ultimately move beyond this difficulty: by finding solutions that

concentrate on a characteristic length scale, one can ‘break’ the scaling symmetry of the



problem and hence bring the available estimates back into play, despite their non-critical
scaling. All subsequent techniques developed to treat NLS at critical regularity have built

upon this fundamental idea. We discuss some of these techniques in more detail below.

We next turn to the case of ‘non-conserved’ critical regularity, that is, s. ¢ {0,1}. In
this case, one loses the a priori control in the form of H;C-bounds. However, the success of
the techniques developed to treat the mass- and energy-critical problems suggests that in
fact, this should be the only missing ingredient for a proof of a global well-posedness and

scattering. We thus arrive at the following conjecture.

Conjecture 1.0.1 Let d > 1 and p > 0 such that s. := % —

%20. Let u: I x R* — C be
x R%).

a mazimal-lifespan solution to (1.1) such that u € L°H? (I x RY). Then u is global, obeys

spacetime bounds, and scatters to a free solution.

Conjecture 1.0.1 (in the case of non-conserved critical regularity) was first addressed by
Kenig-Merle [32]. They treated the cubic NLS in three dimensions, in which case s, =
1/2. Some cases of Conjecture 1.0.1 in the energy-supercritical regime (i.e. s. > 1) were
subsequently treated by Killip-Visan [40]. In particular, they dealt with the cubic NLS in
dimensions d > 5, as well as some other cases for which s, > 1 and d > 5. The author
has also addressed the energy-supercritical regime by treating the cases 1 < s, < 3/2 in
dimension d = 4 in collaboration with C. Miao and J. Zheng [48], as well as treating the

cases 1 < s. < 3/2 in dimension d = 3 for the case of radial solutions [51].

In this thesis, we present a range of cases of Conjecture 1.0.1 in the intercritical regime,

that is, 0 < s, < 1. The results presented appear originally in [49, 50, 51].

We first extend the result of Kenig-Merle [32] by treating the cases

N

. d> 4 (1.2)

Se =

As we will see, the Hi/ ®_critical problem is greatly simplified by the presence of a Morawetz
estimate with critical scaling, namely the Lin—Strauss Morawetz estimate. The results con-

cerning (1.2) appear originally in [50].



The second set of cases that we consider is the following:
sc€ (3,3 ifd=3,

1) ifde {4,5}.

(1.3)

N= D=

se € (
The results addressing these cases appear originally in [49]. As we will see below, the

restrictions on (d, s.) in (1.3) arise from the intersection of several issues, some of which are

technical, but some of which hint at deeper obstacles.

We also address the cases

se€(3,1), d=3, (1.4)

4
that is, the cases ‘missing’ from (1.3). In order to treat these cases, however, we will need

to restrict to the case of radial solutions. These cases appear originally in [51].

Finally, we will treat the cases

sce€(0,3), d=3. (1.5)

These cases also appear originally in [51]. They represent the first work on Conjecture 1.0.1
in the regime 0 < s, < 1/2. As for the previous cases, however, treating these cases will

require that we restrict to the radial setting.

Before proceeding to a more detailed discussion of our results, we pause here to mention
some related problems. For results concerning the focusing mass- and energy-critical NLS,
one can refer to [21, 31, 37, 39, 44]. These problems have also been studied via induction
on energy and the developments thereof. For these problems there is a sharp threshold
size for scattering, determined by so-called ground state solutions that arise from related
elliptic problems. We also note that the conjecture analogous to Conjecture 1.0.1 for the
nonlinear wave equation has also been studied. For results in this direction one can refer to

[4, 5, 6, 22, 33, 41, 42, 54, 55).

1.1 Discussion of main results

The main result of this thesis is the following.



Theorem 1.1.1 Let (d, s.) satisfy (1.2), (1.3), (1.4), or (1.5). Suppose u: I x RY — C is
a mazimal-lifespan solution to (1.1) such that u € L°H? (I x R%). In the case of (1.4) or

(1.5), assume in addition that u is radial. Then u is global and obeys the spacetime bounds

p(d+2)
| el do it < Ol (1.6
X

for some function C : [0,00) — [0,00). Furthermore, the solution u scatters, that is, there

exist uy € H(R?) such that

- _itA
i [u(t) = ¢"us]

H;c (le) - O
Standard arguments show that the scattering statement follows from the spacetime
bounds (1.6). Thus the proof of Theorem 1.1.1 primarily consists in establishing these

bounds.

Theorem 1.1.1 is a conditional result, as we do not know whether the assumed H-
bounds hold for all solutions. Unfortunately, proving such bounds still remains well beyond
the reach of existing technology (although numerical results at least support the belief that
such bounds do hold [16]). Nonetheless, Theorem 1.1.1 makes a definitive statement about
the possible dynamics for (1.1): solutions cannot fail to scatter without blowing up their

H3e-norm.

To prove Theorem 1.1.1, we will follow the concentration compactness (or ‘minimal coun-
terexample’) approach to induction on energy. Minimal counterexamples were introduced
over the course of several papers in the context of the mass-critical NLS [1, 2, 7, 34, 35, 47].
They were first used to establish a global well-posedness result by Kenig—Merle [31], who
developed the technique in the focusing energy-critical setting. Since then, the approach
has become one of the most powerful techniques available for treating critical problems in

dispersive PDE.

We can now give a brief outline the proof of Theorem 1.1.1. We argue by contradiction
and assume that Theorem 1.1.1 is false. As we can prove that global existence and spacetime
bounds for sufficiently small initial data (see Chapter 3), we deduce the existence of a thresh-

old size, below which the result holds but above which we can find (almost) counterexamples.



Using concentration compactness arguments, we can prove the existence of nonscattering so-
lutions living exactly at the threshold, that is, minimal counterexamples; furthermore, as
a consequence of their minimality, these solutions can be shown to possess a strong com-
pactness property, namely almost periodicity (see Chapter 4). To complete the proof of

Theorem 1.1.1, we then need to rule out the existence of such minimal counterexamples.

The best known tools available for carrying out this final step are certain a priori mono-
tonicity formulae that hold for solutions to defocusing NLS, referred to as Morawetz esti-
mates. In most cases, however, the available estimates do not have the critical scaling for
the problem and hence cannot be used directly. This is where compactness plays a key role:
minimal counterexamples can be shown to concentrate on some (possibly time-dependent)
length scale. In this sense, they break the scaling symmetry of the problem and hence
bring the available Morawetz estimates back into play. By making use of (possibly modi-
fied versions of) Morawetz estimates, we can ultimately rule out the existence of minimal

counterexamples and thereby complete the proof of Theorem 1.1.1 (see Chapters 5-9).

We now discuss in more detail the cases of Conjecture 1.0.1 that we address in this thesis.
As described in the outline above, there are two major steps for the proof of Theorem 1.1.1:

the reduction to almost periodic solutions, and the preclusion of almost periodic solutions.
Step 1: The reduction to almost periodic solutions.

For the first step, we begin with the following theorem.

Theorem 1.1.2 (The reduction to almost periodic solutions) If Theorem 1.1.1 fails,
then there exists a maximal-lifespan solution u : I x RY — C to (1.1) such that u is almost
periodic and blows up forward and backward in time. In the cases (1.4) and (1.5), the solution

u 18 radial.

For the precise definitions of ‘maximal-lifespan solution’ and ‘blowup’, see Chapter 3. We
will define ‘almost periodic’ and prove Theorem 1.1.2 in Chapter 4. In fact, we will prove

that if Theorem 1.1.1 fails, then there exist solutions with minimal L H-norm among all



blowup solutions. Minimal counterexamples can then be shown to possess the property of

almost periodicity.

The reduction to almost periodic solutions is now fairly standard in the field of nonlinear
dispersive PDE, especially in the setting of NLS. Keraani [35] originally established the
existence of minimal blowup solutions to NLS, while Kenig—Merle [32] were the first to use
them as a tool to prove global well-posedness. This technique has since been used in a variety
of settings and has proven to be extremely effective. One can refer to [28, 32, 37, 39, 40,
43, 44, 48, 49, 50, 65, 70] for some examples in the case of NLS. See also [38] for a good
introduction to the method. The general approach is well-understood; however, we will see
that to carry out this reduction in the cases we consider will require some new ideas and

careful analysis.

The proof of Theorem 1.1.2 requires three main ingredients: (i) a profile decomposition
for the linear Schrodinger propagator ¢, (ii) a stability result for the nonlinear equation,
and (iii) a decoupling statement for nonlinear profiles. The first profile decompositions
established for ¢2 were adapted to the mass- and energy-critical settings [1, 7, 34, 47]; the
case of non-conserved critical regularity was addressed in [53]. For the cases we consider in
this thesis, we will be able to import the profile decomposition that we need directly from

[53] (see Lemma 4.3.3).

Ingredients (ii) and (iii) are closely related, in that the decoupling must be established
in a space that is dictated by the stability result. Most often, stability results require errors
to be small in a space with the scaling-critical number of derivatives, that is, |V|%*. We will
prove such a result in Chapter 3 for the cases (1.3), (1.4), and (1.5). In [34], Keraani showed
how to establish the decoupling in such a space for the energy-critical problem (s. = 1).
The argument relies on pointwise estimates, and hence it is also applicable to the mass-
critical problem (s. = 0). However, for the case of non-conserved critical regularity (that is,

s. ¢ {0,1}) the nonlocal nature of |V

e prevents the direct use of this argument.

In some cases for which s. ¢ {0, 1}, it is nonetheless possible to adapt the arguments

of [34] in order to establish the decoupling in a space with s. derivatives. Kenig-Merle [32]



were able to succeed in the case (d, s.) = (3,1/2) (in which case the nonlinearity is cubic) by
exploiting the algebraic nature of the nonlinearity and making use of a paraproduct estimate.
Killip-Visan [40] handled some cases for which s. > 1 by utilizing a square function of
Strichartz [58] that shares estimates with |V|*. Their approach relies strongly on the fact
that s. > 1. The cases that we consider feature both fractional derivatives (0 < s, < 1) and

non-polynomial nonlinearities, and hence they present a new technical challenge.

In Chapter 4, we will present two approaches for establishing the necessary decoupling
statement. The first (appearing originally in [49]) allows us to adapt the arguments of [34] in
the presence of both fractional derivatives and non-polynomial nonlinearities. The approach
relies on a careful reworking of the proof of the fractional chain rule, in which the Littlewood—
Paley square function and other tools from harmonic analysis allow us to work at the level
of individual frequencies. As we will see, this approach requires that p > 1. We use this

approach to deal with cases (1.3), (1.4), and (1.5).

The second approach (appearing originally in [50]) is inspired by the work of Holmer—
Roudenko [28] on the focusing H}*-critical NLS in dimension d = 3. It relies on the
observation that for s. = 1/2, one can develop a stability theory that only requires errors to
be small in a space without derivatives. In Chapter 3 we will prove such a stability result
for the cases (1.2). To establish the decoupling in a space without derivatives, we can then
simply rely on pointwise estimates and apply the arguments of [34] directly. For the cases

(1.2), we thus avoid the technical issues related to fractional differentiation altogether.

After giving the proof of Theorem 1.1.2 in Chapter 4, we will carry out a few further
reductions to the class of solutions that we consider (see Theorems 4.5.1 through 4.5.4).
Thus the proof of Theorem 1.1.1 is reduced to ruling out the existence of solutions as in

Theorems 4.5.1 through 4.5.4.
Step 2: The preclusion of almost periodic solutions.

We now turn to the second step of the proof of Theorem 1.1.1. As alluded to above,

the best tools available for this step are monotonicity formulae that hold for defocusing NLS



known as Morawetz estimates. In this thesis, we will use versions of the Lin—Strauss Morawetz
(introduced originally in [46]) and the interaction Morawetz (introduced originally in [14]).
For a solution v : I x R — C to defocusing NLS in dimensions d > 3, the Lin-Strauss

Morawetz is given by

Ju(t, x)[P+?
//f wo AR V120l e 1 1 cmy (1.7)
X

while the interaction Morawetz reads

B / // [ult, ) PA() u(t, )| da dy di

S Hu”%?oLi(lde)|||V‘1/2U’H%§OL%(I><R‘1)‘ (1.8)

The estimate (1.7) has the scaling of H}?. The estimate (1.8) has the scaling of Y,
but requires control over both the L?-norm and the 7Y% norm. Because of the weight ﬁ,
the estimate (1.7) is well-suited for preventing concentration near the origin, and hence it
is most effective in the radial setting. The estimate (1.8), on the other hand, controls the
degree to which mass can interact with itself throughout all of R and hence it is useful
even in the non-radial setting. Roughly speaking, we use the interaction Morawetz if possible
and ‘retreat’ to the Lin—Strauss Morawetz otherwise. In these latter cases, we will only be
able to treat the case of radial solutions. The exception to this rule is the case (1.2), for
which s, = 1/2. In this case the Lin—Strauss Morawetz is the right tool to use, even in the

non-radial setting. Indeed, it has the critical scaling for the problem.

We employ the interaction Morawetz inequality for the cases (1.3). Note, however, that
we cannot use the estimate directly, as the solutions we consider need only belong to L;X’Hjc
and hence the right-hand side of (1.8) need not be finite. One solution to this issue, first
implemented by Colliander—Keel-Staffilani-Takaoka—Tao [15] in their pioneering work on the
energy-critical NLS, is to prove a frequency-localized version of (1.8). By now, this approach

has been adapted to many different settings [18, 19, 20, 21, 43, 48, 49, 52, 68, 69, 70].

As s. > 1/2 for the cases (1.3), we work with the high frequency component of solutions

to guarantee that the right-hand side of (1.8) is finite. To arrive at a useful estimate requires



that we control the error terms that arise in the standard interaction Morawetz after we
apply a frequency cutoff to a solution. For s, > 3/4 in dimension d = 3, we cannot control
one of the error terms unless we also impose a spatial truncation; this is the approach taken
in the energy-critical setting, for example [15, 43]. However, this spatial truncation results
in additional error terms that require control over the solution at the level of H!. Thus
in the energy-critical case one can therefore push the arguments through, while in the case

3/4 < s. < 1 we were unable to control the resulting error terms.

Thus for the cases 3/4 < s. < 1 in dimension d = 3 (that is, case (1.4)), we instead use
a frequency-localized Lin—Strauss Morawetz. As the scaling of the Lin—Strauss Morawetz is
closer to the critical scaling, it turns out to be easier to control the error terms that arise
from the frequency cutoff. Again we work with the high frequency component of solutions
to guarantee that the right-hand side of the estimate is finite. The drawback is that using

the Lin—Strauss Morawetz is only ‘strong’ enough to deal with radial solutions.

We also employ the Lin—Strauss Morawetz to deal with the cases 0 < s. < 1/2 in
dimension d = 3 (that is, case (1.5)). In this setting, we need to work with the low frequency
components to guarantee that the right-hand side of (1.7) is finite. Again, the use of the
Lin—Strauss Morawetz ultimately leads to the restriction to radial solutions for the cases
(1.5). It would be more difficult to prove a frequency-localized interaction Morawetz for
these cases, as one would need to truncate both the low and high frequencies in order to
control both the L2- and H;/ ®_norms of the solution. While this approach could ultimately

prove to be tractable, we did not pursue it here.
We now describe in some detail how we preclude the existence of almost periodic solutions.

Let us first discuss the simplest case, namely (1.2). This case, which we address in
Chapter 5, corresponds to s, = 1/2 in dimensions d > 4. We treat separately the cases of
finite- and infinite-time blowup. Using the conservation of mass, we find that finite-time
blowup solutions must have zero mass, which contradicts the fact that they blowup in the
first place. For infinite-time blowup, we use the critically-scaling Lin—Strauss Morawetz. On

one hand, the quantity appearing in (1.7) is bounded (as the solution is bounded in Y 2).

10



On the other hand, we can show that for almost periodic solutions this quantity diverges as

the time interval grows. Thus we get a contradiction in this case as well.

We now turn to the remaining cases, that is, (1.3), (1.4), and (1.5). Before proceeding, we
will need at least a heuristic description of almost periodicity. Leaving the exact definition
to Chapter 4, we can say that a solution v : I x R? — C is almost periodic if it concentrates
at each t € I around some spatial center x(t) and at some frequency scale N(t). The solution
thus concentrates at a spatial scale of N(¢)~!, and in order to belong to H2(R%) it should

d/2—sc

have amplitude ~ N () . With these heuristics in mind, we can use scaling arguments

to approximate the size of the quantities appearing in the Morawetz estimates. In particular,

t I ’p+2 3—2s¢
Qrs(u; I) drdt ~, [ N(t) dt,
IxRd |17’ I

at least if x(t) is small, and

Qrartes ) /// u(t, z)[* A( ) ult, y)|* dx dy dt ~ /N )34 g
Ré x R4

regardless of the behavior of x(t).

we expect that

We therefore expect the Lin-Strauss Morawetz to preclude the existence of almost pe-
riodic solutions for which [ N(¢)* ¢ dt = oo (and z(t) is is small), while the interaction
Morawetz should preclude almost periodic solutions for which [ N (#)*~*s dt = oo (regardless
of the behavior of z(t)). We refer to these solutions as quasi-solitons, and indeed, we will

use Morawetz estimates to rule out this type of solution.

Let us first consider the case (1.3), for which we will employ the interaction Morawetz.
We have already seen that we will need to prove a version of this estimate for the high
frequencies of a solution, say wu~ , which will introduce errors. By choosing N small enough,

we hope to capture ‘most’ of the solution and arrive at an estimate of the form

Quu(usni I) S usnllzpe rzllusn | o a2 + errors.

Note that by using Bernstein estimates (see Lemma 2.2.1), we can control the first term by

N1yt To bound the errors will require good control over the low frequencies, but

L°°ch
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it remains to see exactly what estimates we will need.

To this end, we make the scaling arguments described above precise and establish the

lower bound
Qrm(usn; I /N )34 dt

for N sufficiently small (see Proposition 4.2.2). Thus we see that if we can make the errors
above much smaller than [, N (t)3~%* dt, we will be able combine the upper and lower bounds

for Qrar(usn; ) to get an estimate of the form

/ N(t)3 % dt <, N5 4 g / N (t)3 5 dt.
I I

)3—43C

For 1 small, this implies an upper bound on [ (2 dt, and hence prevents the quasi-

soliton scenario.

The key to carrying out this argument in detail is to get control over the low frequencies
of almost periodic solutions in terms of the quantity [, N(t)* %5 dt. We prove just such an
estimate (Proposition 6.3.1) in Chapter 6, and in Chapter 8 we use it to control the error

terms that arise in the frequency-localized interaction Morawetz (Proposition 8.3.1).

Estimates such as Proposition 6.3.1 go by the name of long-time Strichartz estimates.
Such estimates first appeared in the work of Dodson [18] in the setting of the mass-critical
NLS. They have since appeared in the energy-critical setting [43, 70], the energy-supercritical
setting [48], and the intercritical setting [49, 51].

It remains to describe how we preclude the existence of almost periodic solutions for
which [ N(t)3 % dt < oo, which we refer to as frequency-cascades. This case, which we
treat in Chapter 7, turns out to be relatively simple: the long-time Strichartz estimates give
such good control over the low frequencies that we can show that frequency-cascades have

zero mass, contradicting the fact that they blow up.

Finally, we discuss the cases (1.4) and (1.5). The arguments to treat these cases are
analogous to the ones used for the case (1.3), except we use the Lin—Strauss Morawetz
inequality instead of the interaction Morawetz inequality, and hence the relevant quantity is

J; N(t)> %% dt. It turns out that we cannot prove the necessary lower bounds for Qs (u;I)
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unless we have control over z(t). Our solution to this issue is to restrict ourselves to the

radial setting, in which case z(t) = 0.

For the case (1.4), we once again need to work with usx in the Morawetz estimate.
We prove a long-time Strichartz estimate adapted to the Lin—Strauss Morawetz (Proposi-
tion 6.2.1) in Chapter 6. This estimate allows us to prove a frequency-localized Lin—Strauss
Morawetz (Proposition 8.2.1), which we use to rule out quasi-solitons in Chapter 9. We treat
the frequency-cascade scenario in Chapter 7; once again, in this case the long-time Strichartz
estimate gives such good control over the low frequencies that we can show the solutions

have zero mass, giving a contradiction.

For the case (1.5), we instead need to work with u<y in the Morawetz estimate. We
therefore prove a long-time Strichartz estimate adapted to the Lin—Strauss Morawetz for
the high frequencies of solutions (Proposition 6.1.1). This estimate allows us to prove a
frequency-localized Lin—Strauss Morawetz (Proposition 8.1.1), which we use to rule out quasi-
solitons in Chapter 9. We treat the frequency-cascade scenario in Chapter 7. This time, the
long-time Strichartz estimate gives such good control over the high frequencies that we can

show the solutions have zero energy, giving a contradiction.
The remainder of the thesis is organized as follows.

In Chapter 2, we collect notation and useful lemmas, including tools from harmonic

analysis and estimates related to the linear Schrodinger equation.

In Chapter 3, we develop the local theory for (1.1). This includes local well-posedness
results, as well as stability results that play an important role in the reduction to almost

periodic solutions.

In Chapter 4, we introduce the notion of almost periodic solutions. We collect some
standard results concerning such solutions and prove lower bounds for the quantities ap-
pearing in the Morawetz inequalities. We also carry out the proof of the reduction to almost
periodic solutions, as well as some further reductions. In the end, we see that to prove

Theorem 1.1.1 it suffices to rule out the existence of almost periodic solutions as in Theo-

13



rems 4.5.1 through 4.5.4.

In Chapter 5, we treat the Hy/?-critical case, that is, case (1.2). Specifically, we rule out

solutions as in Theorem 4.5.1.

In Chapter 6, we prove three long-time Strichartz estimates. The first is a long-time
Strichartz estimate adapted to the Lin—Strauss Morawetz for high frequencies, which we
use for case (1.5). The second is a long-time Strichartz estimate adapted to the Lin—Strauss
Morawetz for low frequencies, which we use for case (1.4). The third is a long-time Strichartz

estimate adapted to the interaction Morawetz, which we use for case (1.3).

In Chapter 7, we preclude the existence of frequency-cascades. We first rule out the
existence of almost periodic solutions as in Theorem 4.5.4 for which [° N(t)* 2% dt < oc.
We then rule out the existence of almost periodic solutions as in Theorem 4.5.3 for which
Ik Tmaz N(£)3=25 dt < 0. Finally, we rule out the existence of almost periodic solutions as in

Theorem 4.5.2 for which fo mer N (t)3 45 dt < oo.

In Chapter 8, we prove three frequency-localized Morawetz estimates. The first is a
frequency-localized Lin—Strauss Morawetz for the case (1.5); the second is a frequency-
localized Lin-Strauss Morawetz for the case (1.4); the third is a frequency-localized in-

teraction Morawetz for the case (1.3).

In Chapter 9, we preclude the existence of quasi-solitons. We first rule out the ex-
istence of almost periodic solutions as in Theorem 4.5.4 for which [ N(t)* % dt = oo.
We then rule out the existence of almost periodic solutions as in Theorem 4.5.3 for which
IN Tmaz N (#)3-25¢ t = 0. Finally, we rule out the existence of almost periodic solutions as in

Theorem 4.5.2 for which me“‘” N(t)3 45 dt = 00

14



CHAPTER 2

Notation and useful lemmas

In this chapter we set notation, collect some useful lemmas from harmonic analysis, and

describe some results pertaining to the linear Schrodinger equation.

2.1 Notation and basic estimates

For nonnegative quantities X and Y, we write X < Y to denote the inequality X < CY
for some constant C' > 0. If X <Y < X, we write X ~ Y. The dependence of implicit
constants on parameters will be indicated by subscripts, e.g. X <, Y denotes X < CY for
some C' = C(u). The dependence of constants on the ambient dimension d or the power of

the nonlinearity p will not be explicitly indicated.

We use the expression O(X) to denote a finite linear combination of terms that resemble

X up to Littlewood—Paley projections, maximal functions, and complex conjugation.

For a time interval I, we write L L" (I xR?) for the Banach space of functions u : I xR? —

1/q
wllapr (rxrey = (/Illu(t)Hq;dt) ,

with the usual adjustments when ¢ or r is infinity. We will at times use the abbreviations

C equipped with the norm

lullorr (ixray = [Jullpory and |Julpr@e) = [Jullz; = ||lull,. Given 1 < r < oo, we write 1 for

the solution to % + % =1.

Throughout we will denote the nonlinearity |u[Pu by F(u). We record here some basic

pointwise estimates related to the nonlinearity.
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First, we have the following basic pointwise estimates:

[+ ol = JulPu| S [P+ [o] [ul?,

[l + 02 = a2 — o2 | S ful [+ Jul ol
Next, we have the following estimate.

Lemma 2.1.1 Let 1 <p < 2. Then
[la+c” = lal” = b+ c|” + [o]" | < Ja—b] e[~ (2.1)

for all a,b,c € C.

