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1. The angular position of the shaft of a motor is controlled by the system shown below.

Va

radius = r _

The angular position of the motor shaft is detected by a variable resistor which provides a voltage v,
proportional to the angle, such that v, = K,0. Draw the most detailed block diagram of the system.
where v; is the input, and 6 is the output. Show all the variables v;, ;, Voy Toy Va, I, iq, Uy, T, and 0 as
well as the displacement(s) associated with the mass-spring components on the block diagram. (25pts)

2. For the block diagram given below, determine the transfer function either by block-diagram reduction or
by Mason’s formula. Show your work clearly. (25pts)




3. The block diagram of a control system is given below.

u s 1 Y
. s+1 s
2s+1
+ s+2
Obtain a state-space representation of the system without any block-diagram reduction. (25pts)

4. The state equation of a control system is given by

B(t) = [ . (2)}a:(t)+[(1)Ju(t),

where u and x are the input and the state variables, respectively. Determine x(t) for ¢ > 0; when
z(0)=[1 -1 ]T, and u(t) =1 fort > 0. (25pts)
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1. The angular position of the shaft of a motor is controlled by the system shown below.

Co
Vo io
R; ti

I

where v; is the input, and 6 is the output. Show all the variables Vi, 14, Vo,

Va

Vb

e ﬂ
4 k
/
radius =r _~

B

The angular position of the motor shaft is detected by a variable resistor which provides a voltage 1,
proportional to the angle, such that v, = K,8. Draw the most detailed block diagram of the system.

oy Vg, %, 1g, Uy, 7, and 6 as

well as the displacement(s) associated with the mass-spring components on the block diagram.

Solution: To determine the block diagram of the system, we first separate it into simpler components.

Since the input variable is v;, we
write 7; in terms v;, such that

Ii(s) = R%_v,-(s),

since the operational amplifier is as-
sumed to be ideal.

vi

] |
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vo io Similarly, we have
B . _ du,(t)
> to(t) = Co—g— 2

Cos —
or

I,(s) = CosV,(3).

o

For an ideal operational amplifier,

— > i(t) = —(ii(t) + io(ﬂ)*

|
’ !

4
i R
"V \VN—
Again for an ideal operational am-
plifier,
. M I B
e Va(s) = RI(s). S
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The armature current of the motor
can be obtained from the Kirchhoff’s
Voltage Law, where

Fall 2005
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L, di:lt(t) + Raia(t) + 'Ub(t) = va(t)’ B
or
Iu(s) = T (Vals) = Vi(9)

L,s + R,

From the armature-controlled mo-

tor, ‘ .
T(t) = Kgaig(t). i |
The back-emf voltage of the motor
dé(t)
t) = Ky———
’Ub( ) b dt ) o P l__’i

Vi(s) = (K45)O(s).
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The torque equation for 8 is

d20.,(t)
J ) J d;'; =T7(t) — rfr(t), T )
,.9%—{ 2 Z Z E Js?
¢ where f, is the internal tension of
, fr the rope. So,
radius=r .~
O(s) = = (T'(s) — rFr(s))
The disc with the inertia J changes
%} the rotational motion to transla-
0 tional motion, where 0 .

—_— -7 —_—— -
l Ty

#

K :Ill(t) = —r0(t).

radius =r _~

The differential equations describing the the translational motion
are

0=—fr —k{z1 — x2),
) miy = k(a2 — 1)
1 z SO,
F(s) = k(Xa(s) — X1(s)),

L Xa(s) = —%

= ——X;(s).
| - ms2 + k 1(s)
; 1 T2
xy k kD) A fr
ms2 + k df_/ k
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And, finally the given relationship

Uo(t) = Kog(t)- - Ko —

When we connect all the individual blocks together, we get the following block diagram.
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2. For the block diagram given below, determine the transfer function either by block-diagram reduction or
by Mason’s formula. Show your work clearly.

u G, G, G3 ’ J
- - ?
) T G (
L\L

+
+

Solution: If we choose to use the block-diagram reduction, best approach is to reduce the block diagram
step by step, until we obtain the transfer function.

Yy
>— = =

® J Fa\ G1 Gy y
| G2 +G —-(%}—-‘
‘\—}r—/ 1+ G1Ge 2T & 1 - G3G4Gs

u G1{G2 + Gy) + + G3 Y
1+ G1Gg 1 - G3G4Gs
G1(G2 + Gy) GsGs
1+ G1Gg
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Y 148Gt 6w Gs(1+ G1Go) v
1+ G1Gs (1 - G3G4Gs)(1 + G1Ge) + G1G3GsGs(G2 + Ga)
b | G3(l + G1Gg + G1(G2 + Gy)) 4
(1 - G3G4G5)(1 + G1Gsg) + G1G3G5G6(G2 + Ga)

If we choose to use Mason’s formula, we need to draw the signal flow graph of the block diagram.

u
1; 12 Gy 13 G2 14 G3 1s
Y Lo
1g
Gy
Y Iz L IRY)
\ -Ge lg Gs /

In drawing the signal flow graph, the unity gains are subscribed for easy tracking of the gain expres-

sions. The forward path gains are
Fi1 = 111,G113G214G315 = G1G1Gs,
Fy = 1111114G3l5 = Gs,
F3 = 1115G1131,018G4G315 = G1G3Gy.

The loop gains are
L, = G11311017(—Gs) = —G1G,
Ly = G11311018G4G3Gs16(—Gg) = —G1G3G4G5Gs,
L; = G113G214G3G516(—Gg) = —G1G2G3G5Gs,
Ly = G3G519G4 = G3G4Gs.

