EE 431 Exam#1 Oct. 30, 2001
‘ 75 minutes
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1. Assume
1 2 1
a=|0}, b=|1]|,andc= 2
1 1 -1
Determine a set of vectors that span the subspace that is orthogonal to the subspace spanned by the
vectors a, b, and c. (15pts)

2. The block diagram of a control system is given below.

u q] 2(s+1) y
s24+5+2 o
S
s+1
Obtain a state-space representation of the system without any block-diagram reduction. (20pts)

3. A control system is described in state-space representation, such that
x(t) = Ax(t) + Bu(t),
where u and x are the input and the state variables, respectively.

(a) Determine x(1), when

A=[_3 _5}, B=[(1)}, x(0)=[_}},andu(t)=0fort20.

4 6
(25pts)
(b) Determine x(1), when
' -3 -4 1 0
A-[ 4 5]’ B—{OJ, x(O)—{OJ,andu(t)—lfortzo.
(25pts)

4. A control system is described in state-space representation, such that

x(t)=[§ :g]x(t)+[iJu(t),
y(t)=[ =5 3 ]x(t)+u(®),

. where u, x, and y are the input, the state, and the output variables, respectively.

Determine the transfer function or the transfer matrix of the system. (15pts)
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1. Assume
1 2 1
a=]|0]|, b=]1]|,andc= 2
1 1 -1

Determine a set of vectors that span the subspace that is orthogonal to the subspace spanned by the
vectors a, b, and c.

Solution: Since, the vectors a, b, and c are from a 3-dimensional Euclidean vector space, there can
only be three linearly-independent vectors. If a, b, and c are linearly independent, then there is no
orthogonal subspace to a, b, and ¢. However in our case,

1 1 1
2 =(3)|01}+(2 2 1,
-1 1 -1
or c = (—3)a+ (2)b; and a and b are linearly independent. As a result, there should be one vector
n that is orthogonal to a and b (and c¢). To find this vector n, we may start with the usual basis
‘ vectors
1 0 0
€] = 0 , €2 = 1 , and €3 = 0 y
0 0 1

and remove the components of a and b from each of the vectors e;, ez, and e3, until we get a non-zero
vector. Once we get one non-zero vector, we don't need to proceed any further. But first, we need
to orthogonalize the vectors a and b. From the Gram-Schmidt orthogonalization procedure, we get

’ b, bT
b'=b- Ea’:§a=b—aT:a
= ? @)+ W) + (1)) (1) _ 1{2
1 (1)2 4 (0)2 + (1)? ! 1)

Second, we remove the components of a and b’ from e;. (Note that we could have also chosen the
vectors eg or e3. Indeed, if we get the zero vector with our choice of e;, we will try them one by
one.)

_ <e1 ’a>a_ <e1 ’bl>bl
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Since n is non-zero, we have the desired vector. To simplify the appearance of the final result, we
‘ may want to scale n and describe set of vectors that span the subspace that is orthogonal to the'
subspace spanned by the vectors a, b, and ¢ as

([1 -1 17},

2. The block diagram of a control system is given below.

U /_‘I_\ 2(s+1) Yy
s2+5+2 o
s —y
s+1

Obtain a state-space representation of the system without any block-diagram reduction.

Solution: In order to obtain a state-space representation without any block-diagram reduction or with-
out determining the closed-loop transfer function, we need to realize the individual blocks and use
the complete block diagram to generate the state-space equations.

2(s+1)

s2+s54+2

(a) The feedforward gain

block.

8

s+1

(¢) The feedback gain block.

— ° |

—L 2 ]

o

(b) Controller realization form.

