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1. Consider the autonomous linear control system

=2} 3]s

where x is the state variable. Obtain a Lyapunov function to prove its stability or instability.  (25pts)

2. A time-varying control system is described by

. _ | sin(¢) cos(t)

where x is the state variable. Determine whether or not the initial condition x(0) can be obtained from
the output y(t) for 0 < ¢ < 7/2, where

y@)=[0 1]x(@).
(25pts)

3. A control system is described by

-1 1 0 1
x(t) = 0 -1 0 |=x(@)+| 0 |u(),
0 0 -2 1

y(t) = [ 1 00 ]x(t),

where u, x, and y are the input, the state, and the output variables, respectively. Obtain its Kalman
decomposition that separates the controllable, uncontrollable, observable, and unobservable portions.

Clearly mark the portions on the decomposed system. (25pts)

4. The transfer matrix of a control system is given by

r

s+2 s+2
(s+1)(s +3) (s+1)2(s+3)
H(s) = 1 3s+ 7
s(s+3) s(s+1)%(s+3)
2/3 1
L (s+1)(s+3) s(s+1)(s+3) |

Obtain its left or right coprime factorization. Determine the order of a controllable and observable
realization of the system. (25pts)
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1. Consider the autonomous linear control system

)= 1§ ],

where x is the state variable. Obtain a lyapunov function to prove its stability or instability.

Solution: A lyapunov function for a linear system is L(x) = xT Px; such that if a positive definite and
symmetric matrix P satisfies the lyapunov equation

ATP+PA=-Q,

for the state matrix A and a positive definite and symmetric matrix Q, then the system is asymp-
totically stable. Note that this result is directly obtained from the relation

T
dL(x) = d(x”_Px) = xT Px + xT Px = (Ax)T Px + xT P(Ax) = xT (ATP + PA)x

dt dt
= —xTQx < 0 for all x # 0.
In our case
-1 2
4= [ -1 —4 ] '
Since any positive definite and symmetric matrix Q should work, let Q be the 2x2 identity matrix,
and
pP= [ P p2 ] '
P2 p3

Checking for a solution to the lyapunov equation, we get

B ERI R R
-1 -4 P2 D3 P2 P3 -1 —4 01}

-1 —IHm p2]+ 21 sz—l 2]=[—1 0]_
2 -4[|lp2 ps p2 ps )| -1 —4 0 -1
Due to the symmetry, we get three equations from the matrix equation.

=2p; — 2p2 = -1,

2p1 — 5p2 — p3 =0,

and
4p2 — 8p3 = —1.
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From the first and the third equations, we get p; = (1 — 2p2)/2, and p3 = (1 + 4p,)/8. Substituting
these expressions into the second equation, we get

1-—2p, 1+ 4p,
2 - —_ =
( 2 ) P2 ( 8 ) %

1 —2py ~5pz —1/8 — (1/2)p2 = 0,
or p; = 7/60. As a result, we get

23 7
| P—(1/60)[7 11}.
From the positiveness of the principal minors of P, p; = (23/60) > 0 (or ps = (11/60) > 0), and
det(P) = p1ps — p2? = (204/60) > 0; we conclude that P is positive definite. Since there exists a
lyapunov function

23 7
. T
L(x) = (1/60)x [ 711 ] x>0,
such that dL
d(tX) = —xTx < 0 for all x # 0;

the system is asymptotically stable.

2. A time-varying control system is described by

sin(t) cos(t)

) = | T30 ol ] x0,

where x is the state variable. Determine whether or not the initial condition x(0) can be obtained from
the output y(t) for 0 < t < /2, where

y(&)=[0 1]x(@).

Solution: The property of determining the initial condition from the future values of the output is the

observability property. To ensure observability of the system, the rank of the observability matrix
should be full. However, in this case the system is time varying, and we need to check the rank of
the observability grammian, which is given by

O(tn,t) = [ " 91, 10) CT (OB, to)

0

where @ and C are the state-transition and the output matrices, respectively. Since the state matrix

in(t) cos(t)
Alt) = [ SH:) sin(t) ]

satisfies the commutativity condition A(¢;)A(t2) = A(t2)A(¢1) for all t; and ¢, the state-transition
matrix is given by

A r=t
t [ sin(t) cos(r) ] dT) ([ — cos(T) sin(r) ] ) [ 1—cos(t) sin(t) ]
X [] ~ cos(T = — —cos .
@(t’ O) = e(fO 0 sin(r) =e ) lr=o e 0 1 (t) :

or
el—cos(t) ¢1,2(t) :I

0 el—cos(t)

