Transparent conductors: Materials

In₂O₃, ZnO, CdO, SnO₂

- Wide-band-gap semiconductors: optical gap 3.4 3.7 eV
- Small electron effective mass: $m^* = 0.23 0.35 m_e$
- Must be degenerately doped: shallow donors $\Rightarrow \sigma = 10^3 10^4$ S/cm

Challenges/Questions:

- i. Trade-off between conductivity and transparency
 - Carrier concentration ↔ optical absorption
 - Shallow donors ↔ large band gap
- ii. Need controllable properties
 - By chemical composition in multicomponent oxides
 - By carrier generation (concentration vs mobility)
 - By crystal structure (oxygen coordination)
- iii. Amorphous transparent (semi)conducting oxides: How carrier generation/transport is affected?
- iv. Metallic $Ca_{12}AI_{14}O_{33}$ (observed σ =1700 S/cm): What is different with classical insulators CaO, AI_2O_3 ?

 $\sigma = ne\mu$ $\mu = e\tau/m^*$