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1. A control system is described in state-space representation, such that
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(?),

where u, x, and y are the input, the state, and the output variables, respectively. For the following
A, B, C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or
unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer.

(a)
0 0 0O 0
A=|0 0 0|, B=|0]|, C=[111],andD=0.
0 0 -1 1
(10pts)
(b)
0 1 0 0
A=]|0 o0 o0/, B=1|1], C=[111],andD=0.
0 0 -1 0
(15pts)
2. A control system is described by
1 0 1 1 2
x¢)=1 1 0 |x(®)+] -1 0 [u(),
1 -1 2 -1 0

v)=[1 1 -1]x),

where u, x, and y are the input, the state, and the output variables, respectively. Obtain its Kalman
decomposition that separates the controllable, uncontrollable, observable, and unobservable portions.
Clearly mark the portions on the decomposed system. (25pts)

3. The transfer matrix of a control system is given by

2s+1 2s+1
H(s) = s(s+1)2 (s +1)2
1 1

s(s+1)2 (s+1)2

Obtain its left coprime factorization, such that H = D~!N for some matrices D and N, and the matrix
N is in Hermite form. (25pts)




4. A continuous-time linear control system is described by

x(t)=[‘1) __;]x(t)+[(l)]u(t),

yt)=[1 1]x(),

where u, x, and y are the input, the state, and the output variables, respectively. Design an output
feedback controller for the system, such that the 2% settling time is less than 2 seconds, and the output
response is over-damped. (25pts)
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1. A control system is described in state-space representation, such that
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively. For the following
A, B, C, and D matrices, determine whether the system is asymptotically stable, marginally stable, or
unstable; and whether it is bounded-input-bounded-output stable or not. Justify your answer.

(a)
0 0 0 0
A=|0 0 0|, B=|0|, C=[111],andD=0.
0 0 -1 1

Solution: Since, the state matrix A is diagonal, we observe the eigenvalues directly from the
diagonal elements as A\; = 0, A2 = 0, and A3 = —1. The eigenvalue A3 has a negative real part,
and it would generate an asymptotically stable response. The eigenvalues A; and Ay are both
zero, and each would generate a constant response individually. However, if they are cascaded,
a constant response generated by the first one would result in a ramp response by the second
one. In this case, since the state matrix A is diagonal, the two zero-valued eigenvalues don'’t
effect each other, or they are not cascaded. Therefore, each of the eigenvalues A\; and Ay would
generate a constant response resulting in a marginally stable response. Since there are no more
eigenvalues, we conclude that the system is marginally stable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer function and observe the poles of the system after all the reductions. The
transfer function of the system is given by

L[y](s) = (C(sI - A)“IB+D) L [u](s)

where £ [ ()](s) is the Laplace transform, and I is the appropriately dimensioned identity matrix.

In our case,
[ s 0 o 17'To
C(sI-A)™'B+D=[11 1] 0 s 0 0|+0
| 0 0 s+1 1
[ 1/s 0 0 0
=[11 1] 0 1/s 0 0
0 0 1/(s+1) 1
[0
1
=[11 1] 0 =31
1/(s+1) s
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We realize that only one pole of the system is visible in the transfer function; and it has a negative
real part. Therefore, the system is marginally stable, and it is bounded-input-bounded-output
stable.

0 1 0 0
A=|0 0 0], B=|1|, C=[111],andD=0.
0 0 -1 0

Solution: Since the state matrix A is upper diagonal, we observe the eigenvalues directly from the

diagonal elements as A\; = 0, Ay = 0, and A3 = —1. The eigenvalue A3 has a negative real part,
and it would generate an asymptotically stable response. The eigenvalues A\; and Az are both
zero, and each would generate a constant response individually. However, if they are cascaded,
a constant response generated by the first one would result in a ramp response by the second
one. In this case, since the state matrix A is in Jordan form, the two zero-valued eigenvalues are
cascaded, and they effect each other. Therefore, the state corresponding to A2 would generate a
constant response, and the state corresponding to A; would then generate a ramp response. As
a result, we conclude that the system is unstable.

In order to determine the bounded-input-bounded-output stability of the system, we may de-
termine the transfer function and observe the poles of the system after all the reductions. The
transfer function of the system is given by

£ [y](s) = (C(sI - A)7'B+ D) £ [u](s)

where £ [ ) ] (s) is the Laplace transform, and I is the appropriately dimensioned identity matrix.
One method to determine the inverse of (sI — A) is to use row operations on the augmented
matrix [ (sI — A) 1] to generate [ I (sI — A)7t].

s -1 0 1 0 0
— 0 1 0 0 1/s 0
| 0 0 1 0 0 1/(s+1) |
i s 0 0 1 1/s 0 1
— 0 1 0 0 1/s 0
i 0 0 1 0 0 1/(s+1) |
[ 1 0 0 1/s 1/s2 0 i
— 0 1 0 0 1/s 0 .
i 0 0 1 0 0 1/(s+1) |
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Therefore,
[ 1/s 1/s? 0 0
C(sI-A)7'B+D=[11 1] 0 1/s 0 1]+0
i 0 0 1/(s+1) 0
[ 1/s?
=[11 1] 1/s =i2+1+0=s“:1.
0 s s s

Because of the repeated pole at zero, the impulse response would contain a ramp function; and
as a result the system is not bounded-input-bounded-output stable.

