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Expected Market of 3D ICExpected Market of 3D IC

Heterogeneous integration              
“More than Moore”

Market Driving Forces of 3D IC 

Performance 
driven

Co-integration of RF + logic + 

memory + sensors in a reduced space

Electrical performance”Mid t ”

Logic DRAM

Electrical performance   
Interconnect speed and 

reduced parasitic power 
consumption

”Mid term” 
driver: > 2010

3D IC3D IC
Optimum Market Optimum Market 

MEMS

RF-
SiP

3D vs. “More Moore”   
Can 3D be cheaper 

than going to the next 
lithography node?

Form factor 
driven

Cost 
driven

Access ConditionsAccess Conditions

CIS

SiP

Density 
Achieving the highest “Long term”

Flash 
(NAND & NOR)

Source: “3D IC & TSV Report” Yole Development

drivendriven capacity / volume ratio
“Short term” 

driver: > 2008

Long term  
driver: > 2012
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Technology Trend of 3D ICTechnology Trend of 3D IC
* f IBM J RES & DEV VOL 52 NO 6 NOVEMBER 2008
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105 – 108 I/O per cm2

Wiring pitch: 45nm
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I/O: 200 μm pitch

Organic and ceramic package
(SCM and MCM)
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 in I/O: 200-μm pitch
102 - 103 I/O per cm2

Wiring pitch: 25 - 200μm

2000 2010
Time

Relative comparison of I/O densities for 3D silicon, 3D die stacking,

Terahertz Interconnection and Package LaboratoryTERA
Terahertz Interconnection and Package Laboratory

8

Relative comparison of I/O densities for 3D silicon, 3D die stacking, 
and silicon packaging, for both ceramic and organic packaging



Core Technologies of 3D ICCore Technologies of 3D IC

UnifiedUnified
Design/CADDesign/CAD

Attachment TSV
Substrate

Via

Ball
PCB

Design/CADDesign/CAD
EnvironmentEnvironment

and Testand Test

Chip & SoCChip & SoC
Architecture and Architecture and 

Design MethodologiesDesign Methodologies

3D Thermal 3D Thermal 
& Reliability Analysis & Reliability Analysis 

And DesignAnd Design

3D IC3D IC
Design MethodologiesDesign MethodologiesMethodologiesMethodologies

Low Cost InterposerLow Cost Interposer ChipChip--toto--WaferWaferpp
Process and DesignProcess and Design

TechnologyTechnology

pp
Stacking & Bonding,Stacking & Bonding,

TSV TechnologyTSV Technology
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Signal Integrity Design Issues in 3D ICSignal Integrity Design Issues in 3D IC

3D IC using TSV

Signal Integrity II:Signal Integrity II:
Crosstalk & JitterCrosstalk & Jitter

Signal Integrity I:Signal Integrity I:
Loading Effect & ReflectionLoading Effect & Reflection

g
(Through Silicon Via)
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Solid line = model 
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Cvia_ox

Cvia_ox

Signal via Ground via Ground via
Port 1 

SiO2

Cvia_ox

C

Csil
Cvia_ox Cvia_ox Cvia_ox

Gsil

GsilLvia

Rvia

Lvia

Rvia

Cvia_ox

Cvia_ox

Cox

Csil

Logic- Limitation of High Speed Signaling 
by Capacitive Loading
- Impedance Mismatching, Reflection

Cox

Port 2 

Cox

- Crosstalk Between TSVs
- Die-to-Die Vertical Coupling
- Jitter by Inter-Symbol-Interference

Analog RF

DRAM

Si-Interposer Power IntegrityPower IntegrityEMIEMI p

DSP

Power IntegrityPower Integrity

Power
VSSN

Through-Chi 4
Chip 5
Chip 6
Chip 7

Power

Ground

Through
wafer via

Chip 1
Chip 2
Chip 3
Chip 4

- Vertical Die-to-Die EMI Coupling - Simultaneous Switching Noise caused
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Vertical Die to Die EMI Coupling
- RF Sensitivity Reduction by EMI
- EM Radiation Increase

