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1. (a) Obtain the necessary inequalities to describe the strictly complex poles in the shaded region below

24
|

in terms of only ¢ and wy, of a second-order system described by Y (s}/U{(s) = w2 (82 +2Cs T wih
{10pts!

s-plane

radius = 20

(b) Consider a second-order system with no zero, such that its poles are located 1n the shaded region
above. Determine the largest possible maximum percent-overshoot and the largest possible 24
scttling-time of the system. {15pts]

2. For the following feedback control system, design the simplest controller D{s) that would result i a zero

steady-state crror e{oc) for a ramp input. (20pts)
r g 1 Y
4@ " D(s) ’ s+ 2 5 j -
R L S
3. Consider a negative unity-feedback control system with the open-loop transfer function
2 2
s< 4+ 25 + 101 §°+ 254101
Cls) = K—>F — k-2 .
(s+1)(s*+ 25 + 2) s34+ 382 +4s+2
(a} Determine the values of K such that the closed-loop system is asymptotically stable. (2071
{(b) Determine the value (or values} of K and the natural frequency (or frequencies). such that the
closed-loop system would have sustained oscillations. {10pts]

4. Consider a negative unity-feedback control system with the open-loop transfer function

s+3 s+3
=K = K~ .
Gls) {s+1)(s% +2s+2) 83 +3s2 4+ 4542

Construct. the root-locts diagram, Determine all the important features like asymptotes. break-away
and/or break-in points, imaginary-axis crossings, angle of arrivals and/or departures. (25pts)
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{a] Obtain the necessary inequalities to describe the strictly complex poles in the shaded region below

in terms of only ¢ and w,, of a second-order system described by Y (s}/U(s) = w?2 /(5% 4+ 2w, s + w?).

s-plane

radius = 20

Seolution: To be able to describe the shaded region, we need to separate it into unions or intersec-
tions of simpler regions.

s-plane
A vertical straight line designates a constant value for the
real part of the poles. Since the real part of the complex
poles are at —(wy,, the shown shaded arca is represented by

— —Qwn < =5,

or

A%
o

Cwn
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The equi-distance points from the origin designate constant
value for wy,. As a result, the shown shaded area is repre-
sented by

wy < 20.

A straight line originating from the origin designates a con-
stant ¢ value, where cos~1({) is the acute angle between the
line and the negative real axis. So for the shaded area shown.
we have

0° < cos™ () < 180° — 135°.

or
cos{0°} > { > cos(457),

since cos{#) is a monotonically decreasing function for 0 <
# < 180°. So, we have

when the poles have non-zero imaginary parts.

Therefore, the shaded area given in the problem is the intersection of the individual shaded
areas, and it can be represented by

V1=, <10,

wp, < 20,

V2/2 < ¢ < 1.

{b) Consider a second-order system with no zero, such that its poles are located in the shaded region
above. Determine the largest possible maximum percent-overshoot and the largest possible 2U%
settling-time of the system.
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Solution: Maximum overshoot for a sccond-order system with no zero is given by
__ & 4
Mp = b 1“C2 .

The only system parameter that affects the maximum overshoot is {. For maximum A7,. we
need to have minimum ¢; since { = 0 gives undamped oscillations. In the shaded region. the
minimum ¢ = \/5/2, and the corresponding maximum overshoot is

__ Ve
My,=¢ V1-/27 = 7™ 2 (.0432,

or the largest possible maximum percent-overshoot is 4.32%.

The 2% settling time of a second-order system with no zero is given by

y __4_ 4
Q%S_Uo_cwn.

The only systemn parameter that affects the settling thme is ¢,. For maximum tyg,, we need
to have minimum o,. In the shaded region, the minimum o, = 5, and as a result the largest
possible 2% settling time is 4/5s.

2. For the following feedback control system, design the simplest contreller D{s} that would result in a zero
steady-state error e(oo) for a ramp input.

T £ 1 y
o C : Dis) s+ 2

Solution: In order to have a zero steady-state error for any given input, we need to match the non-
asyptotically stable poles of the input in the open-loop gain of the system. In the case of the ramp
input, we need to have two poles as s = 0, or the system has to be of type-2. In other words.

D(s} = ;15.0’(3),

for some DY(s). Since there is no other explicit requirement, we only need to ensure stability by a
proper and simple choice of D'(s).

The simplest choice is D'(s) = K for a constant X . We may use a number of methods to check the
stability of the system for this choice, but a rough sketch of the root-locus, as shown below, is simple
enough to see the location of the closed-loop poles.
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As we observe from the root-locus diagram, there is no value of K that would result in a stable
closed-loop system. As a consequence of the three poles and no zero, the asymptote angles are +60°
and 180°, In order to change the asymptote angles, we need to include zeros. Inclusion of a single
zero will result in £90° asymptote angles. As long as the real-axis crossing of the asvmptotes s
in the left-half plane, there will be a stable set of closed-loop poles. The real-axis crossing of the
asymptotes is given by

DoPi— 2%

Jgp — —

n—-—m

where ) p, and ) _ z; are the sums of the pole and zero locations, respectively. In our case, when

the real-axis crossing of the asymptote will be at

_E=2+0+0) (=) _at2

Tg = =

3-1 2

For o, < 0, we need to have z > —2. Obviously, the zero should also be in the left-hall plane. since
a right-half plane zero would generate a root-locus branch on the positive real axis. A sketch of the
root-locus diagram for a zero between —2 and 0 is given in the figure below.