Proof. Defining G(2) := |z + ¢[’ — |z|P, the fundamental theorem of calculus gives

LHS(2.1) = |(a — b) /1 b+ 0(a—1b))do + a—D) /1 Galb+ 0(a — b)) do].

Thus, to establish (2.1), it will suffice to establish
IG.(2)] +|G2(2)] < |efP~!  uniformly for z € C.
That is, we need to show
[z + e (z + ¢) = [Pz | S Jef™

uniformly in z. If ¢ = 0, this inequality is obvious. Otherwise, setting z = ¢ ( reduces the
problem to showing

[z +1P2(z+1) — |2 %2 S1 (2.2)

uniformly in z. For |z| < 1, we immediately get (2.2) from the triangle inequality. For

|z] > 1, we can use the fundamental theorem of calculus and the fact that p < 2 to see
‘ |z +1P72 (2 + 1) — ]z\p’2z| N

Thus, we see that (2.2) holds, which completes the proof of Lemma 2.1.1. |

16



2.2 Tools from harmonic analysis

We define the Fourier transform on R? by

~

7(6) = (2m)? / () da

~

The fractional differentation operators |V|* are then defined via |§|S\f(£) = |£]°f(€). The

corresponding homogeneous Sobolev norm is given by

[ul Hs(Rd) -= |||V|Sf||Lg(Rd)-

The standard Littlewood—Paley projection operators are defined as follows. Let ¢ be a
radial bump function supported on {|¢| < 11/10} and equal to one on {|¢| < 1}. For N € 2%,

we define

~

Pon () == Fen(€) = o(¢/N)F(€).

Pon () == on(€) == (1— @(§/N))F (),

Pyf(&) = fn(&) = (2(&/N) — p(&/2N) F(©).
We also define

PM<-§N::P§N_P§M: Z PK
M<K<N
for M < N. Throughout the thesis all such summations should be understood to be over

K € 2%

The Littlewood—Paley projection operators are Fourier multiplier operators, and hence

A

they commute with the free Schrodinger propagator €2, as well as differential operators

such as (i0; + A) and |V/|*. They also obey the following standard estimates.

Lemma 2.2.1 (Bernstein estimates) For 1 <r < g < oo and s > 0,

IV =Py fll e ey ~ N5 P fl 1 ey,
IIVI*P<n fllrmay S N Pen fll r (re),
PN fllp ey S NMVIEPon £l ey

d_d
| P<nfllzamaey S N7~ || Pan fllop maey-
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Lemma 2.2.2 (Littlewood—Paley square function estimates) For 1 < r < oo,

1/2
IO 1PvF@) ) gy ~ 11 eay.
S 12 S
1O N i (@) P) Pl s ey ~ NIV fllipgay for s > —d,
S 12 S
1SS N2 fon(@)P) Ny @y ~ IV fllip@a) for s > 0.

Next we record some fractional calculus estimates that appear originally in [10]. For a

textbook treatment, one can refer to [61].

Lemma 2.2.3 (Fractional product rule [10]) Lets > 0 and let 1 < r,rj,q; < 00 satisfy
111 forj=1,2. Then
Tj qj

r

VP ey SN e IVEglza + NVE Flle 9]l 2oz

Lemma 2.2.4 (Fractional chain rule [10]) Let G € C'(C) and s € (0,1]. Let 1 <

r,ry <00 and 1 < r; < oo be such that%:%—l—é. Then

VPG S NG @ IVl -
We will also make use of the following refinement of the fractional chain rule from [42].

Lemma 2.2.5 (Derivatives of differences [42]) Let p > 1 and 0 < s < 1. Then for

1 1 —1
1 <r,ry,ry < oo such that;:a+l’2

—, we have

IVl + o = Julllle S NV Fullr 012+ 1Vl e+ o]l

Next, we prove a paraproduct estimate in the spirit of [70, Lemma 2.3]. (See also [48,

49, 51, 52, 68, 69].)

Lemma 2.2.6 (Paraproduct estimate) Letd > 1, 1 <r <1 < oo, 1 <1y < 00, and

0<s<l1 satisfy%+%=%+§<l. Then
VI D gy S NVl @l VIl L2 @a)-
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Proof. We will prove the equivalent estimate

VI AVEAVIED S [l D9l

by decomposing the left-hand side into low-high and high-low frequency interactions. We

introduce the projections 7, and 7y, which are defined for any pair of functions ¢, 1 by

mn(p, ) = > onty and  mu(6,0) = Y dnthr.

N<M N>M

We first consider the low-high interactions. By Sobolev embedding, we have

VI mn((VEL VIO S lmn (VL IV (2:3)

> 1. We now note that

where we note that the constraint 1 -+ % < 1 guarantees that 3 +Ts

the multiplier of the operator given by

T(f,9) == mn(IVF£IV[g), thatis, Y [&]*fv(€)|&l (&),

NSM
is a symbol of order zero with £ = (£, &). Thus, continuing from (2.3), we can use a theorem

of Coifman—Meyer [11, 13] to conclude
VI mn (VL IVT O S Wl gl -

We next consider the high-low interactions. We note that the multiplier of the operator

given by

S(f,h) = V| ma(|VIf.), thatis, > &+ & (&) har(€)e,

N>M
is also symbol of order zero. Thus we can use the result cited above together with Sobolev

embedding to estimate

IV T (VL IV S LA Vgl e S 1 gl

Combining the low-high and high-low interactions completes the proof of Lemma 2.2.6. |}
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We next recall Hardy’s inequality.

Lemma 2.2.7 (Hardy’s inequality) For 0 <s<d and1<r <d/s,
I ez S NV Fllgge-

Using Hardy’s inequality and interpolation, we can also derive the following estimate for
g y q y p

0<s<1:

VP (=grwllzz S IVPull 2 (2:4)

lz—yl
uniformly for y € RY.
We will also make use of the Hardy—Littlewood maximal function, which we denote by

M. Along with the standard maximal function estimate (i.e. the fact that M is bounded on

L7 for 1 <r < o0), we will use the fact that
IVM(P)lley S IV Sl (2.5)

for 1 < r < oo (see [36], for example). Finally, we will need the following inequalities in the

spirit of [61, §2.3].

Lemma 2.2.8 Let ¢ denote the convolution kernel of the Littlewood—Paley projection P;.
Define §,f(x) := f(x —y) — f(z). Fory € R? and N € 2%, we have

Joa N (N[ f (= y)l dy S M(f) (=), (2.6)
10y fn ()] S Ny[{M(fn)(x) + M(fx)(x —y)}, (2.7)
Jea Nyl [ (Ny)| dy S - (2.8)

Proof. We begin with (2.6). Note first that

n = N (Ny)|

is a spherically-symmetric, decreasing function of radius; thus, we can write

n(y) = / T B0 () (= (1)) dr,
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where 7' := %. We can then use the definition of the Hardy-Littlewood maximal function

and integrate by parts to estimate
s 5 [ ([ 1= aldy) (o i
< ([ worrar) men
S0 M()(a).

For (2.7), we begin by defining 1y(§) = 1(28) + (&) +1(£/2), the ‘fattened’ Littlewood—

Paley multiplier. Then we can write
16, fn (@) = | [IN%o(N (2 = y)) = N%o(N2)] (@ — 2) dz]. (2.9)
If N|y| > 1, we can use the triangle inequality and argue as above to see that
|0y fv (@) < M(fn)(x —y) + M(fn)(2),

giving (2.7) in this case. If instead Nl|y| < 1, we can use the fact that 1)y is Schwartz to

estimate

[Yo(N (2 = y)) = do(N2)| S Nlyl(1 + N|z|)~'*"

Then continuing from (2.9) and once again arguing as for (2.6), we find

[0y Sn ()] S Nly[M(fx) (),

which gives (2.7) in this case.

Finally, we note that since ¢ is Schwartz, we have

/deINyI [Y(Ny)|dy < 1,
R

which immediately gives (2.8). |}

2.3 Strichartz estimates

In this section, we record some estimates related to the linear Schrodinger equation.
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We denote the free Schrodinger propagator by e®*®. This operator is defined via the

Fourier transform: eﬁA\f(é) = =P £(€). The function v(t,z) = (" f)(z) solves the free
Schrodinger equation (i0; + A)v = 0 with v(0) = f.
The definition of e** and Plancherel’s theorem immediately imply that
1™ Fllzz = 1 £l

for all . On the other hand, we have an explicit formula for e®*, namely

(¢ f] () = (4mit) =" / el (y)dy  for t £0,

R4

which implies the dispersive estimate

€72 fll roo ey S 172 fllprmey  for t # 0.
Interpolating between the two estimates for e yields
" fllzz @y < 175 DIy ey (2.10)
for t # 0 and 2 < r < oco. This estimate can be used to prove the standard Strichartz

estimates, which we state below. First we need the following definition.

Definition 2.3.1 (Strichartz spaces) Let d > 3. We call a pair of exponents (q,r)
Schrodinger admissible if

2 d d
—+—-—== and 2<gq,r <.
q T 2

For an interval I and s > 0, we define the Strichartz norm by

|| gs(r) 1= SUp {|||V|Su||Lng(Ide) : (q,7) Schrédinger admissible}.

We define the Strichartz space SS(I) to be the closure of the test functions under this norm,
and denote the dual of S*(I) by N°(I). We note

£

Ns(I) SJ ”|V|SF||L;1/L2’(IXRd)

for any Schrddinger admissible (q,r).
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We can now state the standard Strichartz estimates in the form that we will need them.

Lemma 2.3.2 (Strichartz estimates) Let d > 3 and s > 0 and let I be a time interval.

Letu: I x R — C be a solution to the forced Schridinger equation

Then
ullgs(ry < Nulto)ll gsmay + 1E M| xes )

for any ty € I.

As mentioned above, the key ingredient in the proof of Lemma 2.3.2 is (2.10). For the

endpoint (¢,7) = (2, 2%), see [29]. For the non-endpoint cases, see [25, 59).

The free propagator also obeys some local smoothing estimates (see [17, 56, 67] for the
original results). We will make use of the following result, which appears in [38, Proposi-

tion 4.14].

Lemma 2.3.3 (Local smoothing) For any f € L3(R%) and any ¢ > 0,
L 2 —1—¢
S ivies @ ey ddt S 11
RxRd

Finally, we record a bilinear Strichartz estimate. The following lemma can be deduced

from [38, Corollary 4.19].

Lemma 2.3.4 (Bilinear Strichartz) Let 0 < s. < %. For any interval I and any fre-

quencies M, N > 0, we have

d—

g a1
lucnrvsnlrz, (xray S M 2 N2 ||[V[*u

|S*(I) ||U>N||S*(I)a
where

[l s=(ry = llull oo r2 (1 xmay + [[(30; + A)u]] 20042) :
L, &t (IxRY)
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CHAPTER 3

Local well-posedness and stability

In this chapter, we will develop the local theory for (1.1). For a more general introduction,
one can refer to the textbooks [9, 63]. See also [38], which emphasizes critical problems and

includes detailed discussions of issues related to stability.

3.1 Local well-posedness

In this section we describe standard local well-posedness results for (1.1). We begin by

making the notion of solution precise.

Definition 3.1.1 (Solution) A function v : I x R — C on a non-empty time interval
I 30 is a solution to (1.1) if it belongs to C;H* (K x R%) N Lf,(;”z)/Q(K x RY) for every

compact K C I and obeys the Duhamel formula
u(t) = ey — z'/ e =R (|ulPu)(s) ds
0

for all t € I. We call I the lifespan of u; we say u is a maximal-lifespan solution if it cannot

be extended to any strictly larger interval. If I = R, we say u is global.

Definition 3.1.2 (Scattering size and blowup) We define the scattering size of a solu-

tion u: I x R — C to (1.1) by

Sp(u) = /1 [ Tt 2)| "5 da dt. (3.1)
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If there exists ¢y € I so that Sp, cupr)(u) = 0o, then we say u blows up (forward in time).

If there exists tg € I so that S(ins14,)(u) = 00, then we say u blows up (backward in time).

We now state the main local well-posedness result that we will need.

Theorem 3.1.3 (Local well-posedness) Let (d,s.) satisfy (1.2), (1.3), (1.4), or (1.5).
For any uy € Hg‘zC(Rd), there exists a unique mazimal-lifespan solution v : I x R — C to

(1.1). Moreover, this solution satisfies the following:
e (Local existence) I is an open neighborhood of 0.

e (Blowup criterion) If sup I is finite, then u blows up forward in time. If inf I is finite,

then u blows up backward in time.

e (Scattering) If sup I = 400 and u does not blow up forward in time, then u scatters

forward in time; that is, there exists a unique u, € H*(R%) such that

lim |lu(t) — eitAu+HH;c(Rd) = 0. (3.2)

t—00
Conversely, for any uy € H®(RY), there is a unique solution u to (1.1) so that (3.2) holds.

The analogous statements hold backward in time.

e (Small-data global existence) There exists ng = no(d, p) such that if

[uoll 720 may < 10,

p(d+2)/2
e (RY) °

then w is global and scatters, with Sg(u) < ||uol|
We will establish this theorem as a corollary of a local well-posedness result of Cazenave—-
Weissler [8] (Theorem 3.1.4) and a stability result (Theorem 3.2.2 or Theorem 3.3.5). The

stability results will also play a key role in the reduction to almost periodic solutions in

Chapter 4.

For the following local well-posedness result, one must assume that the initial data belongs
to the inhomogeneous Sobolev space H2(R?). This assumption serves to simplify the proof
(allowing for a contraction mapping argument in a norm without derivatives); we can remove

it a posteriori by using the stability results we prove below.
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Theorem 3.1.4 (Standard local well-posedness [8]) Let d > 1, 0 < s. < 1, and uy €
H:(RY). If I 50 is an interval such that

IV

¢ SItA
See! UOH 22dd(g+22l (33)
L€+2Lz( —2)+ p(IXRd)

is sufficiently small, then there exists a unique solution u: I x RT — C to (1.1).

Remark 3.1.5 By Strichartz, we have

IV

Sceimuo H 2d(p+2) 5 H ’V‘SCUU HLz (R4)-
Lp+2p 208 (1 pay ¢

Thus for small enough data, the quantity appearing in (3.3) will be sufficiently small with
I = R. One can also guarantee that the quantity appearing in (3.3) is sufficiently small by

by taking |I| small enough (cf. monotone convergence).

We now turn to the stability results. We will prove two versions of stability. The
first, which will apply to the cases (1.3), (1.4), and (1.5), follows an approach that is fairly
standard. The second, which will apply to (1.2), is a more refined result that only requires
errors to be small in spaces that do not contain any derivatives. We model our presentation

of these results after [38].

3.2 Stability for the cases (1.3), (1.4), and (1.5)

In this section we prove a stability result for (d, s.) satisfying (1.3), (1.4), or (1.5). In all of
these cases, we have p > 1. As we will see, this assumption allows for a very simple stability
theory. On the other hand, when p < 1, developing a stability theory can become quite
delicate. For a discussion in the energy-critical case, see [38, Section 3.4] and the references
cited therein. See also [40] for a stability theory in the energy-supercritical regime, as well

as [45] for a stability theory in the intercritical regime in high dimensions.
The results of this section appear originally in [49].

We begin with the following lemma.
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Lemma 3.2.1 (Short-time perturbations) Fiz (d,s.) satisfying (1.3), (1.4), or (1.5).

Let I be a compact interval and @ : I x R* — C a solution to
(10, + A)a = F(a) + e
for some function e. Assume that
||ﬂ||L§°H;c(1de) < FE. (3.4)

Let to € I and ug € H(R?). Then there exist €9, § > 0 (depending on E) such that for all

0<e<eg, if
1|V]a p(dp2) _2dp(d+2) <9, (3.5)
L, 2 LEPT2—8 1y Ra)
ity = (to) | e oy < (36)
1IVI*ell yory <, (3.7)

then there exists u: I x R? — C solving (i0; + A)u = F(u) with u(ty) = ug satisfying

IVP(u = a)llgoy S e (3-8)
IV I*<ullgoy < E, (3.9)
Ve (ulPu = |al" )l gorry < e (3.10)

Proof. We prove the lemma under the additional hypothesis uq € L2(R?); this allows us
(by Theorem 3.1.4) to find a solution u, so that we are left to prove all of the estimates as a
priori estimates. Once the lemma is proven, we can use approximation by H3(R¢) functions

(along with the lemma itself) to see that the lemma holds for uy € H3(R%).

Define w = u — @, so that (i0; + A)w = |ulPu — |@|Pa — e. Without loss of generality,

assume to = inf I, and define

A@) = [I[VPe(lulPu = alPa) | yoq

to,t))
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We first note that by Duhamel, Strichartz, (3.6), and (3.7), we get

[V IPewll gogro.0))
S VPew(to) |z ey + VI ([ulPu = |@P@) | yogr o) + 1TV I*€ll 5o

Se+ A, (3.11)

Using this fact, together with Lemma 2.2.5, (3.5), and Sobolev embedding, we can estimate

(with all spacetime norms over [tg,t) x R?)

A(t) S NIVP(la +wP(a+ w) = |alPa)ll paz 2o

Zpr6dn—8
Lt2(p+l)L;i p+6dp—8

< VSC~ p
N||| | uHLf(d;z)ng‘ﬁme”Lp(dg-z)

t,x

+Iv

SCwHLP(dH) Zandtd) % + wl? pldt2)

. 2 &t dp—8 L

t,x

SOle4+ AP + [+ A)][6P + (e + At))P].

Thus, recalling p > 1 and choosing 9, € sufficiently small, we conclude A(t) < e forallt € [,
which gives (3.10). Combining (3.10) with (3.11), we also get (3.8). Finally, we can prove
(3.9) as follows: by Strichartz, (3.8), (3.4), (3.7), (3.5), the fractional chain rule, and Sobolev

embedding,

Scu

IV

[0y S NV (u = @)l g0y + NIV I @l g0
S e VI attollz @ + IVIP(al @) gory + 1VI*ellxo

Se+ E4||Vea| g 2 [
L

. Lgl:i p+2dp—8 (IXRd) Lt,z2 (IXRd)

S E4e+ortt

SE

for € and ¢ sufficiently small depending on F. |

With Lemma 3.2.1 established, we now turn to

28



Theorem 3.2.2 (Stability) Fiz (d,s.) satisfying (1.3), (1.4), or (1.5). Let I be a compact

time interval and @ : I x R* — C a solution to
for some function e. Assume that

||ﬂ||Lg°H;C(1de) < E, (3.12)

Sp(i) < L. (3.13)
Let to € I and ug € H3*(R?%). Then there exists e1 = e,(E, L) such that if

luo — @(to) || gz (may < €, (3.14)

Vel jory <€ (3.15)

for some 0 < & < 1, then there exists a solution u : I x R? — C to (i0; + A)u = F(u) with

u(to) = wg satisfying

IV

“(u = @)l|goq < C(B, L), (3.16)

IIV*“ullgo(y < C(E, L). (3.17)

Proof. Once again, we may assume ty = inf /. To begin, we let n > 0 be a small parameter
to be determined shortly. By (3.13), we may subdivide [/ into (finitely many, depending on
n and L) intervals Jy, = [tg, tx+1) so that

] B T

for each k. Then by Strichartz, (3.12), (3.15), and the fractional chain rule, we have

IVI*allgocs) S IV

*“a(ty)|| ey + 1|V

sc<

S E+ VIl goplal” pie +e
L2 (JkxR9)

@)l oy + VIl yog)

S E+e+n”l[|VIFal go ).
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Thus for ¢ < E and 7 sufficiently small, we find
IVI<tllgoesy S E-
Adding these bounds, we find
V>t g0y < C(E, L). (3.18)

Now, we take 0 > 0 as in Lemma 3.2.1 and subdivide [ into finitely many, say Jy =

Jo(C(E,L),9) intervals I; = [t;,t;4+1) so that

sefy

1Y

’ pldi2) _2dp(d+2) <9

L, 2 LIPS (1 Ry

for each j. We now wish to proceed inductively. We may apply Lemma 3.2.1 on each [j,

provided we can guarantee

[u(ts) = a(t)) | gze ey < € (3.19)

for some 0 < € < gy and each j (where ¢y is as in Lemma 3.2.1). In the event that (3.19)

holds for some j, applying Lemma 3.2.1 on [; = [t;,t,41) gives

191 (= @) g0y < L), (3.20)
V[l g0y < CGE, (3.21)
IV (uPe = aP) o) < COe (3.22)

Now, we first note that (3.19) holds for j = 0, provided we take £; < g9. Next, assuming
that (3.19) holds for 0 < k < j — 1, we can use Strichartz, (3.14), (3.15), and the inductive

hypothesis (3.22) to estimate

[ulty) — w(t))l e ray

S llulto) — a(to)]
Se+ JX_: Ck)e+e

k=0

irze ey T IV (ulPu = 1@lP@) [ o sy 1,0+ V1€l 5o (ir0,1,)

< €0,

provided e; = &1(eq, Jy) is taken sufficiently small. Thus, by induction, we get (3.20) and
(3.21) on each I;. Adding these bounds over the [; yields (3.16) and (3.17). |}
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Remark 3.2.3 Using arguments from [8, 9], one can establish Theorem 3.1.3 for cases (1.3),
(1.4), and (1.5) for data in the imhomogeneous Sobolev space HZc. Using Theorem 3.3.5,
one can then remove the assumption ug € L2 a posteriori (by approximating ug € Hjc by

H?e- functions). We omit the standard details.

3.3 Stability for the case (1.2)

In this section, we develop a stability theory for (d,s.) satisfying (1.2). That is, we take
d > 4 and s, = 1/2. Note that in this case we have p = 4/(d—1). Compared to the results of
the previous section, we will prove a ‘refined’ stability result for the case (1.2), in the sense

that the results will not require errors to be small in spaces with derivatives.
The results of this section appear originally in [50].

We will make use of function spaces that are critical with respect to scaling, but do not

involve any derivatives. In particular, for a time interval I, we define the following norms:

U = ||| a@+D  20a+1) Fllyin = ||F
lullxw = | ||L%L%(IXW)> 1l = 1F1

4(d+1)  2(d+1)
d+3
t t

t Ly T3 (IxR4)

We first relate the X-norm to the usual Strichartz norms. By Sobolev embedding, we

get [lullx) < llullgi/z2y, while Hélder and Sobolev embedding together imply

||| 202) < ||u||§((1)||u| ;/Cz([) for some 0 < ¢(d) < 1. (3.23)
- xR4)

t,x

Next, we record a Strichartz estimate, which one can prove via the standard approach

(namely, by applying the dispersive estimate and Hardy-Littlewood—Sobolev).

Lemma 3.3.1 Let I be a compact time interval and tg € 1. Then for allt € I,
t .

‘ / 92 P () ds

to
Finally, we collect some estimates that will allow us to control the nonlinearity.

SF vy (3.24)
X(I)
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Lemma 3.3.2 Let (d,s.) satisfy (1.2). Then, with spacetime norms over I x R, we have

d+3
1 (w)lly <\WHXU (3.25)
1F(u) = ()hﬂ‘<NMug+HWﬂbNu—Mhm (3.26)
4
IVIFE@I |, 2, S lull sy el g2y (3.27)
4
WVWUWO—F@WH[gSH —all gl gz +meﬂm—ﬁhmm- (3.28)

Proof. We first note that (3.25) follows from Hoélder, while (3.26) follows from the funda-

mental theorem of calculus followed by Holder.

Next, we see that (3.27) follows from Hélder and the fractional chain rule. Indeed,

1Y

SCF(U)HL%L;% 5 H ||Z:1(dd+11)LI2(dd+11) |||V| U||Lt2(d+11)LZd(d+1).

Using these same exponents with Lemma 2.2.5, we deduce (3.28). |
We may now state our first stability result.

Lemma 3.3.3 (Short-time perturbations) Let (d,s.) satisfy (1.2) and let I be a com-
pact time interval, with to € I. Let i : [ x R — C be a solution to (i0; + A)a = F(u) + e

with U(ty) = Uy € H'?. Suppose

HfLHSUQ(D < E and |HV’ GH 2(d+2) <FE (329)

4 (IxR9)

tz

for some E > 0. Let ug € H%/Q(Rd) satisfy
luo — toll 12 < E, (3.30)
and suppose that we have the smallness conditions

allx <6, (3.31)

t to)A(

= o = to)llxn) + llellvay <, (3.32)
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for some small 0 < § = 6(E) and 0 < € < go(E). Then there exists u : I x RY — C solving

(1.1) with u(ty) = ug such that

lu —allxa) + |1F(u) = F(@)llya Se, (3.33)

“Fa) - F@)| | 2 el (3.34)

U — Ul + |||V 24
Ju = lor2)+ I

Proof. We first suppose ug € L?, so that Theorem 3.1.4 provides the solution u. We will

then prove (3.33) and (3.34) as a priori estimates. After the lemma is proven for ug € HY?,
we can use approximation by H 1/2_functions to see that the lemma holds for uy € Hy 12,

Throughout the proof, spacetime norms will be over I x R

We will first show

Jullxa S 6. (3.35)
By the triangle inequality, (3.24), (3.25), (3.31), and (3.32), we get
~ d+3
e =% a0 xry S Mlallxeny + I1F@ vy + llellyay S 6+ 07T +e.
Combining this estimate with (3.32) and using the triangle inequality then gives
e %o x (1) < 8
for 6 and ¢ < § sufficiently small. Thus, by (3.24) and (3.25), we get
lullxay S0+ 1F @)y S0+ ||U||

which (taking § sufficiently small) implies (3.35).