Simultaneous Switching Noise caused 
by Insufficient Power
- High freq Noise Coupling & Transfer
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Disadvantages of Wire Bonding Stacked Chip PackageDisadvantages of Wire Bonding Stacked Chip Package

• Long Interconnection
Long RC Delays
High Impedance for Power Distribution Network
Hi h P C tiHigh Power Consumption
Poor Heat Dissipation (Thick Substrate)

• Bonding Wire located in Chip Perimeter
Low Density Chip Wiring
Limited Number of I/O
Limited I/O Pitch
Large Area Package

3D Stacked Chip Package
• Complex Interposer

Long Redistribution Interconnection
Bonding Wire located in Interposer Periphery

with Wire Bonding
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Key Technology : TSV (Through Silicon Via)Key Technology : TSV (Through Silicon Via)

• Short Interconnection
Reduced RC Delays
Low Impedance for Power Distribution Network

3rd Chip
(Thinned

Substrate)

Low Impedance for Power Distribution Network
Low Power Consumption
Heat Dissipation Through Via

Under fill
Dielectric

2nd Chip
(Thinned

Substrate) • No Space Limitation for Interconnection

Multi-level 
On-chip Interconnect

Under fill
Dielectric

Substrate) p
High Density Chip Wiring
No Limitation of I/O Number
No Limitation of I/O Pitch
Small Area PackageOn chip Interconnect

Si-Substrate

SiO21st Chip

S a ea ac age

3D TSV Stacked IC
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★ Why does TSV Family happy ^^ ?

Elevator !!
Happy TSV Family~!

Sad Wire-bonding Family~!
So fast! ♬

4th Floor
So tired T^T !
It takes too 

So fast!
It’s awesome!!

♬

3rd Floor

much 
energy !!• Shorter distance !

• Lower loss of energy !

Stairs !!T^T

T0T

Stairs !!

2nd Floor

1st Floor

^^

^^
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10 chip stacked Package by KAIST10 chip stacked Package by KAIST
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55 μm TSV diameter
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150 μm Pitch



Background(1): High-frequency Channel Loss in TSVBackground(1): High-frequency Channel Loss in TSV

GSignificant high frequency signal loss occur at Signal Transmission Through TSVCvia_ox
Gsil-Significant high-frequency signal loss occur at Signal Transmission  Through TSV

-The signal loss through TSV is caused by substrate leakage and coupling
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Background(2): Increased Channel Loss in Multi-Stack TSVBackground(2): Increased Channel Loss in Multi-Stack TSV

-Signal loss increases substantially with number of stacks/TSVs
Th i l l h h TSV i d b b l k d li

Increased Total Resistance Increased Total Capacitance (Slopes)

-The signal loss through TSV is caused by substrate leakage and coupling

10

2-Stack TSVs8
9

10

5-Stack TSVs

5
6

7

10-Stacked TSVs
3
4
5

1

2
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A Through Silicon Via Structure on Double-sided Silicon 
Substrate
A Through Silicon Via Structure on Double-sided Silicon 
Substrate

Underfill Metal (M1,M2)Bump

Insulation layer

Inter-metal Dielectric

Double sided

y

1111111111111TSVDouble-sided
Silicon Substrate Cinsulator GSi sub

Underfill

Inter-metal Dielectric

Bump Cu SiO2 Si
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Frequency-dependent Loss of Through Silicon ViaFrequency-dependent Loss of Through Silicon Via

0
Frequency 

dependent term

-1

B
)Ci l t GSi b

-3

-2

lo
ss

 (d
BCinsulator GSi sub

-4
In

se
rti

on
 

Capacitive
region

Resistive
region

Cu SiO Si

Leakage current

-6

-5
ICu SiO2 Si

Loss term
1

6

Frequency (GHz)
10 200.1

Terahertz Interconnection and Package LaboratoryTERA
Terahertz Interconnection and Package Laboratory

