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1. (a) Obtain the mecessary inequalities to describe the strictly complex poles in the shaded region below
in terms of only ¢ and wy, of a second-order system described by Y(s)/U (s) = w?/(s? + 2w s + w?).

(15pts)

jw s-plane

60°

—35 5% 15 / T,

. (b) Consider a second-order system with no zero, such that its poles are located in the shaded region
above. Determine the largest possible maximum percent-overshoot and the largest possible 2%

settling-time of the system. (10pts)

2. Consider the following feedback control system with the reference input 7 and the disturbance input d.

d
SN

d

T/———@—e’ D(s) G(s)

For the case, when

3(s+4)
G(s) = ——==;
() s(s+8)’
design a minimal-order controller, such that the output tracks the reference input that has the laplace
transform

2(s +6)
R(s) = 5————
(s) (s2+4)(s+2)
with zero steady-state error, and a step disturbance is rejected at the output. (15pts)



. 3. Consider a negative unity-feedback control system with the open-loop transfer function

(s—2)(s+1) s?—5s—2

G () (82 — 4s +29)(s? + 65 + 10) s% 4253 + 1552 + 1345 +290°

(a) Determine the values of K such that the closed-loop system is asymptotically stable. (20pts)

(b) Determine the value (or values) of K and the natural frequency (or frequencies), such that the
closed-loop system would have sustained oscillations. (10pts)

4. Consider a negative unity-feedback control system with the open-loop transfer function

s2—-4s+8 s2—4s+ 8

Gls) =K rryast 2)(s+10) s+ 1253 + 2252 + 20s

Construct the root-locus diagram. Determine all the important features like asymptotes, break-away
and/or break-in points, imaginary-axis crossings, angle of arrivals and/or departures. (30pts)
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1. (a) Obtain the necessary inequalities to describe the strictly complex poles in the shaded region below
in terms of only ¢ and wy of a second-order system described by Y (s)/U(s) = w}/(s2 + 2Cwns + w?).

¢ " jw s-plane
+
60° 520
t +— t +—t
—351 15 / o
| _j20
. Solution: To be able to describe the shaded region, we need to separate it into unions or intersec-

tions of simpler regions.

The equi-distance points from the origin designate constant
value for wy,. As a result, the shown shaded area is repre-
sented by

wn > 20.

. radius = 20
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A vertical straight line designates a constant value for the
real part of the poles. Since the real part of the complex
poles are at —(wp, the shown shaded area is represented by

—35 < —Cun < —15,

or
15 € (w,, < 35.

A straight line originating from the origin designates a con-
stant ¢ value, where cos™1({) is the acute angle between the
line and the negative real axis. So for theshaded area shown,
we have

cos™1(¢) < 60°,

or

¢ > cos(60°),

since cos(6) is a monotonically decreasing function for 0 <
0 < 180°. So, we have

N[ =t

¢2

Therefore, the shaded area given in the problem is the intersection of the individual shaded

areas, and it can be represented by

wn > 20,
15 < (wn < 35,
¢>1/2

(b) Consider a second-order system with no zero, such that its poles are located in the shaded region
. above. Determine the largest possible maximum percent-overshoot and the largest possible 2%

settling-time of the system.
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Solution: Maximum overshoot for a second-order system with no zero 1is given by
& .
My,=e V1=,

The only system parameter that affects the maximum overshoot is (. For maximum M, we
need to have minimum (; since { = 0 gives undamped oscillations. In the shaded region, the
minimum ¢ = 1/2, and the corresponding maximum overshoot is

12
M,=e V=77 " = ¢~™/V3 ~0.1630,

or the largest possible maximum percent-overshoot is 16.3%.

The 2% settling time of a second-order system with no zero is given by

4 4
logs = — = ——

Oo - Cwn.
The only system parameter that affects the settling time is 0,. For maximum ¢4z, we need
to have minimum o,. In the shaded region, the minimum o, = 15, and as a result the largest
possible 2% settling time is 4/15s.