We now turn to proving the desired estimates for w := uw — u. Note first that w is a

solution to (i0; + A)w = F(u) — F(u) — e, with w(ty) = ug — Uo; thus, we can use (3.24),
(3.26), (3.31), (3.32), and (3.35) to see

lwllxay < !Iei(t’tO)A(uo—uO)qu +lellyay + 1 (w) = F@@)ly)
Se+t {|IUI| )+ IIUI|X(1 Hiwllxa

S e+ 67T ||| x
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Taking ¢ sufficiently small, we see that the first estimate in (3.33) holds. Using the first
estimate in (3.33), along with (3.26), (3.31), and (3.35), we see that the remaining estimate
in (3.33) holds, as well.

Next, by Strichartz, (3.28), (3.29), (3.30), (3.31), (3.33), and (3.35), we get

[wl|g1/2(y S lluo = toll 72 + HIVIS%HL% + VP [F(u) = Fa)l

_2d
L2rd+?
4 4
Se L+ (|l gz pllwll gy + lwll gz llullx

_4
Se L4+ 07T |[wl[ gz,

Taking 6 = 0(F) sufficiently small then gives the first estimate in (3.34). We get the
remaining estimate in (3.34) by using (3.28) with (3.29), (3.33), (3.35), and the first estimate
in (3.34). |}

Remark 3.3.4 As mentioned above, the error e is only required to be small in a space
without derivatives; it merely needs to be bounded in a space with derivatives. This will also
be the case in Theorem 3.3.5 below. We will see the benefit of this refinement when we carry

out the proof of Theorem 1.1.2 for the case (1.2) in Chapter 4.

We continue to the main result of this section.

Theorem 3.3.5 (Stability) Let (d,s.) satisfy (1.2), and let I be a compact time interval,

with to € 1. Suppose @ is a solution to (10, + A)u = F(a) + e, with u(ty) = ty. Suppose

@l g2y < E - and  |[[V[*e|l 22 <E (3.36)
d+4 (IxR?)

t,x

for some E > 0. Let ug € H%/Q(Rd), and suppose we have the smallness conditions
|uo — ﬂ0|’H;/2(Rd) + llellyay < e (3.37)

for some small 0 < & < (E). Then, there exists u : I x R — C solving (1.1) with

u(to) = wo, and there exists 0 < ¢(d) < 1 such that

||u — lNLH 2(d+2) SE e’. (338)
L, 37 (IxR9)
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One can derive Theorem 3.3.5 from Lemma 3.3.3 as in the previous section, namely,
by applying Lemma 3.3.3 inductively. We omit these details, but pause to point out the
following: this induction will actually yield the bounds

lu—allxp Se and  flu—alg2q Sel-
With these bounds in hand, we then use (3.23) to see that (3.38) holds.
Remark 3.3.6 The smallness condition on ug — %y appearing in (3.37) may actually be

relaxed to the condition appearing in (3.32). In our setting, it will not be difficult to prove

the stronger condition (see Lemma 4.4.2).

Remark 3.3.7 As mentioned at the end of the last section, we can deduce Theorem 3.1.3
for the cases (1.2) using the standard arguments of [8, 9] together with Theorem 3.3.5. We

omit the standard details.
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CHAPTER 4

Almost periodic solutions

In this chapter, we discuss almost periodic solutions. After giving some definitions and
collecting some results, we carry out the proof of the reduction to almost periodic solutions,

Theorem 1.1.2.

For a more extensive treatment of almost periodic solutions, one can refer to [38].

4.1 Definitions and basic results

In this section we define almost periodic solutions and collect some useful consequences of

almost periodicity.

Definition 4.1.1 (Almost periodic solutions) Let s, > 0. A solutionu : I x R* — C to

(1.1) is almost periodic (modulo symmetries) if
w e LM (I x RY) (4.1)

and there exist functions x : I — R, N : I — R*, and C : Rt — RY s0 that for allt € I
andn >0,

Se 2 Se WS
/ 9t o) do+ | €[ fult, =) € < .
jo—a(0)|> K

O] [€1>C (N (1)

We call N(t) the frequency scale function, x(t) the spatial center, and C(n) the compactness

modulus function.
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By the ArzeldAscoli theorem, a family of functions is precompact in H*(R%) if and only

if it is bounded and there exists a compactness modulus function C' so that

/ |1V [ ()| da + / €25 F(€)[2 dg < m
|z|>C(n) [€1>C(n)

uniformly for all f in the family. Thus an equivalent formulation of Definition 4.1.1 is the

following: w is almost periodic (modulo symmetries) if and only if
{u(t):tel} C {)\%f()\(x—ka:o)) ‘A€ (0,00), 20 €R?, f € K}

for some compact K C H?(R%).

Remark 4.1.2 If u is a radial almost periodic solution, it can only concentrate near the

spatial origin. Thus for a radial almost periodic solution, we may take x(t) = 0.

The frequency scale function of an almost periodic solution obeys the following local

constancy property (see [38, Lemma 5.18]).

Lemma 4.1.3 (Local constancy) Ifu: I xR? — C is a mazimal-lifespan almost periodic

solution to (1.1), then there exists § = 6(u) > 0 so that for all ty € I,
[to — 6N (to) %, to + 6N (o) % C I
Moreover

N(t) ~y N(to), |z(t) —z(te)] Su N(to)™ for |t —to] < IN(ty) 2.

We may use Lemma 4.1.3 to divide the lifespan [ into characteristic subintervals Jy on
which we can set N(t) = N, for some Ny, with |Ji| ~, N, 2. This requires us to modify the

compactness modulus function by a time-independent multiplicative factor.

Lemma 4.1.3 also provides information about the behavior of the frequency scale function

at the blowup time (see [38, Corollary 5.19]).

37



Corollary 4.1.4 (N(t) at blowup) Let u : I x R — C be a maximal-lifespan almost
periodic solution to (1.1). If T is a finite endpoint of I, then N(t) 2, |T —t|7Y2. If I is

infinite or semi-infinite, then for any to € I we have N(t) > (t — to) /2.

We may also relate the frequency scale function of an almost periodic solution to its

Strichartz norms.

Lemma 4.1.5 (Spacetime bounds) Let u: I x R? — C be an almost periodic solution to

(1.1). Then

Scu

/N(t)2dt§u\||v 2 §u1+/N(t)2dt.
I (IxR%) I

L2ri—?
To prove this lemma, one can adapt the proof of [38, Lemma 5.21]. The key is to note
that [, N(t)*dt counts the number of characteristic intervals J, inside I, and that for each

such subinterval we have

IIVIPeul|  2a ~y L.

L2LE72 (JxRY)
We next record a ‘reduced’” Duhamel formula that holds for almost periodic solutions (see

[38, Proposition 5.2]).

Proposition 4.1.6 (Reduced Duhamel formula) Let u : [ x R? — C be a mazimal-

lifespan almost periodic solution to (1.1). Then for allt € I, we have

u(t) = lim z/ IR F(u(s))) ds

T /sup I t

as a weak limit in H(RY).

To conclude this section, we establish a corollary to the bilinear Strichartz estimate

Lemma 2.3.4 for the case of an almost periodic solution on a characteristic subinterval.

Corollary 4.1.7 (Bilinear Strichartz) Let u : I x R? be an almost periodic solution to
(1.1) with 0 < s, < d%l. Suppose u € L;’OH; for some s > 0 and let Jy be a characteristic
subinterval. Then

d=1_ o oo 1
||U§MU>N||L§7I(kaRd) SuM 'z 7FNT2T
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Proof. This result will follow from Lemma 2.3.4, provided we can show

V[l

and

usn s Su N7° (4.3)

For (4.2), we first note that interpolating between (4.1) and Lemma 4.1.5 gives

[l gec () S 1

Thus, using the fractional chain rule and Sobolev embedding, we find

Seqy

v

* < u oo 7S¢ + U P v Scu
S*(J) ~ || ”Lt Hz¢ (J xRY) ” HLM(kaRd)‘|’ | Hsz%%(kaRd)

t,x

1
Sul+[u pgjcuk) Su

For (4.3), we first apply Strichartz and the fractional chain rule to estimate

. : P .
[llgs sy S Null oy + ||U||ind+2> (kaRd)||u| LAY
As ||ull per2) Su 1, a standard bootstrap argument gives [[ullgs;,) Su 1. Thus, using

t,x (JkXRd)
Bernstein, we find

S*(Jx) < N_S”u”LgOH;(kaRS) + N_s|||V|SF(U)H 2(d+2)

~Y
L, 7% (JpxR%)

t,x

[

Su N_S+N—s||u||pp(d+2) Hu’
L% (JkxR%)

S°(J) Su N

This completes the proof of Corollary 4.1.7. |

4.2 Lower bounds

In this section we show that for almost periodic solutions, we can prove lower bounds for
the quantities appearing in Morawetz estimates. In particular, these bounds will be given
in terms of the frequency scale function N(¢). These estimates will play a key role in the

preclusion of quasi-soliton solutions in Chapter 9.

We begin with the following lemma.
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Lemma 4.2.1 Let u : [ x R — C be a nonzero almost periodic solution to (1.1), with I
is a contiguous union of characteristic intervals Ji. Suppose (d,s.) satisfies (1.3), (1.4), or
(1.5).

If inf,c; N(t) > 1, then there exists C'(u) > 0 and Ny > 0 so that for N < Ny,

inf N(t)* t,z)Pde 2, 1. 4.4
NP [ e 2 (4.4

N(t

I

If sup,c; N(t) <1, then there exists C(u) > 0 and Ny > 0 so that for N > Ny,

inf N (1) /
tel |lz—a(t)|<

Proof of Lemma 4.2.1. We will prove (4.4) only, as the proof of (4.5) is similar.

" lucn (t, ))* dz =, 1. (4.5)

N(t

Q

I

We first establish that for C'(u) sufficiently large, we have

. 2S¢ 2 >
gellf N(t) /_ o lu(t,x)|” dx 2, 1. (4.6)
jo—a(t)| < S0

To this end, we let 17y > 0 and use almost periodicity to find Cy := Cy(1) large enough that
V> usconellzerz <o (4.7)

Then using Hélder, Bernstein, and Sobolev embedding, we can estimate

[ P = ey (o) ds
|:E7.’L‘(t)|g N ()

Su N luscome @)llzz [u®ll 4

x

Su nON(t)_QSC

for ¢t € I. Thus, if we can show that for C'(u) sufficiently large, we have

inf N (t)% t,x)|*de >, 1, 4.8
N [ )l a2 (4.9

then we will have (4.6) by choosing 1y = no(u) sufficiently small.
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To prove (4.8), we first choose use almost periodicity and Sobolev embedding to choose

C(u) > 0 large enough that

inf/ lu(t, )| % do >, 1.
el Jja—a ()< 5y

We then use Holder, Sobolev embedding, and (4.7) to see

t)F P gl < P~
€S u(t, 2)|¥ — uscuwolF do| S luscuvoll g llull* 'y Sumo

="N(t) t Lﬁ?
for t € I. Thus for 1y = ny(u) sufficiently small, we find
dp
inf t,z)|z dz 2, 1. 4.9
wt [ ey Moo N o2 (4.9
N(D)

Finally, using Holder and Bernstein, we can get

d
/ ()< [uscn(t )| dr
rz—x(t)|<

N(t)

2
S luccovo®l e [ ey Iz (62
rx—x(t)|<

Cu)
N ()
< 2s¢ P -2 2
Su N6 u®)]] %4, o [u<con et 2) | da
L (RY) Jz—a(t)|<§Y

SoNeP [ Jusco (o) do
o= ()] < 73

— N(t)
Together with (4.9), this implies (4.8), which in turn implies (4.6).
With (4.6) in place, we are now in a position to establish (4.4). We let 7; > 0 be a small
parameter to be determined shortly. As inf;e; N(t) > 1, we may find N; = Ny(7;) so that

|lu<nll @ <m  for N < Nj.
T LPL?

t

We then use Hélder and Sobolev embedding to estimate

LeL2 L°L,?

usnll  apllull 4

‘/ u(t, 2)|? = |usn(t, 2) |2 da| <, N(t)~2

Su nlN(t)izgc

for t € I and N < N;. Thus, choosing 7, = n;(u) sufficiently small, we may use (4.6) to
deduce (4.4). This completes the proof of Lemma 4.2.1. |
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With Lemma 4.2.1 in place, we can now turn to the main result of this section.

Proposition 4.2.2 (Lower bounds) Let u : [ x R? — C be a nonzero almost periodic
solution to (1.1), with I a contiguous union of characteristic subintervals Jy. Suppose (d, s.)

satisfies (1.3), (1.4), or (1.5).

If inf,c; N(t) > 1, then there exists N1 > 0 so that for N < Ny,

///Rded usn(t, )] A( usn(t, y)|* dx dy dt > /IN(t)3_456 dt. (4.10)

Ifinf,c; N(t) > 1 and xz(t) = 0, then there exists Ny > 0 so that for N < Ny,

t p+2
// Juan )P >, /N £)3=25 gt (4.11)
IxR? |z

If inf;e; N(t) < 1 and z(t) =0, then there exists Ny > 0 so that for N > Ny,

)2
// ‘“<N”‘ dr dt >, /N £)3-25 gt (4.12)
IxR4

Proof of Proposition 4.2.2. We first prove (4.10). We consider the cases d = 3 and
d € {4,5} separately.

If d = 3, we have —A(| 1) = 4md. Using Holder and (4.4), we see that there exists C'(u)
and N; > 0 so that for N < N; we have

//m o Iu>N(t z)|* dx dt 2, /(/x e |u>N(t,x)\2dx)2N(t)3dt

N (D)
which implies (4.10) for d = 3.

/N 3 4SCdt

If d € {4,5}, we have —A(%) = 2. Using (4.4), we see that there exists C'(u) and

|| ||

N; > 0 so that for N < N; we have

(t t

/ / / |usn (¢, )] ru>3N< D Gy
lo—y| <355 [z — |
3 2
N
>/[2C((2)] (/ . \U>N(t,$€)|2d:z;) dt
o= ()< 50
/N 3 4s. dt
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which implies (4.10) for d € {4,5}.

We now turn to (4.11). Using (4.4), Holder, and the assumption z(t) = 0, we see that
there exists C'(u) > 0 and Ny > 0 so that for N < N; we have

p+2

t,x) [P+ N
// Mdmdt> /N L) / |usn(t, 2)* do dt
1 /12158 |z] el <%y
/ N (t)372% dt,

To prove (4.12), one proceeds as in the proof of (4.11), using (4.5) instead of (4.4). This

which implies (4.11).
completes the proof of Proposition 4.2.2. |

4.3 Concentration compactness

In this section we record a linear profile decomposition for e®**, which we will utilize in the

reduction to almost periodic solutions. We begin with a definition.

Definition 4.3.1 (Symmetry group) For any position ro € R? and scaling parameter

A > 0, we define a unitary transformation gy, » : He*(R?) — H3(R) by

oo f1(@) = A2 f(A (@ — 29)),

d_
2

where s, 1= We let G denote the collection of such transformations. For a function

w:l xR — C we define Ty, \u: NI x R? — C by the formula

2
>

[T,

gxo,A

ul(t, x) == )\%u()\_Qt, A (r — :r;o)),

where N1 := {\*t : t € I}. Note that if u is a solution to (1.1), then Tyu is a solution to

(1.1) with initial data guy.

Remark 4.3.2 We remark here that G forms a group under composition. The map u — T, u
takes solutions to (1.1) to solutions with the same scattering size. Furthermore, u is a

maximal-lifespan solution if and only if T,u is a maximal-lifespan solution.
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We now state the linear profile decomposition that we will use in the reduction to almost
periodic solutions. The first profile decompositions established for e® were adapted to the
mass- and energy-critical settings [1, 7, 34, 47]; the case of non-conserved critical regularity

was addressed in [53].

For the cases we consider in this thesis, we will be able to import the profile decomposition

that we need directly from [53].

Lemma 4.3.3 (Linear profile decomposition [53]) Let 0 < s. < 1 and let {u,} be a
bounded sequence in H;c (RY). After passing to a subsequence if necessary, there exist func-
tions {¢'} C He=(R?), group elements g, € G (with parameters 3, and N,), and times tJ, € R

such that for all J > 1, we have the decomposition
J .
un = > gAY 4wy
j=1

with the following properties:
e For each j, either t7 =0 ort) — +oo asn — oo.

e For all n and all J > 1, we have w! € H(RY), with

lim limsup [[e™w)|| a2 =0. (4.13)
J=00 pooo L, .2 (RxR%)

t,x
e For any j # k, we have the following asymptotic orthogonality of parameters:

Mo A e P B - )
N + N + VY + YEY — 00 asn — oo. (4.14)

e We have the decoupling properties: for any J > 1,

J
. Se 2 Se T2 seqp? ||2 =
tim 191 S/ 9] =, (1.15)
j:
and for any 1 < j < J,
e (gh) ] = 0 weakly in Hy asn— oo (416)
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The author of [53] deduces Lemma 4.3.3 from a linear profile decomposition adapted to
the mass-critical equation. We remark here that it is also possible to establish Lemma 4.3.3
‘from scratch’. We refer the interested reader to the lecture notes [38, 71]. There one can find
the proof of the linear profile decomposition adapted to the energy-critical setting. However,

the ideas in [38, 71] carry over to the H-critical case, as well.

4.4 The reduction to almost periodic solutions

The goal of this section is to prove Theorem 1.1.2. As described in the introduction, the key
ideas come from [34, 35] and are well-known. Thus, we will only outline the main steps of
the argument, providing full details only when significant new difficulties arise in our setting.

We will model our presentation after [39, Section 3].
The material in this section appeared originally in [49, 50].

We suppose that Theorem 1.1.1 fails. We then define the function L : [0, 00) — [0, 00| by

2
H;c (Rd) S E}a

L(E) := sup{S;(u) : u: I xR? — C solving (1.1) with sup ||Ju(t)]
tel

where Sy(u) is defined as in (3.1). For the cases (1.4) and (1.5), we restrict the supremum

to radial solutions.
We note that L is a non-decreasing function, and that Theorem 3.1.3 implies

p(d+2)

L(E)SE 3 for E <y, (4.17)

where 1y is the small-data threshold. Thus, there exists a unique ‘critical’ threshold F. €
(0,00] such that L(E) < oo for E < E, and L(E) = oo for E > E.. The failure of

Theorem 1.1.1 implies that 0 < E. < oo.

The key to the proof of Theorem 1.1.2 is the following convergence result. With this result

in hand, establishing Theorem 1.1.2 is a straightforward exercise (see [39, Section 3.2]).

Proposition 4.4.1 (Palais—Smale condition modulo symmetries) Letu, : I, xR —
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C be a sequence of solutions to (1.1) such that

. 2 =
hffiip el e srze 1, ) = Bes

and suppose t,, € I, are such that

nh—{{olo S[tn,supln)(un) = nh—{{olo S(infln,tn}(un) = OoQ. (418)

Then {u,(t,)} converges along a subsequence in H*(R%)/G. (Here G is as in Defini-
tion 4.3.1.)

Proof of Proposition 4.4.1. We first translate so that each ¢,, = 0 and apply Lemma 4.3.3

to write y
w(0) = D ghe o) + ) (4.19)
j=1

along some subsequence. To prove Proposition 4.4.1, we need to show that there is exactly

one profile ¢', with ¢) =0 and [[w,]| gsc — 0.

First, using Theorem 3.1.3, for each j we define v/ : I’ x R? — C to be the maximal-

lifespan solution to (1.1) such that
v/ (0) = ¢’ if t =0,
v7 scatters to ¢’ as t — +oo if 7 — Fo0.

Next, we define nonlinear profiles vi : IJ x R? — C by
vl (t) = glv’ (M) *t+t)), where I)={t:(N)*t+t] €'}

The proof of Proposition 4.4.1 relies on the following three claims:

(i) There is at least one ‘bad’ profile ¢’, in the sense that

lim sup S[O,sup]%)(”fl) = 00. (4.20)

n—o0

(ii) There can then be at most one profile (which we label ¢'), and |[w}.|| zsc — 0.

(iii) We have t. = 0.
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We will provide a proof of (i) below. The proofs of (ii) and (iii) require only small
variations of the analysis given for (i), so we will merely outline the arguments here. For (ii),
one can adapt the argument of [39, Lemma 3.3] to show that the decoupling (4.15) persists
in time (this is not obvious, as the H®-norm is not a conserved quantity for (1.1)). The

critical nature of E. may then be used to preclude the possibility of multiple profiles (and to

show ||lw, || zse — 0). For (iii), we only need to rule out the cases t;, — £o0. To do this, one
can argue by contradiction: if £} — 400, one can use the stability results Theorem 3.2.2 or
Theorem 3.3.5 (comparing u, to e*?u,(0)) to contradict (4.18). See [39, p. 391] for more

details.

We now turn to the proof of (i). We first note that the decoupling (4.15) implies that
the vl are global and scatter for j sufficiently large, say for j > Jy; indeed, for j sufficiently
large, the HjC—norm of ¢ must be below the small-data threshold given in Theorem 3.1.3.
Thus, we need to show that there is at least one bad profile ¢/ (in the sense of (4.20)) in the

range 1 < j < Jp.

Suppose toward a contradiction that there are no bad profiles. By the blowup criterion
of Theorem 3.1.3, this immediately implies that sup I? = oo for all j and for all n sufficiently
large. In fact, we claim that we have the following:

J
lim sup lim sup Z HU% |

2
G5 (0,00)) <g, 1. (4.21)

n—oo

Indeed, for n > 0, the decoupling (4.15) implies the existence of J; = Jy(n) such that

> el

i>J

2
e S

Thus, choosing 1 smaller than the small-data threshold, Strichartz and a standard bootstrap

argument give
Z HU%||QSSC([07OO)) S Z ||¢]||?q;c N2
Jj>n Jj>J1

As the vJ satisfy Sjoo)(v]) S 1 for n large, we may use Strichartz and another bootstrap

argument to see ||v!]|g. S 1for 1 < j < J; and n large. We conclude that (4.21) holds.
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We now wish to use (4.21), the orthogonality condition (4.14), and the stability results
of Chapter 3 to deduce a bound on the scattering size of the w,, thus contradicting (4.18).

To this end, we define the approximate solutions

§ ,Uj 'LtA J

and the corresponding errors
J

= (0 + A)uy — Flup) = > F(v)) = F(uy).

n
=1

Regarding the approximate solutions, we first have the following.

Lemma 4.4.2 The approximate solutions u; satisfy

lim sup lim sup [, (0) — u;, (0)]| gz = 0, (4.22)
J—o0 n—>00
lim sup lim sup Sjo,00) (1) Sp, 1, (4.23)

J—00 n—00

Proof. We first note that (4.22) follows from the construction of the v’.

To see that (4.23) holds, first note that by (4.13) and (4.21), it suffices to show

lim li j =0. 4.24
o 208) = 3 St 424
To establish (4.24), we can first use the pointwise mequahty

J p(d+2)

DT Z LT P DI R

j=1 ik

along with Holder’s inequality to see
LHS(4.24) <; ||vn|| o3 vF|| bz : (4.25)
; Dl id“) (Oocixrt) " LT ([0.00)xR)

Now we follow an argument of Keraani (cf. [34, Lemma 2.7]): for j # k, we can approximate
17 and v* by compactly supported functions in R x R? and use the asymptotic orthogonality

of parameters (4.14) to show

lim sup || vF|| peara = 0. (4.26)
n—00 Ltﬂ,1 ([0,00) xR4)

Thus, continuing from (4.25), we get that (4.24) (and therefore (4.23)) holds. |
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J

7in order to show that the u’ are good approximate

We next need to control the errors e
solutions to (1.1). For then, in light of Lemma 4.4.2; the stability results of Chapter 3 will
allow us to deduce good bounds on the u,, from those enjoyed by u’, giving us the desired

contradiction.

To proceed, we need separate into two cases depending on the stability result that we
wish to apply. We will first treat the case (1.2), that is, s, = 1/2 in dimensions d > 4. Note
that s. = 1/2 corresponds to p = 4/(d — 1), so that p — 0 as d — oo. For the case (1.2),

we have proven a refined stability result (Theorem 3.3.5) that does not require errors to be

J

small in a space with derivatives. This will greatly simplify the analysis of the errors e;.

On the other hand, for the cases (1.3), (1.4), and (1.5), the stability result that we proved
(Theorem 3.2.2) requires errors to be small in a space with s, derivatives. As we will see,
combining fractional derivatives with non-polynomial nonlinearities will present nontrivial

technical difficulties. However, relying on the fact that p > 1 in all of the cases under

consideration, we will ultimately be able to overcome these difficulties.