In summary, the system is unstable, and it is not bounded-input-bounded-output stable.

2. A control system is described by

1 0 1 1 2
xt)=]1 1 0[|x@)+| -1 0 |u@),
1 -1 2 -1 0

v)=[1 1 -1]x),

where u, x, and y are the input, the state, and the output variables, respectively. Obtain its Kalman
decomposition that separates the controllable, uncontrollable, observable, and unobservable portions.
Clearly mark the portions on the decomposed system.

Solution: In order to determine the Kalman decomposition of a system, we first need to obtain the

controllability and the observability matrices. In an nth order system that is described by
x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

where u, x, and y are the input, the state, and the output variables, respectively; the observability
matrix for n = 3 is given by

¢ C 1 1 -1
CA T S —
0, 4)=| =|CA |=]|1 0 -1
01;11‘-1 CA? 0 1 -1

The rank of the observability matrix is 3. As a result, there will be no unobservable part in the
Kalman decomposition, and there is no need for a contribution to the transformation from the
observability matrix.

The controllability matrix for n = 3 is given by

C(A,B)=[B AB --- A™!'B|=[B|AB|A*B]=| -1 0
0

o O O
N NN
S OO
L SN
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The rank of the controllability matrix is 2, since the second and the third rows are identical. There-
fore, there are only 2 linearly independent columns. One of them is vi = [ 100 ]T from the
second column, and the other one is vy = [ 111 ]T from the fourth or the sixth column.

These two vectors can easily be orthonormalized either by the Gram-Schmidt orthogonalization
procedure or in this case by inspectionto ¥1=[1 0 0 1" and vo= [0 v2/2 v2/2 ]T.

The controllable subspace of the transformation, that would separate the controllable and uncontrol-
lable portions, is spanned by the orthonormal vectors ¥; and ¥, and the uncontrollable subspace
of the transformation is orthogonal to the controllable subspace. In our case, the dimension of the
transformation is 3, and the dimension of the controllable subspace is 2. As a result, the dimension
of the uncontrollable subspace is 1. In other words, we only need to determine only one normal
vector that is linearly independent or orthogonal to ¥; and v».

To find this vector V3, we may start with the usual basis vectors

1 0 0
ee=]0], e=]|1}],andes=|0 |;
0 0 1

and remove the components of ¥; and V2 from each of the vectors e, ez, and e, until we get a
non-zero vector. Once we get one non-zero vector, we don’t need to proceed any further.

Here, since V1 = e;, there is no need to even try e;. So, we remove the components of v; and v,
from es. (Note that we could have also chosen the vector es. Indeed, if we get the zero vector with
our choice of e3, we will try es.)

_ . fes,v1)_ (es,¥2)

V3 = €3 <‘_,1 ,‘_’1> 1 <‘_’2 "_,2>v2
0 1 0 0
=lo|-@©]o0|-(22)|vee|=]|-1/2
1 0 V2/2 1/2

Since v is non-zero, we have the desired vector. After normalizing the vector vs, we obtain v3 =
[0 —2/2 V2/2 ]T. The transformation that will separate the controllable and the uncontrollable
portions is x = T'X, where

1 0 0
T=[% v2 v3]=|0 +2/2 —v2/2
0 V2/2 V2/2

Since the columns of T are orthonormal to each other, 7! = TT: we have
%(t) = TTAT%(t) + TT Bu(t),
y(t) = CT%(t) + Du(t).

Note here that if we had chosen any linearly independent vector instead of ¥3, the transpose of the



EE 431 Exam#2 Solutions Fall 2002 5/8

. transformation matrix would not have been its inverse. For our system,

1 0 0 1 0 1 1 0 0
x(t) = [o V2/2 \/5/2] [1 1 o} [o V2/2 —/2/2 ] %(t)
-V2/2  V/2/2 1 -1 2 0 V2/2  V2/2

1 0 0 1 2
+ [ 0 Vv2/2 V2/2 ] [ -1 0 } u(t),
0 —v2/2 V2/2 -1 0

1 0 0
y@)=[1 1 -1] [0 V2/2 ~/2/2 ] x(t),

0 V2/2 2/2
1 V2/2 V2/2 1 2
i(t)=[\/§ 1 1 ] (t) + [ -V2 0] u(t),
0 0 2 0 0

y@)=[1 0 —v2]x(@).