9. Consider the following feedback control system with the reference input r and the disturbance input d.

d
TP+ D) G(s) Gg -

For the case, when

_3(s+4)

" s(s+8)’

design a minimal-order controller, such that the output tracks the reference input that has the laplace
transform

G(s)

2(s +6)
(s +4)(s +2)

with zero steady-state error, and a step disturbance is rejected at the output.

R(s) =

Solution: In order to have a zero steady-state error for any given input and to reject a step disturbance
at the output, we need to match the non-asymptotically stable poles of the input and the disturbance
in the open-loop gain of the system. In the case of the given input, we need to have poles at s = +52;
since the pole at s = —2 of R(s) is asymptotically stable, and its contribution will disappear on its
own in steady state. To reject a step disturbance, we also need to match the disturbance pole at
s = 0, or the system has to be of type-1. However, in this case the gain G(s) already has a pole at
s = 0. Therefore, we only need to have poles at s = %32 supplied by the controller, such that the
open-loop gain is

3(s+ 4)) 3(s+ 4)

1 / _ /
D(s)G(s) = (m b (S)> (s(s +8)/)  s(s2+4)(s+ 8)D (s
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for some D’(s). Since there is no other explicit requirement, we only need to ensure stability by a
proper and simple choice of D'(s).

The simplest choice is D'(s) = K for a constant K. We may use a number of methods to check the
stability of the system for this choice, but a rough sketch of the root-locus, as shown below, is simple
enough to see the location of the closed-loop poles.

A
*
@

As we observe from the root-locus diagram, there is no value of K that would result in a stable
closed-loop system; mainly because the asymptote angles are §, = £60°, 180°, and there are poles
on the imaginary axis.

In order to have the asymptote intersection and the angles stay inside the left-half plane, we need
to have zeros in D'(s). Since we are placing two poles, we may have up to two zeros in D’(s). With
only one zero, the asymptote angles will be 8, = £90°, and once we make sure that the asymptote
intersection is on the left-half plane, we will have a stable system. For

D/(s) = K(s +a),

or
3(s+4)(s+a)

D(s)G(s) = Ks(s2 T+ 8)

the asymptote intersection

_mpi—ying_ ()4 0+ (G2 +(=42) (-4 + (-9) _a—4

Ta = n—m 4-2 >

where 3 p; and ) z; are the sums of the pole and zero locations, respectively. As long as a < 4,
we get 0, < 0. We also need to have the zero on the left-half plane, to have the pole at s = 0 stay
stable.

Therefore, one possible simplest controller is

sS+a

D(s) =Kz

where 0 < a < 4, and K > 0.

There is no need to do the general analysis in this problem, but we may get a tighter relationship
from the Routh-Hurwitz’s stability criterion on the characteristic polynomial. Fromthe characteristic
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. equation, 1 -+ D9s)G(s) = 0, we have

3K(s+4)(s+a) _

I+ s(s2+4)(s+8)

or
st +85% + (3K +4)s® + (3K (a+4) +32)s + 12Ka = 0.

The Routh-Hurwitz table for the system becomes as given below.

s 1 3K +4 12Ka
53 8 3K(a +4) + 32

(8)(3K +4) - (1)3K(a+4) +32) _

2 8
s 3K(4—a) 12Ka
8
S a
1 12Ka

Here, o is such that
(3K(4—a))a = (3K(4 - a)) (3K (a +4) +32) — 8(8) (12Ka)
= 3K (3K (16 — a?) + (128 — 288a)).

The 1-term gives
Ka > 0.

The s%-term gives
3K(4—a)>0,

or
a<4 and K >0,

since a > 4 and K < 0 would violate the 1-term condition. The s-term gives

288a — 128

K K> "—-—r.
>0 and > 3(16 — &)

Finding the intersection of all the conditions, we get

0<a<4  and K>max{0 288“'128}.

' 3(16 — a?)

3. Consider a negative unity-feedback control system with the open-loop transfer function

_ (s—2)(s+1) 3 sf—s—2
Gls) = K(s2 — 45 +29)(s2 + 65+ 10) K 253+ 1552 + 1345 1 290

' (a) Determine the values of K such that the closed-loop system is asymptotically stable.
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Solution: The stability of the closed-loop system can be determined wusing the Routh-Hurwitz’s
. stability criterion on the characteristic polynomial. From the characteristic equation, 14 G(s) =
0, we have \
§“—s—2
1+ K =
T s T st 1345 1 290 O

or
s*+28% + (15 + K)s? + (134 — K)s + (290 — 2K) = 0.