1818



Scalable Equivalent Circuit Model of a TSVScalable Equivalent Circuit Model of a TSV

Signal Ground
Structural Parameters

TSV TSV TSV diameter : d
TSV-to-TSV pitch : p
SiO2 thickness : tC C

CBump

Cinsulator Cinsulator

SiO2 thickness : t 
Height : h
Bump diameter : D

Cinsulator Cinsulator

C
LTSV LTSV

Equations

C (d h t)GSi b

CSi sub

RTSV RTSV

Cinsulator Cinsulator
B B

Cinsulator (d,h,t)
CSi sub (d,h,p,t)
CBump (p,D)
G (d h p D)

Cinsulator Cinsulator

GSi sub

Bump Bump GSi sub (d,h,p,D)
RTSV (d,h)
LTSV (d,h,p)

CBump
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Analysis of a TSV Channel with Insulator Thickness of TSVAnalysis of a TSV Channel with Insulator Thickness of TSV

0 CInsulator=1.6 pF

Insulator thickness of TSV (t)

Signal Ground
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e 
(d
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C =7 8 pF
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Top
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Insulator thickness  of TSV ↓
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S
21

[A]
C /2 C /2

0.1 1 10
3.5

20

Frequency (GHz)

Equivalent circuit model ( t = 0.5um )

E i l t i it d l ( t 0 3 )

CInsulator/2 CInsulator/2

Leakage current

Signal
Bottom

Ground
Bottom

Insulator thickness dominantly affects frequency dependent loss of a TSV channel

Equivalent circuit model ( t = 0.3um )
Equivalent circuit model ( t = 0.1um )

Leakage through silicon substrate dominantly increases due to lowered impedance 
with increased Cinsulator in region [A].

Leakage current
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Insulator thickness dominantly affects frequency dependent loss of a TSV channel 
in region [A].
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Pitch between Signal & Ground TSV (p)

Analysis of a TSV Channel with Pitch between TSVsAnalysis of a TSV Channel with Pitch between TSVs

0 5
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CSi sub=3.14 fF
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Equivalent circuit model ( p = 150um )

CUnderfill, Bottom
Signal
Bottom

Ground
Bottom

Equivalent circuit model ( p = 100um )

Due to relative small capacitance, pitch affects frequency dependent loss of a TSV 
channel from region [B].
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From region [C], inductance effect becomes dominant.
Pitch dominantly affects frequency dependent loss of a TSV channel in region [B].



Analysis of a TSV Channel with TSV DiameterAnalysis of a TSV Channel with TSV Diameter
Via diameter of TSV (d) CInsulator ↑ CSi sub ↑ LTSV ↓
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Analysis of a TSV Channel with Via Height of TSVAnalysis of a TSV Channel with Via Height of TSV
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Via height of TSV (h) CInsulator ↑ CSi sub ↑ LTSV ↑
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Via height affects frequency dependent loss of a TSV channel in all frequency ranges.



Inter-symbol Interference (ISI) by Channel LossInter-symbol Interference (ISI) by Channel Loss

InterInter--symbol Interferencesymbol Interference is the interference between adjacent pulses 
of a data

-- The channel BW Limit degrades the signal qualityThe channel BW Limit degrades the signal quality
-- It depends on It depends on lineline--lengthlength, , data ratedata rate and and sub. materialssub. materials on PCBon PCB
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0 155 10
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– 3 Gbps
– FR4 (Loss Tangent = 0.03)
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– FR4 (Loss Tangent = 0.03)

[ ISI effect due to line-length ]
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Inter-Symbol Interference at the TSV EqualizerInter-Symbol Interference at the TSV Equalizer
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The Proposed TSV Equalizer using an Ohmic ContactThe Proposed TSV Equalizer using an Ohmic Contact

Ohmic contact
(Al/n+ type)