2(1,0) = [

since the exponent matrix is upper triangular.
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REMARK: In this case, we really don’t need to determine the ¢,2(t) term, because it disappears in the
product C(¢)®(t,0). However, if we decide to determine it, we may do so by using a few different methods.
For demonstration purposes, we will use the Cayley-Hamilton theorem, where &(t,0) may be described by a
linear combination of the powers of the exponent matrix up to one less than the dimension of the exponent

matrix. In our case,
10 1 — cos(t) sin(t)
Q(t,O)—ao[O 1]+al[ 0 1 —cos(t) |’

where ao and o1 are scalars, since the dimension of the matrix is two. The scalars are determined by the
application of the eigenvectors to the above equation that results in a set of equations, where eigenvalues
replace the exponent matrices. Both of the eigenvalues of the exponent matrix are 1 — cos(t) in our case.
When an eigenvalue is repeated, we get the same equation more than once. In such a case, we use the partial
derivatives of the equations for the repeated eigenvalue with respect to the eigenvalue. In our case, the set
of equations becomes

') = a4 (1) + @1 (1 — cos(t))
el—cos(t) =a (1)

Solving the above set of equations simultaneously gives

ao = cos(t)e} o ®)

1—cos(t
a1 =¢e ( ).

As a result,

1 °]+e"”’<‘)[ 1 —cos(t)  sin(t) ]

_ 1—cos(t)
®(t,0) = cos(t)e [ 0 1 0 1 — cos(t)

el—cos(t) Sin(t)el—cos(t)
0 el—cos(t)

The observability grammian becomes

t1 [ p1—cos(t) t
00,4 2/ e $1,2(t)
0

0 el—-cos(t)

1T 1—cos(t)
e t
¢1,2(2) ]dt

[0 1]7]0 1][ 0 ol-cos(t

t F el—cos(t) 0 1 0 0 el-—cos(t) é1 2(t)
N ' dt
/" | 12() elmes® [0 1 0 el—cos(t)

o 0 4 0 0
_/0 _0 e2(1—cos(t)) t= 0 fotl e2(1=cos(t) g4 |

The observability grammian
0 0
0(0,¢) =

0 fotl e2(1—cos(t)) dt

is singular, therefore the initial condition cannot be uniquely determined from the future values of

the output.

3. A control system is described by

-1 1 0 1
x(t) = 0 -1 0 |x(®)+| 0 |u(),
0 0 -2 1

yt)=[1 0 0 ]x(t),
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where u, x, and y are the input, the state, and the output variables, respectively. Obtain its kalman
decomposition that separates the controllable, uncontrollable, observable, and unobservable portions.
Clearly mark the portions on the decomposed system.

Solution: The given system is in block-diagonal form with one 2x2 jordan block and a diagonal element.
In this form, we may be able to determine the controllability and the observability of each state by
inspection.

In order for all the eigenvalues in a jordan block to be controllable, the input matrix has to have
a non-zero element for the last eigenvalue in the jordan block. In our case, the second element of
the input matrix is zero which implies that at least the second eigenvalue in the jordan block is not
controllable. (If the second-element was non-zero, then the first and the second eigenvalues in the
jordan block would have been controllable.) However, because the first element of the input matrix
is non-zero, the first eigenvalue in the jordan block is controllable. The distinct eigenvalue is also
controllable, since the third element of the input matrix is non-zero. As a result, we observed that the
first and the third state variables are controllable, and the second state variable is not controllable.

Similarly, in order for all the eigenvalues in a jordan block to be observable, the output matrix has to
have a non-zero element for the first eigenvalue in the jordan block. In our case, the first element of
the output matrix is non-zero which implies that both eigenvalues in the jordan block are observable.
However, the distinct eigenvalue is not observable, since the third element of the output matrix is
zero. As a result, we observed that the first and the second state variables are observable, and the
third state variable is not observable.

We could have determined all this information from the columns of the controllability and the rows
of the observability matrices as well, but direct observation is obviously more efficient.