We turn to the case (1.2). First, using the assumption that there are no bad profiles,
together with the orthogonality condition (4.14), one can use the arguments of [34] to arrive

at the following lemma.

Lemma 4.4.3 (Orthogonality) Let (d,s.) satisfy (1.2). For j # k, we have

v (|V]*vp)]

lonopll s zaaen + (1Y

| d+2
Lt7d+3 L$2d27d75 Lt,g
. 4
+ [ (IV]*F(v)) (V[ F(vf)) [ | =0 as n— oo, (4.27)

where all spacetime norms are taken over [0,00) x RZ.

We can now turn to controlling the errors e’ in the case (1.2). As we will see, due to
the fact that we are estimating errors in spaces without derivatives, pointwise estimates as
in [34] will suffice to establish the bounds we need. In order to apply Theorem 3.3.5, we will

also need to bound the u in S'/2.
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Lemma 4.4.4 Let (d, s.) satisfy (1.2). Then we have the following:

lim sup lim sup ||| V]*e|| 2(d+2) Se. 1,

J—oo  n—oo L, ([0,00) xR4)

lim sup lim sup || lg1/2((0,00)) SEe 1
J—o00 n—00

lim sup lim sup HenH 4(d+1) 2(d+1) =0.
J—oo  n—oo L, Ly 2 ([0,00) xR?)

Proof. We begin with (4.28). We will first derive the bound

) _ J 2(d+2)
lmn sup limsup V]| S 1

J—o00 n—>00 L
t,x

Asw] e HY?, it will suffice to show

J 2( d+2)
lim sup lim sup || Z V|5l || 2(d+2) Se. L.
J—o0 n—00 j=1 Lt z

(d+2)

To this end, we first note that as > 2, we may use (4.21) to see

J
hm sup lim sup Z ||V [*v

n—oo

2(d+2)

d
“ 2(d+2) Se. L
j 1 Lt,xd

On the other hand, for fixed J, we can use (4.21) and (4.27) to see

) ” 2(d+2) Z 1A%

4

s | | 2(d+2)

NJZIIIVISC %W) II(IVISCW)(IVISC Wl a2 =0 as

j#k L
Then (4.33) implies (4.32), which in turn gives (4.31).

Next, by the fractional chain rule, (4.23), and (4.31), we get

1Y

Lt,z L

t,x t,x

as n, J — oo, which handles one of the terms appearing in (4.28).

To complete the proof of (4.28), it remains to show

2(d+2)
lim sup lim sup || Z VI F)Il S Se. 1.
J—=oo  m—oo ST L, &+

20

“F ) g S ol S N191)]) s S,
+4 L d

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)



We claim it will suffice to establish

2(d+2)
lim hmsupZ V] Fd)] S Sk 1. (4.35)
d+4

J—o00
n—oo j=1 L

Indeed, for fixed J, we have by (4.27)

2(d+2) 2(d+2)

J
‘HZIVISCF(W mec |
j=1 Lt,a(ci+4
< SIIv

J#k

t.l‘

“F(v) ||V

SCF(vﬁ)!mHL,}I —0 asn— oo.

To establish (4.35) and thereby complete the proof of (4.28), we use the fractional chain

rule and Sobolev embedding to see

<

2(d+2) 4 . 2(d+2)
ZHIVSE W S S (03] St N1V aas2) )
L, z+ Jj= Lt,;l_l Lia
J 2(d+2)(d+3)
Z I JH @FHE-D
S1/2
j=1
Then (4.35) follows from (4.21) and the fact that % > 2.

Now (4.29) follows from an application of Strichartz, (4.28) and (4.34).

It remains to establish (4.30). Here we argue as in [34]. We begin by rewriting

_ {Z Flod) F(Z>] +[F(ud — el = F(ud)] = (D)1 + (e,

=1

We first fix J and d > 5. By Hoélder, Sobolev embedding, (4.21), and (4.27), we have

(e, H s g <o) IHvde k@ |yl |1 H sy g

J#k Ly Ly
NJ Z Hv d+1) 2d(d+1) H’U Hd4(d+1) 2d(d+1) —0
j;ék L d+3 Ld —d—4 L d+3 L2d —d—>5
as n — oo. When d = 4, we modify this argument as follows:
H( ) ||L20/7 10/7 NJ Z |||U]|1/3 ||L20/7 10/7
J#k
1/3
S0 ST I o030 s = 0
J#k

o1



as n — o0.

Next, we note that we have the pointwise estimate
; 4
[(en)e] S leSwy || f]7T,

where f7 :=u) + e"®w! satisfies ||f/|g12 Sg. 1 asn, J — 0o (cf. (4.29) and the fact that
w! e Y ?). Thus, we can use Holder, Strichartz, Sobolev embedding, w? € H, +/% and (4.13)

to see

H( )H 4(‘“1) 2(d+1) < HeuEA JH 4<d+1> 2(d+1>HfJ| 4(d+1) 2(d+1)
I Ly L,? L, L,

+
<WMJH%$HW@?WﬂWfﬂ)%nJ%w

L

t,x

Combining the estimates for (e¢/); and (e;)s, we conclude that (4.30) holds. This com-

pletes the proof of Lemma 4.4.4. |

We can now see that for the case (1.2) we may use Lemmas 4.4.2 and 4.4.4 together with

Theorem 3.3.5 to deduce that Sy oc)(un) Sg. 1 for n large, thus contradicting (4.18). We

NEC

conclude that there is at least one bad profile, that is, (4.20) holds. Thus claim (i) above

holds, which completes the proof of Proposition 4.4.1 and Theorem 1.1.2 in the case (1.2).

For the cases (1.3), (1.4), and (1.5), we instead wish to apply the stability result Theo-
rem 3.2.2. Breaking e into (e;); and (e/), as above and applying the triangle inequality,

we see that in order to apply Theorem 3.2.2 we will need the following lemma.

Lemma 4.4.5 Let (d,s.) satisfy (1.3), (1.4), or (1.5). Then we have the following:

J
lim lim sup ‘ Se (F( Zvi) — Z F(v%)) =0, (4.36)
T2 n—oo j=1 =1 NO([0,00))

* (F(uy — e"w;y) = F(u)) |l xogo.ey = 0- (4.37)

n—oo

Before we begin the proof, we pause to discuss some of the new technical difficulties

associated to establishing this decoupling. As we saw above when treating the case (1.2),
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the estimate (4.36) would be much simplier in the absence of derivatives. Indeed, in this
case one could use the pointwise estimate
DI AR

7k

and follow the arguments of Keraani [34] directly. This is the approach taken in the mass-

P - X rd

J=1

critical case, for example.

In the energy-critical setting there is a replacement for this estimate, namely
J J
RGOOED ST | D SIS
=1 =1 J#k
Thus it is still possible to employ a pointwise estimate to exhibit terms containing v/ paired

against v* for some j # k, so that the orthogonality (4.14) can be used.

However, pointwise estimates such as these do not apply directly in our setting due to

the nonlocal nature of |V|*.

In the energy-supercritical case, the authors of [40] were able to establish analogous
pointwise estimates for a square function of Strichartz that shares estimates with fractional
differentiation operators (see [59]). With such pointwise estimates in place, the usual argu-
ments then finish the argument. This approach does not work in our setting, however, as it

relies fundamentally on the fact that s. > 1.

The authors of [32] dealt with the case s. = 1/2 in dimension d = 3. However, in that case
one has the algebraic nonlinearity |u|?u. Exploiting this fact and employing a paraproduct
estimate, the authors were able to place themselves back into a situation where the usual

arguments apply.

In our case, we must deal simultaneously with a non-algebraic nonlinearity and a frac-
tional number of derivatives. We proceed by opening up the proof of the fractional chain rule
(Lemma 2.2.4) as given in [61, §2.4]. In particular, we employ the Littlewood—Paley square
function (cf. Lemma 2.2.2), which allows us to work at the level of individual frequencies. By
making use of maximal function and vector maximal function estimates, we can ultimately

find a way to adapt the standard arguments.
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Proof of (4.36). By induction, it will suffice to treat the case of two summands; to simplify

notation, we write f = v/ and g = v* for some j # k, and we are left to show

V1 (1f + 9P (f +9) = [FPf = 191P9) 100,00y — O (4.38)

as n — oQ.

As alluded to above, the key will be to perform a decomposition in such a way that all of
the resulting terms we need to estimate have f paired against ¢ inside of a single integrand;
for such terms, we will be able to use the asymptotic orthogonality of parameters (4.14) to

our advantage.

We first rewrite

|f+glP(f +9) = |fIPf —1gl’g
= (If +alP=1f")f+ (If + 9" = gI")g.

By symmetry, it will suffice to treat the first term. We turn therefore to estimating

1Y

“[AF + gl = 1A 2en.

t,x

By Lemma 2.2.2; it will suffice to consider

2(dt2) - (4.39)
d+4

t,x

H (Z IN*Px[(|f+ 9" = |fI")[] |2>1/2

L

Thus, we restrict our attention to a single frequency N € 2. Welet 6, f(z) := f(z—y)— f(z),
and let ¢ denote the convolution kernel of the Littlewood-Paley projection P;. As »(0) =0,

we have
[dly)dy =

so that exploiting cancellation, we can write

Py([1f(x) + 9@ — [ f(@)I"] f(2))
= [ N%(Ny)o, ([1f (@) + g(@)]P = | f(2)P] f(x)) dy. (4.40)
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We now rewrite

8y ([If (@) + (@) = [f(@)I"] f(2))
(

=0,f(@)[If(z —y) + gz —y)I" = [f(z —y)I"] (4.41)
+f@)[|f (@) +g(z = y)I = [f(2) + g(2) "] (4.42)
+f@)[|f (@ —y)+g(@ =)=z =)+ f @)= f(2)+g(z —y)I"]. (4.43)

We estimate each term individually. First, we have

(4.41)] S 10y f ()| lg(z = I{If(z =P + lg(@ —y)|" "}

Next, we see

|(4.42)] S [f @) 0,9 (@) {If (@) + lg@)["~" + [g(z =y}

We now turn to (4.43). First, if 1 < p < 2, a simple argument using the fundamental

theorem of calculus implies

1(443)] S |£(2)] 16, ()] |9 — )P~

(see Lemma 2.1.1 for details). For p > 2, one instead finds
|(4.43)] < £ (@) 18, f ()] g(z = ) {|f @) + [f(z = )"~ + |g(x — )7}

To ease the exposition, we will restrict our attention here and below to the more difficult
case 1 < p < 2; once we have dealt with this case, it should be clear how to proceed when

p > 2.

Collecting terms, we continue from (4.40) to see

1Py ([|f (@) + g(@)]” = | ()] f(2))]

< /NdW(Ny)\ 16,/ (@) |lg(z — )| {|f(@ —y)P" + gz — )|} dy (4.44)
n / NG| £ @) 18,9 {F@P Hg@) P 4 lgle — )P dy  (445)
n / NUG(N)| @) 16, @)l gz — )P~ dy. (4.46)
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One can see that we are already faced with several terms to estimate; moreover, to
estimate any single term will require further decomposition. However, in the end, the same
set of tools will suffice to handle every term that appears. Thus, let us deal with only
(4.44) in detail; once we have seen how to handle this term, it should be clear that the same

techniques apply to handle (4.45) and (4.46).

Turning to (4.44), we first write

(4.44) = [ N (Ny)| 16, f ()] lg(z — )| |f(z = y) " dy (4.47)

+ [ N (Ny)| 18, f ()] |g(z — y) [P dy. (4.48)

For both of these terms, we will need to make use of some auxiliary inequalities in the spirit
of [61, §2.3], which we record in Lemma 2.2.8.

We turn to (4.47). If we first write

16,f (@) S |fon (@) + [fon(@ =yl + Y 16,fx ()], (4.49)

K<N

then putting Lemma 2.2.8 to use, we arrive at

(447) S | fon (@) M{g | F"7) () (4.50)
+ M(fsngl|fP)(x) (4.51)
+ > KM (fr) (@) M(g] 1P () (4.52)
+ Z NM(M(fre) g|fIP~)(x). (4.53)

Similarly, we can decompose

(4.48) £ | fon (@) M(lgP)(x) (4.54)
+ M(fanlgl?)(@) (4.55)
+ Z KM (fx) (2)M(lgP") () (4.56)
+ Z KM(M(fx)lgP) (). (4.57)
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Let us now consider the contribution of (4.50) to the left-hand side of (4.38). Comparing

with (4.39), we see it will suffice to estimate

(S ¥ £ 7)) g

t,x

Using Holder’s inequality and maximal function estimates, we can control this term by

Z}NSC || s [l 171771, -

We now recall that f = vJ and g = v* for some j # k. Then, the first term is controlled
by [[[V

Sepd ||so (cf. Lemma 2.2.2), which in turn is bounded (recall that by assumption, all
of the v/ have scattering size < E,). The second term can be handled in the standard ways;
that is, this term vanishes in the limit due to the asymptotic orthogonality of parameters

(4.14) (cf. [34, Lemma 2.7)).

Thus, we see that (4.50) is under control. A similar approach (this time using the vector

maximal inequality) handles (4.51).
To estimate the contribution of (4.52) to the left-hand side of (4.38), we need to estimate
s Cqyg2\1/2
Z |N Z M(f)M(g 1P "l xoo.00))- (4.58)
K<N
For this term, we need to make use of the following basic inequality: for a nonnegative
sequence {ag }geoz and 0 < s < 1, one has
S NS ol £ X Ko (150
Ne2Z K<N Ke2?
(cf. [61, Lemma 4.2]). Using this inequality, along with Holder, we can estimate

(4.58) < | (Z}KSC (fx )\Q)I/ZM(glf!“)HLW

t,x

SN M)l 2 Mol £ g2 = 0

t,x ta:

as n — oo, exactly as before. Thus, (4.52) is under control; the same approach handles

(4.53) (after an application of the vector maximal inequality).
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Let us now turn to (4.54). As before, we sum over N € 2% and find that we need to

estimate

| (v snl?) ™ ara)

2(dt2) - (4.60)
L d+4

t,x

Recalling that f = vJ and g = v¥ for some j # k, we see that we are once again in a position

to use the argument from [34].

To begin, we may assume without loss of generality that both

S N1/2
Bi= (DD IV PyeP) T and @y = M)

2(d+2) d+2

belong to C2°(R x RY); indeed, C°-functions are dense in both L, ,* and L,2 . We now

wish to use the asymptotic orthogonality of parameters, that is,

Ao el —ahP ()R =t (AF)?]
P VA VS Ve SV o mnmes o0

to show (4.60)— 0.

M,

Consider first the case Sk

— ¢ > 0 (along a subsequence, say). If we unravel the definition

of the nonlinear profiles and change variables to move the symmetries onto ®,, we arrive at

2(d+2)
(4.60) %1
J 4(;?42) A k 22?42)
= By (s,y) P tk—f—(kk)(s—t]) (—g)y—i—z"w)‘ dy ds.

Then, recalling (4.61), we see that as n — oo, either the spatial or temporal argument of ®,

must escape the support of ®;. Thus, in this case, we get (4.60)— 0.

If instead we have P 0, then continuing from above, we can estimate

i\ 2
(4.60) S (32)7[[1]| 2cae2 || 2] ex,.
n L d+4 ?

t,x

As @, Py € C(R x R?), we see that (4.60)— 0 in this case, as well.

N,

Finally, we can treat the case

— 00 just like the previous case; the only difference
is that we change variables to move the symmetries onto @, instead of ®5. Thus, we have

that (4.60)— 0 in this third and final case.
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We have now shown that (4.54) is under control. The same ideas can be used to handle

(4.55), (4.56), and (4.57).

As mentioned above, this same set of ideas suffices to deal with all the remaining terms

stemming from (4.36). [

Proof of (4.37). For this term, we will need to make use (4.13). As we will see, the terms

in which e®®w’ appears without derivatives will be relatively easy to handle, as (4.13) will

apply directly. On the other hand, the terms that only contain |V|*e®**w? will require a
more careful analysis; in particular, we will need to carry out a local smoothing argument

before we can make effective use of (4.13).

Defining g := Z}]:1 v) and h := e"®w’ we are left to show
lim 1igl_>solip V1P (lg + hP(g + 1) = 19]"9) | 5ro(p0,00)) = O- (4.62)
We write
lg+hP(g+ 1) —lgl’g = [g + h[Ph (4.63)
+ (g + A" =199 (4.64)

and first restrict our attention to (4.63). We proceed as before, working at a single frequency

and exploiting cancellation to write

|Pr(lg + hPR) ()] = | [ ND(Ny)d,[|g(x) + h(w)[Ph(w)] dy]
< [ NUO(Ny)| lg(a —y) + bz = y)|P|6,h(z)| dy (4.65)
+ [ NU(NY)|18, [lg(2) + h(@)[P] [h(w)] dy. (4.66)

We will deal only with (4.65), which is the more difficult term. Indeed, in all of the

terms that stem from (4.66), we will have a copy of e*®w/ appearing without derivatives,

so that (4.13) will suffice. (For completeness, we will later show how to handle such a term;

cf. (4.78) below.)
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Proceeding as in (4.49), we write

(4.65) < [ NUO(Ny)| |g(x — ) + h(z — )P |han(@)| dy (4.67)
+ [ NYp(Ny)| |g(x — y) + h(z — y)|P [hon(z — y)| dy (4.68)
+ 3 [ NN |g(a = y) + hiz — )P 16,hx ()] dy. (4.69)

Let us now deal only with (4.69); in doing so, we will see all of the ideas necessary to

handle (4.67) and (4.68), as well. We first write

(4.69) S > [ N (Ny)| lg(x — y) P[0, (x)] dy (4.70)
+ Z I NU(NY)| B — )P0,k ()] dy. (4.71)

We only consider (4.70), as the contribution of (4.71) is easier to estimate (again, due to

the presence of e®w? without derivatives). Employing the inequalities of Lemma 2.2.8, we
find
(4.70) S Y AM(gP) (@) M (hie) (@) + D KM (19" M (hic)) ().
K<N K<N

Let us now concern ourselves only with the first term above, as the second is similar.
As before, to estimate the contribution of this term to (4.62) (and thereby complete our
treatment of (4.63)), we need to sum over N € 2Z. Using (4.59) and recalling the definitions
of g and h, we write

||<Z N5 ST EM(1gP) M ()| ) o

K<N

se \f 1/2
SIS o M(lgP)]| s

t,x

SIS [N M (Pyew)P) M \Zw\ I, 20
N

Thus, to complete our treatment of (4.63), we are left to show

lim limsup || Z|N e M(Pye™w!) 1/2 |Z1ﬂ| || e = 0. (4.72)

J=00  pseo
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To begin, we let n > 0; then using (4.21), we see that there exists some J; = J;(n) so
that

p(d+2)

Z anH (d+2) <.

j>J1

Using Holder’s inequality, maximal function and vector maximal function estimates, and

Lemma 2.2.2, we can argue as we did to obtain (4.24) to see

lim sup H(Z|NSC (Pye™w?) 1/2 } Z UJ‘ || JEC
n—oo

J>J1

< limsup |||V|*e i JH 2dt2) Z ||?J || p(d+2)

n—oo I i>h
S
As n > 0 was arbitrary, we see that to establish (4.72), it will suffice to show

s i 2\1/2 : B
hm hmsup”(z |N* M (Pye"®w?)|") M(‘vmp)l‘;fﬁ) =0 (4.73)

n—o0 ~ L
for 1 <j < Jp.

Restricting our attention to a single j and recalling the definition of v/, we change
variables and find we need to estimate

(32100)7 N M Py [l )] [ M) g
N b

We will now carry out some reductions, inspired by the proof of [34, Proposition 3.4]: as
M (|v?|P) shares bounds with |v7|P, and v/ obeys good bounds (it has scattering size < E.),
we may replace M (|v7]P) with some function ® in C®(R x R?). If we then use Holder’s
inequality, we find it suffices to estimate the first term in L7 (K), where K is the (compact)
support of this function ®. The next step will be to use a local smoothing estimate on this
(fixed) set K. Now, the norms that will appear in these estimates will have critical scaling;
that is, they will be invariant under the change of variables that eliminates the parameters

N 7 and tJ. Thus, without loss of generality, we will ignore them from the start.

To establish (4.73) and complete our treatment of (4.63), we are therefore left to show

hm lim sup || Z | M (N* Py e 7| )1/2HL§’$(K) =0 (4.74)

J=0  noeo
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for a fixed compact set K C R x R

To establish (4.74), we will need to rely on the fact that we are working on a compact set,
so that we can carry out a local smoothing argument. Indeed, the term appearing above is

itA J

morally like |V|*ce , over which we do not have sufficient control (cf. (4.16)). However,

we do have good control over e®®w? in the form of (4.13). Thus, to succeed, we need to

find a way to estimate the term above using fewer than s, derivatives; this is exactly the role

of local smoothing.

For the proof of (4.74), we will use a standard local smoothing result for the free propa-
gator (Lemma 2.3.3), along with a few results from [57, Chapter V]. In particular, we need
the following: if we choose € > 0 so that —d < —1 — ¢, then |z|7'7¢ is an A, weight, so that

M is bounded on L*(|z|~'~¢ dx).

Proof of (4.74) We can write K C [-T,T] x {|z| < R} for some T, R > 0. We fix some

Ny € 22 and break into low and high frequencies:

// Z\N“)’C )| dedt < // | M(N* Pye®®w!)|” du dt

N<Ng

+ > // | M(N* Pye™w)) | de dt.

N>Nop

For the low frequencies, we use Holder and maximal function estimates to write

> // | M(N* Pye™w?)|* du dt

N<Ny

S 3 T R MV P )

N<No Lia

Sk Z Nl

N<N0 ta:

S N €] 2 oo

t,x

ztA J12
H p(d+2)

For the high frequencies, we choose £ > 0 so that —d < —1 — e. Then, using Lemma 2.3.3,
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Bernstein, and the fact that |x|7'7° € Ay, we can estimate

> // | M(N* Pye™w))|* de dt

N>Np

< R Z / ‘M(NSCPNeitAwZ)|2<:E)_1_€ dx dt

N>Np

<k Z NQSC/ |PNe“Aw;{|2<x)_1_adxdt

N>Ny

Sk Y N2V 72 Pyw] ]2 gy

N>Ng

Sk Y, NIV

N>Ng

Sk No_1|||v|86w7{||%g(md)-

Sc

[

Optimizing in the choice of Ny now yields

. < 2\1/2 , s S2se
(3 | Pye ) 2 2y S €Tt e 2
N ’ Lt,z ‘

which, by (4.13), gives (4.74). [

We have now dealt with (4.63), and so we finally turn to (4.64). As usual, we first restrict
our attention to a single frequency N. We have dealt with a term of this form before (cf.

(4.40)); proceeding in exactly the same way, we arrive at

| Py ([lg(x) + h(@)[” — |g(x)]Plg(x))]

< [ N (Ny)[16,9(2)| (@ = y)[{lg(@ = y) P~ + Az — )P~} dy (4.75)
+ [ NUD(Ny)l ()] |8,9()] [h(x = y)[P~" dy (4.76)
+ [ NNy g(@)] 10,h(2)] {Ig(@) P~ + [h(2)[P~" + |h(z — y)P~" } dy, (4.77)

at least in the case p < 2 (as above, we will only consider this case).

Note that all of the terms above are similar to terms we have handled before. Thus, we

proceed in the same way, decomposing terms exactly as before. Whenever a term includes a

A, J

copy of e"“w; without derivatives, things will be relatively straightforward, as one can rely
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on (4.13) (see (4.78) below for details); for the one term stemming from (4.77) in which e®“w;
only appears with derivatives, we have to go through the same local smoothing argument

given above (cf. the proof of (4.74)).

To conclude the proof of (4.37), we will see how to estimate the contribution of the term

S NUD(Ny)| [8,9(2)| [h(z — y)| |g(x - y)[P~" dy. (4.78)

Estimating |d,g(x)| as before, we find we need to bound the terms

M(h|glP" Y gsn + M(hlglP " gon)

+ > KM(hlgl)M(gr) + Y M(hlglP™ M(gx)).

K<N K<N
Let us now see how to handle the contribution of the first term only, as the other three
are similar. We begin by summing over N € 2% and recalling the definitions of g and h;
then, using Holder, maximal function estimates, and Lemma 2.2.2, we can argue as we did

to obtain (4.24) to see

2\1/2; N
lim limsup |[( Y " [N*gon|") " M(R|glP )| <§(d+>2)
J—=oo poo
N tac
J A p(d+2)
S }Lm liHLSUP [V ZU 2(5((122) le " wJHZ(ﬁ(rii)z) Z HU H p(d+2)' (4.79)
oo j:1 ac tac

We turn to estimating the first term above. We first write

J
SC(Z )H2 02
n— o0 ] 1 Ltz
< Jim Timsup (Z V|07 \\22(d+2) + D ViV SCUQHLW) (4.80)
Jj=1 . J#k b

Arguing as we did to obtain (4.26), we immediately get that

hm hmsupz ||V ]! |V

OO itk

se ’“H a2 = 0. (4.81)

d
, T

Next, we let > 0; then, using (4.15), we can find J(n) > 0 so that

> IVPdliz: <.