Signal
TSV

Ground
TSV( yp )

n-type 
Silicon

n+ high 
doped Silicon

Silicon 
Substrate

Bump Bump

We intentionally made leakage by using an Ohmic contact 
resulting in DC attenuation between signal and ground TSV
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resulting in DC attenuation between signal and ground TSV.
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Frequency Domain Simulation-based Verification of the TSV 
Equalizer Performance
Frequency Domain Simulation-based Verification of the TSV 
Equalizer Performance

0
Insertion loss of 8 TSVs 
without TSV equalizer

-2
s 
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-4.8 dB

without TSV equalizer
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n 
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0 7dB1 dB

-3.8 dB

-6In
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Flattened from DC to 10GHz
(Nyquist frequency of 20Gbps)

0.7dB1 dB

0.1 1 10
-8

F (GH )
20

Insertion loss of 8 TSVs with TSV equalizer

Frequency(GHz)

• We successfully flattened frequency dependent loss by 3.8 dB 
by using TSV Equalizer
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by using TSV Equalizer.



Time Domain Simulation-based Verification of the TSV 
Equalizer Performance
Time Domain Simulation-based Verification of the TSV 
Equalizer Performance

0 25 0 250.25
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Pk-pk jitter : 16 ps
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Ti ( )
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Ti ( )
0 1008020 40 60-0.25

Eye opening: 100mV

Time (ps)

• We successfully achieved normalized pk pk jitter and eye opening

Time (ps)

• We successfully achieved normalized pk-pk jitter and eye-opening,
32% and 20%,

meanwhile the unequalized eye is completely closed. 
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Time-Domain Measurement ResultsTime-Domain Measurement Results

Measured Eye-diagrams of a TSV channel

Eye-opening : 904 mV
= 90.4% Vin (1V)

1 1 1

Eye-opening : 720 mV
= 72% Vin (1V)

Eye-opening : 685 mV
= 68.5% Vin (1V)

Pk-pk jitter : 50 ps
= 0 5% UI
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ge
 (V

)
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ge
 (V
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ge
 (V

)

Pk-pk jitter : 12.5 ps
= 1 25% UI

Pk-pk jitter : 27.8 ps
= 18 9% UI

0.5 0.5 0.5

 0.5% UI

0

Time (nsec)
0 6 1082 4

0 0

 1.25% UI  18.9% UI

Time (nsec) Time (psec)
0 0.6 10.80.2 0.4 0 120 20016040 80

Data rate : 100 Mb/s 
Data Pattern : PRBS 211-1, 

Data rate : 1 Gb/s 
Data Pattern : PRBS 211-1, 

Data rate : 5 Gb/s 
Data Pattern : PRBS 211-1, 

Source amplitude : 1 V Source amplitude : 1 V Source amplitude : 1 V

Terahertz Interconnection and Package LaboratoryTERA
Terahertz Interconnection and Package Laboratory

2929



Coupling Issues in Stacked Dies using TSVCoupling Issues in Stacked Dies using TSV

Bonding
Bonding
Adhesive

P-Substrate 3rd Chip

Bonding
Adhesive

Adhesive

Inductor

N-Well
N+ P+ P+ P+N+ N+ P+N+ N+P+N+

N-Well
N+

N-Well

TSV TSV

Metal to Metal

TSV TSV

N Well

P-Substrate

N Well N-Well

2nd Chip

Inductor

2

TSV to Active Circuit
Coupling

3
Coupling

N W ll
N+ P+ P+ P+N+ N+ P+N+ N+P+N+

N W ll
N+

N W ll

Coupling

1

TSV to TSV
Coupling

TSV TSV

N-Well

P-Substrate

N-Well N-Well

1st Chip

< CROSSSECTIONAL VIEW >

Terahertz Interconnection and Package LaboratoryTERA
Terahertz Interconnection and Package Laboratory

30



Measurement Result of Coupling between TSVsMeasurement Result of Coupling between TSVs
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agreement with measurement resultM
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< Equivalent circuit model of coupled TSV> 



