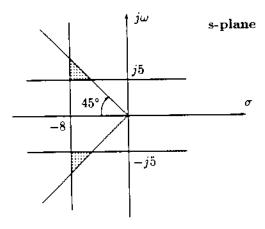
CONRIGHT @1992 BY L. ACR

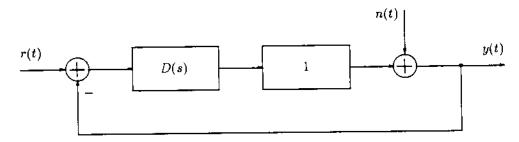
EE 231 Exam#2 75 minutes

Apr. 14, 1992

1. Obtain the necessary inequalities to describe the poles in the shaded region in terms of only ζ and ω_n of a second-order system described by $Y(s)/U(s) = \omega_n^2/(s^2 + 2\zeta\omega_n s + \omega_n^2)$. (15pts)



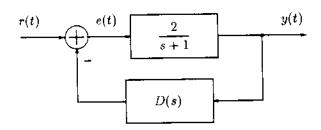
2. A feedback control system is given below.



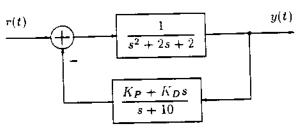
Design the simplest controller D(s), so that the output, y(t), follows a sinusoidal input, r(t), with a frequency of 1 rad/sec, and it rejects a sinusoidal noise, n(t), with a frequency of 4 rad/sec. (30pts)

- 3. Design a D(s), such that the following system satisfies these conditions.
 - (a) The 5% settling time is less than $1 \sec$.
 - (b) The rise time is less than 0.6 sec.
 - (c) A zero steady-state error e(t) is obtained for a step reference input.

(30pts)



4. A modified PD controller is to be designed for the following system. Determine the range of controller constants K_P and K_D for an asymptotically stable system. (25pts)



EE 231

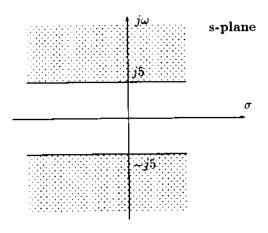
Exam#2 Solutions

Apr. 21, 1992

1. The shaded region can be separated into unions and intersections of simpler regions. The region above the horizontal line $j\omega=j5$ shown below is described by

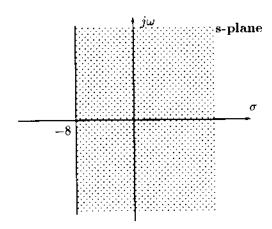
$$\omega_d \ge 5$$

$$\sqrt{1 - \zeta^2} \, \omega_n \ge 5.$$



The region to the right of the vertical line $\sigma = -8$ shown below is described by

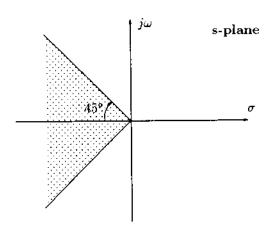
$$-\zeta \omega_n \ge -8$$
$$\zeta \omega_n \le 8.$$



The region under the 45° angle line shown below is described by

$$\cos^{-1} \zeta \le 45^{\circ}$$
$$\zeta \ge \cos 45^{\circ}$$
$$\zeta \ge \frac{\sqrt{2}}{2}.$$

2



Therefore, the given shaded region which is the intersection of all the shaded regions above, is described by all ζ and ω_n which satisfy

$$\sqrt{1-\zeta^2}\,\omega_n\geq 5\quad {
m and}\quad \zeta\omega_n\leq 8\quad {
m and}\quad \zeta\geq rac{\sqrt{2}}{2}.$$

2. In order for the system to follow any non-asymptotically stable poles of the reference, its open-loop gain, i.e., D(s) in this case, has to match the poles of the reference. As a result, to follow a sinusoidal input with frequency 1 rad/sec, we need poles at $s = \pm j1$. In other words,

$$D(s) = \frac{z(s)}{(s^2 + 1^2)p_1(s)},$$

where z(s) and $p_1(s)$ are (yet) unknown polynomials in s. Moreover to reject disturbance, the open-loop gain also needs to match the non-asymptotically stable poles of the disturbance. In other words,

$$D(s) = \frac{z(s)}{(s^2 + 4^2)p_2(s)},$$

where $p_2(s)$ is another unknown polynomial in s.

