IEEE EMC Society Distinguished Lecturer Seminar: Power Integrity of SiP (System In Package)

> July 21, 2010 Joungho Kim at KAIST

joungho@ee.kaist.ac.kr http://tera.kaist.ac.kr

1

Contents

- I. Needs of SiP
- II. Power Integrity of SiP
- III. PDN Design Challenges in SiP
- IV. Embedded decoupling capacitor and EBG structures
- V. PDN Isolation in SiP design
- VI. PDN noise coupling effects on Mixer, LNA, and OpAmp
- VI. SSN Free 3D Clock Distribution Network
- VII. Power Integrity of TSV based 3D SiP

Ubiquitous Mobile Life

3D Convergence System In Package

□[·]Small form factor

 \Box Fast time to market

□[·] Inhomogeneous device integration

 \Box [:] Integration of passive devices, filters, and antenna

 \Box Suitable for RF mobile communication systems

Low cost

5

Power Supply Current Path

- Low impedance path of current-flow at high frequency.
- Screen out large inductance.

Simultaneous Switching Noise (SSN)

KAIST

• SSN caused by simultaneous switching output buffers

Problems caused by SSN

- Voltage margin reduction
- Logic failure
- Noise coupling to sensitive circuits (RF and analog circuits)
- Circuit reliability degradation (S/N, sensitivity)
- Signal integrity degradation (eye, jitter)
- Electromagnetic radiation

Inductive Impedance of PDN in SiP

$$L_{totlal} = L_{PKG,wire} + L_{PKG,trace} + L_{PKG,via} + L_{PKG,ball} + L_{PCB,via} + L_{P/G plane} + L_{PCB,decap}$$

KAIST

9

Reduction of PDN Inductance

- Locate as close as possible
- Reduce length of interconnect
- Wider, planar interconnect
- Ground/return current path as close as possible, minimal loop size
- Choose low ESL decoupling capacitors
- On chip decap > on-package decap > on-PCB decap
- Thinner PCB and package substrate
- Provide multiple paths (via, pin, wire, decoupling capacitors)
- Choose advanced package

Power/Ground Network Impedance

Frequency Dependent Functions of Discrete Decoupling Capacitor

Frequency Dependent Functions of Discrete Decoupling Capacitor

Good Power Distribution Network

Low Impedance Water Pipe

What happens if power distribution network is bad?

KAIST

Terahertz Interconnection and Package Laboratory

What happens if power distribution network is Good?

Impedance Property of Chip-Package-PCB Hierarchical PDN

- Frequency (Logarithm)
 Advantage and application of PDN analysis in frequency domain
- Intuitive analysis

FRΔ

- Easy to control impedance property
- Need for hierarchical PDN simulation

- Interactions between different level PDNs generate high impedance peak.

Case Study : Design of P/G Ring and Bonding Wire for 40Gbps PKG

• The bonding wire length is minimized (1,800 μ m \rightarrow 630 μ m), by cutting power/ground rings.

[Previous Design]

[Proposed Design]

High P/G Plane Impedance made by P/G Plane Resonance

nd Package Laboratory

20

Spectrum Analyzer Measurement of P/G Plane Edge Radiation

Power/Ground Network Impedance

KAIST

 $\log f$

Effect of On-chip PDN Design

KAIST

Terahertz Interconnection and Package Laboratory

On-chip PDN

- Decoupling capacitors using oxide capacitance and MIM capacitance
- Cost sensitive, die size
- ESR considerations needed
- On-chip inductance dominant > 10GHz
- On-chip PDN resonance > 10GHz
- On-chip PDN: direct radiated coupling source

Motivation – Cross-sectional View of Embedded Film Capacitor

Fabricated Test Vehicles (with Thin Film Embedded Capacitor)

