EE 231 Exam#2 May 04, 2001

‘ 50 minutes

Copyright @ 2001 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Describe and sketch the s-plane region specified by the following requirements for a second-order system
described by Y(s)/U(s) = w2 /(5% + 20wns + w?).

Maximum percent overshoot M, < 20%.
Peak time £, < Zs.
5% settling time tgy, < 4s.

Also, determine whether any of the specifications is unnecessary or not. {15pts)

2. For the following feedback control system, determine the steady-state error e{(oc) for the unit-step input.

€ s—1

QL L E T

F

‘ (a}) Assume D{s) = 0.5 (10pts)
(b) Assume D(s) = 1. {10pts)
(¢} Assume D(s) = 1/s. (10pts)

3. Cousider a negative unity-feedback control system with the open-loop transfer function

s{s+1)
Gis)=K .
(s) st+ 4% + 32+ bBs+ 4
Determine the value(s) of K such that the closed-loop system is marginally stable. (25pts)

4. Consider a negative unity-feedback control system with the open-loop transfer function

1 1
Gis) =K =K .
(s) s(s2 +1){s+ 1) s+ 83 +35%+s

{a) Construct the root-locus diagram. Determine all the important features like asymptotes, break-away
and/or break-in points, imaginary-axis crossings, angle of arrivals and/or departures. (25pts)

{b) Determine all the values of K such that the closed-loop system is asymptotically stable. {05pts)



KE 231

Exam#2
Solutions

May 04, 2001

Copyright (C 2001 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the written permission of the copyright holder(s).

I. Describe and sketch the s-plane region specified by the following requirements for a second-order system
described by Y {(s)/U(s) = w?/(s® + 2Cwns + w?).

Maximum percent overshoot
Peak time t, < 2s.
5% settling time

i5%5 S 4s.

M, < 20%.

Also. deternune whether any of the specifications is unnecessary or not.

Solution:

Given Specifications

System Constraints

Geometrical Representations

M, < 20%.

P

or

| In{0.2}]

¢ = =
V(10(0.2)" + (r)?

M, = 6_(C/' 1_g2)n <0.2,

== 0.46.

a = cos” ()

< cos”1(0.46) ~ 62.87°,

where @ is the angle measured
from the negative real axis.

6o > 3/4=0.75.

m
tp = — <2,
wa > 157
i< 25 o w > 1.57,
we > 7/2 = 157 since the poles are at
&= —ty + jwd
3 <
To o < —{0.75,
tsgs < ds. aor N I

since the poles are at
§= ~d, T jwd

The shaded region describes the region specified by the given requirements.
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ST s-plane
‘ : 2\ 4 j4

4 52
juw = j1.57
62,87°/ i
’O’
1 juw = —31.57

The restriction o < —0.75 could be unnecessary, if the straight line that is making 62.87° with the
negative real axis intersects the jw = 71.57 line to the left of the o = —0.75 line. That intersection
is at —1.57/ tan(62.87°) = ~0.80. So, the specification that resulted in the restriction o < —0.75 Is
unnecessary. In other words, the specification t59,, < 45 is unnecessary.

‘ 2. For the following feedback control system, determine the steady-state error e(oc) for the unit-step input.
i € )
AR 5—1 ¥
T )

{a) Assume Df{s) =0.5.

Solution: For D(s) = 0.5, the system is type 0; since there is no pole at s = 0 in the open-loocp
gain D(s)G(s). As a result, the steady-state error for a unit-step input is given by

1

)= 13%,
P

where K, = lim,_,0{D(s)G(s)) provided that the closed-loop system is stable. Therefore,

: s—1 _ o=
e 05 (375)) =05

1
efw)=——— =2
(o) 1+ (—0.5)
‘ provided that the closed-loop system is stable. Stability of the closed-loop system may be
checked from the characteristic equation. Since the characteristic equation is

and

1+ D(s)G(s) =0,
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1vo05( 22 ) =0
CAs24H1) T
s+ 055+ 0.5 =0,

the poles of the closed-loop system are at s = —0.25 %+ j0.6614. Therefore, the system 1s stable,
and the steady-state error e{oo) = 2.

