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1. For the following open-loop pole/zero locations. sketch egpected root-locus diagrams. Make reasonable

guesses for the features. and show the expected shapes of all the root-locus branches. {24pts)
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2. Sketch the location of the closed-loop poles for the following feedback control system for K > 0. Show
all the important features. (25pts)

1052 + K
52 4+ 16

¥




3. For the following feedback control systeni. design a PID controller; so that the steady state error for a
step input is zero: and such that the maximum percent overshoot is less than 5%. and the 2% settling

time 1s less than 0.5 second.

(26pts)
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4. For the following feedback control systeni. design the simplest proper controller. such that the 5% settling
time 15 0.2 second. and the peak time is approximately 0.15 second.
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1. For the following open-loop pole/zero locations, sketch cupected root-locus diagrams. Make reasonable
guesses for the features, and show the ¢xpected shapes of all the root-locus branches.
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( 2. Sketch the location of the closed-loop poles for the following feedback control system for K > 0. Show

all the important features.

Solution: The sketch of the location of the closed-loop poles 18 the root-locus diagram. However, in this
case the open-loop gain of the system 15

. 1052 + A 1 1082 + K

G(s)H(s) = ——— - - =

2416 5 s(s2+16)

where the root-locus variable K is not a multiplicative coefficient of the open-loop gain. So, we need
to convert the problem into the conventional form while preserving the location of the closed-loop
poles the same. The closed-loop poles are obtained from the characteristic equation, where

C o

1+ Gis){i{s) =0,

10s% — K
s{s? + 16)

s(s? + 18) + (10s° + K} 0
s{s2 + 16) -

s(s® = 16) + (1082 + K) = 0,

s+ 1082+ 16s + K = 0.

We need to regroup the characteristic equation, so that the characteristic equation is in the form

nis)
1+ Kd(.s) = ().

for some polynomnials n{s) and d(s). So.

5% + 108 + 165 + K = 0.
(s* + 1057 + 16) + K(1) = 0.

(% 4+ 108% + 16~) 4 A{1) _0
(8% =+ 1082 ~ 16s] e

]
e =10
s? + 10s? + 16s
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Therefore. the new open-loop gain

1 1
G(s)H (5) = =K
()H(s) KS3+1032 + 16s s(s+2){s+8)

generates the same closed-loop poles as the original open-loop gain, but the open-loop gain G'(s)H'(s)
of the new systemn is in the usual form for the generation of the root-locus diagram. In other words.
the locations of the closed-loop poles based on the open-loop pains G{s)H (s} and G'(s)H'(s) are
identical, however we can use the regular root-locus drawing techniques on the primed system.
First, we sketch the pole-zerc locations and the real-axis portion of the root-locus diagram. Then,
we decide the important features to be determined.

Need to determine;

e Asymptotes, and

¢ Breakaway point. -8 -2 a

We may also need to determine the imaginary-axis crossings depending on the orientation of the
asymptotes,

Asymptotes

Real-Axis Crossing: o, = Mﬁ
n—m

The real-axis crossing of the asymptotes is at

_ im0+ (=2)+(-8) _ -10

= = = =3, 3.
%a T — 3-0 3 33
i -
Real-Axis Angles: 6, = ——(-%fl—-l-;l)j
-7

The angles that the asymptotes make with the real axis are determined from

6, = +(2k + ) _ +(2k + Iiw :—-:ti.ﬂ'.
L — M 3-—-0 3

dK
Breakaway Point: e = 0

From the characteristic equation,
1+ G'(s)H'(s) =0,
Y S S——
s(s+2)(s+8) ’
and
~K = 5%+ 10s% + 16s.

Note that this is the same equation for the original system as well. Therefore,

—d—fi = 3s° + 20s + 16.
ds
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( and for dK/ds = 0, the equation
352 +20s+16 =0
gives
s = —5.74,-0.93.
The break-away point is the solution between —2 and 0 that is s = —0.93.

However from the asymptote angles, we rcalize that there will be imaginary-axis crossings. so we
need to determine the crossings as well.

Imaginary- Axis Crossings: Routh-Hurwitz Table
The imaginary axis crossings can be determined from the Routh-Hurwitz table. We have deter-
mined the characteristic equation above as

%+ 10s%° + 16s + K = 0.

The Routh-Hurwitz table for this characteristic equation is given below.

( s 10 K

{(1)(K) — (10){16)
10

1 K

The imaginary-axis crossings will correspond to the values of K that would make a row of all
zeros on the table. The two such candidates are the s-row and the 1-row.
® §-TOW
The s-row is all zero, when
(1)(K) — (10)(16)

- =0,
10

or when K = 160. For this value of K, we get a factor of the characteristic polynomial from
the upper or the s%-row. So,

(108> + K) . _ 160 =0,

160

or s = ;4. Since the factor leads to a pair of pure imaginary poles for K = 160, there will
be an imaginary-axis intersection at s = xj4,

¢ l-row
The 1-row is all zero for K = 0. and it corresponds to the open-loop pole at s = 0.

‘ With the features determined, we can now sketch the root-locus diagram.
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For the following feedback control system, design a PID controller; so that the steady state error for a

step input is zero; and such that the maximum percent overshoot is less than 5%, and the 2% settling

time is less than 0.5 second.