Comparing the two forms of D(s), we realize that the simplest open-loop gain, i.e., the simplest controller, should be

$$D(s) = \frac{z(s)}{(s^2 + 1)(s^2 + 16)},$$

which satisfies both forms of D(s) by picking $p_1(s) = s^2 + 16$, and $p_2(s) = s^2 + 1$. We now need to select z(s), such that the closed-loop system is stable. Here, we can use Routh-Hurwitz criterion, or solve the characteristic equation of the system. The characteristic equation with the D(s) above, becomes

$$1+D(s)=0,$$

$$1 + \frac{z(s)}{(s^2 + 1)(s^2 + 16)} = 0,$$

$$(s^2 + 1)(s^2 + 16) + z(s) = 0,$$

3

oΓ

$$s^4 + 17s^2 + 16 + z(s) = 0.$$

To make the system stable, we at least need to supply the missing terms in the characteristic polynomial, i.e.,

$$z(s) = as^3 + bs,$$

for some a and b. The characteristic polynomial is then $s^4 + as^3 + 17s^2 + bs + 16$, and Routh-Hurwitz table becomes

For stability,

1.
$$a > 0$$
,

2.
$$\frac{17a - b}{a} > 0$$
,
 $17a - b > 0$, since $a > 0$,
 $b < 17a$,

3.
$$\frac{(17a-b)b/a-16a}{(17a-b)/a} > 0,$$

$$\frac{(17a-b)b-16a^2}{(17a-b)} > 0, \qquad \text{since } a > 0,$$

$$(17a-b)b-16a^2 > 0, \qquad \text{since } 17a-b > 0,$$

$$-(16a^2-17ab+b^2) > 0,$$

$$-(a-b)(16a-b) > 0,$$

$$(a-b)(b-16a) > 0,$$

a.
$$a-b>0$$
 and $b-16a>0$,
 $a>b$ and $b>16a$, impossible, since $a>0$, and $16a>a$,

$$b. \quad a-b<0 \quad \text{and} \quad b-16a<0,$$

$$a< b \quad \text{and} \quad b<16a.$$

Therefore, the stability requirements can be compactly written as

$$0 < a < b < 16a < 17a$$
.

One choice for the simplest controller is a = 1, and b = 2, i.e.,

$$D(s) = \frac{s^3 + 2s}{(s^2 + 1)(s^2 + 16)}.$$

3. Here is a list of the given requirements and corresponding system restrictions.

Given Requirements	General System Restrictions	Specific System Restrictions
Zero steady-state error for a step input	System is Type 1.	For this example, $\frac{2D(s)}{s+1} = \frac{z(s)}{sp(s)}.$
Less than 1 sec 5% settling time	$t_{s_{5\%}} \leq 1.$	For a second-order system, $\frac{3}{\zeta\omega_n} \leq 1.$
Less than 0.6 sec rise time	$t_r \leq 0.6$.	For a second-order system, without a zero, $\frac{\pi - \cos^{-1} \zeta}{\omega_d} \leq 0.6.$

From the zero steady-state requirement, we know that D(s) = K will not work, since it will not increase the type of the system to 1. So, we first try the D(s) = K/s, an integral controller. The transfer function then becomes

 $\frac{Y(s)}{R(s)} = \frac{2s}{s^2 + s + 2K}.$

This is a second-order system, and from the representation of a general second-order system, we know that $2\zeta\omega_n=1$, and $\omega_n^2=2K$. But the 5% settling time requirement implies $\zeta\omega_n\geq 3$, or $2\zeta\omega_n\geq 6$. As a result, no value of K will satisfy the settling time requirement.

Next, in order not to make the order of the system more than 2, we try a proportional-integral controller, i.e., $D(s) = K_P + K_I/s$. The transfer function becomes

$$\frac{Y(s)}{R(s)} = \frac{2s}{s^2 + (2K_P + 1)s + 2K_I}.$$

Similarly, from the representation of a general second-order system, we know that $2\zeta\omega_n=2K_P+1$, and $\omega_n^2=2K_I$. Since the 5% settling time requirement implies $2\zeta\omega_n\geq 6$, we have $2K_P+1\geq 6$, or $K_P\geq 5/2$. Let $K_P=3$, such that the transfer function becomes

$$\frac{Y(s)}{R(s)} = \frac{2s}{s^2 + 7s + 2K_I}.$$

However, since the transfer function has a zero at zero, the rise time condition becomes useless, and any $K_I > 0$ is an acceptable solution.

 $\bar{\mathbf{a}}$

4. The characteristic equation of the system is

$$1 + \frac{1}{s^2 + 2s + 2} \frac{K_p + K_D s}{s + 10} = 0,$$

$$(s^2 + 2s + 2)(s + 10) + (K_p + K_D s) = 0.$$

or

$$s^3 + 12s^2 + (K_D + 22)s + (K_P + 20) = 0.$$

To determine the range of asymptotical stability, we use Routh-Hurwitz stability criterion.

$$\begin{vmatrix} s^{3} & 1 & K_{D} + 22 \\ s^{2} & 12 & K_{P} + 20 \\ s & \frac{12(K_{D} + 22) - (K_{P} + 20)}{12} \\ 1 & K_{P} + 20 \end{vmatrix}$$

For stability,

1.
$$\frac{12(K_D + 22) - (K_P + 20)}{12} > 0,$$
$$12K_D - K_P + 244 > 0,$$
$$12K_D - K_P > -244 > 0,$$

2.
$$K_P + 20 > 0$$
, $K_P > -20$.

Therefore, the stability requirements can be written as

$$12K_D - K_P > -244$$
, and $K_P > -20$.