The Routh-Hurwitz table for the system becomes as given below.

. 1 15+ K 290 — 2K
& 2 134 - K
2 (2)(15 + K) - (1)(134 - K) _ 3K - 104 200 — 2K
2 2
s [e3
1 290 — 2K

Here, « is such that
, — (K —104)(134 — K) — 2(2)(290 - 2K))
N 3K — 104

. _ —3K?+ 514K — 15096
- 3K — 104
_ —3(K — 37.6377)(K — 133.6956)
B 3(K — 34.6667) ‘

The Routh-Hurwitz’s stability criterion implies the following conditions.

i. 3K — 104 > 0.

34.6667 < K P

K > 34.6667. ) >

20 40 60 80 100 120 140 160 K

ii. (—3(K —37.6377)(K — 133.6956)) /(3(K — 34.6667)) > 0.

A. K —34.6667 > 0 Case:

—3(K — 37.6377)(K — 133.6956) > 0.
(K — 37.6377)(K — 133.6956) < 0,

or 37.6377 < K < 133.6956 §

37.6377 < K < 133.6956. o 20

40 60 80 100 120 140 160 K

B. K — 34.6667 < 0 Case:

This case results in instability from the
. previous condition.
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iii. 290 — 2K > 0.

K < 145. - — K <145

0 20 40 60 80 100 120 140 160 K

The intersection of all these regions leads to

37.6377 < K < 133.6956.

34.6667 < K
37.6377 < K < 133.6956

K <145

0 20 40 60 80 100 120 140 160 K

(b) Determine the value (or values) of K and the natural frequency (or frequencies), such that the

closed-loop system would have sustained oscillations.

Solution: For sustained oscillations, we need to choose K, such that there are distinct poles on

the imaginary axis and no pole on the right-half plane. The candidates for such a choice are
obtained by generating a row of zeros on the Routh-Hurwitz table. Observing from the table,
the only two such rows are the s and the 1-rows. However, the 1-row gives an imaginary-axis
crossing at s = 0. Considering the elements on the s-row, we get

—3(K — 37.6377)(K — 133.6956) 0
3(K — 34.6667) h

The solution of the above equation gives K = 37.6377 and K = 133.6956.

Next, we need to obtain the factors of the original polynomial from the previous row, and verify
that we get poles on the imaginary axis. From the upper or the s2-row,
(3K —104)/25 + (290 — 2K)) ¢ _s7 6377133 6056 = O-

Note here that the above equation gives some of the poles of the closed-loop system only for the
values of K that make the s-row all zero.

For K = 37.6377, we get s = £;6.9413, and for K = 133.6956, we get s = *£70.3901. So
for both of the cases, we have imaginary-axis crossings. And, from the first elements of the
remaining rows of the Routh-Hurwitz table, we conclude that the rest of the poles are in the
left-half plane. Therefore, the natural frequencies, such that the closed-loop system would have
sustained oscillations, are w; = 0.3901rad/s when K = 133.6956 and wy = 6.9413 rad/s when
K = 37.6377.
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. 4. Consider a negative unity-feedback control system with the open-loop transfer function
2 _ 2_
Gls) = K 2.9 45+ 8 _ s —4s+8 ,
s(s?+ 25+ 2)(s + 10) st + 1253 + 2252 + 20s

Construct the root-locus diagram. Determine all the important features like asymptotes, break-away
and/or break-in points, imaginary-axis crossings, angle of arrivals and/or departures.

Solution: First, we sketch the pole-zero locations and the real-axis portion of the root-locus diagram.
Then, we decide the important features to be determined.

Need to determine:

A jw
e Asymptotes,
e Break-away point, o ) ’.‘: o
e Imaginary-axis crossings, and 0 x- a

Angle of departures and arrivals.