—_ |

e
L=

(d) Controller real

The connected and “expanded” block diagram is shown below.

ization form.
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..........................

u ny 5 7T\ l T2 l z1 v1 Yy
D—— . , - 2 &
-1
i -2
............ ;2»--........ [
= L o

After assigning the state variables as shown in the figure, we obtain

T1 = T,
o = —2z1 — 22 + (u — y2),
T3 = —z3 + Y1,
and
Y=Y,
where

y1 = 2x7 + 222,

Y2 = —Z3 t Y1

After eliminating the intermediate variables: y; and yo, we obtain the state-space representation

z1(t) 0 1
zo(t) | = -4 -3
z3(t) 2 2

yt)=[2 2 0

]

0 z1(t) 0

1 :L‘Q(t) + | 1| u(®),
-1 T3 (t) 0

z1(t)

T(t)

z3(t)

If we use the observer realization form for each of the blocks, then we obtain a different state-space

representation.
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2(s+ 1)
s2+s54+2
(a) The feedforward gain (b) Observer realization form.
block.
0 1
— L
-1
S
s+1 f
(c) The feedback gain block. (d) Observer realization form.

The connected and “expanded” block diagram for this case is shown below.

4/10

N2 l i
1 vz? A 1 z1 Y1 Yy
; x ;
¥
! i
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Similarly, we obtain

T) = —y1 + T2 + 2(u — y2),
Ty = —2y1 + 2(u — y2),

3 = —Y2,
and
Y =191,
where
= Ty,
Y2 =23 + Y1.
And,
z1(t) -3 1 z1(t) 2
[ Ta(t) } = l —4 } [ z2(t) ] { 2 jl u(t),
x3(t) -1 z3(t) 0
a:l(t
yt)=[1 0 0] | z2(t)
:E3(t)

3. A control system is described in state-space representation, such that
x(t) = Ax(t) + Bu(t),
where u and x are the input and the state variables, respectively.

(a) Determine x(1), when

A=[—2 “2] Bz[(l)], x(Q)=[_i],andu(t)=0fort20.

Solution: The solution to the given control system is given by
t
x(t) = e*x(0) + / A=) Bu(r) dr
0

= e*'x(0),

since u(t) = 0 for t > 0. To determine e#!, we may use a few different methods. Here, we will
only have two of the methods.
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Computation of e/ using the Cayley-Hamilton theorem:
In this method, we observe that e4* may be described by a linear combination of A% for
k=0,...,(n—1),so that

et = aol + A+ ...+ an_lA”'l,

where I is the appropriately dimensioned identity matrix, n is the dimension of the Sys-
tem, and oy, ..., ap_1 are scalars. The scalars are determined by the application of the
eigenvectors to the above equation that results in the set of equations

M=ag+a M 4.+ ap AP

et = ag+ oA, +...+ Oln_lx\;ll_l,
where Aj, ..., A, are the eigenvalues, and they are determined from
det(Al — A) = 0.

In our case, n = 2, so
e = ool + a1 4,

and the eigenvalues are determined from

(3o )-8 S ]) e[ 20

=X -3\ +2
=A-1)(A=-2)=0.
or A1 =1 and Ay = 2. The set of equations becomes
eMt = ag + (1)
et = oo + a1(2).
Solving the above set of equations simultaneously gives

ag = 2¢et — 2

o) = —el + %,
As a result,

et = qpl + 1A = (2¢" — e*)I + (—€' + e*) A

5et — 4e?t  Het — He?t

—4et + 4e?  —4et + He?t

Computation of ¢! using the Laplace transform:
In this method, we observe that e4t = £} [(sI — A)'l](t), where I is the appropriately
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dimensioned identity matrix.

et = L7 [(sT- A7)

s F[S_Z?’ 56]_1}(t)

L s—

r s—6 =5
o (s=1)(s—2) (s—1)(s—2)
=L 4 s+3 2

| G-1D)G-2) -1(-2)

[ 5 n —4 5 + -5
1 s—1 s-—2 s—1 s-—-2
=Ls (t)

—4 N 4 -4 + 5
| \s—1 s-2 s—1 s-—2

[ 5et — 4e2t  Bet — 5e2t }

—4et + 4e?  —4et + 52

Since x(t) = eAtx(0),
Set — 4e® et — 5e?t 1 et
X(t) = = .
—det + 4% —4et + 5e% -1 —e2t

1) e? 7.3891
x(1) = = .
—e? —7.3891

Therefore,

(b) Determine x(1), when

A=[_i _‘;], B=[(1)J, x(0)=[8],andu(t)=1fort20.