J>J(n)
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Taking 7 sufficiently small and applying a standard bootstrap argument, we find

> vy H22<d+z> S D Vel Sn. (4.82)

3>J(n) Lo J>J(n)

On the other hand, the fact that each v/ has scattering size < E. implies

ZH!V

Combining (4.81), (4.82), and (4.83), we can continue from (4.80) to see

v H22(d+2> Sk L (4.83)

I

J
hm hmsupH|V\ ZU H 20a42) Sk L
J=1

n—oo

Thus, continuing from (4.79) and using (4.21) and (4.13), we find

J psn p(d+2)
ZU 2(§<d1+)2> e " wJHZ(5<d1+)2> Z ||U¥L|| p<d+2> =0,
O n—oo j=1 tT

as needed. This completes the proof of (4.37). [

Having established (4.36) and (4.37), we are now done with the proof of Lemma 4.4.5.

Thus for the cases (1.3), (1.4), and (1.5), we may use Lemmas 4.4.2 and 4.4.5 together
with Theorem 3.2.2 to deduce that S o) (un) Sg. 1 for n large, thus contradicting (4.18).

We conclude that there is at least one bad profile, that is, (4.20) holds. Thus claim (i) above

holds, which completes the proof of Proposition 4.4.1 and Theorem 1.1.2 in the cases (1.3),

(14), (15). 1

4.5 Further reductions

In this section, we give some further reductions to the solutions given by Theorem 1.1.2.

First, a rescaling argument as in [37, 39, 65] allows us to restrict attention to almost
periodic solutions that do not escape to arbitrarily low (or high) frequencies on half of
their maximal lifespan, say [0, 7naz). We will not include the details here, but see [65,

Theorem 3.3], for example.
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For cases (1.2), (1.3), and (1.4), we restrict to solutions that do not escape to arbitrarily
low frequencies. For (1.5), we instead restrict to solutions that do not escape to arbitrarily
high frequencies, which we note implies T, = 0o (cf. Corollary 4.1.4). The choice of
whether to suppress low or high frequencies is motivated by whether the critical regularity
is higher or lower than the scaling of the a priori estimates (e.g. Morawetz estimates) we

plan to use.

We next recall that using Lemma 4.1.3, we can subdivide the lifespan into characteristic

subintervals J; on which N(t) = Ny, with |Ji| ~, N 2.

For the case (1.2), we translate so that z(0) = 0. Modifying z(t) by O(N(¢)™'), we
can make x(t) piecewise linear on each Ji, with |Z(t)| ~, N(t) for t € I7. Thus we get

()]~ N(t) for a.e. t € [0, Thaz), 50 that |2(t)] Su [3 N(s)ds for t € [0, Taz)-

Finally, for the cases (1.4) and (1.5), we recall that radial almost periodic solutions have

x(t) = 0.

Putting all the pieces together, we arrive at the following theorems.

Theorem 4.5.1 Suppose Theorem 1.1.1 fails and (d, s.) satisfies (1.2). Then there exists
an almost periodic solution u : [0, Tpas) X RY — C to (1.1) such that Spor,,.)(u) = oo,

infyco, e N () > 1, and |z(t)] S fg N(s)ds for allt € [0, Taz)-

Theorem 4.5.2 Suppose Theorem 1.1.1 fails and (d, s.) satisfies (1.3). Then there exists

an almost periodic solution u : [0, Tay) X R* — C to (1.1) such that Spr,,,,) = 0o and
Nt)=N,>1 forteJy, with [0,The)=UJx and |Jy| ~, N>
Furthermore, one of the following holds:
Tmaz
/ N ()34 dt < 0o (frequency-cascade)
0

Tmaz
/ N(t)* *dt = 00 (quasi-soliton).
0
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Theorem 4.5.3 Suppose Theorem 1.1.1 fails and (d, s.) satisfies (1.4). Then there exists
an almost periodic solution u : [0, Trez) X R — C to (1.1) such that Sy r,,,,) = o0, z(t) =0,

and

N({t)= Ny >1 forte J,, with [0,The)=UJx and |Jg| ~y N,;Q.
Furthermore, one of the following holds:
Tmaac
/ N ()32 dt < 0o (frequency-cascade)
0

Tmam
/ N(t)* 2 dt = oo (quasi-soliton).
0

Theorem 4.5.4 Suppose Theorem 1.1.1 fails and (d, s.) satisfies (1.5). Then there exists

an almost periodic solution u : [0,00) x R* — C to (1.1) such that Sjp ) = 00, z(t) =0, and
N({t)=Np, <1 forteJ, with [0,Thew)=UJx and |Jg| ~y Nk_Q.
Furthermore, one of the following holds:

/ N(t)* 2% dt < oo (frequency-cascade)
0

/ N ()32 dt = 0o (quasi-soliton).
0
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CHAPTER 5
The H'/?-critical case

In this chapter, we treat the case (1.2). In particular, we preclude the existence of almost
periodic solutions as in Theorem 4.5.1. We break into two cases, namely T},,. < oo and
Trar = 00. As we will see, the fact that the Lin—Strauss Morawetz has critical scaling for

the [/ *critical problem makes it a very effective tool in this setting.

The results in this chapter appeared originally in [50].

5.1 Finite-time blowup

In this section, we use Proposition 4.1.6, Strichartz estimates, and conservation of mass to

preclude the existence of almost periodic solutions as in Theorem 4.5.1 with T;,,,, < 0o.

Theorem 5.1.1 There are no almost periodic solutions u : [0, Tppaz) X R? — C to (1.1) as

i Theorem 4.5.1 with T,,,, < 00.

Proof. Suppose that u were such a solution. Then for ¢ € [0,7,,,,) and N > 0, Proposi-

tion 4.1.6, Strichartz, Holder, Bernstein, and Sobolev embedding give

4
Pyu(t S Py (lul=Tu i
H N ()HL% ~ H N(’ ‘ )HLng%([t,me)de)

< (Tnaw — ) 2NY2||uT 0| o
L

~Y

Lis
d+3
S (Trmaz — t)1/2N1/2||u||z:H1/2.
Asu e L,?OH;/Q, we deduce
| Penu(t)| 2 Su (Traw —t)?NY? forallt € I and N > 0. (5.1)
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On the other hand, an application of Bernstein gives

<. N7Y2 for all N > 0. (5.2)

1Povullers S N7Vl o e Sa

We now let 7 > 0. We choose N large enough that N='/2 < 5, and subsequently choose
t close enough to Tpnee that (T — t)/2NY/2 < 5. Combining (5.1) and (5.2), we then get

lu()llzz Su n-
As 1 was arbitrary and mass is conserved, we conclude ||u(t)||2 = 0 for all ¢ € [0, Trnaz).

Thus u = 0, which contradicts the fact that « blows up. |

5.2 The Lin—Strauss Morawetz inequality

In this section, we use the Lin—-Strauss Morawetz inequality to preclude the existence of

almost periodic solutions as in Theorem 4.5.1 such that 7},,,, = oc.

Proposition 5.2.1 (Lin—Strauss Morawetz inequality, [46]) Let d > 3 and let u: I x
R? — C be a solution to (i0; + A)u = |ulPu. Then

Ju(t, )P+ 2
dedt < . . .
/I/Rd El vl SNl e 2y (5:3)

As in [32], we will use this estimate to establish the following

Theorem 5.2.2 There are no almost periodic solutions u : [0,00) x R* — C to (1.1) as in

Theorem 4.5.1.

Proof. Suppose u were such a solution. In particular, u is nonzero, so that by almost

periodicity and Sobolev embedding we may find C'(u) > 0 such that

lu(t, x)]% dr 2, 1 uniformly for ¢ € [0, 00).
|J:—x(t)|<c(u ~
S¥ND

Applying Holder and rearranging, this implies

/ u(t, 2)[ 5 dz >, N(£) uniformly for ¢ € [0, 00). (5.4)
(1)<

69



We now let 7' > 1 and use u € LooHl/2 (5.3), and (5.4) to see

2(d+1)

Ju(t, ) TN
/ Am P T dtz“/l @)+ N

N(t
As infiep1 00y N(t) > 1, to derive a contradiction it will suffice to show that

T
N
lim *)

————dt = .

Recalling that |z(t)| < fo s)ds for all t > 0, we get

[T%dtzu /f%log <1+/OtN(s)ds) dtzulogC:Ex((;)

As inficp100) N(t) > 1, we conclude that (5.5) holds, as needed. [}
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CHAPTER 6

Long-time Strichartz estimates

In this chapter, we develop long-time Strichartz estimates for almost periodic solutions to
(1.1). Such estimates were first developed by Dodson [18] in the study of the mass-critical
NLS. They have since appeared in the energy-critical setting [43, 70], the energy-supercritical
setting [48], and the intercritical setting [49, 51].

The results in this chapter appeared originally in [49, 51].

6.1 Estimates adapted to the Lin—Strauss Morawetz, s. < 1/2

In this section, we establish a long-time Strichartz estimate adapted to the Lin—Strauss
Morawetz inequality for almost periodic solutions as in Theorem 4.5.4. In particular, we
assume (d, s.) satisfies (1.5), that is, d = 3 and 0 < s. < 1/2. A key ingredient in the proof

is the bilinear Strichartz estimate, Corollary 4.1.7.
We work under the assumption
u e LEH([0,00) x R?) (6.1)
for some s > s.. We know from (4.1) that (6.1) holds for s = s.. In Chapter 7 we will show
that in the case of (1.5), rapid frequency-cascade solutions actually satisfy (6.1) for s > s..

Throughout this section, we make use of the following notation for almost periodic solu-

tions to (1.1) as in Theorem 4.5.4.

Ar(N) = HU>NHLng(1de)a (6.2)
K= / N(ty 2 dt ~y Y N2 (6.3)
I JpCI
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The main result of this section is the following.

Proposition 6.1.1 (Long-time Strichartz estimate) Let u : [0,00) x R® — C be an
almost periodic solution as in Theorem 4.5.4. Let I C [0,00) be a compact time interval,
which is a contiguous union of characteristic subintervals Ji. Suppose (6.1) holds for some

Se < s<3/2+4 s.. Then for any N > 0, we have
Af(N) Sy N™% + NOO K2 (6.4)
where o(s) :=1/24 s — s..
In particular, using (4.1), we have
Aj(N) <y N~ + N"Y2K)2 (6.5)
Moreover, for any € > 0, there exists No(¢) > 0 so that for N > Ny,
Af(N) Sy e(N7% + NV2K?). (6.6)

We will prove Proposition 6.1.1 by induction. The inductive step will rely on the following

lemma.

Lemma 6.1.2 Letn > 0 and u, I, s, o be as above. For any N > 0, we have

25 —o(s 1/2
|Pon (F(u)) ||L%L2/5(IXR‘1) Su Oy i}g H“>77N”L;>cH;(kaR3)N K
+ > (B AM),
M<nN

Proof of Lemma 6.1.2. Throughout the proof, all spacetime norms will be taken over

I x R? unless stated otherwise.
We begin by writing F'(u) = F(u<,n) + F(u) — F(u<,n). We use Bernstein, the chain
rule, Sobolev embedding, and (4.1) estimate
[P F im0 S N 2IAF(tn)l 0

SNNVEullors Y [ Aunlzzss

M<nN



Next, we use almost periodicity to choose C'(n) large enough that

IV uscmpn | gz (rxray < 1% (6.8)

By almost periodicity and the embedding H Je L we may choose C(n) possibly even
larger to guarantee

H(l - X%)uﬁc(ﬁﬂv(ﬂHLfoLipﬂ([XRd) < 7727 (69)
where y g denotes the characteristic function of {|z| < R}.

We now write

F(u) = Fucyn) S usyn@{ (u<cmnw )’ + (uscmnm)? )

so that
| Psn (F(u) — Fucyy)) ”Lng/f’ S ||u>77N(U>C(17)N(t))pHL?Lg/ES (6.10)
+ (1 - X%)U>nN(UgC(n)N(t))pHL%Lg/s (6.11)
+ ”X%uNﬂV(USC(n)N(t))pHL?Lg/E)- (6.12)

Using Hoélder, (4.1), and (6.8), we estimate the contribution of (6.10) as follows:

sy (uscmnm)’ |l 2 05 S lusonllrzs luscmnel? - spe S 77 AHNN). (6.13)
t bz L Ly

Similarly, we estimate the contribution of (6.11) as follows:

1L =X e sy (u<omn®)’ll 55

—1
S - X%)USC(n)N(t)HL?oLiPmHUHIZ;,OL?/2HU>7]NHL§L2
<un*A7(nN). (6.14)

Finally, we estimate the contribution of (6.12). We first restrict our attention to a single

characteristic subinterval J,. We define the following exponents:

_ 20424 3p(P42p—d) . 6(p7+2p—4)

9= "3p—1 > To 8p—p?—8 3p2-1
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Note that as 4/3 < p < 2, we have 4 < ¢ < 00, 2 < 19 < 6, and 2 < r < 3. We also note

that we have the embedding H?" < L™ and that (g, r) is an admissible pair.

With all spacetime norms over J;, x R?, we use Holder, the bilinear Strichartz estimate

(Corollary 4.1.7), Sobolev embedding, Lemma 4.1.5, (4.1), and (6.1) to estimate

||X%Z)u>nN (Ug(](n)Nk >p||Lng/5

S Ixeg HL = s nxtecomm 22 s |78 1 lu<cmm g 007
<, C’nN,;(IJSC)Q/Q [Né—scN—l/zfs} 1=2sc nr—2s-sc U>v7NHi;H;H|V Scq, E}JZ%C
<. CWN;/2fscN*(1/2+sfSC) [~ i;HT
Summing over J, C I and using (6.3), we find
||X%U>77N(U§C(77)N(t))p“L%L?/5 Su Oy iucpl ||U>WN||i§’ZH;(Jk xR3)N_U(S)K}/2' (6.15)

We may now add the estimates (6.7), (6.13), (6.14), and (6.15) to complete the proof of
Lemma 6.1.2. |}

We turn to the proof of Proposition 6.1.1.

Proof of Proposition 6.1.1 We proceed by induction. For the base case, we let N <

infte] N(t) S 1, so that N—2(s—sc) (%)1723C

> 1fort € I. We use Bernstein and Lemma 4.1.5

to estimate

Ar(N)? S N_2SC|||V|SCU>NH%§L2(MR¢) Su N7%e 4 N7 [ N(t)* dt

,Su N72sc + N7172(5756)KI'
Thus for N < inf,c; N(t), we have
Ar(N) < C, [N~ + N0 K. (6.16)

This inequality remains true if we replace C, by any larger constant.
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We now suppose that (6.16) holds at frequencies < N/2; we will use Lemma 6.1.2 to

show that it holds at frequency N.

Applying Strichartz, Bernstein, Lemma 6.1.2, (4.1), and (6.1), we find

Ar(N) < Cu[N7* inf flus n (0) No@ R

fse T Cy sup [[us,n]|

2s¢
JpCI L?oHi(kaR3)

+ Y (N A(M)] (6.17)
< Cu N7+ CNOK2+ 3 (2)24,(M)).

We now let n < 1/2 and note that s < 3/2 + s, gives o(s) < 2. Thus, using the inductive

hypothesis, we find

Ar(N) < Cu[N= + CN "R 4 3 (R (CuM > + CuM 7K, ?)]

M<nN

< Cu [N~ + CuN O K] 4+ C,C, [ N~ 4 > oI N—C K17,
If we now choose 7 sufficiently small depending on C,,, we get
Ar(N) € Cu(N7> + CuN O ) 4 4O (N> + NTOWKP).

Finally, if we choose C,, possibly larger so that C\, > 2(1+ Cn)é’u, then the above inequality
implies

A[(N) < Cu(N~% + NG K,/?),
as was needed to show. This completes the proof of (6.4).

The estimate (6.5) follows directly from (6.4) with s = s.. With (6.5) in place, we
can prove (6.6) by continuing from (6.17), choosing 7 sufficiently small, and noting that

sup,e; N(t) < 1 implies

. 2s —
fze 50 s 5 ] = O

Aim [inf fJus v (2)]

for any n > 0. This completes the proof of Proposition 6.1.1. |
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6.2 Estimates adapted to the Lin—Strauss Morawetz, s. > 1/2

In this section, we prove a long-time Strichartz estimate adapted to the Lin—Strauss Morawetz

inequality. We will work under the assumption
w € LEH([0, Thaz) X R?) (6.18)

for some s < s.. We have from (4.1) that (6.18) holds for s = s.. In Chapter 7, we will show

that in the case of (1.4), rapid frequency-cascade solutions actually satisfy (6.18) for s < s..

Throughout this section, we use the following notation for almost periodic solutions to

(1.1) as in Theorem 4.5.4:
Ar(N) = IVPusn | 22gxra, (6.19)

K; = / N(tyP 2 dt ~y Yy N2 (6.20)
I

J,CI

The main result of this section is the following.

Proposition 6.2.1 (Long-time Strichartz estimate) Let u : [0, Tje) X R® — C be an
almost periodic solution as in Theorem 4.5.3. Let I C [0, T4:) be a compact time interval,
which is a contiguous union of characteristic subintervals Jy,. Suppose (6.18) holds for some

se —1/2 < s < s.. Then for any N > 0, we have
Aj(N) <y 1+ NOWEK?, (6.21)

where o(s) := 2s. — s — 1/2.

In particular, using (4.1), we have
Af(N) Sy 14 Nse12R2 (6.22)
Moreover, for any € > 0, there exists Nog = Ny(g) > 0 so that for any N < Ny,

Aj(N) Sy el + N*12E?), (6.23)
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We prove Proposition 6.2.1 by induction. The inductive step relies on the following.

Lemma 6.2.2 Letn >0 and u, I, s, o be as above. For any N > 0, we have

Se o(s 1/2
[[V]* P<y (F(U)) ||L$Lg(Ide) Su Oy EUCI} ||u§N/T]||L§°H;(Jk><R3)N ( )KI/
k

+ 2 () A,

M>N/n

Proof. Throughout the proof, all spacetime norms are taken over I x R? unless indicated
otherwise.

We fix 0 < n < 1. Using almost periodicity, we may choose ¢(n) sufficiently small so that

I ’V\SCUgc(n)N(t)HL;;OLg(Ide) <. (6.24)

We decompose the nonlinearity as follows:
Fu) = Flusnm) + [F(u) = Fusnm)]-

We first restrict our attention to an individual characteristic subinterval J;. Using the

fractional chain rule, Holder, the triangle inequality, and Sobolev embedding, we estimate

[ |V\8“PSNF(U§N/77)||L§LS/5(kaRd)

p

L L3/2 (g, xRY) H |V|SCUSN/77 ||L§L§(kaRd)

S <yl
S |||V|SCP§c(n)Nku§N/n||IngLg(kaRd)|||V|SCU§N/n||L§Lg(kaRd)

F VP Po e tianynllze 12 gy sray 1V I t<nymll 2 2 (7 xm)-

For the first term, we use (6.24) to get

H |V’SCPSC(n)NkuSN/n HigoLg(kaRd) ” ‘V’scuSN/n HL?LSZ(JIC xR4)

N USCH |V|SCU§N/n||L§Lg(kaRd)- (6-25)
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For the next term, we note that we only need to consider the case ¢(n)Ny < N/n, in

which case we have 1 < Cn(Nﬂk)SC_l/Q. Using Bernstein, Lemma 4.1.5, and (4.1), we estimate

H|V|SCP>C(77)Nku§N/77”ig’oL%(ka]Rd)H|V|SCUSN/U||L?L2(JkXRd)

Oy

Ng

S
CUSN/nHLgOLg(kaRd)

~Uu

Su CW(NE,C)SCil/zNSCiSHUSN/n|’L§°H;(Jk xR3)" (6.26)
Summing (6.25) and (6.26) over J, C I and using (6.20), we find

H|V\SCP3NF(U§N/77)HL§L§/5

Sc (s 1/2
Sun™A(N/n) + C, Eucpl HUSN/nHLgOH;(kaRB)N ( )KI/ .
k:

Next we use Bernstein, Holder, Sobolev embedding, and (4.1) to estimate

191 P (F () = Flusnm)) lzgen S NIl an 3 ol
M>N/n
S > (G0 A),
M>N/n
Collecting the estimates, we complete the proof of Lemma 6.2.2. |

We turn to the proof of Proposition 6.2.1.

Proof of Proposition 6.2.1 We proceed by induction. For the base case, we take N >
sup,e; N(t) > 1, so that N2(Sc—5)(L)280_1 >1fort € I. Lemma 4.1.5 gives

N(t)
Thus for N > supe; N(t), we have

Ar(N) < C,[1+ N°O K] (6.27)

This inequality clearly remains true if we replace C, by any larger constant.

We now suppose that (6.27) holds at frequencies > 2N; we will use Lemma 6.2.2 to show
that it holds at frequency N.
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Applying Strichartz, Lemma 6.2.2, (4.1), and (7.12) gives

5T - 1/2
Ap(N) < C“[ig |u<n(t)| fse T Cy SUPI HUSN/nHLgOH;(kaM)N (S)K]/

JiC

+ > () A(M)] (6.28)

M>N/n

<Cu[1+CNTOK+ N () A ().

MZ=N/n
We let n < 1/2 and notice that s > s. —1/2 guarantees o(s) < s.. Thus, using the inductive

hypothesis, we find

Af(N) < Cu[1+ CNOR 4+ 3 (B)(Cy + CM WK

M>N/n

S éu [1 + CUNU(S)K}/Q} + Cuéu |:,',]Sc + ,,,]SC—O'(S)NU(S)KII/Q}
Choosing 7 sufficiently small depending on C,, we find
Ar(N) < Cyu(1+ C,N°® K1/2) +io,(1+ Na(s)KIl/2>'

Finally, choosing C,, possibly even larger to guarantee C, > 2(1 + C,)C,, we deduce from
the above inequality that

Ar(N) < Cu(1+ NTO P,
as was needed to show. This completes the proof of (6.21).

The estimate (6.22) follows directly from (6.21) with s = s.. With (6.22) in place, we
can prove (6.23) by continuing from (6.28), choosing 7 sufficiently small, and noting that

infier N(t) > 1 implies

iz Ligf s )

fse + sup ||U§N/n||L§°H;C(J,€xR3)} =0
JpCI

for any n > 0. This completes the proof of Proposition 6.2.1. |

6.3 Estimates adapted to the interaction Morawetz

In this section, we prove a long-time Strichartz estimate adapted to the interaction Morawetz

inequality for almost periodic solutions as in Theorem 4.5.2. In particular, we assume (d, s.)
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satisfies (1.3). Key ingredients in the proof will be a paraproduct estimate, Lemma 2.2.6, as

well as a bilinear Strichartz estimate, Corollary 4.1.7.

Throughout this section, we make use of the following notation for almost periodic solu-

tions to (1.1) as in Theorem 4.5.2.

Ar(N) = [[[V

S
usn|| 1 7
L2LE2 (IxRY)

K= / N ()35 dt ~, Z N e, (6.29)
1

JpCI

The main result of this section is the following.

Proposition 6.3.1 (Long-time Strichartz estimate) Let u : [0, T},0.) X R? — C be an
almost periodic solution as in Theorem 4.5.2. Let I C [0, Tyas) be a compact time interval,

which is a continguous union of characteristic subintervals J,. Then for any N > 0, we have

Af(N) Su 1+ N=12K )2, (6.30)

Moreover, for any € > 0, there exists Ny = No(g) such that for all N < N,

Af(N) <y (1 + N¥12E12Y (6.31)
We prove Proposition 6.3.1 by induction. The inductive step relies on the following.

Lemma 6.3.2 Let n,n9 > 0. Let u, I as above. There exists v > 0 so that for any N > 0,

we have
se ) < 25.—1/2 7 1/2 v
VPP (FOI g, S Com V2K 4 A4 (/)
E
+ > (M) AN(M). (6.32)
M>N/no

Proof of Lemma 6.3.2. Let 0 < 7,7y < 1. Using almost periodicity, we may choose ¢(n)
sufficiently small so that

IV Ieucenllzzerz < - (6.33)
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We next decompose the nonlinearity |u|Pu and estimate the resulting pieces. The partic-

ular decomposition we choose depends on the ambient dimension.

