Exam#2 75 minutes

CCPYRIGHT @ 1991 BY NOV. 19, 1991

1. A plant with input v_i and output v_o is described by the transfer function,

$$\frac{v_o}{v_i} = \frac{5}{s^2 + 6s + 100} \; .$$

(a) Determine the maximum percent overshoot and the 2% settling time for a unit-step input. (05pts)

To improve the performance of the system, a controller is implemented as shown below.

- (b) State the type of the controller by obtaining the expression for v_i in terms of v_r and v_o , and then draw the block diagram showing the variables, v_i , v_r and v_o . (10pts)
- (c) Design the controller, i.e., find R and C, such that the new maximum percent overshoot is 4.6%, and the new 2% settling time is 0.381 sec. (15pts)
- 2. For the following feedback system.

- (a) Design the simplest controller, such that the steady-state error for a unit-step input is 0.1. (05pts)
- (b) Design the simplest controller, such that the steady-state error for a unit-ramp input is 0.2. (05pts)
- (c) Design the simplest controller, such that the steady-state error for a unit-ramp input is zero. (10pts)

3. The open-loop transfer function of a unity-feedback control system is

$$\frac{Y(s)}{U(s)} = K \frac{2(s+20)(s+100)}{s(s+5)(s+125)} .$$

Determine the range of K, such that the closed-loop system has all the real parts of its poles less than -25. (20pts)

4. Consider a unity-feedback control system with the open-loop transfer function

$$G(s) = K \frac{s+1}{s(s^2+30s+200)(s^2+10s+50)}$$

- (a) Construct the root-locus diagram. Determine the important features like asymptotes, imaginary-axis crossings, angle of arrivals or departures; however do not determine the break-away and/or break-in points explicitly. Obtain only the equation whose solutions would give those points i.e., do not solve that equation. (25pts)
- (b) Determine all the values of K such that the closed-loop system is stable. (03pts)
- (c) Determine all the value(s) of K such that the system has sustained oscillations. (02pts)

9/1 Mp = 37.23%, 2% ts = 1.3333 see BY LICAR by PO controller, v=-[v+(10k+310kc)26]

> $\frac{\sqrt{r}}{+4} \rightarrow |-1| \rightarrow |\frac{5}{5^2+65+100}$ 10k +s/Okc A

c. R= 400SZ, C= 300 p.F

C/1 One choice Dis= K 5+5 , K>0

30.260 KK L 66.667

#4 4 7. 20

b. OLKL27166.3