Mathematics 6215 Homework Set 2 Name: ?{‘. Grow

Solve the following problems from Royden and Fitzpatrick’s Real Analysis.
p- 90 # 36
p. 95 # 40, 44, 47

Also, solve each of these problems:

A. LetE ¢ Rand f:R—[-o,0]. Show that:

(1) there exists a sequence {sn} of simple functions, measurable if f'is, such the s, (x) - f(x)for
all x in E;

(2) if f is bounded, then the sequence {s, } in (1) can be constructed so that the convergence to f
is uniform on E;

(3)if f 20, then the sequence {s,} in (1) can be constructed nonnegative and pointwise

increasing: 0<s,(x)<s,(x)<... forall x in E.

B. Let f be a bounded nonnegative function on [a,b] which is Riemann integrable on that interval.

(1) Show that there exist sequences {g, } and {6, } of step functions on [a,b] such that
0<0,< f<¢@, and

b

[le.0)-6,)]ax< .

(2) Let 8(x)=sup8,(x)and ¢(x)=supe,(x) forxin [a,b]. Show that & and ¢ are are
measurable, < f <¢, and m({x ela,b]: 0(x) < (p(x)}) =0,

(3) Show that 8= ¢ a.c. on [a,b] and that f is a measurable function.
(4) Show that the Riemann integral of f on [a,b] is equal to the Lebesgue integral of / on [a,b].

Notation for problem C: Let f & L' (—oo,0). The Fourier transform of f at any real number y is
given by

o= | f@e=ds.

(0,20}

@Let f € L'(~0,0). Show that:
1) jA" is a continuous function on R;
(2) if g(x)=xf(x) is in L'(~c0,0), then JA’ is differentiable on R with
FO)=-i [ f@e™dx  (-o<y<c).

(—o0,0)
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