\

"~ Danble-iole
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As we ohserve from the root-locus diagram, any positive value of K will generate asymptoticallv
stable closed-loop poles. Therefore, the simplest controller is

where —2 < z < 0, and K > 0.

3. Consider a negative unity-feedback control system with the open-loop transfer function

2 +2s+ 101 s¢ + 2s 4 101
G(s) =K =K }
(s) (s 4+ 1){(s%2 + 25+ 2) s34+ 382 +4s + 2

(a] Detcrmine the values of K such that the closed-loop system is asymptotically stable.

Solution: The stability of the closed-loop system can be determined using the Routh-Hurwits's
stability criterion on the characteristic polynomial. From the characteristic equation. 1+ G(s) =

0. we have
s +2s4+101
352445+ 2

1

or
s°+ (K +3)s* + 2K 4+ 4)s + (101K +2) = 0.

The Routh-Hurwitz table for the system becomes as given below.

52 K+3 101K +2

(13(101K + 2} — (K + 3)(2K +4)  2K* ~ 91K + 10
K+3 - K43
l 101K + 2

=) —
v

The Routh-Hurwitz's stability criterion implies the following conditions.

i K+3>0

=3 < A e -

— 1 ¢] 9] 24 A 40 sl Ll IS

. 2K2—91K+10>0
' K+3 '
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A, K+ 3 >0 Case:

2K? — 91K +10 > 0.
2(K — 0.1102)(K — 45.3898) > 0,

or
—lfp— < L1102 4G SEIR 2 H pre——-

K < 0.1102, or 45,3898 < K. T o w0 a ab so w0 K

B. 10+ K « 0 Case:

This case results in instability from the
previous condition.

iii. 101K +2 > 0.

101K > —2.
2 =0.0198 < K ; .
K> =g = ~00198 T o T s T o w on

The intersection of all these regions leads to

—0.0198 < K < 0.1102, or 45,3898 < K.

—3 < K :_ h
—0.0198 < K} —
—10 0 10 20 30 40 a0 60 H

(b) Determine the value {or values) of K and the natural frequency (or frequencies), such that the
closed-loop system would have sustained oscillations.

Solution: For sustained oscillations, we need to choose K, such that therc are distinct poles on
the imaginary axis and no pole on the right-half plane. The candidates for such a choice are
obtained by generating a row of zeros on the Routh-Hurwitz table. Observing from the table.
the only two such rows are the s and the 1 rows. However. the 1 row gives an imaginary-axis
crossing at s = 0. Considering the elements on the s row, we get

2K — 91K +10 _
K+3 o

Or
2K? - 91K +10 = 0.

The solution of the above equation gives K = 0.1102 and X = 45.3398.
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Next, we need to obtain the factors of the original polynomial from the previous row, and verify
that we get poles on the imaginary axis. From the upper or the s? row,

&
((K +3)s° + (101K + 2))}(’:0.1102,45.3898 =0

Note here that the above equation gives some of the poles of the closed-loop system onfy for the
valiues of K that make the s row all zero.

For K = 0.1102, we get s = +72.0543, and for K = 45.3898, we get s = +59.7355. S0
for both of the cases, we have imaginaryv-axis crossings. And, from the first elements of the
remaining rows of the Routh-Hurwitz table, we conclude that the rest of the poles are in ihe
left-half plane. Therefore, the natural frequencies, such that the closed-loop system would have
sustained oscillations, are wy = 2.0543rad/s and wy = 9.7355 rad /s.

4. Consider a negative unity-feedback control system with the open-loop transfer function

s+3 s+ 3
=K =K .
Gls) (s+1)(s? +25+2) §3 4+ 352+ 4542

Construct the root-locus diagram. Determine all the important features like asymptotes. break-away
and/or break-in points, imaginary-axis crossings, angle of arrivals and/or departures.

Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram.

If the ayvmptotes are in the right-half plane, we may also
need to determine imaginaty-axis crossings. However, -
there is no need to determine break-away or break-in

points, since there is none.

Then, we decide the important features to be determined.

Need to determine:

e Asymptotles, and !

e Angle of departures. %

Asymptotes

P YL E

Real-Axis Crossing: g, =
n—ri

The real-axis crossing of the asymptotes is at

o = Z;‘pz - Z;‘Zi - ((_1) + (_1+j1) + (_1 _jl)) - (("‘3))

n—m 3—1

=

+(2k + 1)

l—in
The angles that the asymptotes make with the real axis are determiined from
_ERk+Ur 2%+ 7

n—m 3-1 Ty

Real-Axis Angles: §; =

ba
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Angle of Departure: > £} = +(2k+ L)x

The angles of departures from complex open-loop poles are determined from the angular condi-
tions about the open-loop poles. Therefore, the angular condition about s = -1+ 31 ix

L{s—(=3)) —L(s — (1)) = L{s—{(—1 ~j1)) — L5 — (=1 + j1)} = 180° + A360".

ta ((—1)—(-3)) ¢ ((_1)_(_1)) tar ((_1)_(4)) Ooep = 180° + A360°.

26.57° — 90° — 90° — fgep = 180° + £360°.

As a result,
Baep = 26.57°,

With the features determined, we can now sketch the root-locus diagram.

@
A