Since the first two dimensions contain the controllable subspace the Kalman decomposition of the
system will be

. . [ A conttoll:})le B controllable
)-((t) — _ observable i(t) + observable u(t)

A uncontrollable 0
L observable

1 Vv2/2 V2/2 1 2
=|v2 1 1 | x@)+ | —v2 0 |u@),
0 0 2 0 0

y(t) = | Coppuaene [ %(9)

=[1 0 —v2]x()

where X is the transformed state variable.

3. The transfer matrix of a control system is given by

2s+1 2s+1
H(s) = s(s+1)2 (s +1)2
1 1

s(s+1)? (s +1)2

Obtain its left coprime factorization, such that H = D! N for some matrices D and N, and the matrix
. N is in Hermite form.
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. Solution: We first obtain an initial left factorization of H = Dy 1 Ny, such that
2s+1 2s+1
H(s) = s(s+1)2 (s+1)2
1 1

| s(s+1)2 (s+1)2

1

_ m 0 2s+1 8(28 + 1)
1
|0 EEEE ! s
= Dy (s)No(s).

From the above factorization, we get

n=[ 5 ]

Next, we form an augmented matrix from Ny and Dy, and perform row operations until we obtain
the Hermite form.
_ 25 +1 s(2s+1) s(s +1)2 0
. [ No(s) | Do(s) ] = [ 1 s I 0 s(s+1)?

Multiplying the second row by —(2s + 1) and adding it to the first row, we get

2 _ 2
E I R kel
Dividing the first row by s(s + 1)2, we get
0 0 1 —(2
[ Na(s) | Da(s) | = [ 1 s I 0 s((ss-:_ll))z ] '

The last row operation resulted in a N(s) that is in Hermite form, so N(s) = Na(s), and D(s) =
Dy(s). Since

-1 1 2s+1
Di(s) = [ 1 —(2s+1) ] _ s(s+1)2 ’
0 s(s+1)2 1
0 s(s+1)2
we get
2s+1
m 0 0

H(s)=D7'(s)N(s) =

1
- 1
. 0 s(s+1)2 s
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. 4. A continuous-time linear control system is described by

:'c(t):[(lj _;]x(t)+[(1)

W=[1 1]x@),

Fall 2002

Jweo,
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where u, x, and y are the input, the state, and the output variables, respectively. Design an output
feedback controller for the system, such that the 2% settling time is less than 2 seconds, and the output

response is over-damped.

Solution: We determine the desired system closed-loop poles from the system requirements.

. The output response is

Given Requirements General System Restrictions Specific System Restrictions
t2%.s S 2 s,
2% settling-time for a unit-step or 0o > 2,
input 4 < 9. since tag, = 4/0,.
0o —
pole; = pa, = —o1,
The closed-loop poles are distinct pole; = pg, = —o072;
over-damped. and real. where
g1 -',é o2.

From the given requirements, we choose o7 = 2, and 0o = 4 > 2 = 0;. The desired characteristic
polynomial p¢, can be obtained from the desired-pole locations, where

Pea(s) = (s = (=2))(s = (-4)) = s + 65 +8.

The characteristic polynomial p. under state-feedback gain K = [ ki ko ]T, such that the input
u = — Kx, can be determined from

pc(s) = det(sI — (A — BK))

(22 -

=%+ (kg +2)z + (k1 — 1).

Setting pe(s) = pey(s), we get

or k; =9; and

ki —1=8,

ko +2=6,

R
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or ko = 4. Therefore,
K=[9 4].
However, since only the output, not the state variable, is available, we need to design an observer

and use the observer state variable X instead of the state variable z.

The desired observer-characteristic polynomial p,, can be obtained from the desired observer-pole
locations. Since there is no explicit specifications, we may choose the two desired observer-pole
locations ourselves. Choosing both poles at —10 that is faster than the system poles, we get the
desired observer characteristic polynomial

Doy (8) = (s + 10)(s + 10) = s + 20s + 100.

]T can be

The observer-characteristic polynomial p, under the observer-error gain L = [l1 ls
determined from

Pol(s) = det(sI - (A- LC’))

—e(efo 1] -7 )[R )0 )
=824+ (1 +1lp+2)s+ (3l + 13— 1).

Setting Po(s) = Pog (5), we get
3l +1; — 1 =100,

and
i +1;+2=20

Solving the two equations for l; and l3, we get

415
L= [ —23.5 ] '

Therefore,
u(t)=[ -9 -4 ]x(¢) for t >0,

where
k() = ax(0) + But) - | 337 | 600 - 0x00)

and A, B, and C are the state, the input, and the output matrices of the system, respectively.




