## Exam#3 75 minutes

EE 231

May 02, 1991

1. For the following open-loop pole/zero locations, sketch expected root-locus diagrams. determine any features of the diagram, simply show the expected shapes of all the root-locus (20pts) branches.



2. Consider a unity-feedback control system with the open-loop transfer function

$$G(s) = K \frac{s^2 - 2s + 2}{(s-1)^2(s+4)(s+6)}$$
 should have been "+"

- Determine the important features like asymptotes, (a) Construct the root-locus diagram. imaginary-axis crossings, angle of arrivals or departures; however do not determine the breakaway and/or break-in points explicitly. Obtain only the equation whose solutions would give those points i.e., do not solve that equation. (40pts)
- (b) Determine all the values of K such that the closed-loop system is stable. (05pts)
- (c) Determine all the value(s) of K such that the system has sustained oscillations. (05pts)
- 3. For the following system, design a first-order compensator D(s), such that the closed-loop complex poles are at  $s = -3 \pm j 3$ , and the steady-state error is (almost) minimum. (20pts)





4. For the following system, design a stable compensator D(s), such that the steady state error  $e(\infty)$  for the *unit-ramp* input is less than 0.2. Here, assume that the largest finite compensator time-constant allowable is 50.  $\bullet$  (10pts)



WINTER 91

#1 a,,







-6 (1.636

Breakaway from

(s-1) [2(3+4)(5+6)(5<sup>2</sup>+23+2)

+(5-1)(5+6)(5<sup>2</sup>+28+2)

+(5-1)(5+4)(5<sup>2</sup>+25+2)

-(5-1)(5+4)(5+6)(252)

=0

 $b_{ij}$  K > 29.4152  $c_{ij}$  K = 29.4152  $D_{is} = 21.692 \frac{3+3.71}{514.95}$ 

#4 
$$D(s) = \frac{8+0.08}{5+0.02}$$

#3