Solution: The solution to the given control system is given by

t
x(t) = eAtx(O) +/ eA(t'T)Bu('r) dr
0

t
=/ eAt=7) By(r) dr,
0

At

since x(0) = 0. To determine e, we may use a few different methods. Here, we will only have

two of the methods.
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Computation of eAt using the Cayley-Hamilton theorem:
In this method, we observe that e! may be described by a linear combination of A* for
k=0,...,(n—1), so that

eAt = aol + OtlA + ...+ an_lAn_l,

where I is the appropriately dimensioned identity matrix, n is the dimension of the sys-
tem, and ag, ..., an-1 are scalars. The scalars are determined by the application of the
eigenvectors to the above equation that results in the set of equations

6)\lt =ag+aiA+...+ an_l)\’l“l

e’\"t =ap+ oAy +...+ an_lz\Z‘l,
where A1, ..., A\, are the eigenvalues, and they are determined from
det(AI — A) =0.

In our case, n = 2, so
et = apl + oy A,

and the eigenvalues are determined from

(3] 9]-[ 2 E]) e[ 212,45

=N -2\+1
=(A-1)2=0.

or A1 = Ag = 1. In this case, the set of equations is modified to generate a linearly indepen-
dent equation for the repeated eigenvalue, such that

€ =ao+a1)\1

di/\] (e)‘” = oo+ 011)\1) ,

or

At

e = qag+ a1\

teMt = ay.
For A\ =1, we get
eMt = ag + a1 (1)
tet = Q.
Solving the above set of equations simultaneously gives

ap=(1- t)et

a = tet.
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As a result,
et = apl + 014 = (A -t)e') I+ (te') A

(1—4t)et —4tet
dtet (1+4t)et |’

Computation of ¢4’ using the Laplace transform:

9/10

In this method, we observe that e4t = £! [(sI - A)~! ](t), where I is the appropriately

dimensioned identity matrix.

et =7 [(sT - 4)71](t)

o 1 ng,]—l](t)

r s—5 —4

(s—1)? (s—1)?
4 s+3

L (s—1)2 (s-1)2

[ 1 —4 -4
+ [ —
- (s -1 (s— 1)2> (s —1)2 0

| T—%T)? (si1+<s—41>2)

et — Atet  —4tet
dtet et +4tet |

(t)

Since x(t) = fg eAt=") Bu(r) dr, and u(t) = 1 for ¢ > 0;

3 t[ (1 —4(t - T))e(t—‘r) —4(t — 7.)e(t—-r) ] [ 1

_ ”(1—4<t—r>)e<"f>] a
- /0 .

4(t — 7)et"

_ [ Jo(1—4e)efde
4 [ eeb de

[(1-ae-1)efeg |
4[(€ ~ De] g
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. Therefore, for t = 1 we get

4. A control system is described in state-space representation, such that

>'<(t)=[g :g]x(t)+|:i]u(t),

y(t)=[ -5 3 ]x(t)+u(),
where u, X, and y are the input, the state, and the output variables, respectively.

Determine the transfer function or the transfer matrix of the system.

Solution: The transfer matrix of a control system described in the state-state representation
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(d),
is
F(s)=C(sI — A)"'B + D,

where
5 =2 2
@ a5 51 e=[i)
C=[-5 3], D=1,

and I is the appropriately dimensioned identity matrix. So,

ro-e (3 2]-[3 372
([ L)

1 s+3 -2 2
N aheeISCEN] et | RS
1
=831+L

Therefore, the transfer matrix is