From the forward path and the loop gains, we determine the touching loops and the forward paths.
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Touching Loops Loops on Forward Paths
Ly | Ly | L3z | Ly Ly | Ly | Ly | L4
Li\v | v v | X Rilv | ivVviv i v
L, vV | Vv |V Bl X | v iv v
Lj vV | Vv Bl\v i ivVviv v
Ly v

Therefore,

A=1-(Li+ Lo+ Ly + Lg) + (L1 Ly)
=1~ ((=G1Gs) + (—~G1G3G4G5G6) + (~G1G2G3G5Ge) + (G3G4Gs)) + ((=G1Gg)(G3G4Gs))
=14 G1Gs + G1G3G4G5Gs + G1G2G3G5Gs ~ G3G4Gs — G1G3G4Gs G,
=1+ G1Gs + G1G2G3G5Gg — G3G4Gs,

and
A= A|L1=L2=L3=L4:O =1,
A2 = A|L2=L3=L4:O = 1 - Ll = 1 + G1067
Az = A|L1=L2=L3=L4=O =1

So,

V(o) _ L~ pa, = (G1G2Ga)(1) + (Gs)(1L+ GaGo) + (G1GaGa)(1)
U(S) A P v 1+ G1Gg + G1G2G3G5GG — G3G4G5 '
or

Y(s)  Gi1GaG3 + G3(1 + G1Gg) + G1G3Gy

U(S) 1 + G1Gg + G1G2G3G5G5 - G3G4G5.

3. The block diagram of a control system is given below.

s+1 I
_|_ ‘ 25+1
s+2

Obtain a state-space representation of the system without any block-diagram reduction.
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Solution: In order to obtain a state-space representation without any block-diagram reduction or with-
out determining the closed-loop transfer function, we need to realize the individual blocks and use
the complete block diagram to generate the state-space equations.

Qlﬂ%.’ 2

s

s+1
(a) The first feedforward gain (b) Controller realization form.
block.
25 +1
s+ 2 -
(c) The feedback gain block. (d) Controller realization form.

The connected and “expanded” block diagram is shown below.

After assigning the state variables as shown in the figure, we obtain
Ty = &,
Gy = —zy + (u — (&2 + (223 + x;;))),
T3 = —2z3 + 11,

and
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From the second state equation, we get
209 = —x9+u—2 (—2:133 + .’1:1) — I3,

T = —x1 — (1/2)z2 + (3/2)z3 + (1/2)u.

After substituting the above equation into the original set, we obtain the state-space representation

z1(t) -1 -1/2 3/2 z1(t) 1/2
Io(t) | = | -1 —-1/2 3/2 zo(t) | + | 1/2 | u(t),
z3(t) 1 0 -2 z3(t) 0
z1(2)
yt)=[1 0 0 11 22(t)
z3(t)

If we use the observer realization form for each of the blocks, then we obtain a different state-space

representation.
0 1
1 E4
s
-1
—_—— s
s+1 ‘L
(a) The first feedforward gain (b) Observer realization form.
block.
1 2
1 A‘é—
. -
-2
25+ 1
s+2 1
(c) The feedback gain block. (d) Observer realization form.

The connected and “expanded” block diagram for this case is shown below.
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Similarly, we obtain
Ty =1T9 + (u - (a':l + (z3 + 23«”1))),
j:2 = _:i‘].)
T3 = z1 — 2(z3 + 211),

and

Yy =x.

From the first state equation, we get

281 = =221 + 29 — 3 + u,
or
Z1 = —11+ (1/2)z9 — (1/2)x3 + (1/2)u.
And,
z1(t) -1 1/2 -1/2 z1(t) 1/2
Za(t) J = [ 1 -1/2  1/2 [xg(t) } + ij -1/2 J u(t),
i?g(t) -3 0 -2 :L‘g(t) 0
xl(t)
yt)=[1 0 0] za(t) |.
z3(t)
4. The state equation of a control system is given by
s0)=| 5 ¢ Je+[ ]

where u and x are the input and the state variables, respectively. Determine
z(0)=[1 -1 }T, and u(t) =1 for t > 0.

(t) for t > 0; when
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Solution: The general solution to the state equation of a system described by
z(t) = Az(t) + Bu(t)

is obtained from .
z(t) = eAta:(O) +/ eA(t‘T)Bu(T) dr,
0

where

et = 71 [(sI - A)‘l](t).

Here, I is the appropriately dimensioned identity matrix. In our case,

S EH AT

x0)=[1 -1 ]T, and u(t) = 1 for ¢ > 0. We first need to determine the state-transition matrix

et =7 [(sI - A)7'](t) = £t Ks[é (1)]‘ [ _g gD_lJ(t)

e[ 2]) o= kw5 2]

Fﬁ?[ﬁﬁ}(t) ﬁ;l[sgi?}(t)
_551[821—222}(0 L;‘[sszQJ(t)

I' cos(2t) sin(2t)}

| —sin(2t) cos(2t)
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From the state-transition matrix, we can determine the state variable

t
z(t) = etz (0) + / et Bu(r)dr

0
_ f- cos(2t) sin(2t) 1] t cos(2t —27) sin(2t — 27) 0
h | —sin(2t) cos(2t) -1 +/0 —sin(2t — 27) cos(2t — 27) 1 (1) dr

_ [ cos(2t) — sin(2t) | t[ sin(2t — 27)
| —sin(2t) — cos(2t) ] +/0 ] cos(2t — 27) T

cos(2t) —sin(2t) | [ (1/2)cos(2t—2r) ]
| —cos(2t) — sin(2t) J | —(1/2)sin(2t - 27) 0
cos(2t) —sin(2t) | [ (1/2) = (1/2) cos(2t)
| —cos(2t) —sin(2t) i (1/2) sin(2t)

(1/2) + (1/2) cos(2t) — sin(2t)

O= 1" cosat) - (1/2)sin(2) J fort 2 0.