Case 1. When d = 3, we have 2 < p < 4, and we decompose as follows:

ulPu = (Jul” + ||’ Gty /mg )t /o
+ [ulP72a(Ps eniryti<nmy ) <N/ (6.34)

+ [ul" 24 Peen(tyi<nm ) u<n/m-
To estimate the contribution of the first term on the right-hand side of (6.34), we let
G o= [ul” + [u* 2,
and use Bernstein, Lemma 2.2.6, and Holder to estimate

IV V72 (Gus )

3
SCPSN(GU>N/770)HL?L2/5 SJ N 25¢ ”Lng/E’

3 1 _1
SNENVESGH oz V72 v L2
L°L, P
3
SIVIE=GI e > (3)2 An(M). (6.35)
Lt Lx M>N/770

To estimate the contribution of the first term above, we first use the fractional chain rule

and Sobolev embedding to see

I]V25

| . S VIl s Sul
+ T

Y

ufPll e S )
Lt

—1 lsc
oLy Pt L§°Lj7p IIVI

while by the fractional product rule, the fractional chain rule, and Sobolev embedding we

get
1 9

091 (s e,
< 1s p—25 p—1 1s
N HuHLtoo ?HIW2 “(Jul U)”L?OLE;{PH + ||u||L?OL37pH|V|2 CU|L;>OL3¥2+”4

s p—2 1 s p

S MV Fullzaall?? o NVEul e, + 191l
< IV ullpers Su 1
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Thus, continuing from (6.35), we see

1191 P ([ul? + [l By Vs ) |3 o

<o ST (@) A M), (6.36)

M>N/no

Next, we turn to estimating the contribution of the second term in (6.34). We begin by
restricting our attention to an individual J, x R?. Note that we only need to consider the

case cNy < N/ng, in which case we have

(i)sc <ec (2&—1/2)770—(&—1/2)(%)236—1/2 <C

2sc.—1/2
CNk — 77770(N )SL /

for some positive constant C},,,. Hence we can use Bernstein, Holder, Sobolev embedding,

and Lemma 4.1.5 to estimate

|||v|5c (|u|p *u (P>CNkU<N/770)u<N/T]0||L2L6/5

S N[ fufP? U(Pseny s mo )t<n/m |l 2 pors

S Nl lLdpHP>CNku<N/770HL4L3HU<N/T)0” o

t x t x

Su N (eNg) ™

U/l Tars

u Cong ()22, (6.37)

Summing the estimates (6.37) over the characteristic subintervals J, C I then gives

11571 P ([l 0 Ps e eyi<nm ) u<n/m)l 12 o5

<y Cpg N2 12K 2, (6.38)

Before proceeding to the next term in (6.34), we note that in obtaining estimate (6.37), we

could have held onto the term |[|V[*u<n/p,[[1273, Which (by interpolation) we can estimate

by

1 1
VI usnmollzizs S VI uan/moll oo 12 11V I u<nmoll 72 e

1
Su H|V|SC“§N/non§°Lg'
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In this case, summing the estimates yields

|||v|5cP§N(|U|p_2a(P>cN(t)u§N/n0)ugN/no)||L%L2/5

s 3 so—1 -1/2
S U [V tanjmg | 2 2, ey Coom N2 K2, (6.39)

~Y

JCI
This variant of (6.38) will be important when we eventually need to exhibit smallness in

(6.31).

To estimate the contribution of the final term in (6.34), we begin with an application of

the fractional product rule and Hoélder to see

1171 P ([l 26 Py tinm ) usnm)l 2 oo
< s p—2~—
S VI ([ul U)HLtOOLI;%||chN(t)“§N/noH ?L;fppﬂugzv/no!\ o (6.40)
+ull” 5, 11V Peentyuanymolcozs lusnym |l oo (6.41)
L®L,? LiL:""
-1
+ HUHZOOL% ||PScN(t)u§N/noHLoo e IV usnymll L2 rs- (6.42)

t t

We first note that by the fractional chain rule and Sobolev embedding, we get

1Y

ulPa) |

sc<

< |[P~2 s <
mpgits ST VIl St

Using Sobolev embedding, interpolation, and (6.33), we also see

!|P§cN(t)USN/no||L4 oo S V™ PeeninyusnymllLars

B
tLo "

1 1
SV Peen@yu<nng ||,§?OL% IV I° P<entyu<n/mo Hszg

S 771/2141(]\//770)1/2‘
Estimating similarly gives

fusssmll g Su Ar(N/m) %

t

Plugging these last three estimates into (6.40), (6.41), and (6.42) and employing a few more
instances of Sobolev embedding and (6.33) finally gives

1Y

* P ([uP " ( Peen tyUsn /mo U< /mo ) 285 Su n'?Ar(N/mo). (6.43)
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Collecting the estimates (6.36), (6.38), and (6.43), we see that in the case d = 3, we have

the estimate

1Pen (F () 215 gy S Comg N¥FEG i/ 240N o)+ 37 ()7 Ay(M).
M>N/ng

(6.44)
Comparing (6.44) to (6.32), we see that Lemma 6.3.2 holds for d = 3.
Case 2. When d € {4,5}, we have ﬁ <p< ﬁ. In particular, we have 1 < p < 2.
Again, we wish to decompose the nonlinearity and estimate each piece. This time, we
decompose as follows:
|ulPu = [ul"us Ny
+ [usen(o) [P P<en ) U<n/m (6.45)
+ [usen () [P Poen () U<n/m
+ (Jul” = Jusen ) u<m,-

We estimate the contribution of the first term on the right-hand side of (6.45) similarly

to the case d = 3; in particular, by Bernstein, Holder, and Lemma 2.2.6, we have

11V

“Pen(fulusnm)l , 24

S N2oe|||V] 2% W 2

L2Lg+?

<N230\|IVIQS°\UIP\I V725 s |

d
t x

<|||V|2‘90|1t|1’|| Caap Y (2)3% 4,(M), (6.46)

oo 1, P@T8) 1
M>N/ng

(d+8

As we can use the fractional chain rule and Sobolev embedding to estimate

|V UI”H e Sl ' IIIVPS“

(d+8) 1

\/|S¢c

| 4dp ~ ”| | u||L°°L2 ~Uu ]‘7
)

t t z

we can continue from (6.46) to get

IV PexuPusnm)l |z Su > (3)5 Aran). (6.47)

d+
L M>N/no
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Next, we turn to estimating the second term in (6.45). Restricting our attention to an
individual characteristic subinterval .Ji, we first apply Bernstein, Holder, and the fractional

product rule to see

1Y

5cP§N(’U>cNk ‘pPSCNkuSN/WO)HL?LZdQ%

< N5 ||V (Jusen, [ Pee iz )|

_2d_
L2ri+?
< Arse-) 1 »
SNV P (Pl 2o (6.48)
_1 1
+N* 4||U>CNk||p 4dp? |||v|4P§CNku§N/no||L4L%' (649)
+ Lx

L?po(zd-s-s)—s

Using Hélder, the fractional chain rule, Sobolev embedding, Bernstein, interpolation, (6.33),

and Young’s inequality, we can estimate

_1 _ 1
(6.48) S N Hwsom |7 IV wsem |l o 191 Peomisnsmll | 2
L?OLZQ Lth t T

S N*eTh(eNy) 175

S
Viusanll,

1 1
XNV Peenytisnmoll foo 2 IV I usnmoll® - 20
* 1219-2

1
Se™y7 1 1
SG(F) )
v\ 2512 N
Su Cn (N_k) + UAJk (77_0)7

for some positive constant (. Using Lemma 4.1.5 as well, we can estimate similarly

_1 1_, so—1
(6.49) S N1 (eN) 17| [V D Pusen [P0

2d —8
L?P[]i’( +5)

< 1VI* Peonunyml 2
t

se—1
SC () IV vl

4p y dp—1
LIPLS

1 1
XNV Peenytisnmoll poo 2 IV I usnmoll? - 20
v L3Lg?

t T

v\ 251/ N
Su Gy (E) + 145 ()
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Collecting the estimates for (6.48) and (6.49) and summing over the intervals J, C I, we

arrive at

1Y

“Pen(lusex " Peenyusnm)ll , o,

<y CuNZ 3K 4 nAf(N/np). (6.50)
Before proceeding, we note that for both (6.48) and (6.49), we could have instead estimated

1
IV 1% Peenyusnmo | foo 12 (g xay
1 1
N H|v’SCUSCNkHE?L%(JICXRUZ)H’V‘SCuSN/WOHszL%(JkXRd)

1 1
NUE || ’WSCUSN/no||zgoLg,(kaRd)‘

If we had done this, upon summing we could have ended up with the alternate estimate

V[P Pen (Jusen ) | P<en(yt<nyno ) “Lng%

S i Scfl
< sup IV tuensm e e CoN 2 K12 40 A (N ). (6.50)

JpCI
This variant of (6.50) will be important when we need to exhibit smallness in (6.31).

To estimate the contribution of the third term in (6.45), we first define the following:

dp—4— 2(d?4+-2d—2)—4p(4d+1)+48
0= —p4_pp €[0,1), o= 2L 4p()dp—p8() )48 o (0, s¢),
L 4dp(dp—8) L 4dp(dp—8)
r1= p2(d2—2d—2)+p(28—8d)—16" T2 = p2(d2+2d—2)—4p(2d+1)—16"

With this choice of parameters, we have

Se+ 0(5 — s0) = 2s. — 3,

—0(sc+ 1) —20(1 - 0) = —(2s. — )

and (by Sobolev embedding)
. 2d . . .
Hscvm s HO',Tl’ H5012 (N HU77'2'

Then restricting our attention to an individual Ji, we can use Bernstein, Holder, the bilinear
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Strichartz estimate (Corollary 4.1.7), and Sobolev embedding to estimate

IV

* Pen([usen, [P Psen, U< /o) HL?L;%

< N

Uscn, ||p;1 ap Uen Po e ienmllzz,

t x

X [t eny, HLerl ||P>CNku<N/7]0||LooLT2

0 —5Sc
< Née (ﬂ) ( 2 )(CNk)79(8c+§)

~u 70
X ||U>CNk HL2LT1 HP>CNku<N/770 HLOOLTZ
< B(UO)NQSC 2 (CNk) (sc+ )—20(1-0)
TF o VT Proicon

2sc.—1/
e Cum () IVt 1 IV ey
xT
N\ 25172 t
~u Cnmo <N_k> (6-52)

for some positive constant C,,,. If we sum the estimates (6.52) over the intervals J, C I,

we arrive at

11V 1% Pen (s enn [P Poeniyienym)ll - 20 Su Cpg N2 2K, (6.53)

r2ri+2

Before moving on to the fourth (and final) term in (6.45), we note that if we had held

on to the term |||V/|*® u<N/,7O||LooL2 when deriving (6.52), then upon summing we would get

H |V‘SCP§N<|u>cN(t)|pP>cN(t)u§N/nO)HL%L;%
<. v Cypm N2 2K}/ 6.54
EUP 1IV]* U<N/770||L<>0L2 (J xRA) ~05100 I - (6.54)

This variant of (6.53) will be important when we eventually need to exhibit smallness in

(6.31).

We now turn to the final term in (6.45), beginning with an application of the fractional
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product rule and Holder:

91 P (0 = useio Phzsm) I, e
< S|P — P
SITPul = lasevol ) usviml, (6.5)
b = seno Pl IV eusnmll | - (6.56)

L°L2 27,d-2

By Lemma 2.2.5, Sobolev embedding, and (6.33), we first estimate
(6.55) S NIV usenio sz lucene I’ o Ar(N/mo)
L L,

+Iv

*U<en(r)ll o2 ||U||p;1Ld7p Ar(N/no)
¢+ Lo

Su (1771 +0)Ar(N/no).

On the other hand, by Sobolev embedding, Hélder, and (6.33), we get

(6.56) < (lull”™" uy + lusene I ap) llusenioll _ ap Ar(N/10) Su nAL(N/10)-
Lo L,? Lo L,? Lo Ly

t t t

Thus we can estimate the contribution of the final term in (6.45) by

11V 20 Su P AL (N o). (6.57)
L2rd+?

e Pon ((Jul” = Jusene|P)u<nm) |

Collecting the estimates (6.47), (6.50), (6.53), and (6.57), we see that in Case 2, we have the

estimate
Se , < 2sc—1 7-1/2 min{ % p—1}
IVFPA(PE] o S Com NI oty ()
QSC
+ Y (3 AM). (6.58)
M>N/no

Comparing (6.58) to (6.32), we see that Lemma 6.3.2 holds for d € {4,5}. |}

We turn to the proof of Proposition 6.3.1.

Proof of Proposition 6.3.1. We proceed by induction. For the base case, we let N >
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sup,e; N (), so that (%)486_1 > 1 for t € I. Thus, using Lemma 4.1.5, we estimate

Af(N? <, 1+ / N(t
Su 1+ /N(t>34ScN4scl dt
I
Sul+ N*K

Thus for N > sup,¢; N(t), we have
Af(N) < Cy |14 N2R G (6.59)

for N > sup,, ~; Ni. Of course, this inequality remains true if we replace C, by any larger

constant.

We now suppose (6.59) holds at frequency N and use the recurrence relation (6.32) to
show it holds at frequency N/2. First, applying Strichartz and (6.32), we find

Af(N) < Cu[l+ Cypg N2 2 K2 4 Ay (B 4> (8 (M)]. (6.60)

M>N/770

To simplify notation, we will let a := 2s,. — % Then, if we take ng < % and use the inductive

hypothesis, (6.60) becomes

LAY K. (6.61)

Notice that we had convergence of the sum above precisely because s. < 1. If we choose 1y
possibly even smaller depending on 51“ and n sufficiently small depending on 6u and 19, we

can guarantee

(6.61) < C, 1+0,7,770(%)QK}/2] +1c, [1+(%)QK}/Q .
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If we now choose C,, possibly larger so that C,, > 2(1+ C’mo)éu, then this inequality implies
that (6.59) holds at N/2, as was needed to show. This completes the proof of (6.30).

It remains to establish (6.31). To begin, fix € > 0. To exhibit the smallness in (6.31), we
need to revisit the proof of the recurrence relation for A;(N), paying closer attention to the
terms that gave rise to the expression N 255_%K11/ ?. More precisely, we use (6.39) instead of
(6.38); (6.51) instead of (6.50); and (6.54) instead of (6.53). In this case, after an application
of Strichartz we arrive at the estimate

Af(N) Su F(N) + FININ= 2 K2 e Ag(B) + D7 (452 Ar(M), (6.62)

M>N/no
where f(N) has the form

FIN) = IV eusn|| gLz (rxmay
4
T 077,770 Z Eucg H IV|SCU/SN/770 H%?OL%(Jk xR4) (663)
k

i=1
for some 6; € (0, 1]. Here the particular values of the ; are not important; we will only need

the fact that each #; > 0. Combining the updated recurrence relation (6.62) with the newly
proven estimate (6.30) and once again simplifying notation via o = 2s,. — %, we see

Ssc —a pTo
Ar(N) Su FIN) + FININCK? 407 (14 g “NOK, ) 4 0g ™ (1 4 05 NK )

v %SC vV —« %(1—%) oY
Su FIN) + 07 4+ 02™ + | F(N) + 015" + 0 Nk, (6.64)

To complete the argument, we will need the fact that for fixed n,ny > 0, we have

lim f(N) = 0, (6.65)

N—0
which is a consequence of almost periodicity and the fact that inf,co1,,..) N(t) > 1.
1

) < e, and

Then, continuing from (6.64), we choose 7 small enough that n§ ot 7]0%
choose 7 sufficiently small depending on 7y so that 7 4 7, “n" < €. Finally, using (6.65), we
choose Ny = Ny(e) so that f(N) < e for N < Ny. With this choice of parameters, (6.64)
becomes

Af(N) <y e(1+ N¥e 2 K12

for N < Ny, which completes the proof of (6.31). |
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CHAPTER 7

Frequency-cascades

In this chapter, we employ the long-time Strichartz estimates proved in the previous chap-
ter to preclude the existence of frequency-cascade solutions to (1.1). We will see that for
frequency-cascades, the long-time Strichartz estimates are strong enough to prove either
additional decay or additional regularity. Combining this additional information with con-

servation of mass or energy, we can rule out the possibility of frequency-cascades.

The results in this chapter appeared originally in [49, 51].

7.1 The radial setting, s. < 1/2

In this section, we preclude the existence of almost periodic solutions u as in Theorem 4.5.4

for which
Ko oo) = / N(t)*7%% dt < co. (7.1)
0

We show that (7.1) and Proposition 6.1.1 imply that such a solution would possess
additional regularity. We then use the additional regularity and the conservation of energy

to derive a contradiction.

We note here that (7.1) implies

lim N(t) = 0. (7.2)

t—o00

We begin with the following lemma.
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Lemma 7.1.1 (Improved regularity) Let u : [0,00) X R® — C be an almost periodic

solution as in Theorem 4.5.4. Suppose
uwe LH([0,00) x R for some s, <s<3/2+ s.. (7.3)
If (7.1) holds, then
we LPHI([0,00) xR forall s, <o < o(s), (7.4)
where o(s) :=1/24 s — s,.
Proof. Throughout the proof, we take all spacetime norms over [0, 00) x R3.
We will first use Proposition 6.1.1 and (7.1) to establish

Ap oo (N) Su N7, (7.5)

Let I,, C [0,00) be a nested sequence of compact subintervals, each of which is a contigu-
ous union of characteristic subintervals J,. We let n > 0 and apply Bernstein, Strichartz,

Lemma 6.1.2, and (7.3) to estimate

< NS
Ap, (N) Su N7 inf Juss (1)

fre F CENTTOK2 4 N ()24, (M),

M<nN

As (6.1.1) gives Ap, (N) Sy N5 + N‘”(S)K}f, we may choose 7 sufficiently small and

continue from above to get

A (N) Su N7 [fus v (8)]| ze + N 77O K2, (7.6)
€ln N "
Using (7.2), we see that for any N > 0 we have
I fJus v ()| 7ze = 0.

Hence sending n — oo, continuing from (7.6), and using (7.1), we get

N,

~ou

Ajp,o)(N) S
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We now show that (7.5) implies
s || 250 22 (j0,00) ) Su N7, (7.7)
We first use Proposition 4.1.6 and Strichartz to estimate
lusnllzeerz S HP>N(F(U))HL§L§/5.

We write F(u) = F(u<y) + F(u) — F(u<y). Noting that s < 3/2 + s, implies o(s) < 2,
we use Bernstein, the chain rule, (4.1), and (7.5) to estimate

1Pon (F(usn))ll pos S NNV Iullfpe Y I Aunllizrg
M<N

<o Y (A2Ml) g, N0O,

~oUu

M<N

We next use Hélder, Sobolev embedding, (4.1), and (7.5) to estimate

1Pon (F(u) = Fusn)) o pos S Null? o lusnllizes Su N77C.

LeLy?
Adding the last two estimates gives (7.7).

Finally, we use (7.7) to prove (7.4). We fix s, < 0 < o(s) and use Bernstein, (4.1), and
(7.7) to estimate

IV IPullerz S VI ustllere + Y MOllunl g r2
M>1

Suldt Y MWL L
M>1
This completes the proof of Lemma 7.1.1. |

We now iterate Lemma 7.1.1 to establish additional regularity.

Proposition 7.1.2 (Additional regularity) Let u : [0,00) x R* — C be an almost peri-

odic solution as in Theorem 4.5.4. If (7.1) holds, then u € L°H*® for some e > 0.
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Proof. As 0 < s. < 1/2, we may choose ¢ such that

25, <

3+2sc
s 1,

We define sgp = s, and for n > 0 we define s,,.1 = ¢ - o(s,), where as above o(s) =

1/2 + s — s.. The constraint ¢ > 2s. guarantees that the sequence s, is increasing and

bounded above by /¢ := 21(1 2z§) In fact, elementary arguments show that the sequence s,

converges to ¢, and the constraint ¢

3+25c

We have that s,, > s. for all n > 0, while the constraint ¢ < guarantees s, < 3/24+s,

for all n > 0. Thus, noting that s, < s,41 < o(s,) for each n > 0, we deduce from

Lemma 7.1.1 that
uwe LPH — ue LPH: forall n>0.

As (4.1) gives u € L H?, we get by induction that u € L°He» foralln > 0. As s, — £ > 1,

we conclude that u € L H for some € > 0. |

Combining Proposition 7.1.2 with almost periodicity and the conservation of energy, we

preclude the existence of rapid frequency cascades.

Theorem 7.1.3 (No frequency-cascades) There are no almost periodic solutions u as

in Theorem 4.5.4 such that (7.1) holds.

Proof. Suppose u were such a solution and let n > 0. By almost periodicity, we may

find C(n) large enough that |||V[**usc@n@|lzeer2 < 7. Thus, by interpolation and Proposi-
tion 7.1.2, we have
IVusomnwlleerz S VI usom ||£§L5° I |V|l+€UH;§LSC Su T

for some € > 0.

On the other hand, by Bernstein and (4.1) we have
IVuscmne iz Su [CIN@)]'™ for any ¢ € [0, 00).
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Thus we find
IVu(t)|lr2 Sun™ == + [C(n)N()]'~* for any ¢ € [0,00).
Using (7.2) and the fact that n > 0 was arbitrary, we deduce that

IVu(t)|z =0 as t— oo. (7.8)

We next use Holder and Sobolev embedding to estimate

_p_ _2_ 2

_p_ 2
Ju(®llpzes S @7l S N9Fa@IE 19Ol 2,

Lip/Q
so that (4.1) and (7.8) imply

[u@)|| 2 =0 as ¢ — oo, (7.9)

Adding (7.8) and (7.9) implies that Efu(t)] — 0 as ¢ — oo. By the conservation of energy,
we conclude E[u(t)] = 0. Thus we must have v = 0, which contradicts the fact that u blows

up. This completes the proof of Theorem 7.1.3. |

7.2 The radial setting, s. > 1/2

In this section we preclude the existence of almost periodic solutions as in Theorem 4.5.3 for
which
Tmaa:
K0T 0ar) = / N(t)* 2 dt < o0. (7.10)
0

We show that (7.10) and Proposition 6.2.1 imply that such solutions would possess additional

decay. We then use the conservation of mass to derive a contradiction.

Note that we have
lim N(t) = oo, (7.11)

t—Tmaz

whether 7)., is finite or infinite. Indeed, in the case T,,,, < oo this follows from Corol-

lary 4.1.4, while in the case T4, = oo this follows from (7.10) and (6.20).

We begin with the following lemma.
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Lemma 7.2.1 (Improved decay) Let u : [0, Trnaz) X R* — C be an almost periodic solu-

tion as in Theorem 4.5.3. Suppose
we LPH([0, Taz) X R?)  for some s, —1/2 < s < s,. (7.12)
If (7.10) holds, then
we LH([0, Thaz) X R for all s—o(s) <o < s, (7.13)
where o(s) :=2s. — s — 1/2.

Proof. Throughout the proof, we take all spacetime norms over [0, T;,q.) X R3.

We first use Proposition 6.2.1 and (7.10) to show

Ao L) (V) Su N7, (7.14)

Let I, C [0, Thnax) be a nested sequence of compact time intervals, each of which is a con-
tiguous union of chracteristic subintervals. We let n > 0 and apply Strichartz, Lemma 6.2.2,
and (7.12) to estimate

Ap (N) Su inf Juen Ol e + CoNOE 4+ >0 (57)™ Ar (M).

M>N/n

As (6.21) gives Ar (N) <, 1+ N”(S)K}ZQ, we may choose 7 sufficiently small and continue
from above to get

An(N) Su inf luswl| e + N7 K. (7.15)
e n — T n

Using (7.11), we get that for any N > 0 we have lim; ,7,,,, [[u<y||gsc = 0. Thus sending

n — 0o, continuing from (7.15), and using (7.10), we deduce that (7.14) holds.

We next show that (7.14) and (7.12) imply

V[ ucn | zerz Su N7O. (7.16)
We first use Proposition 4.1.6 and Strichartz to estimate

IV uenllzgers Su lIVIPen (F(w))l 2 /5.

96



We decompose the nonlinearity as F(u) = F(u<y) + [F(u) — F(u<y)]. Noting that

Se—1/2 < s < s, implies 6 <

5 +ps 5 < 00, we can first use Holder, the fractional chain rule,

Sobolev embedding, (4.1), and (7.12) to estimate

1
IVEF @)l 05 S Nullf o llull oy 7 VIfuenll R

1
SVl oIVl |V u<N||L2L6

<. NG

Next, we note that F'(u) — F(u<y) = O(usyuP) and that s > s, — 1/2 implies o(s) < s..
Thus we can use Bernstein, Lemma 2.2.6, the fractional chain rule, Sobolev embedding,

(4.1), (7.12), and (7.14) to estimate

IIV|° P<y (F(u) — F(u<n)) I 2005

S N[V (W) | o oo

SNNTF @ e D MV urtl e
M>N

< p—2 Sc—8 Z N \Se

el ol et VI UHL?OLﬁ M>N(M) 1V [Pun]| =
S IVIFu \LooLQIHW || peor2 Z () NV PP unrll 2z

M>N

SO ICIRICERE

M>N

Note that in the case s = s., we would simply use Holder instead of Lemma 2.2.6 and the

fractional chain rule.
The last two estimates together imply (7.16).
Finally, we use (7.16) to prove (7.13). We fix s — o(s) < 0 < s, and use Bernstein, (4.1),

and (7.16) to estimate

VI ullgerz S IV

“usi|gperz + > MOV ual|ger2
M<1

Suld D M7 <

M<1
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This completes the proof of Lemma 7.2.1. |
We now iterate Lemma 7.2.1 to establish additional decay.

