EE 231 Exam#1 Mar. 03, 2000

50 minutes
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1. In the following system. an armature controlled motor is used to control the location of an object with
mass m. At the output, a voltage that is proportional to the location of the object is generated such thai
vy = Kyz. The displacement z of the object is measured so that x = 0, when 6 = 0. Obtain the detailed
block diagram of the system. where v; is the input and = is the output. and show the variables 1, 4;.
Yo, to. Ly Ya, g, Up, T, 8, and r on the block diagram. Assume that the spring is compressed initially to
compensate for the force due to gravity. {30ptus)
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2. For the block diagram given below. determine the transfer function either by block diagram reduction. or
by Mason’s formula. Show your work clearly. (25pts)
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3. The block diagram of a control system is given below.
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Obtain a state-space representation of the system without any block-diagram reduction. (25pts)

4. Obtain the necessary inequalities to describe the poles in the shaded region below in terms of only ¢
and wy, of a second-order system with complex poles described by Y (s)/U(s) = w2 /(5% + 2Cwns + w?)

{20pts)

Jw s-plane

radius = 20
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1. In the following system, an armature controlled motor is used to control the location of an object with
mass m. At the output, a voltage that is proportional to the location of the object is generated such that
v, = K,x. The displacement z of the object is measured so that z = 0, when 8 = 0. Obtain the detailed
block diagram of the system, where v; is the input and z is the output, and show the variables v;, i;,
Vo, o1 %r Ua, oy Up, T, 8, and z on the block diagram. Assume that the spring is compressed initially to
compensate for the force due to gravity.
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Solution: To determine the block diagram of the system, we first separate it into simpler components.

Because the input variable is v;, we

B, 4 e
— write ¢; in terms v;, such that
1 .
@ L I = &%, '*-'_.,_ Ll
v
- since the operational amplifier is as-
sumed to be ideal.
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Similarly, we have

i ———
For an ideal operational amplifier,
b + 1= =1 + t).
1: R
: vV Again for an ideal operational am-

plifier,

S
f.‘{h Va Va: RI

Va The armature current of the motor

15 v, , T ] i
+ 1 _T Lgat Ry |
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‘ From the armature controlled mo-

tor,
C’ % } T = Kgi,.

Winter 2000 3/11

Ka  b—t
l The back-emf voltage of the motor
[ : vy

o (I Vi = (K4s)O.

The torgque equation
J9 =T - 89 — Ty
- radius = r

2 where 7, is the torque generated duc
B to the spring-mass system, such that

7 ‘?'_E’ EEZi 7 1. = rfr, and f, is the rope tension

on the free-body diagram. So,

f: ' __ 1 -
© s(J3+B)(T rfv).

T 1 -]
; _-’L-i!_t_f?)_}
Ty ) 3
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. radius=r

o The disc with the inertia J changes
¥ the rotational motion to transla-
tional motion, where o .
g Iﬂ: T = —7rf.
T
fr

From the free body diagram, we get
one equation describing the transla-
tional motion.

. mi = —f, — kz, » ) 2
T [ " m —_— ma® + k [
resulting in
k F. = (m32 + k) X.

-

And, finally the given relationship

T Va
Uy = Kgx Ko

When we connect all the individual blocks together, we get the following block diagram.

T . - -

2. For the block diagram given below, determine the transfer function either by block diagram reduction, or
by Mason's formula. Show your work clearly.
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Gy

Solution: If we choose to use the block diagram reduction, best approach is to reduce the block diagram
step by step, until we obtain the transfer function.

Ga
W 1-Gh

1-Ga

Gs
1-Gs

“ Ci'—\ » G G2+ Cs “'/—-+‘-‘\— g

AL [ 1-Ga
Ga L

1~ Ga

¥ o=

G
G1(G2+ Ga )+ 3

1-Gs 1—~0Gh

u G1G2{1 — G3) + G1Ga + G Y
T=G3 —(G1Ga(l — Ga) + G1G1 + Ga)

Y
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If we choose to use Mason's formula. we necd to draw the signal flow graph of the block diagram.