Asymptotes

Real- Axis Crossing: g, = (z i — 2, Zi)/ (n —m)

' The real-axis crossing of the asymptotes is at
o = Yipi—z _ (F100+(-1+)+(-1-1)+(0) - (2 +29+ 2~ 52)) _
e n—m N 4-—2 -

Real-Axis Angles: 6, = +(2k + 1)n/(n —m)
The angles that the asymptotes make with the real axis are determined from
+2k+ 1)  £(2k+1)7

T
9 = = = —.
¢ n—m 4 —2 i2

Break-Away Point: dK/ds=0

From the characteristic equation,

1+G(s) =0,
s2—4s+8
1+ K =
+ st + 1253 + 2252 4 20s 0,
and
K= st + 1283 + 2252 + 20s
- s2—4s5+8 )
Therefore,

dK  (4s% + 3652 + 44s + 20)(s® — 45 + 8) — (s* + 125° + 2252 + 205)(25 — 4)

. Tds (s2 — 45 + 8)2

_ 2(s® — 325% + 90s% 4 1765 + 80)
B (s2 — 45 + 8)2 '
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and for dK/ds = 0, the equation
s° — 325 + 9052 + 1765 + 80 = 0

gives s = —6.48, s = —0.72 + j0.274, and s = 3.96 + j2.263. So, the break-away point is at
s = —6.48, since it is real and between —10 and 0.

Imaginary-Axis Crossings: Routh-Hurwitz Table

The imaginary axis crossings can be determined from the Routh-Hurwitz table. From the
characteristic equation,

1+ G(s) =0,
s2—4s+8 _0o
st +12s% + 2252 4205
s4+1253+22s2+203+K(s2—4s+8) = 0,

1+ K

we get the characteristic polynomial
q(s) = st+128% + (22 + K')s2 + (20 -4K)s + 8K.

The Routh-Hurwitz table for this characteristic polynomial is given below.

4 1

s 22+ K 8K
o3 12 20 - 4K
2 (12)(22 + K) — (1)(20 - 4K) 244 + 16K
s = 8K
12 12
s a
1 8K

Here, a is such that
(244 + 16K)(20 — 4K) — 12(12)(8K)
244 + 16K

—64K?% — 1808K + 4880
244 + 16K

—64(K + 30.7312)(K — 2.4812)
244 + 16K '

The imaginary-axis crossings will correspond to the positive values of K that would make a row
of all zeros on the table. The first such candidate is the s-row. The s-row is all zero, when
K = -30.7312 or K = 2.4812. For the positive value of K, we get a factor of the characteristic
polynomial from the upper or the s%-row. So,

((244+16K> 32+8K) o,
12 K=2.4812

or s = £j0.9163. Therefore, the imaginary-axis crossings are at s = 450.9163.
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. Angle of Departures and Arrivals: ) £() = £(2k + 1)7

The angles of departures from complex open-loop poles are determined from the angular condi-
tions about the open-loop poles. Therefore, the angular condition about s=-1+ j1 is

—£(s5—(-10)) = £(s = (-1-j1)) — £(s — (-1 +41)) = £(s — (0))

+ 4(s—(2-372)) + L(s — (2 + j2)) = 180° + k360°,

(W= N _ (W=D, (D)=
~tan 1((—1)—(—10)) ¢ 1((—1)—(-1>> Oaep = tan™" <—1)—<o>>

()= (-2 1 (1) = (2 ° o
et () + e () =10+ ks

or
—6.34° — 90° — fgep — 135° + 135° 4 198.43° = 180° + k360°.

As a result,
odep = _77—910.

The angles of arrivals to complex open-loop zeros are also determined from the angular conditions
about the open-loop zeros. Therefore, the angular condition about s = 2 + 52 is

. — £(s—(—10)) — £(s — (-1 —j1)) = £(s — (-1 4 1)) — £(s — (0))

+ 4£(s—(2—-72)) + £(s — (2 + 52)) = 180° + k360°,

+tan~! (%) + Oarr = 180° + £360°,

or
—9.46° — 45° — 18.43° — 45° + 90° + O, = 180° + k£360°.

As a result,

Oarr = —152.11°.

With the features determined, we can now sketch the root-locus diagram.
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