S

(5= 2)(s + 10)

Solution: A PID controller is in the form

K
D@hﬂ@+—f+Km=
= Kp

= Kp

KD.‘32 + Kps+ K;
5
s°+ (Kp/Kp)s + (K;/Kp)
&

(s — 21 Hs — 22)‘

&

where —(z1 + 22) = Kp/Kp. and 2120 = K;/Kp. In other words. the PID contreller supplies two
zeros at arbitrary locations and a pole at the origin. The performance requirements are listed below,

where
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Given Requirements

General Systemn Restrictions

Specific System Restrictions

The steady state error is
zero for a step input.

G(3)D(s) has a pole at 0.

The PID controller already
has a pole at 0.

e (Cz"vl—C"a)ﬁ < ﬂffp

glven '
The maximum percent or ¢ > 0.69
overshoot is less than 5%.
| In{Mp_... )|
¢~ 2 2
\/(ln(ﬂfﬁgwe:;}) - (?T)
O__O < t‘?%'sgiveu'
The 2% settling time is less or o, > 8.
than 0.5 second.
4
Ty >
tQ%'Sglven

Therefore the desired region for the poles are described by the conditions: { > 0.69 and o, > 8.
Graphically. these conditions describe the shaded region helow.

6/10
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b s-plane

1(0.69) = 46.36°

cO8™

| §

g =8

The open-loop system with the PID controller has three poles at —10, 0. and 2, and two zeros yet
to be decided. Since we can cancel a stable pole. if we cancel the pole at —10 by using one of the
zeros, and place the other zero on the left half-plane; we will end up having two poles and a zero.
In this case, the root-locus diagram will contain a circle with center at the zero, and for a small
cnough zero, we will have the circle crossing into the desired region. Since the radius of the circle is
v/(z = p1){z — p2) and poles are at 0 and 2. a choice of a zero smaller than —4 is sufficient. So let

s+ 10)(s
D(s) = spls TG 6]
b

The open-loop gain then becomes

The root-locus diagram for this open-loop gain as a function of K{p along with the desired region is
given below. The radius of the circle is \/{—6 — 0)(—6 — 2) = 44/3 = 6.93.
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to have the real part be —10. We can determine the imaginary part from the right triangle with
vertices at {—10,0), (=6.0), and (—10.w), or we can just read the value from the graph. In this
case. sg = —10 + 75.66. Once the desired location. that is on one of the branches of the root-locus
diagram, is determined, we can obtain the root-locus gain from the magnitude condition at the
desired location.

[ From the root-locus diagram, we can choose a range of desired pole locations. One such choice is

!D(S)G{’S} =0 :
is +6;

Hp : )J_‘ -t
sl =20 04 0.66

or Kp = 22. Therefore,

D(s) = 228 H 10+ 6) 2252 + 352s + 1320

o
o

or

is one possible controller.

4. For the following fecdback control system, design the simplest proper controller. such that the 5% settling
( time is 0.2 second. and the peak time is approximately .15 second.

| | i
r i s+ 40
( ) Dis) | | G-+ 10)

| =2

Solution: The performance requirements result in the following restrictions. where

. s+ 40
Gls) = — 0

{x — 2)}(s + 10
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Given Requirements

General System Restrictions

|
E Specific System Restrictions

i

The Controller 15 simplest
and proper.

The nuimber of poles and zeros
i1s minnmnuni. and the nnmber
of poles 1s greater than or
equal to the number of zeros.

The 5% settling time is 0.2
second.

For a second order system
with no zero. t5u. = 3/0,.

The peak time is
approximately 0.15 second

For a second order system
with no zero. £, = 7wy

3
-2 15
70T 0.2
™
= 9]
“d= 015

From the above requirements, we need to have the desired poles of the closed-loop system at s3 =

—15 + j21.

C

A Jw
5d
[ I —t 321
P | e p. [
™~ 1 Ea Eal —
—40 -15 —10 2 o

The deficiency angle, ¢ at sy is calculated from the angular condition.

¢ — £L(sq— (2)) — L{sq — (=10)} + L{sq — (—40)} = (2k + 1)m,

= 180° + k360°.
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@ — 128.99° — 103.39° + 10.03° = 1807 + k30607,

or ¢ = 12.35°.

Since the deficiency angle 1s positive, we need to design a lead compensator. The only explicit
requiremment for the lead compensator is that its angular contribution matches the deficiency angle.
However. the pole of the compensator may increase the order of the system to three. If we are not
carcful in the placement of the pole-zero pair. the already approximate values for the settling time
and peak time due to the zero of the system will he completely different. We either need to cancel
a pole so that the order of the system stays the same. or we need to make sure that the desired
locations give the dominant poles of the closed-loop system. The simplest choice is to cancel the
stable pole or the pole at s = —10 by picking the compensator zero at. « = —10. We can obtain the
location of the compensator pole geometrically.

—10) — [—15] y
tan™! (%) = 13.39°

¢ = 12.35° m - j21

13.30° — 12,359 = 1.04° B

o
*
®
X
Y

—40) —13 —10 2 a

21 tan{1.04% = (.38 = pole = ~ 15+ 0.38 = —-14.62

From the above analysis,

s+ 10

Dis) =K —_.
() =K —7%5

And the magnitude K is obtained from the magnitude condition at s,

!D(S)G(sj = 1,

E=8g

| s+ 10 s+ 40

P s+ 40
5+ 14.62 (s —2)(s + 10)

|
; = |K - , =1,
|.5':--15+j21 (s — 2}(‘5 + 1462) s=—15+j21

or K = 17.38 Therefore,

&+ 110)
§) = 17.35— ,
D{s) = 1735 =753