1s
Y
1 1z Gh G2 1; 14
Y1, $ 1,
1g Ga
1

In drawing the signal flow graph, the unity gains are subscribed for easy tracking of the gain expres-
sions. The forward path gains are

= 111,G1G2l314 = G1Go,
Fy = 111316G3lel3ly = G3,

and

Fg = 1112@1 17G3191314 = G1G3‘

The loop gains are
Ly = G313 = G,
Ly = 13G1 G213l = GGy,
L3 = 1316G3lg1315 = G,

and

Ly= 120117(;3191315 = G]_Ga.

From the forward path and the loop gains, we determine the touching loops and the forward paths.

Touching Loops Loops on Forward Paths
Ly | Lo | La | Lg Ly | Le | Lz | Ly

L v |X | Vv |V R XV | V| v

Lo vV | vV VvV Rlv | v V|V

Ls vV |V Flv v Vv |V

Ly v
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Therefore,
A=1- (L1+L2+L3+L4)+(L1L2)
=1- ((Ga) + (Gng) + {03) -+ (G163)) + ((Gg)(chz))
=1-2G3 - G1Gy — G1G3 + G1G2G3,
and
Ai=Bly,eperiee=1-L1=1-0Cs,
Bo=Alp = p=0 = 1,
A3 = A1L1:L2-“—L3=L4ZU =L
S0,
V() _ Lyspa, - (G100 - Go) +(Go)lD) +(G:1G0)1)
Uls) A e v 1-2G3 — G1Go — G1G3 + G1GaG3
or
Y(S) G1Go — G1GaG3 + Gy + G1Ga

Uls) 1-2G3 - G1Gs — G1G3 + G1G2Gs’
3. The block diagram of a control system is given helow.

T s y
s+1

1
5

Obtain a state-space representation of the system without any block-diagram reduction.

Solution: In order to obtain a state-space representation without any block-diagram reduction or without
determining the closed-loop transfer function, we need to realize the individual blocks and use the
complete block diagram to generate the state-space equations.

— |

{a) The feedforward gain block. (b) Controller realization form.

There is no need to generate a realization for the feedback gain block, since it is already in a
realization form. The connected and “expanded” block diagram is shown below.
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&
—P

____________________________________

After assigning the state variables as shown in the figure, we obtain

1= -1+ (r—22) = ~z1 ~ T2+,
i2=¢1=—$1—$2+1",

and
y==I1 = —21 — T2+

And the state-space representation is

[z ]-[2 2)ag ][]

If we use the observer realization form for each of the blocks, then we obtain a different state-space

representation.
1
1 T
; N
3 -
3+ 1
{(a) The feedback gain block. {b) Observer realization form.

The connected and “expanded” block diagram for this case is shown below.
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f =

____________________________________

Similarly, we obtain
I1=-—4= —(:12‘14—(?"—*:1:2)) =—-x1+ZT2—r,

£2=y=:1:1+(r—3:2)z$1—:c2+r,

and

And,

4. Obtain the necessary inequalities to describe the poles in the shaded region below in terms of only ¢ and

wy, of a second-order system with complex poles described by Y (s)/U(s) = w2/(s? 4 2{wns + w}).

Jw s-plane

o=-5 T radius = 20
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Solution: To be able to describe the shaded region, we need to separate it into unions or intersections

of simpler regions.

a-plane

s-plane

.. radius = 20

Jut

s-plane

A vertical straight line designates a constant value for the real
part of the poles. Since the real part of the complex poles are
at —Cwn, the shown shaded area is represented by

"Cwn S _53
or

Cwn 2 0.

The equi-distance points from the origin designate constant
value for w,. As a result, the shown shaded area is represented
by

wy < 20.

A straight line originating from the origin designates a constant
¢ value, where cos™1(() is the acute angle between the line and
the negative real axis. So for the shaded area shown, we have

0° < cos™1{(¢) < 180° — 135°,
or
cos{0°) > ¢ > cos{45°),

since cos{@) is a monotonically decreasing function for 0 < 8 <
180°. So, we have

V2

— < 1
2 —C<!

when the poles have non-zero imaginary parts.
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Therefore, the shaded area given in the problem is the intersection of the individual shaded areas,
and it can be represented by

Cwn 2 ‘5:
wn S 20'

V2/2<¢ <.