(b) Assume D{s) = 1.

Solution: Similarly, for D(s) =1,
) s—113%
Ky = 1o (_Jr_l) b

o
BT

In this case, we get |e{oo)] = co.  Indeed, when we check for the stability of the closed-loop
systemn from the characteristic equation, we get

and

e{oc)

14 D(5)G(s) =0,

s—1
1 =10,
+(32+1) |

s{s+1)=0.

and

The poles of the closed-loop system are at s = 0 and s = ~1. The system seems to be marginaily
stable; but since one of the poles is at s = 0, and the unit-step input provides another pole at
s = 0, the repeated pole on the imaginary axis results in an unbounded output whereas the
input stays at unity.

(¢) Assume D(s) = 1/s.

Solution: For D(s) = 1/s, the system is type 1, and the steady-statc error for a step input is 0
provided that the closed-loop system is stable. Again, checking the characteristic equation, we
get

1+ D(s)G{s) =0,

v () (553) o

2425 —1=0.

and

The poles of the closed-loop system are at s = 0.4534 and s = —0.2267 £ 71.4677. Siunce one
of the poles has a positive real part, the output will be unbounded as the input stays at unity.
Therefore, |e{oc)| = oo.



EE 231 Exam#2 Solutions Winter 2001  4/8

‘ 3. Consider a negative unity-feedback control system with the open-loop transfer function

s(s-+1})
Gls)=K :
(s) 84+ 4s% 4+ 52 + s+ 4

Determine the value(s) of K such that the closed-loop system is marginally stable.

Solution: The stability of the closed-loop system can be determined using the Routh-Hurwitz's stability
criterion on the characteristic polynomial. From the characteristic equation, 1 + G(s) = 0,

s{s+1) _
st+4s3 + 82455 +4

1+ K

7

Or
sS4 (K 4+ D)2+ (K +5)s+4=0.

The Routh-Hurwity table for the system becomes as given below.

E ) K+1 4
e 4 K+5
_(1)(K+5);(4>(K+U — (3K - 1)/4 4

(4)(4) = (3K — 1)/4)(I +5) (3K — 1){K +5) — 64

‘ T (3K — 1)/4 - 3K -1

For marginal stability, we need to choose K, such that there are distinct poles on the imagmary axis
and no pole on the right-half plane. The candidates for such a choice are obtained by generating a
row of zeros on the Routh-Hurwitz table. Observing from the table, the only such row 1s the s row.
From the only element on the s row, we let

(3K—1)(K+5)—64_0
3K -1 -

or
3K2 4 14K — 69 = 0.

The solution of the above equation gives K = 3 and X = —23/3.

Next, we nced to obtain the factor of the original polynomial from the previous row, and verify that
we get poles on the imaginary axis. From the upper or the s% row,

(3K —1)/2)* +4) =0

K=(-23/3)3

Note here that the above equation gives some of the poles of the closed-loop system only for the
values of K that make the s row all zero.

For K = —23/3, we get =652+ 4 = 0, or s = ++/2/3. In this case. we don’t have imaginary axis
crossings but a stable and an unstable pole combination.



EE 231 Exam#2 Solutions Winter 2001 5/8

For K == 3, woget 2s° +4 =0, or s = +44/2. So, when K = 3, we have imaginary axis crossings
( al s = £7v/2. And, from the first clements of the remaining rows of the Routh-Hurwitz table, we
conclude that the rest of the poles are in the left-half plane.

Therefore, the only value of K to gencrate a marginally stable closed-loop system is when K = 3.

4. Consider a negative unity-feedback control system with the open-loop transfer function

1 1
sy =K =K ; .
Gl s{s2+1)(s+1) st+ e +s2+s

{a) Construct the root-locus diagram. Determine all the important features like asymptotes, break-away
and/or break-in points, imaginary-axis crossings, angle of arrivals and/or departurcs.

Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus dia-
gram. Then, we decide the important features to be determined.

Need to determine: po
+ Asymptotes, T i
¢ Breakaway point, o
e Imaginary-axis crossings, and -t 7
Angle of departures. LR

-

Asymptotes

Real-Axis Crossing: g, = M
n—rm

The real-axis crossing of the asymptotes is at
LT - T _ (DO G 1

Ta n— I1m - 4 —10 T4

+(2k + 1)m
n—m

The angles that the asymptotes make with the real axis are determined from

0 — +(2k + ) 2k + 1)m

Real-Axis Angles: 6, =

- =+ 4T
n—1m 4 -0 4 4

K
Breakaway Point: dd— =0
S

From the characteristic equation,

‘.. 14+ G{s) =0,

1
1+ Kb =1,
RIS NPT PR
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and
—K=st+3 4%+
Therefore,
dK
e =458 1 352+ 25+ 1.
ds

and for dK/ds = 0, the cquation
45 +3s2 +2s+1=0

gives s = —0.6058 and s = —0.0721 £ j0.6383. Sa, the break-away point 18 5 = —0.6058,
since it 1s between —1 and 0..

Imaginary-Axis Crossings: Routh-Hurwitz Table

The imaginary axis crossings can be determined from the Routh-Hurwitz table. We have
determined the characteristic equation above as

S P +rsf+s+ K =0

The Routh-Hurwitz table for this characteristic equation is given below.

st 1 1 K
53 1 1
52 0 K

5

1

The imaginary-axis crassings will correspond to the values of K that would make a row of
all zeros on the table. The first such candidate is the s2 row. The s-row is all zero, when
K = 0. For this value of K, we get a factor of the characteristic polynomial from the upper
or the ¢3-row. So,

(33 + S)K:O =0,
or s = 0 and § = +j1. Indeed, as expected both of these crossings correspond to the
open-loop poles on the imaginary axis,

In order to continue with the Routh-Hurwitz table, we substitute the leading zero by e.
Then, the updated table becomes as follows.

5 1 1 K
g 1 1
g2 £ K
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Angle of Departure: »_ A£()=(2k+ 1}n

The angles of departures from complex open-loop poles are determined from the angular
conditions about the open-loop poles. Therefore, the angular condition about s = 31 1s

(s —(-1)) = £L(s = (0)) — £L(s — (—51)) = £(s — (1)) = 180° 4 k360°,

o ) —(0) o () —(0) () —(=1) 1RAC L LR
— tan L (ZO—-—-——I)) —tan"! (m) - tan 1 (W) — gdep = 180° + k360°.

—45° — 90° — 90° — faep = 180° + £360°.

As a result,

Oaep = —45°.

With the features determined, we can now sketch the root-locus diagram.

—0.6058 _

{b) Determine all the values of K such that the closed-loop system Is asymptotically stable.

Solution: We can determine the conditions for asymptotical stability from the first elements of the
rows of the Routh-Hurwitz table.

5t 1 1 K
53 i 1
s* £ K
3 1—E
&
1 K

in order for asymptotical stability, we need to have all the closed-loop poles in the left-half
plane. The Routh-Hurwitz criterion states that all the solutions to the polynomial that is used
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to generate the Routh-Hurwitz table are in the left-half plane, if and only if the first elements
of the rows of the table are all positive. Since we used the characteristic polynomial to generate
the table: if the first elements of the rows of the table arc all positive, the closed-loop system 18
asymptotically stable.

From the first element of the s row, we get (1 — (K/¢)), and

lim (1 - E) = (sgn(—K))oc.

e—=04 £
In order for this term to be positive, we need sgn{—K)=1or K < 0.
From the first element of the 1 row, we get K. So, for a positive first element, we need K > 0.

Since the two conditions have an empty intersection, we conclude that there is no value of K
that would result in an asymptotically stable system.