Proposition 7.2.2 (Additional decay) Let u: [0,T},..) X R* — C be an almost periodic
solution as in Theorem 4.5.3. If (7.10) holds, then w € L°H;¢ for some ¢ > 0.

Proof. Let 0 < 6 < 1/4 < s. — 1/2 and for each n > 0 define s,, := s. — nd. We have from

Lemma 7.2.1 that
we LPH — ue L°H? forall 0<n< 5 and s, —o(s,) <o < s

The restriction n < 5 guarantees s, > s, — 1/2. As above, o(s) :=2s, — s — 1/2.

As (4.1) gives u € L°H?® and the constraint 0 < § < s, — 1/2 guarantees s, — 0(s,) <

Sni1 < s for all n > 0, we get by induction that
ue LXH? forall 0<n< 5 and s, —o(s,) <o < s (7.17)

As 0 < 1/4, we may find n* so that ;5 < n* < 55. As the constraint n* > J implies
Spr — 0(8p) < 0, we deduce from (7.17) that u € LH_¢ for some € > 0. This completes

the proof of Proposition 7.2.2. |
Finally, we turn to the following.

Theorem 7.2.3 (No frequency-cascades) There are no almost periodic solutions as in

Theorem 4.5.3 such that (7.10) holds.

Proof. Suppose u were such a solution and let n > 0. By almost periodicity, we may find ¢(n)
small enough that [||V[**u<cmnllgerz < n. Thus, by interpolation and Proposition 7.2.2,

we have

sc+6

LL2 Su ot

Ei-iileV!_a

||U§c(n)N(t)HLt°°L§ N HW SCUSc(n)N
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for some ¢ > 0.

On the other hand, using Bernstein and (4.1) we get
[tsemne ()llzz Su le(m)N(E)] 7> for any & € [0, Tiaa).

Thus
[w(t)|lr2 Sunr + [cmN@E)] ™ for any t € [0, Thas)-

Using (7.11) and the fact that n > 0 was arbitrary, we deduce
|lu(®)|2 =0 as t = Thge.

By the conservation of mass, we conclude that MJu(t)] = 0. Thus we must have that u = 0,

which contradicts that u blows up. This completes the proof of Theorem 7.2.3. |

7.3 The non-radial setting

In this section, we preclude the existence of almost periodic solutions as in Theorem 4.5.2
for which

Tm(lz
Ko Tpaw) = / N ()34 dt < oo, (7.18)
0

We will show that (7.18) and Proposition 6.3.1 imply that such a solution would possess

additinoal decay. We then use the conservation of mass to derive a contradiction.

Theorem 7.3.1 (No frequency-cascades) There are no almost periodic solutions as in

Theorem 4.5.2 such that (7.18) holds.

Proof. We argue by contradiction. Suppose u were such a solution. By Corollary 4.1.4, we

have

lim N(t) = oo,

t—=Tmaz

whether T}, is finite or infinite (cf. (6.29)). Thus

lijlrn 1V u<n ()|l r2ey =0 for any N > 0. (7.19)

t max
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We now let I,, be a nested sequence of compact subintervals of [0, T},q.), each of which is
a contiguous union of characteristics intervals J,. On each I,,, we apply Proposition 6.3.1;
specifically, for fixed 0,79 > 0, we use the recurrence relation (6.32), the estimate (6.30), and
the hypothesis (7.18) to see

§sc
Ap, (N) S i 112 uen () 3y + Co N K2 4 S0 (8)5% 4, (1)
" M>N/no

3se
S f 1V uen ()l 2oy + Cono N2 4 37 (3) %" Ar, (M),

M>N/ng

Arguing as we did to obtain (6.30), we conclude
Ar(N) Su Inf [V uan ()l zzwe) + NZeml/2,
Letting n — oo and using (7.19) then gives
Aoz (N) Sy N2#7V2 0 for all N > 0. (7.20)
We now claim that (7.20) implies

Lemma 7.3.2

1Y

SCUSNHL?OL%([O,Tmaz)XRd) Su stc_l/z fO?“ all N > 0. (721)

Proof of Lemma 7.3.2. Let N > 0. We first use Proposition 4.1.6 and Strichartz to

estimate

Sc . < Sc p
IV w0 nres S IV Perubll zg (12

To proceed, we decompose the nonlinearity and estimate the individual pieces; as before, the
particular decomposition we use depends on the ambient dimension. In the estimates that

follow, spacetime norms will be taken over [0, Tye,) X R%.

Case 1. When d = 3, we decompose
ulPu = |ufP?aul g + (Jul’ausy + 2/ulP 2 aucy )usy.
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We can use Holder, the fractional product rule, fractional chain rule, Sobolev embedding,

interpolation, and (7.20) to estimate the contribution of the first piece as follows:

V] Pen (Jul"*auZ v)

HL%L?/E’
< Se p—2~ 2 p—1 Se (.2
S L T DN R P L T e s

S HUHP;QL%” IV ullge IV usn oy + 1IVIculierslusnll o lVIuswllzzre

t t

Scu

Su [V

it;lL% VI uan ez [V usnl 2zs + N2se=1/2

<, NZe1/2,
To estimate the contribution of the second piece, we denote
G = |ulP 2 aus y + 2JulP2au<y
and use Bernstein, Holder, Lemma 2.2.6, and (7.20) to see

o5 < N2°|||V]72% (Gus )

“LfLI ”L?Lg/s

IV[* Pen (Gusy)

3 1 _1g
SNENVEGH o VI ez
Lg N 3sc s
SIVEG e 2 G NIV EFrunrl
1s 25.—1/2
SullVIG | e, N2 (7.23)

A few applications of the fractional product rule, fractional chain rule, and Sobolev embed-
ding give
p < 1’

cor2 u
LsoL2 ~

Scu

1
918Gl e, STV

so that continuing from (7.23), we get
IV Pen ((ul""*ausy + 2fulP?auen Jusw) || 2 o5 Su N*7H2.

Thus we see that the claim holds in this first case.

Case 2. When d € {4,5}, we decompose
|ulPu = |ulPucy + |u|Pusn.
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We employ Holder, the fractional product rule, the fractional chain rule, Sobolev embed-

ding, and (7.20) to estimate the contribution of the first piece as follows:

!\!V\SCPSN(!U|pU§N)!\L 24

T
< Sec P p Sc
S IVEeful |’L?L5(did£f4‘|u§N|’Lngf’% +HUHL?O ZTPHW\ USNHL%L;%Q

Su ||u||P—1 dl|||V|Scu||L;,OL%|||V|SCUSN” o —f—NQSC_l/Q
oL L2L

th tHx

<. N2se—1/2

For the second piece, we use Holder, Bernstein, Lemma 2.2.6, the fractional chain rule,

and Sobolev embedding to see

191 Pex(ulPus )l
S NIl s
SN |V|%Sc|u|p||LtwL£(df5_4 VIl e
Sl NIVl S () NVl | o,
t L t M>N e

p N2sc71/2

Sc
Ullpee L2

S lllV

2sc—1/2
<, N2em1/2)

Thus we see that the claim holds in this second case.

This completes the proof of Lemma 7.3.2. |

We now wish to use (7.21) to prove the following lemma.

Lemma 7.3.3 (Additional decay)

we LPH ([0, Tmaz) X RY)  for some e > 0.

Proof of Lemma 7.3.3 Recalling that s, > %, we may choose € > 0 such that sc—%—s >0
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and use Bernstein and (7.21) to see

VI ullipre S Y NIV

*un||peerz + Z N[V

SCUNHL,?OLg

= N>1
<o SONEENT2 L
N<1

This completes the proof of Lemma 7.3.3. |

With Lemma 7.3.3 at hand, we are ready to complete the proof of Theorem 7.3.1. Fix
t € [0, Thnar) and i > 0. Using almost periodicity, we may find ¢(n) > 0 so that

/ €
[§1<c(n)N(t)

Interpolating with u € L°H ¢, we get

2S¢

u(t, &) dg <.

/ At O d <o i,
|€|<c(n)N(t)

On the other hand, we have
/ @&, t)]* dg < (c(n)N(t)~>* / 17 [a(t, €)]* d€ Su (c(n)N(t)) 2.
[€]=c(mN(t)

Adding these last estimates and using Plancherel, we conclude that for all ¢t € [0, Tynaz),

we have

0 < M(u(t)) = / lu(t, :E)|2 dr <, 773;? + (C(U)N(t))_QSC.

As limy_,1, .. N(t) = 0o and 1 was arbitrary, we conclude that M[u(t)] — 0 as t = Taz-
By the conservation of mass, we conclude that MJu(t)] = 0. Thus we must have that u = 0,

which contradicts that u blows up. This completes the proof of Theorem 7.3.1 |}
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CHAPTER 8

Frequency-localized Morawetz inequalities

In this chapter, we use the long-time Strichartz estimates of Chapter 6 to prove frequency-
localized Morawetz estimates, which we will then use to rule out the existence of quasi-

solitons in Chapter 9.

The results in this chapter appeared originally in [49, 51].

8.1 Frequency-localized Lin—Strauss Morawetz, s. < 1/2

In this section, we use Proposition 6.1.1 to prove a frequency-localized Lin—Strauss Morawetz

inequality. As s. < 1/2, we prove an estimate that is localized to low frequencies.

The main result of this section is the following.

Proposition 8.1.1 (Frequency-localized Morawetz) Let u : [0,00) x R® — C be an
almost periodic solution as in Theorem 4.5.4. Let I C [0,00) be a compact time interval,
which is a contiguous union of characteristic subintervals Ji. Then for any n > 0, there
exists No = No(n) such that for N > Ny, we have
// lu<n(t, )P do dt <, (N2 4 K)), (8.1)
IxR3 |z| ~

where Ky is as in (6.3).

To prove Proposition 8.1.1, we begin as in the proof of the standard Lin—Strauss Morawetz
inequality (1.7). We truncate the high frequencies of the solution and work with u<y for

some N > 0. As u<y is not a true solution to (1.1), we need to control error terms arising
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from this frequency projection. To do this, we choose N large enough to capture ‘most’ of

the solution and use the estimates proved in Chapter 6. We make these notions precise in

the following lemma.

Lemma 8.1.2 (Low and high frequency control) Let u, I, K; be as above. With all

spacetime norms over I x R3, we have the following.

For any N >0 and s > 1/2,

V[P usnllzry Su N*75(1+ N271K )2,

For anyn >0 and s > s, there exists Ny = Ny(s,n) such that for N > Ny,

V" u<n]Leorz Su nNT5.

For any n > 0, there exists Ny = No(n) > 0 such that for N > Na, we have

usnllrzrs SunN~5(1+ N2 K )2,

Proof. For (8.2), we let s > 1/2 and use (6.5) to estimate

IV PPusnllzzre S Y Mollurlizzee
M<N

< Z Msfsc(1+M2$cflKI>l/2

~u

M<N

Su NS_SC(I —I—N256_1K1)1/2.

(8.2)

(8.3)

For (8.3), we first let » > 0. Using almost periodicity and the fact that sup N(¢) < 1, we

may find C(n) > 0 so that [|[V[*uscyllzerz < 7. Thus we can use Bernstein to see

1V I*ucn||psor2
SO VI ucomlloerz + N[V [*ucwmy<.<nllLeor2

Su C)** + N~

Choosing N; > n~ Y55 C(n), we recover (8.3).

Finally, we note that (8.4) is just a restatement of (6.6). |
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We turn to the proof of Proposition 8.1.1.

Proof of Proposition 8.1.1. We take all spacetime norms over I x R3.

We let 0 < n < 1 and choose

N > max{Nl(%ﬂn)v Nl(lgscvn2)7N1(l7n)a n%N2<7]2)}7

where N; and N, are as in Lemma 8.1.2. In particular, interpolating (8.2) and (8.3) with

s=(1+s.)/2, we get
191945 gl gy S nNO-52(1 4 NP )
Moreover, as n? N > N, we can apply (8.4) to us,2y to get

Hu>n2NHL§Lg SnN~(1+ N25c*1KI)1/2.

We define the Morawetz action

Mor(t) := 2Im . % Vucy(t, ) ucy(t, z) dz.

A standard computation using (i0; + A)u<y = P<y (F(u)) gives
dMor(t) > / (P (F(u)), ucy}pde,
R3 |$|
where the momentum bracket {-,-}p is defined by {f, g}p := Re(fVg — gV ).

Noting that {F(u),u}p = V(|ul[P*?), we integrate by parts in (8.7) to get

p+2

U t x) [P+
8tMor /| <N dx —|—/| | {P<N ))—F(USN),USN}de.

Thus, by the fundamental theorem of calculus we have

p+2
IxR3

T
< HMOI‘HLOO(I ’// |— {PSN(F<U)) - F(USN),USN}de’dt .
IxR3

To complete the proof of Proposition 8.1.1, it therefore suffices to show
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IMor | Lo 1y Su nN'2, (8.8)
il —2s
‘ // B {Pen (F(u) — Fun), usn tp da dt] S, n(N'72% + K7). (8.9)
IxR3

To prove (8.8), we use Bernstein, (2.4), and (8.3) to estimate

Motz S VT2 Vusnllrera V12 (Gusn) e

S VI Pusn s SunNT2e
We now turn to (8.9). We begin by rewriting

{P<n(F(u)) — F(u<n),u<n}p
= {F(u) — F(u<n),u<n}p — { P>y (F(u)), u<y}p

= I+1I.

Writing
I = @{[F(U) — F(USN)]VUSN + USNV[F(U) - F(USN)]}

and integrating by parts in the second term, we find that the contribution of I to (8.9) is

controlled by

IVusn (F(u) — F(u<n)) Lz, (8.10)

+ [l gyuen (F(u) = Flusy)) oz - (8.11)
Similarly, writing
IT = O{P.n(F(u))Vuey + VPoy (F(u))ucy}

and integrating by parts in the second term, we find that the contribution of I to (8.9) is

controlled by

[VusnPon (F(u)) 2, (8.12)

+ I uen Pon (F(w) Il (8.13)
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To complete the proof of (8.9), it therefore suffices to show that the error terms (8.10)

through (8.13) are acceptable, in the sense that they can be controlled by n(N'=2% + K).

We first turn to (8.10). Using Holder, (4.1), (8.2), and (8.4), we estimate

(8.10) S [ Vuenlzzeallus v O(?) |z o

p

< IVuenllars lusnllzzsll? e
t x

Su an—Qsc(l + ]\[235—1[{1)7

which is acceptable.

We next turn to (8.11). We first write
(8:11) S [lgrusn(usn )y, + g (uen ) us iz,
For the first piece, we use Holder, Hardy, Bernstein, (4.1), (8.3), and (8.4) to estimate

1
s (usn) oy, S HﬁuSNHLtooLgp/?HU>NHi?L3HuHi;>°Li”/2
S Vel o o s v g
<. NSCHVUSNHL;’OL?CHU>NH%ng
Su NP (14 N?* 1K),

which is acceptable.

For the second piece, we use Holder, Hardy, the chain rule, (4.1), (8.2), and (8.4) to

estimate

I (e P sy, S Iy Cosa )P s sl s
< IV e P ool s
Sl eIVt gl g

,Su an—QsC(l + ]\[236—1[(1)7

which is acceptable. This completes the estimation of (8.11).
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We next turn to (8.12). We first write
(8:12) S IVuen Pon (F(uzyen)) s, + [[Vuen Pon (F(u) = Flucyen)) oz, -
For the first piece, we use Holder, Bernstein, the chain rule, (4.1), and (8.2) to estimate

IVusn Pon (F(uzen) ey, SN Vuenllezis IVE (ueyen)ll 2005
S N71‘|VUSNHL$L2HU|’p 3p/zHVU§n2NHL§Lg

L LY

Su 77]\/’1—23c<1 4 NZSC_lK]),
which is acceptable.
For the second piece, we use Holder, (4.1), (8.2), and (8.6) to estimate

p

IVusn Pon (F(u) = Fluggen) s, S 1Vuswllzziglusmenllzzrg lullf. o

Su 77N1_2SC(1 + NQSC_IK[),

which is acceptable. This completes the estimation of (8.12).
Finally, we turn to (8.13). We first write
(8.13) S llgquen Pon (F(ucs))llzy, + IusnPon (F(u) = Flucx)) 2 -
For the first piece, we begin by noting that
Pon(Flucn)) = Pon(Pon (Jucx [PJucy).

Thus, using Cauchy—Schwarz, Hélder, Hardy, maximal function estimates (cf. (2.5)), Bern-
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stein, Sobolev embedding, (4.1), (8.2), and (8.5), we can estimate

I uenPon (Flucn)) o,

S Npusv M (Pon (Juen [PJucy )y,

S e [M(|Poy (jues )] (M (jues )]s

S Il g V(B sy P) >||”;3p |||xM<|u§g|2)||1L§L§%
SUVPPusall, s 1Py (eI, o 19 M (s >Hjjw
SN0 g |9y P e 19 (s >|11L/jL4+p

1/2 1/2
S NV P gag el oI Vugallizosllull )2 ol Vuca 135

_ 1/2
<o NIV gy s [ Vgl ps Vg |52

§u nN1_2SC(1 + NQSC_lK[),
which is acceptable.

For the second piece, we write

| funPor (F(u) = Flucx)) iy, S IduenM (s s (ucs )y, (8.14)

Tt M ((us ) . (815)

For (8.14), we use Cauchy-Schwarz, Holder, Hardy, the maximal function estimate,

Sobolev embedding, (4.1), (8.2), (8.4), and (8.5) to estimate

(8.14)
S bruen [M (Jug o Pl PO ]2 M (Juan )]s

2 2(p—1)\ | 1/2 1 2y (11/2
22 IV sy Pl PO0) I o 0 (uey P

t—r tHT

S Igmusnl

1/2
N !IIV\1/2u<NH s s zrg Il 2oy o IVM (Jue P12

17 LoLY s
. L2L7P

—1/2 1/2
S |||V\(1+SC)/2“§NHL?L§HU>%HL%LQHUHiréipnHV“S%HL/%LS

Su 77N1_25C(1 + NQSC_lK]),
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which is acceptable.

Finally, we use Holder, Hardy, Bernstein, (4.1), (8.3), and (8.4) to estimate

p—1
LeLr?

(8.15) S Il phytasnvll oo vzl o [ o
S}u ||VUSNHLtooLiP/2 Hu>% ||%?Lg

Su NSCHVUSNHL;’OLgH%%H%ng

§u 7]N1_2Sc<1 4 NQSC_lKI);

which is acceptable. This completes the estimation of the final error term (8.13), which in

turn completes the proof of Proposition 8.1.1. |

8.2 Frequency-localized Lin—Strauss Morawetz, s. > 1/2

In this section, we use Proposition 6.2.1 to prove a frequency-localized Lin—Strauss Morawetz
inequality, which we use to rule out the quasi-soliton scenario. As s. > 1/2, we prove an

estimate that is localized to high frequencies.

The main result of this section is the following.

Proposition 8.2.1 (Frequency-localized Morawetz) Let u : [0,T}0,) X R® — C be an
almost periodic solution as in Theorem 4.5.3. Let I C [0, T4:) be a compact time interval,
which is a contiguous union of characteristic subintervals Ji. Then for any n > 0, there

exists Nog = No(n) > 0 such that for N < Ny, we have

s
//1 . [ENIGED] <o (N2 4 K, (8.16)
X

]

where Ky is as in (6.20).

To prove Proposition 8.2.1, we begin as in the proof of the standard Lin—Strauss Morawetz
inequality (1.7). We truncate the low frequencies of the solution and work with u~ x for some

N > 0. As u~y is not a true solution to (1.1), we need to control error terms arising from
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this frequency projection. To do this, we choose N small enough to capture ‘most’ of the
solution and use the estimates proved in Chapter 6. We make these notions precise in the

following lemma.

Lemma 8.2.2 (High and low frequency control) Let u, I, K; be as above. With all

spacetime norms over I x R, we have the following.

For any N > 0, we have

HU>N||L§Lg Su N_SC(1+N236_1K1)1/2- (8.17)

For any n > 0, there exists Ny = N1(n) so that for N < Ny, we have

| ’V|1/2U>NHL;§°L3 Su NS (8.18)

For any n > 0, there exists Ny = No(n) so that for N < N, we have

IV [*usn | r2re Sumn(l+ N?1K )2, (8.19)

Proof. For (8.17), we use Bernstein and (6.22) to estimate

lusnllrzrs S Z M= ||V *eunr[| g2

M>N

’Su Z M—sc(l_l_MZsc—lKI)l/Q

M>N

< N_SC(1+N286_1K[)1/2.

~U

For (8.18), we let n > 0. Using almost periodicity and the fact that inf N(¢) > 1, we may
find c(n) > 0 so that [||V[**u<.@)|/zer2 <n. Thus Bernstein gives

H|V‘1/QU>NHL,§>°L3
S e PNV us ey poorz + NP5V un <o <o || o2

<u 6(77)1/2—5C —|—77N1/2_SC.

Choosing N; < n%/(#<=1/2)¢(n), we recover (8.18).

Finally, we note that (8.19) is just a restatement of (6.23). |
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We turn to the proof of Proposition 8.2.1.

Proof of Proposition 8.2.1 Throughout the proof, we take all spacetime norms over I x
R3.
We let 0 < n < 1 and choose
N < min{Ni(n), n* Na(1**) },
where Ny and N, are as in Lemma 8.2.2. In particular, we note that (8.17) gives
s vzl c2rg SunN =5 (14 N2 1K) Y2, (8.20)
Moreover, as N/n? < No(n?*c), we can apply (8.19) to get

1V uanymp llzrg Sun(l+ NP7HK)Y2, (8.21)

We define the Morawetz action

Mor(t) = 2Im . Vusn(t, x)usn(t, ) dz.
rs |2]

A standard computation using (0, + A)usy = Psy (F(u)) gives

O:Mor(t) 2 /
R

where the momentum bracket {-,-}p is defined by {f, g}p := Re(fVg— gV f). Thus, by the

3 % AP N (F(w)), usy}pda,

fundamental theorem of calculus, we get

T
// —_— {P>N(F(u)),u>]\[}p dz S HMOTHL,?O(I) (822)
Ixes ||
Noting that {F(u), u}p = —-25V(|u["*?), we may write

{Pon(F(u)), usntp
={F(u), ujp —{F(ucn) ucntr
—{F(u) = F(ucy),usn}p — {Pen (F(u)), usntp
= =2V ([ul""? = Juen [P7?) = {F(u) — Flusn), usn}e
—{Pen(F(u)), usntp

= I+I11+1Il.
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Integrating by parts, we see that I contributes to the left-hand side of (8.22) a multiple

of
t p+2
// [usn (D)
IxR3 ||

and to the right-hand side of (8.22) a multiple of

Ik (ulP*? = Jusn P72 = fusn Pl (8.23)

For term 11, we use {f,g}p = VO(fg)+O(fVg). When the derivative hits the product,
we integrate by parts. We find that I contributes to the right-hand side of (8.22) a multiple
of

IusnlF(uw) = Fun)]lleg, (8.24)

+ IVuan[F(u) = Fun)lllzy,- (8.25)

Finally, for 111, we integrate by parts when the derivative hits u~y. We find that 117
contributes to the right-hand side of (8.22) a multiple of

s Pen (F(u) 12, (8.26)

Thus, continuing from (8.22), we see that to complete the proof of Proposition 8.2.1 it
will suffice to show that

[Mor|| e (ry Su nN'2 (8.28)

and that the error terms (8.23) through (8.27) are acceptable, in the sense that they can be
controlled by n(N'72% + Kj).

To prove (8.28), we use Bernstein, (2.4), (8.18) to estimate

IMor|| =1y S V72V us w2 |1V 12 (Fusw) | g2

S H’V‘l/2u>NH%§°Lg Su nN'Te
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We next turn to the estimation of the error terms (8.23) through (8.27).

For (8.23), we first write

(8:23) < Il (uen)" s nllng, (8.29)

+ I puen (s )" ey (8.30)

For (8.29), we use Holder, Hardy, the chain rule, Bernstein, (4.1), (8.17), and (8.19) to

estimate

I Caen P sy, S Iyl s sl s

SV en)" Ml porslusnllzre

Sl eIV g sl g

Su an—Qsc(l + N2SC_1K]),
which is acceptable.

For (8.30), we consider two cases. If |u<y| < |usy|, then we can absorb this term into

the left-hand side of (8.22), provided we can show

s w72l < oc. (8.31)

Otherwise, we are back in the situation of (8.29), which we have already handled. Thus,
to render (8.30) an acceptable error term it suffices to establish (8.31). To this end, we use

Hardy, Sobolev embedding, Bernstein, and Lemma 4.1.5 to estimate

__1 2 1 2
Iglusn P2, S 2l 2 us 7,5 S NV usnllf
’ t,x t,x

3p—2
N H|V|2(£+2)U>N||p+2 6or2) N2 V|SCUHer2 6(p+2)

Lf+2Lm3p+2 Lf+2 L¢3p+2

Su N1+ [, N(t)? dt) < oc.