Shielding Methods for TSV Coupling

1) Re-design of  TSV materials and dimensions

2) Separation

3) G d Ri3) Guard Ring

4) GND Shield TSV

5) Metal Ring
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Shielding Effect Measurement – (1) Metal RingShielding Effect Measurement – (1) Metal Ring
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• Metal ring has shielding effect only in high frequency 
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because it blocks coupling in IMD layer
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< Equivalent circuit model of coupled TSV> 



Shielding Effect Measurement– (2) Guard RingShielding Effect Measurement– (2) Guard Ring
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• Guard ring has good shielding effect in every frequency 
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range  because guard ring structure can partly block substrate 

coupling between TSVs

• Main factor of coupling between TSVs is silicon substrate

M
L
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• Main factor of coupling between TSVs is silicon substrate < Equivalent circuit model of coupled TSV> 



Shielding Effect Measurement– (3) Guard Ring + Metal RingShielding Effect Measurement– (3) Guard Ring + Metal Ring
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Measurement Environments for Model VerificationMeasurement Environments for Model Verification

Vector Network Analyzer (VNA)
Measurement instrument 
: Agilent Technology PNA-L N5230Ag gy
Frequency range : 10MHz ~ 20GHz
Frequency sweep : log scale, 1601 point
microprobe : GGB industries inc. 40A-GS-

250-P

Port1 Port2

microprobe microprobe

Port2 

FOX FOXFOX

ILD/IMD

RDLRDL

FOX FOX
P+P+

FOX
P+

TSV

substrate 
contact

[ C ti l i f t t l ]

silicon substrate
Open
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[ Cross sectional view of test sample ]



Designed Test Sample ImagesDesigned Test Sample Images
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[ Cross sectional view of test sample ]



Analysis of Noise Coupling based on the 3D TLM ModelAnalysis of Noise Coupling based on the 3D TLM Model
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-55

dominant

TSV diameter : 30 μm
TSV SiO2 thickness : 0.5 μm 10M 100M 1G 10G-60

Frequency [GHz]

Coupling can be divided into 3 regionsCoupling can be divided into 3-regions

In region A, B, and C  TSV SiO2 capacitance , silicon resistance, silicon 
capacitance is the dominant factor to the coupling
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capacitance is the dominant factor to the coupling



Substrate contact to TSV Coupling 3D TLM Model Verification by 
Measurement – with Distance Variation
Substrate contact to TSV Coupling 3D TLM Model Verification by 
Measurement – with Distance Variation

Distance Increases 50 um
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Frequency [Hz]

Proposed model’s coupling coefficient estimation is less than measurement 
over 1GHz

But model follows same tendency as the distance increases
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But model follows same tendency as the distance increases



Analysis of Noise Coupling based on the 3D TLM Model 
– with TSV SiO2 Thickness Variation
Analysis of Noise Coupling based on the 3D TLM Model 
– with TSV SiO2 Thickness Variation
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-60

Frequency [GHz]

TSV SiO thickness determine the coupling coefficient in the region ATSV SiO2 thickness determine the coupling coefficient in the region A

If we increases TSV SiO2 thickness, coupling coefficient decreases in the 
region A
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Analysis of Noise Coupling based on the 3D TLM Model 
– with Silicon substrate Height Variation (1)
Analysis of Noise Coupling based on the 3D TLM Model 
– with Silicon substrate Height Variation (1)
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Substrate conductivity : 10S/m
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Frequency [GHz]

If silicon substrate height decreases all component value is changedIf silicon substrate height decreases, all component value is changed

At the whole frequency, the coupling coefficient increases as silicon substrate 
height increases
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height increases



Analysis of Guard-ring based on the 3D TLM Model 
– with Guard-ring Location Variation
Analysis of Guard-ring based on the 3D TLM Model 
– with Guard-ring Location Variation
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2 μ
Guard-ring distance from contact : 10
μm
Guard-ring width : 10 μm

