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1. Obtain the necessary inequalities to describe the strictly complex poles in the shaded region below in terms

of only ¢ and wy, of a second-order system described by Y'(s)/U(s) = w2/(s% + 2Cwps + w?). (20pts)
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2. Consider the following control system.
n CH
A : R,

Assume that Ry = 1Q, R, = 2Q, R3 =40, C = 1F, and L = 2H. Only the capacitor and the
inductor are sensitive to temperature changes; such that the sensitivity of the capacitance with respect to
temperature 8¢ = 5, and the sensitivity of the inductance with respect to temperature 8% = 4. Determine
the sensitivity of the transfer function Vo(s)/Vi(s) with respect to the temperature. (20pts)

3. Design the simplest controller D(s), such that the steady-state error for a unit-step reference input is
zero, and the maximum percent overshoot is about 10%. Show all your work clearly. (15pts)
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4. A PID controller is to be designed for the following control system.
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(a) Determine the requirements for the PID constants Kp, K, and Kp, such that the closed-loop system

is asymptotically stable. (15pts)
(b) Determine whether or not the values Kp =1, K; = 0, and K = 1 result in an asymptotically-stable
system. (05pts)

5. Consider a negative unity-feedback control system with the open-loop transfer function

s+1 s+1
G(s)=K =K .
() (s —1)s(s? + 4s + 16) st +3s3 + 1252 — 165
(a) Determine the values of K such that the closed-loop system is asymptotically stable. (15pts)
(b) Determine the value (or values) of K and the natural frequency (or frequencies), such that the
closed-loop system would have sustained oscillations. (10pts)
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1. Obtain the necessary inequalities to describe the strictly complex poles in the shaded region below in
terms of only ¢ and w, of a second-order system described by Y (s)/U(s) = w2 /(5% + 2Cwns + w?).

s-plane

Solution: To be able to describe the shaded region. we need to separate it into unions or intersections
of simpler regions.

Jw s-plane

The equi-distance points from the origin designate constant

value for w,. As a result. the shown shaded area is represented
by

10 < wy < 20.

radius = 10
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A straight line originating from the origin designates a constant
¢ value. where cos™!(¢) is the acute angle between the line and

Jw s-plane
t the negative real axis. So for the shaded area shown. we have
1 30° < cos™1(¢) < 45°,
45° N T
30° or
o cos(30°) > ¢ > cos(45°),

+ since cos(f) is a monotonically decreasing function for 0 < § <
+ 180°. So, we have

{ V2 V3

— < (< —.
2 s¢s 2

Therefore. the shaded area given in the problem is the intersection of the individual shaded areas.
and it can be represented by

10 < w, < 20.

V2/2 < ¢ < V32
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