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EE 231 Exam#2 Apr. 14, 1992
75 minutes

1. Obtain the necessary inequalities to describe the poles in the shaded region in terms of only ¢ and
w, of a second-order system described by Y (5)/U(s) = w2 /(57 + 2(wns + Wi). (15pts)
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2. A feedback control system is given below.
n(t)
r(t) wt)
() D(s) 1 . .

Design the simplest controller D(s), so that the output, y(t), follows a sinusoidal input, r(¢}, with a
frequency of 1rad/sec, and it rejects a sinusoidal noise, n{t), with a frequency of 4 rad/sec. (30pts)

3. Design a D(s), such that the following system satisfies these conditions.

(a) The 5% settling time is less than 1sec.
(b) The rise time is less than 0.6 sec.

(c) A zero steady-state error e({) is obtained for a step reference input,

(30pts)

) el > u(t)
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1. A modified PD controller is to be designed for the following system. Determine the range of controller

constants A'p and R'p for an asymptoticaily stable svstem. {25pts)
(1) 1 y(t)
+ | 52+ 2s+2 I
Kp+ ps
s+ 10
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EE 231 Exam#2 Apr. 21, 1992
Solutions

I. The shaded region can be separated into unions and intersections of simpler regions. The region
above the horizontal line jw = j3 shown below is described by

Wy 2D

V1—(Pwn 2 5.

s-plane

The region to the right of the vertical line ¢ = —8 shown below is described by
—(wn > -8
{wn, < 8.

The region under the 45° angle line shown below is described by
os~! ¢ < 45°
{ > cos45°
V2
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it s-plane

Therefore. the given shaded region which is the intersection of all the shaded regions above, is
described by all { and w, which satisfy

3
J1—(?w, >5 and Cw, <8 and gz_‘g.

2. In order for the system to follow any non-asymptotically stable poles of the reference, its open-loop
gain, i.e., D(s) in this case, has to match the poles of the reference. As a result, to follow a sinusoidal
input with frequency 1rad/sec, we need poles at s = £71. In other words,

z(s)
D(s) = —————,
)= @I mE
where z(s) and pi(s) are {yet}) unknown polynomials in s. Moreover to reject disturbance, the
open-loop gain also needs to match the non-asymptotically stable poles of the disturbance. In other
words,

(s
De) = Erome)

where p2(s) is another unknown polynomial in s.

Comparing the two forms of D(s), we realize that the simplest open-loop gain, i.e., the simplest
controller, should be
z(s)

(82 + 1)(s? + 16)’

which satisfies both forms of D(s) by picking pi{s) = s* + 16, and py(s) = s> + 1. We now need to
select z(s), such that the closed-loop system is stable. Here, we can use Routh-Hurwitz criterion,
or solve the characteristic equation of the system. The characteristic equation with the D(s) above,
becomes

D(s) =

1+ D(s)=0,

z(s) 0
(s? 4 1)(s?+16)

(s® + (s +16) + z(s) =0,

1+
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or
st 1724164 2(s) = 0.
To make the system stable, we at least need to supply the missing terms in the characteristic
polynomial, i.e.,
z(s) = as® + bs,
for some @ and b. The characteristic polynomial is then s* +as®+ 1752+ bs+ 16, and Routh-Hurwitz
table becomes

st 1 17 16
s a b
$2 17Ta — b 16
i
(1T7a — b)b/a — 16
]
(17a — b)/a
1 16
For stability,
1. a > 0,
17a — b
2. =225,
i
17¢ - b > 0, since ¢ > 0,
b < 17a,
3 {(17a — b)b/a — 1Ga 50
) (17a — b)/a ) ’
17a¢ — b)b — 16a°
( a( ,,a] D) a >0, since a > 0,
I‘ —
(17a — b)b — 16a* > 0, since 17a — b > 0,

—(16a? — 17ab + %) > 0,
—(a - b)(16a — b) > 0,
(a — b)(b— 16a) > 0,

a. o —b>0 and b- 16a >0,
a>b and b > 16a, impossible, since ¢ > 0, and 16a > a,

b. a—b<0 and b-—16a <0,
a<b and b < 16a.
Therefore, the stability requirements can be compactly written as

D<a<b<lba< 17a.
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One choice for the simplest controller is @ = 1, and b = 2, i.e.,

4+ 92s

D)= et r ey

3. Here is a list of the given requirements and corresponding system restrictions.

Given Requirements General System Restrictions Specific System Restrictions
Zero steady-state error For this example,
for a step input System is Type 1. 2D(3) _ z(s)
s+1  sp(s)
Less than 1sec 5% For a second-order system,
setiling time tagy < L. 3 <1,
Cwn —
Less than 0.6sec For a second-order system,
rise time t, < 0.6, without a zero,
_1 ~
T — cos
I=22 > <os.
W

From the zero steady-state requirement, we know that D{s) = K will not work, since it will not
increase the type of the system to 1. So, we first try the D(s) = K/s, an integral controller. The

transfer function then becomes
Y(s) 23

R(s) s?+s+2K°
This is a second-order system, and from the representation of a general second-order system, we
know that 2¢w, = 1, and w? = 2K. But the 5% settling time requirement implies {w, > 3, or
2(wy > 6. As a result. no value of K will satisfy the settling time requirement.

Next, in order not to make the order of the system more than 2, we try a proportional-integral
controller, i.e., D(s) = Kp + K;/s. The transfer function becomes

Y(s) 23

R(s) ~ s2+(2Kp+ 1)s+2K;

Similarly, from the representation of a general second-order system, we know that 2(w, = 2Kp +1,
and w? = 2K7;. Since the 5% settling time requirement implies 2(wy,, > 6, we have 2K'p 4+ 1 > 6, or
Kp > 5/2. Let K'p = 3, such that the transfer function hecomes

Y(s) 2s
R(s) 4 T7s+ 2Ky

However, since the transfer function has a zero at zero, the rise time condition becomes useless, and
any K > 0 is an acceptable solution.
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4. The characteristic equation of the system is

1 LK+ Kps

1
+32+23+2 s+ 10

(52 + 25+ 2)(s+10) + (K + Kps) = 0.

or
S+ 125 + (Ap +22)s + (Kp +20)=0.

To determine the range of asymptotical stability, we use Routh-Hurwitz stability criterion.

53 1 Kp+22
$2 12 Kp+20
s 120Kp + 22) — (I\'P + 20)
12
1 Kp+20

For stability,

12(Kp +22)— (Kp +20)
> 0,
12
12Kp - Kp + 244 > 0,

12Kp — Kp > —244 > 0,

2. Kp+20>0,
Kp > =20

Therefore, the stability requirements can be written as

12Kp - Kp > —244, and Kp > -20.



