Name: Dr. Grow

Solve the following problems from Royden and Fitzpatrick's Real Analysis.

Also, solve each of these problems:

- A. Let $E \subseteq \mathbb{R}$ and $f: \mathbb{R} \to [-\infty, \infty]$. Show that:
- (1) there exists a sequence $\{s_n\}$ of simple functions, measurable if f is, such the $s_n(x) \to f(x)$ for all x in E;
- (2) if f is bounded, then the sequence $\{s_n\}$ in (1) can be constructed so that the convergence to f is uniform on E;
- (3) if $f \ge 0$, then the sequence $\{s_n\}$ in (1) can be constructed nonnegative and pointwise increasing: $0 \le s_1(x) \le s_2(x) \le \dots$ for all x in E.
- B. Let f be a bounded nonnegative function on [a,b] which is Riemann integrable on that interval.
- (1) Show that there exist sequences $\{\varphi_n\}$ and $\{\theta_n\}$ of step functions on [a,b] such that $0 \le \theta_n \le f \le \varphi_n$ and

$$\int_{a}^{b} \left[\varphi_{n}(x) - \theta_{n}(x) \right] dx \leq \frac{1}{n}.$$

- (2) Let $\theta(x) = \sup_{n} \theta_n(x)$ and $\varphi(x) = \sup_{n} \varphi_n(x)$ for x in [a,b]. Show that θ and φ are are measurable, $\theta \le f \le \varphi$, and $m(\{x \in [a,b]: \theta(x) < \varphi(x)\}) = 0$.
 - (3) Show that $\theta = \varphi$ a.e. on [a,b] and that f is a measurable function.
 - (4) Show that the Riemann integral of f on [a,b] is equal to the Lebesgue integral of f on [a,b].

Notation for problem C: Let $f \in L^1(-\infty,\infty)$. The Fourier transform of f at any real number y is given by

$$\hat{f}(y) = \int_{(-\infty,\infty)} f(x)e^{-ixy}dx.$$

- C. Let $f \in L^1(-\infty, \infty)$. Show that: (1) \hat{f} is a continuous function on **R**;

 - (2) if g(x) = xf(x) is in $L^1(-\infty,\infty)$, then \hat{f} is differentiable on **R** with

$$\hat{f}'(y) = -i \int_{(-\infty,\infty)} x f(x) e^{-ixy} dx \qquad (-\infty < y < \infty) .$$

C. (1) Let $f \in L'(\mathbb{R})$ and recall

$$\hat{f}(\bar{s}) = \int_{\mathbb{R}} f(x) e^{-ix\bar{s}} dm(x) \qquad (\bar{s} \in \mathbb{R}).$$

Fix $\xi \in \mathbb{R}$ and let $(\xi_n)_{n=1}^{\infty}$ be any sequence of real numbers converging to ξ . Define measurable functions $f_n : \mathbb{R} \to \mathbb{C}$ (n=1,2,3,...) by

$$f_n(x) = f(x)e^{-ix\xi_n}$$
 (x \in \mathbb{R}).

Observe that

- (1) $\lim_{n\to\infty} f_n(x) = f(x)e^{-ix\xi}$ for all $x \in \mathbb{R}$, and
 - (2) $|f_n(r)| = |f(x)|$ for all $x \in \mathbb{R}$ and $n \ge 1$.

Since $|f| \in L^1(\mathbb{R})$, we may apply Lebesgue's Dominated Convergence Theorem to obtain

$$\lim_{n\to\infty} \hat{f}(\bar{s}_n) = \lim_{n\to\infty} \int_{\mathbb{R}} f_n(x) dm(x) = \int_{\mathbb{R}} f(x) e^{-ix\bar{s}} dm(x) = \hat{f}(\bar{s}).$$

That is, f is continuous on IR.

(2) Let $f \in L'(\mathbb{R})$ and the function $x \mapsto x f(x)$ be in $L'(\mathbb{R})$ as well. Fix $y \in \mathbb{R}$ and let $\langle h_n \rangle_{n=1}^{\infty}$ be any sequence of nonzero real numbers converging to zero. Consider the limit

$$\hat{f}'(y) = \lim_{n \to \infty} \frac{\hat{f}(y+h_n) - \hat{f}(y)}{h_n} = \lim_{n \to \infty} \int_{\mathbb{R} \setminus \{0\}} \times f(x) e^{-iyx} \left[\frac{e^{-ih_n x} - 1}{h_n x} \right] dm(x).$$

Observe that if $\theta \neq 0$ then

$$\left|\frac{e^{-i\theta}}{\theta}\right| = \sqrt{\frac{(1-\cos\theta)^2 + \sin^2\theta}{\theta^2}} = \sqrt{\frac{2-2\cos(\theta)}{\theta^2}} = \sqrt{\frac{4\sin^2(\theta/2)}{\theta^2}} = \left|\frac{\sin(\theta/2)}{\theta/2}\right| \le 1.$$

$$\lim_{\theta \to 0} \frac{e^{i\theta} - 1}{\theta} = \lim_{\theta \to 0} \frac{-ie^{i\theta}}{1} = -i.$$

$$g_n(x) = x f(x) e^{-iyx} \left[\frac{e^{-ih_n x} - 1}{h_n x} \right]$$

defines a sequence of measurable functions such that

(1)
$$\lim_{n\to\infty} g_n(x) = -i \times f(x) e^{-iyx}$$
 $(x \in \mathbb{R} \setminus \{o\})$

and (2)
$$|g_n(x)| = |xf(x)| \cdot \left| \frac{e^{-ih_n x} - 1}{h_n x} \right| \le |xf(x)| \quad (x \in \mathbb{R} \setminus \{0\}, n \ge 1).$$

Because g(x) = xf(x) belongs to $L'(\mathbb{R})$, we may apply Lebesgue's Dominated Convergence Theorem to obtain

$$\hat{f}(y) = \lim_{N \to \infty} \int_{\mathbb{R} \setminus \{0\}} g_n(x) dm(x) = -i \int_{\mathbb{R}} x f(x) e^{-iyx} dm(x) \qquad (y \in \mathbb{R}).$$

In particular, \hat{f} is differentiable on \mathbb{R} .