We next turn to (8.24). Writing

I gusn[F(u) = Flusn)lllzy, < g (uen) usnlln,

+ llgyuen (wsn)"
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we recognize the error terms that we just estimated, namely (8.29) and (8.30). Thus (8.24)

is acceptable.
For (8.25), we use Holder, (4.1) (8.17), and (8.19) to estimate

P

(525) 5 IVusnlszrs lusnlzag el o

< pN'Ze(] 4 NZR),
which is acceptable.
Finally, for (8.26) and (8.27), we first use Hardy to estimate
(8.26) + (8.27)
S ||U>N||L§Lg||ﬁP§N(F(U))||L3Lg/5 + ||U>N||L§Lg||VP§N(F(U))||L3Lg/5

S s nllzzrs IV Pen (F (@) 2 s
Thus, in light of (8.17) it suffices to prove

IV Pen (F(t)) 3005 S nN' (L N? K ) V2,

To this end, we use Holder, Bernstein, the fractional chain rule, (4.1), (8.20), and (8.21)

to estimate

IV Py (F(u))

||L§L§/5

S N F(u) — F(uSN/nz)HL%ng 4 Nise

V‘SCF<USN/772)HL%L2/5'

SNl s llusnpmellizes + N7l

LeL; 3p/2|||V‘SCU§N/n2||L§Lg

L LY

Su an_Sc(l + N2SC_IK])1/2.

This completes the proof of Proposition 8.2.1. |

8.3 Frequency-localized interaction Morawetz

In this section, we use Proposition 6.3.1 to prove a frequency-localized interaction Morawetz

estimate inequality, which we use to rule out the quasi-soliton scenario of Theorem 4.5.2.

116



We will prove an estimate that is localized to high frequencies.

The main result of this section is the following.

Proposition 8.3.1 (Frequency-localized interaction Morawetz) Let u : [0, Tpn0:) X
R% — C be an almost periodic solution as in Theorem 4.5.2. Let I C [0, Thnaz) be a compact
time interval, which is a union of contiguous subintervals Ji. Then for any n > 0, there

exists Nog = No(n) such that for any N < Ny, we have

—/// s () PAGE lus (8 2)F de dy dt S, (N4 4 K), (8.32)
I RAxXR

where Ky is as in (6.29).

Before we begin the proof of Proposition 8.3.1, we recall a general form of the interaction
Morawetz inequality, introduced originally in [14] (for more discussion, see also [38] and the

references cited therein). We will essentially follow the presentation in [69, Section 5].

For a fixed function a : R — R and ¢ solving (id; + A)p = N, we define the interaction

Morawetz action by

Mo =21 [ ett)Pae - nag)ta) drdy,

where subscripts denote spatial derivatives and repeated indices are summed. If we define

the mass bracket
{fa g}m = Im(fg)
and the momentum bracket

{f,9}p :=Re(fVg—gV/),

117



then one can show

o)== [ lott. o) st~ plgte. 0 ey
" //RdXRd ot y)*4ae(z — y)Re(@;e0n) (¢, 7) du dy (8.33)
- / /R . 2Im(per) (t, y)ai(z — y)2Im(@p;)(t, z) dz dy (8.34)
+ //Rded 2{N7 90}m<t7 y)aj(x - y) 2 Im(@cpj)(t, ZL’) dx dy
+ //Rded |(,0(t7y)|2 2V6L<l’ — y) . {./\[7 @}’P(t,l‘) dx dy

To prove Proposition 8.3.1, we will use a(z) = |z|. Note that in this case, we have

.

a;j(z) = 77,
asple) = B -
Nofa) = &2

AAa(r) = —(d — 1)A()

\

For this choice of a, one can also show that (8.33) 4+ (8.34) > 0. For details, see [69,

Lemma 5.4]. Thus, integrating 0, M over I, we arrive at the following

Lemma 8.3.2 (Interaction Morawetz inequality)

B /1//Rded lo(t, y)PAG) (@ = y)|e(t, ) de dy dt
i /1//]1@%(1 et y)I* 1=l - AN 9} p (8 2) dudy dt

< sup lp(t, y) 2= - V(t, 2)@(t, x) do dy
RixRA |z—y|

tel

/, / /RR (N o}, () pm - Veo(t, o) @t x) de dy dt |

_|_

To prove Proposition 8.3.1, we will apply this estimate with ¢ = u~y, with N chosen small
enough to capture ‘most’ of the solution. To make this idea more precise, we first need to

record the following corollary of Proposition 6.3.1.
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Lemma 8.3.3 (Low and high frequency control) Let u, I, and K; be as in Proposi-
tion 8.53.1.

For any frequency N > 0, we have
1
Jus Nl Larr (rxray Su N7%(1+ N*1K )q (8.35)

2 . d_d,; 2
foralla+;—§wzthq>4—Wf4.

For any n > 0, there exists Nog = No(n) such that for all N < Ny, we have

Q=

IV uen | poryxray Sun(l+ N*T1KT) (8.36)

forall§+g:§withq22.

Proof of Lemma 8.3.3 We first show (8.35). For fixed a > s, — %, we can use Bernstein

and (6.30) to see

\%

VI us ]

)5 Z M —ose

SCUM” 2d
M>N L

_2d_ —2a_
L2872 (IxRY 27,4-2 (IxR4)

Su D ML+ MPEKY)

M>N

<y N5 (1 4 N 1K ))3. (8.37)

Now, take (q,r) with 2 < ¢ < oo and §+ % = g, and define o = %. Notice that

a > S, — % exactly when ¢ > 4 — %. Thus, in this case, we get by interpolation and (8.37)
that
_ 2 1—2
lus Nl Loz rxrey S IV aU>NHq2 2 IV s Nl orz ey
il X d)
2
<o [NTE (14 N¥1K )2 |7

which gives (8.35). As for (8.36), we first note that since inf;c; N(¢) > 1, for any n > 0 we
may find Ny(n) so that

[V ucn|l Lo r2 (1 xray <1

for all N < Ny. The estimate (8.36) then follows by interpolating with (6.31). [
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We are now ready for the proof of Proposition 8.3.1.
Proof of Proposition 8.3.1. Throughout the proof, all spacetime norms will be taken over
I x RY.

Fix n > 0, and choose Ny = Ny(n) small enough that (8.36) holds; recall that (8.35)
holds without any restriction on N. Next, we claim that for Ny possibly even smaller, we

can guarantee that for N < Ny, we have
Jusnllpeers Sun'®N> (8.38)

and

VI us | oo ra Su 'O N2, (8.39)

Indeed, using the fact that inf;e; N(t) > 1, we may find ¢(n) > 0 so that

1Y

“UceimlLeerz <
combining this inequality with Bernstein, we get

N*e

un<-<emllzzorz + N°|useo |l Leer2

S VI el ors + 255

VI Usem lLso L2

Su 7710 + NSC.

Thus, taking N sufficiently small, we recover (8.38). A similar argument yields (8.39).

Next, we record the following inequality that will be useful below:

sup S NIVEeldVI ol (8.40)

y€ERd

/Rd é:z‘ Vgp(x)@(x) dx

for 0 < s < 1. Indeed, for fixed y € R?, we can first write

L veeere s

S VP =l VI Vel

|z—y|

~ VI =Ll Vel

|z—y|

Thus we can complete the proof of (8.40) with an application of (2.4).
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We now wish to apply the interaction Morawetz inequality (Lemma 8.3.2) with ¢ = usy
and N' = P- y(|ulPu), with N < Ny. Together with (8.38), (8.39), (8.40), Bernstein, and the
fact that u € L H2 (I x R%), an application of Lemma 8.3.2 gives

///|“>N (ty)PAG) (@ = y)lusn(t,2)[* da dy dt
[ [ st Pt (Pl ot ) de dy

S Nusnll g2 11V s w17 12
+ {Pon(JulPu), usn bl NV s vl g2 IV us n || e 2

Su PN 4 N2 Py ([ufPu), U>N}m||Lt{z- (8.41)

Thus, to prove Proposition 8.3.1, we need to get sufficient control over the mass and mo-

mentum bracket terms appearing above.

To begin, we consider the contribution of the momentum bracket term. We can write

{Pon(ulfu),usn}p
= {|uf'u, u}p — {Ju<n[Pu<y, u<n}e
—{lulPu = lucn[Pucn, uen}p — {Pen([uf’u), usn}e
= — IV ([ul™? = Juen[P*?) = {JufPu — [ucn[Pucn, ucn}p
—{Pen(ul’u), usn}rp

= I+I1+1II

After an integration by parts, we see that term I contributes to the left-hand side of
(8.41) a multiple of
t t, p+2

Ix—yl

[ e s P g,

|z —y]

For term 11, we use {f,g}p = VO(fg) + O(fVg); when the derivative hits the product,

we integrate by parts, while for the second term we simply bring absolute values inside the
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integral. In this way, we find that term I contributes to the right-hand side of (8.41) a

multiple of

// s (£, )2 |<|u|pu|— |u<|zv|pu<N>U<N<’f N gy dt
r—y

[ st Pl = fucPusy) ¢ )] [Vucn(t, )] dedydr.

Finally, for term 111, we integrate by parts when the derivative falls on u- y; in this way,
we see that term I71 contributes to the right-hand side of (8.41) a multiple of
[[f e (NP (00
r—yY

n / / / s (£, ) Plus (8, 2)] [V P (ful?) (¢, )| di dy dt.

We next consider the mass bracket term in (8.41). Exploiting the fact that

{lusn|Pusn, usn}m =0,

we can write

{P>N(|U|pu)>U>N}m = {P>N(|U|pu) - |U>N|pu>N7u>N}m
= {Pon(Julfu — [usn|Pusn — [usyPu<y), usn tm
+{Pon(lusnPu<n), usn tm — { Pen([usn|Pusn), sy fm-

We will now collect the contributions of the mass and momentum bracket terms and

insert them back into (8.41). We will also make use of the pointwise inequalities

If+gP(f +9) = 1FPf| S Mgl + gl 1fIP,

[ + g2 =[£I = g2 S 11 gl + 11l
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In this way, (8.41) becomes

/ = r A<| )& — ) usnlt, 2) ? d dy dt
p+2

I:B—yl

§u 7720N1_4SC
+ N2 iy Pud | oy
+ 7710N1—23c H |U>N|p+1U§NHL§’w

+ O N2 ||P>N(|U§N’pu§N)“>N”Ltl,z

+ ' ONT2 P (JusnPus n)us s

// [usn (8 9)PJusn (8 2)| Jusn (8 D)7 dy dt

|z =y
+/// |u>N tvy ’u>‘N(t7l‘)“p+1|uSN(t7x)| d[[’dydt
r =Y

|usn (8, y) P Pan (JulPu) (8, @) [usn (t, 2))|
+ /// dz dy dt

|z — y|

[ st Pl ) Jus (b )P Vs (t,0) s dy

[ Tttt )P G, i dy

+ /// lus n (t, ) Plusn (t, 2)| [V P<y([ulPu) (t, 2)| do dy dt.

(8.42)

8.43

&
o

4

oo
W

o
B

(8.43)
(8.44)
(8.45)
(8.46)
(8.47)

8.47
(8.48)
(8.49)
(8.50)
(8.51)

(8.52)

(8.53)

To complete the proof of Proposition 8.3.1, we need to show that the error terms (8.43)

through (8.53) are acceptable, in the sense that they can be controlled by n(N'=4% 4+ K;).

Clearly, (8.43) is acceptable.

Next, we consider (8.44). Using Holder, Sobolev embedding, (8.35), and (8.36), we get

llesnPunlley, S lusnlfo o lusnl® -

rird-t

SIVIFFuwll’ o usyl®

LPL dp—2 LtL

,Su npN—ZSC(l =+ N45C_1K]),
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which renders (8.44) acceptable.

We now turn to (8.45). For this term, we can again use Hdélder, Sobolev embedding,

(8.35), and (8.36) to see

s [PH!

usnlle, S ||7~L>NII23L3%4IIU>NH”;1

apllusnll aap
tHT Lt 12 L

6—2p
Lo

—1
PV

Seqy

S lusnl? g IV

SCUSN H 6d
L3t L}

3d—4
t Ly

Su N~ (14 N* 1K),

Thus this term is acceptable as well. Before proceeding, however, we note that it is this term
that has forced us to exclude the cases (d, s.) € {3} x (%, 1) from this paper; we postpone

further discussion until Remark 8.3.4 below.

We next turn to (8.46); using Hoélder, Bernstein, the fractional chain rule, Sobolev em-

bedding, (8.35), and (8.36), we see

1 Psn (lusn[Pusn)us iz,

-5 s p
SN sl s IV (uenPuss)l g e

—S8 V4 S
SN °IIU>N||L? 2 [lusnll " %HIVI “usn|| .

SN usnll | 20 IV “un|” 2a [[IV
Lth L?PL;lpfl

SCUSN||L2Ld2£l2
t Lz

<u T]p+1N_2SC(]_ + N4SC_1K]),

~Y

so that (8.46) is also acceptable.

For the final term originating from the mass bracket, (8.47), we use Holder, Bernstein,
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Sobolev embedding, (8.35), and (8.38) to see

o || P<n(|usn[Pusn)|

‘|P§N(|U>N’pU>N)U>NHL;I S [luswl| .

t

331 £

6d

130+

S Nuol gl nPusnl g
t z t

SN unll o funl? e sl
L ac t Id74 L;)OL;T

SNSCIIU>NII?; oo VPl

t

<

~Uu

N_2sc(]_ 4 N4SC_1K]>,

which shows that (8.47) is acceptable.

We now turn to the terms originating from the momentum bracket. First, consider (8.48).

By Hélder, Hardy-Littlewood—Sobolev, Sobolev embedding, Bernstein, (8.35), (8.36), and

(8.38), we can estimate

6d
d—

(5.48) S I * [usl gl

4
t

X lusnll  sa flusnll o HUHp '
t 95 tLI t x2
5 |||U>N|2l| tLSd Pl ||U>N|| 3 $§E4
Vsl g Vsl g 1910l
Su N1 U>NHL§°L%HU>N|’23 3554H|V\SCU§N”26 Lo

t—T tHx

f_,u n12N1—4SC(1 + ]\[456—1[(1)7

so that (8.48) is acceptable.

For (8.49), we consider two cases. If |u<y| < 10719y y|, then we can absorb this term

into the left-hand side of the inequality, provided we can show

/I

lusn (t, y)[Plusn(t, ) [PH?
|z =y

dx dy dt < occ.

(8.54)

On the other hand, if |us x| < 10'u< x|, then we are back in the situation of (8.48), which

we have already handled. Thus, to render (8.49) acceptable, it remains to prove (8.54). To
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this end, we define

0= G2 € (0,p+2),

and use Holder, Hardy—Littlewood—Sobolev, Sobolev embedding, Lemma 4.1.5, and interpo-

lation to estimate

2-0
LHS(8-54) N ||ﬁ * |U>N|2||L§Lgd||U>N||%gOL§||U>N||ptp<2dp—5> dp(2dp—5)
Lt 3(dp—4) L., dp+2

SMlusnlPll | g oG 2 IV Pt Nty s supaips)
1. L, 3= £, 202 —11dp+24
Sullusnll  ao fuswlB, (L4 [, dt>%
i
S IV sl g N7 (1 V(R a)
<, NVi-s 2+9)“|v\80u Wl s (1 N ()2 dt) Gt
< NV (14 [N th)it ?7”2%(%2“% )
Sy NV (14 [ N(t)2dt) |
which gives (8.54), and thereby shows that (8.49) is acceptable.
Next, we turn to (8.50). Denoting
G = ulu — Ju<y|Pusn — usn|Pusn,
we begin by writing
(8.50)
// |usn (E,y)? \P<N(!U|<$N\pUyTN)(t )| [usn(t, )| da dy dt (8.55)
¢ [ et s P s gy (50
¢ [ el PG Bleont) 4, -
For (8.55), we can write
(8:55) S llpyy * lusnPllpergallusnll | ea lluewll s fluswll o fJul”"
L3L3? LSLS? LL; LPLZ

Su 7712N1_4SC(1 + N4sc—1KI)
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by the same arguments that dealt with (8.48).

For (8.56), we can use Hoélder, Hardy-Littlewood—Sobolev, Bernstein, Sobolev embed-
ding, (8.35), (8.36), and (8.38) to estimate

2 1
(8.56) S ||U>N||L?L§§g2 I * (Pen(jusnlPusw)usmll 3 o

2 p
S ||U>N||L?L357§2||PSN<|U>N’ u>N)u>N’|L§L§3i1

S HU>NH2?L3§E2 los sz Pen(fusnPusmll g oo,

SlhusnlP g s iz NP (s vl )

|| 3 __3dp
5 - 3dp+2p—06
L2 L3WF%

tHx
< 2 1+s 2 p—1
~ ||U>N||L?L£,§—EQ||U>N||L;’°L%N c||U>N||L§ §§i4||u||L?OL57p

Su n10N174sc(1 + N43071KI)’

which renders (8.56) acceptable.

For (8.57), we first note
ulPu — |ucy Pucy — |usnPusy = O(usyucy|ufP ™).

Thus, we can use Holder, Hardy-Littlewood—Sobolev, Bernstein, Sobolev embedding, (8.35),
(8.36), and (8.38), to get

(8:57) < Il * |u>N|2||L§’L§d||PSN(®(U>NUSN|U|I)_1))||L?L£,§$ ||U>N||L§L£;;§4
SNH|U>N|QHL?L§,3E2 ||@(U>NU§N!U|p_1)||L%L3%HU>NH s 5

< ? i T
S Nl g ollie sl o Tl o

2 2 s s p—1
SNusn I o Nl eIV ousnll g V0l

Su 7721N1_4SC<]. 4 N4SC_1K[).

Thus (8.57), and so (8.50), is acceptable.

We now turn to (8.51). By Hélder, Sobolev embedding, Bernstein, (8.36), and (8.38), we
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estimate

(351) S lluss ezl s oo IVl
t

5 lesc

usn o2 VI uenl” o NIV uznll | 2
L= tLao

Su 77p+31N1_45C<1 + N4SC_1K[),

so that (8.51) is acceptable.

For (8.52), we use Holder, Sobolev embedding, Bernstein, (8.35), (8.36), and (8.38) to
get

2 p—1 2
(852) < llusn 7oz |lusnl ?L$|’“>N”L§L3%HWSN”L§ =

< 2 2 Sc
Su N||U>NHL§°L§||“>N||L?L3§7§4|||V‘ u<n| g,ngSh
S,u ?721N174sc(1 + N45671K1)’
which renders (8.52) acceptable.
Finally, we consider (8.53). We begin by writing
(8:53) S llusnll7gera lus vV Pen (lusn Pusn)li: (8.58)
Hllus vl Feers lus NV Pen(JusnPusn)llry (8.59)
Hlusn 7o p2 [lus vV Pen (JufPu — Jusn Pusn — [usnPusn)llzy - (8.60)

To begin, we use Hélder, the chain rule, and the arguments that gave (8.51) to see

d—2
T

(8.58) < ||7~L>J\f||%;><>L;||u§N||]Z§>pLgp||VU§N||L2 2
t

,S,u np+31N1—4sc(1 + N4SC_1K]),

so that (8.58) is acceptable.

For (8.59), we argue essentially as we did for (8.47). That is, we use Hélder, Bernstein,
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Sobolev embedding, (8.35), and (8.38) to estimate

or ||V Pan(JusnPusn)l s
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which gives that (8.59) is acceptable.

For (8.60), we argue similarly to the case of (8.57). In particular, we use Holder, Bern-

stein, Sobolev embedding, (8.35), (8.36), and (8.38) to see

6d ||@(U<NU>N|U| )|| 3

< 2

(8.60) S NllusnlLee 2 [[usnll 3% L}t
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which gives that (8.60). Collecting the estimates for (8.58), (8.59), and (8.60), we see that

(8.53) is acceptable. This completes the proof of Proposition 8.3.1. |

Remark 8.3.4 Let us discuss why (8.45) has forced us to exclude the cases (d, s.) € {3} x

(3,1) from (1.3). As one can see in the proof above, in the cases we consider, this term is

3

fairly harmless. However, once s, > 3 in dimension d = 3 (which corresponds to p > %), this

term becomes a problem; put simply, we end up with too many copies of u~y to deal with.

This problem has already been encountered in the energy-critical setting (s. = 1) in
dimension d = 3; in this case, one can overcome the hurdle by applying a spatial truncation
to the weight a. One can refer to [15] for the original argument, wherein spatial truncation is
applied at various levels and subsequently averaged. The authors of [43] revisit the result of

[15] in the context of minimal counterexamples; at this point in the argument, they choose
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to work with a more carefully designed spatial truncation, which removes the need for any

subsequent averaging argument.

This discussion begs the question: why doesn’t spatial truncation work in our setting? To
answer this, we need to understand how spatial truncations affect the argument that leads
to Proposition 8.3.1. What we find is that spatial truncations ruin the convexity properties
of a that made some of the terms in the proof of Lemma 8.3.2 positive; thus, to establish
Proposition 8.3.1 with a further spatial truncation, we have to control additional error terms.
It turns out that one of these additional error terms requires uniform control over |[ul| p+z,
while another requires uniform control over ||Vul[z2 (see [43, Lemma 6.5 and Lemma 6.6]).
In the energy-critical case, one can use the conservation of energy to push the argument
through, while in our cases, we cannot proceed without some significant new input. We have

therefore abandoned the cases (d, s.) € {3} x (3,1) in (1.3).
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CHAPTER 9

Quasi-solitons

In this chapter, we preclude the existence of quasi-solitons. We will use frequency-localized
Morawetz estimates proved in the previous chapter, as well as the lower bounds established

in Chapter 4.

The results in this chapter appeared originally in [49, 51].

9.1 The radial setting, s. < 1/2
In this section, we preclude the existence of solutions as in Theorem 4.5.4 for which
K[O,oo) = / N(t)3_QS° dt = oo. (91)
0

We will rely on the frequency-localized Lin—Strauss Morawetz inequality established in

Chapter 8, as well as the lower bounds given in Proposition 4.2.2.

Theorem 9.1.1 (No quasi-solitons) There are no almost periodic solutions as in Theo-

rem 4.5.4 such that (9.1) holds.

Proof. Suppose u were such a solution. Let n > 0 and let I C [0,00) be a compact time

interval, which is a contiguous union of characteristic subintervals.

Combining (8.1) and (4.12), we find that for N sufficiently large, we have

+or) P2
KI Su // % dx dt /Su ,,7(N172Sc + KI)~
IxR3
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Choosing 1 sufficiently small, we deduce K; <, N'~2% uniformly in I. We now contradict

(9.1) by taking [ sufficiently large inside of [0, 00). This completes the proof of Theorem 9.1.1.
|

9.2 The radial setting, s. > 1/2

In this section, we preclude the existence of solutions as in Theorem 4.5.3 for which
Tmam
Ko = / N (832 dt = oo, 9.2)
0

We will again rely on the frequency-localized Lin—Strauss Morawetz inequality established

in Chapter 8, as well as the lower bounds given in Proposition 4.2.2.

Theorem 9.2.1 (No quasi-solitons) There are no almost periodic solutions as in Theo-

rem 4.5.3 such that (9.2) holds.

Proof. Suppose u were such a solution. Let n > 0 and let I C [0,00) be a compact time

interval, which is a contiguous union of characteristic subintervals.

Combining (8.16) and (4.11), we find that for N sufficiently small, we have

t P42
K Su / / Juon(t, D) “”' dz dt <o (N2 + k).
I'xR3

fL’

Choosing 7 sufficiently small, we deduce K; <, N'~2% uniformly in I. We now contradict
(9.2) by taking I sufficiently large inside of [0, T},4,). This completes the proof of Theo-
rem 9.2.1. |

9.3 The non-radial setting

In this section we preclude the existence of almost periodic solutions as in Theorem 4.5.2 for

which
Tma:l:
K0 Tpas) = / N (t)> % dt = oo. (9.3)
0
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We will rely on the frequency-localized interaction Morawetz inequality established in Chap-

ter 8, as well as the lower bounds in Proposition 4.2.2.

Theorem 9.3.1 (No quasi-solitons) There are no almost periodic solutions as in Theo-

rem 4.5.2 such that (9.3) holds.

Proof. Suppose u were such a solution. Let n > 0 and let I C [0, T},,4:) be a compact time

interval, which is a contiguous union of characteristic subintervals.

Combining (8.32) and (4.10), we find that for N sufficiently small, we have

K5 [ [ ot oPAGE (e )P d dyde S,V 4 Ko)
I R4 x R4

Choosing 71 sufficiently small, we deduce K; <, N'~=*% uniformly in I. We now contradict
(9.3) by taking I sufficiently large inside of [0,T},.). This completes the proof of Theo-
rem 9.3.1. |
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