Guard ring around contact shows more isolation effect compared to guard ringGuard-ring around contact shows more isolation effect compared to guard-ring 
around TSV

Guard ring around contact does not have frequency dependent isolation effect
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Guard-ring around contact does not have frequency dependent isolation effect



PLL Coupling Simulation EnvironmentPLL Coupling Simulation Environment

PFD CP VCOLPF
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Output

noise source
Is assumed as 
square wave
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[ PLL ]

[ Active circuit noise ]

square wave 
(500mV , 
305MHz )
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metal
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[ PLL external clock ]
[ Active circuit to TSV coupling model ]

Contact to TSV coupling model was proposed and verified in the previousContact to TSV coupling model was proposed and verified in the previous 
chapter

HSPICE simulation was performed using the contact to TSV coupling model
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HSPICE simulation was performed using the contact to TSV coupling model 
and PLL schematic



Substrate Noise Coupling to TSV Substrate Noise Coupling to TSV 
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305MHz square wave noise is coupled to TSV by the coupling coefficient
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305MHz square wave noise is coupled to TSV by the coupling coefficient

Up to 9th harmonic frequency, coupling coefficient is almost constant
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PLL Phase Noise Degradation due to Active Circuit to TSV CouplingPLL Phase Noise Degradation due to Active Circuit to TSV Coupling
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PLL phase noise shows spurs at 5MHz due to coupled 305MHz noise 

PLL phase noise spur at 75MHz, 2.4GHz, 4.8GHz is due to circuit design
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Substrate Noise Coupling to TSV Substrate Noise Coupling to TSV 
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Guard ring around TSV decreased coupling coefficient
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Guard-ring around TSV decreased coupling coefficient

PLL coupled noise also decreased by the guard-ring around TSV
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PLL Phase Noise Degradation due to Active Circuit to TSV CouplingPLL Phase Noise Degradation due to Active Circuit to TSV Coupling
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Guard-ring around TSV can improve coupling degraded circuit performance
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BER Calculation in Mixed-Signal System Model  BER Calculation in Mixed-Signal System Model  
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Dimension Region with Coupled TSV ParametersDimension Region with Coupled TSV Parameters
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Dimension Region with Coupled RDL ParametersDimension Region with Coupled RDL Parameters
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Dimension Region with Coupled TSV Parameters with Guard 
Ring
Dimension Region with Coupled TSV Parameters with Guard 
Ring
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Target BER can be satisfied within realizable dimensions 



Vertical Coupling of DDR3 to ZigBee TransceiverVertical Coupling of DDR3 to ZigBee Transceiver
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Experimental Verification of Proposed Model
(Line Type Clock Tree to Two Turn Spiral Inductor)
Experimental Verification of Proposed Model
(Line Type Clock Tree to Two Turn Spiral Inductor)
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• Before clock tree resonance, voltage transfer ratio is determined by Cclock and Linductor.

• After clock tree resonance, voltage transfer ratio is determined by Lclock and Linductor. 
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Investigation of Vertical Coupling Effect on VCO SpurInvestigation of Vertical Coupling Effect on VCO Spur
Clock spectrum (before vertical 
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from center frequency, design 

guide has to be proposed. 
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Investigation of Design Guide for Spur Reduction (Epoxy Thickness)Investigation of Design Guide for Spur Reduction (Epoxy Thickness)
Clock spectrum (before vertical 
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highly effective for spur reduction.
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Summary

-TSV is the most critical interconnection structure in 3D IC.

- TSV can cause significant channel loss for high-speed signaling.

E li ifi I/O h d d t t l- Equalizer or specific I/O schemes are needed to support low power 

and high-speed data transmissions.

- Crosstalk and coupling between TSV and active circuit need to be 

considered when designing the TSV arrangement configurations.

- Shielding structures are needed to reduce the TSV crosstalks and noise 

couplings.couplings.
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