Designating the controllable, uncontrollable, observable, and unobservable portions by the subscripts
¢, ¢, 0, and O, respectively, we have

Teo = 21, Tco x1 1 00 T
Teps = I3, Teg | =] 23 | =10 0 1 Ty
Tgo = T2, OF Tz T2 010 T3

Therefore, the transformation matrix is

-1

1 0 0 Zeo 100 Zc,o0
x={0 01 Zeg | =10 0 1 Ze5
010 Teo 010 Tz o
The system description after the transformation becomes
Geolt) LOoOO0O]T " [=1 1 07[10 07T zeolt) 100711
Tep(t) | =10 0 1 0 -1 o0 0 01 Zep(t) [+]0 0 1 0 | u(t),
Teo(t) 010 0 0 -2 010 Zeo(t) 010 1
1 00 Zeo(t)
yt)=[100]|0 0 1 Tep(t)
010 Zzo(t)
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After some simplifications, we get the kalman decomposition.
] | : o ) i )
xc,o(t) Ac,o 0 * wc,o(t) Bc,o
Tep(t) | = * [ Aes | * Teo(t) | + | Bes | ult),
Zzo(t) 0 0 | Aeo Tzo(t) | 0 )
- - - - -
_1 O ]. xc'o(t) ].
- = 0 |-2 0 Tep(t) | + 1 u(t),
i 0 0 -1 J i .’L'c’o(t) J | 0 ]
ZTeo(t)
yt) = [ Ceo| 0 | GCoo || 2es®
ZTeo(t)
L J
Teo(t)
=[1|0{0] Zes(t)
xc,o(t)
4. The transfer matrix of a control system is given by
r s+2 s+2
(s+1)(s+3) (s+1)2(s+3)
H(s) = 1 3s+ 7
s(s +3) s(s+1)2(s+3)
2/3 1
L (s+1)(s+3) s(s+1)(s+3)

Obtain its left or right coprime factorization. Determine the order of a controllable and observable
realization of the system.

Solution: To determine the type of coprime factorization, we need to we consider the dimension of
the transfer matrix. In this case, H(s) is 3x2. As a result, a left coprime factorization will yield
H(s) = Di;xa(s)NLsxz(s), and a right coprime factorization will yield H(s) = NRm(s)DE:XQ(s).
Since a right coprime factorization will yield a smaller size D(s) matrix, we prefer to obtain a right
coprime factorization.
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We first obtain an initial right factorization of H = NoDy 1 such that

$+2 s+2 -
(s+1)(s+3) (s+1)2(s+3)
H(s) = 1 3s+7
s(s+3) s(s+1)2(s+3)
2/3 1
L (s+1)(s+3) s(s+1)(s+3)
r -
s(s+1)(s+2) s(s+2) )
0
2
= (s +1)? 3s+17 s(s+1)%s +3) .
0 2
2/3)s(s +1)  s+1 se 1R +3)
= No(s)Dg ' (s)-
From the above factorization, we get
[ s(s+1)2(s+3) 0
Do = 0 s(s+1)%(s +3) J '

Next, we form an augmented matrix from Ny and Dy, perform column operations until we obtain
the Hermite form, and factor out common polynomials from each column.

( s(s+1)(s+2) s(s+2) |
(s+1)? 3s+7
No(s)
= (2/3)s(s +1) s+1
Dy (s)
s(s+1)%(s +3) 0
i 0 s(s+1)%(s + 3) ]

Dividing the first column by (s + 1), we get

( s(s+2) s(s+2)
(s+1) Is+7
Ni(s)
= (2/3)s s+1
Dy (s)
s(s+1)(s+3) 0
i 0 s(s+1)%(s +3) |
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Subtracting the first column from the second, we get

Fall 2003  7/7

[ s(s+2) 0
(s+1) 2(s+3)
Nz(s)
= (2/3)s (1/3)(s +3)
D;(s)
s(s+1)(s+3) —s(s+1)(s+3)
] 0 s(s+1)%(s +3)
Dividing the second column by (s + 3), we get
[ s(s+2) 0 ]
1 2
N3(s) o+ 1)
= (2/3)s 1/3
Ds(s)
s(s+1)(s+3) -s(s+1)
i 0 s(s +1)2 |

The last operation resulted in a coprime factorization, since the rank of the above augmented matrix
will not drop for any value of s. (If s # 0, or s # —2; then the first two rows are linearly independent.
If s =0, or s = —2; then the second and the third rows are linearly independent.) As a result, one
coprime factorization of the control system is

s(s+2) 0 s a3 . .
H(s)=N(s)D7Ms)= | (s+1) 2 s(s +1)(s +3) s(s +
0 s(s + 1)2
(2/3)s 1/3

To determine the order of the minimal or controllable and observable system, we determine det(D(s)),
which is a polynomial of order 6. Therefore, the order of a controllable and observable realization of
the system is 6.