Vehicle Code	Dielectric Thickness	Dielectric Constant (DK)	Capacitance/cm ²	Total Capacitance (5cm x 5cm with 2 pairs)
Α	50 μm	4.6	81.46 pF	4.07 nF
В	25 μm	4.6	162.91 pF	8.15 nF
С	12 μm	4.6	339.40 pF	16.97 nF
D	10 µm	16	1416.64 pF	70.83 nF
E	10 µm	25	2213.50 pF	110.68 nF

Measured Impedance Curves (Discrete, Low DK "C", High DK "E")

• Significant improvement over GHz with Thin Film Embedded Capacitor (Very low ESL of Embedded Capacitor)

KAIST

• More improvement at low frequency range with high-DK embedded capacitor (More Capacitance)

Measured SSN (No De-Cap. Vs. Discrete De-Cap.)

• High frequency harmonic was amplified with discrete decoupling capacitors (as expected with impedance curve)

Measured SSN (Discrete, Low DK "C", High DK "E")

KAIST

Terahertz Interconnection and Package Laboratory 29

PDN Design Methods

- Frequency dependent capacitance and inductance control
- Increase of decoupling Capacitance depending frequency range (on-chip, on-package, on-PCB, lumped, embedded)
- Decrease of Inductance (line, plane, via, wire, bonds, decoupling capacitors)
- Control resonances (lumped, planar cavity, on-chip, inter-level): avoid overlap with clock and harmonic frequencies
- Control ESR to reduce peak resonance impedance
- Evaluate dc ESR for dc voltage drop estimation

Proposed Modeling Method for Chip-Package-PCB Hierarchical PDN

Analysis of Impedance of Test Vehicle at Package Side

✓ A quite complicated impedance characteristic composed of chip-package-PCB hierarchical PDN is fully analyzed.

ERA

Verification of Proposed Modeling Method (Corner on Chip)

Need for Estimation of High Impedance Peak in Hierarchical

• High impedances in hierarchical PDN from interactions generate problems of system performance degradation.

KAIST

A precise simulation and analysis of hierarchical PDN is needed.

Terahertz Interconnection and Package Laboratory 34

PDN Noise Coupling Paths in chip and package

- Adjacent interconnections: line, pin, wire
- Via and planes
- Conductive substrates
- Common power line, plane
- Common decoupling capacitors
- Common return current paths
- Isolation techniques needed: Cost, size increase

Frequency Spectrum of Digital Clock Waveforms

Waveform and Spectrum of Clock Signal

KAIST

Spectrum of Wireless Mobile Communication Systems

Setup for Analysis

Basic Performance of Designed Mixer

KAIST

Terahertz Interconnection and Package Laboratory 40

40

On-chip Decap. Effect : Transfer Impedance (Simulation)

- When on-chip decoupling capacitor is designed , transfer impedance decreases more than the case without on-chip decoupling capacitor over 600MHz
- > Transfer impedance decreases when design on-chip decoupling capacitor in 900MHz.

On-chip Decap. Effect : Output Spectrum (Measurement)

• Switching noise of output waveform with on-chip decoupling capacitor decreases in 13.5dB a frequency of 900MHz compared to the case without on-chip decoupling capacitor .

-> Verified effect of design on-chip decoupling capacitor in RF or LO frequency band.

Off-chip Decap. Effect : Transfer Impedance (Simulation)

• When additional off-chip decoupling capacitor is designed, transfer impedance decreases more than the case without additional off-chip decoupling capacitor from 2MHz to 200MHz

-> Transfer impedance decreases when design on-chip decoupling capacitor in 150MHz.

Off-chip Decap. Effect : Output Spectrum (Measurement)

• Switching noise of output waveform with off-chip decoupling capacitor decreases in 12.2dB a frequency of 150MHz compared to the case without off-chip decoupling capacitor .

KAIST

-> Verified effect of design off-chip decoupling capacitor in IF frequency band.

Problem by Power and Ground Noise

DC Output Offset with Proposed and Conventional Analysis

SSN Sensitive Circuits in IC

- VCO: Voltage Controlled Oscillator
- LNA: Low Noise Amplifier
- PLL: Phase Locked Loop
- ADC: Analog to Digital Converter
- DAC: Digital to Analog Converter

SSN Isolation Methods

- Decoupling
- Filtering
- Slot
- Split
- Shielding
- EBG strictures
- Separated power supply/decoupling/return current path
- Separated interconnections: lines, pins, pads, vias
- Separated planes, layers
 - Increased separation distance

PDN Noise Isolation Methods

Guard Ring (P+/ N+/ Deep-Nwell type)

- On-chip Decoupling Capacitor

- Internal Voltage Regulator

- On-Package/PCB Decoupling Capacitor (Discrete type, Embedded type)
- Electromagnetic Band Gap (EBG)
- \rightarrow Frequency dependency of noise isolation
- \rightarrow Z21 analysis in the frequency domain

(A)

The isolation methods of each hierarchical PDN

50

Stack-up for Transceiver SiP [7 layer]

- Thickness = 1.3 mm, Size: 20mmx20mm,
- Ceramic: Dupont (Dielectric Constant = 7.4, Loss Tangent = 0.001)
- Die: 7, Decap: 5 개, Ball: 287, Wire-bonding: 53 개
- 7 Layers

Transceiver without DS-EBG

< Without Power/Ground Noise >

- < With Power/Ground Noise >
- Power/Ground noise generates a -43 dBm of unwanted

signal near the output signal.

< Without Power/Ground Noise >

- < With Power/Ground Noise >
- DS-EBG successfully suppresses the unwanted signal by 21
 dB.

Proposed On-Interposer EBG Structure

ackage Laborat

Measurement Results (1/2)

Measurement Results (2/2)

- Switching noise input at port 1 using 500mVpp clock signal

- Coupled noise spectrum probed at port 2

Proposed 3D Clock Distribution Scheme

3-D Stacked Chip Star-wiring I/O Clock Distribution for Low Jitter, Skew, and Delay

- → lossless of bonding-wire & pad
- → free from on both on chip and package power supply noise

Enhanced Clock Jitter Performance of the Proposed Scheme

✓ 3D-stacked chip star-wiring clock scheme provides low clock jitter compared with on-chip clock scheme (77% jitter reduction)

✓ It is devised to enable the clock signal delivery to be free from on-chip digital switching noise and package power/ground cavity noise coupling.

Advantages of Proposed PCR CDN for 3D Stacked Chip Package

• Jitter is filtered by high-Q bandpass filter utilizing a package level quarter-wavelength planar cavity resonator

KAIST

• Reduction of the number of cascaded repeaters

Originalities of Proposed PCR CDN for 3D Stacked Chip Package

• Uniform phase and uniform amplitude standing wave is used for clock distribution

KAIST

Quarter-wavelength Resonator with Inductive Termination

KAIST

Measure Eyd-diagram of PCR CDN with Noise

	Source clock	Distrbuted clock
Pk-to-pk jitter	98 ps	28 ps
Eye-opening	920 mV	1720 mV

- Clock frequnecy : 1.55 GHz
- Clock magnitude : 1 Vp-p
- Switching noise : 300 mV

Unique Research Focus

Conclusion

- Significant noise coupling occurs from digital PDN to noise sensitive RF and analog circuits on a same SiP.
- The clock frequencies and harmonic frequencies should be placed away from the RF carrier frequencies.
- Low PDN impedance should be maintained.
- PDN resonance frequencies should be placed away not only from the clock frequencies, and their harmonic frequencies, but also from RF carrier frequencies.
- Via and wire are a major noise coupling path from digital PDN to noise sensitive circuits.
- Noise coupling reduction methods including using PDN design, frequency control, filtering, separation/isolation, decoupling, shielding, and grounding techniques.
- Case studies: LNA, Clock distribution network
- Chip-package co-design can provide optimal and cost-effective solutions.

