Midterm Exam Fall 2015

Name:

Directions: Complete any 5 of the following 6 problems. Each problem has the same value: 30 points. **CIRCLE** the numbers of the 5 problems you want me to grade on your exam.

- 1. (a) Define the inner and outer measure of a set $E \subseteq \mathbb{R}$.
 - (b) Define the phrase " $E \subseteq \mathbb{R}$ is (Lebesgue) measurable".
 - (c) Define the (Lebesgue) measure of a measurable set $E \subseteq \mathbb{R}$.
 - (d) Define the phrase " $f: E \to [-\infty, \infty]$ is a measurable function".
 - (e) Define the (Lebesgue) integral of a simple, measurable function φ on $E \subseteq \mathbb{R}$ ".
 - (f) Define the (Lebesgue) integral of a measurable function $f: E \to [0, \infty]$.
 - (g) Define the (Lebesgue) integral of a measurable function $f: E \to [-\infty, \infty]$.
- 2. (a) State Lebesgue's Monotone Convergence Theorem.
 - (b) State Fatou's Lemma.
 - (c) State Lebesgue's Dominated Convergence Theorem.
 - (d) Give an example of a sequence for which Fatou's Lemma holds but the inequality is strict.
 - (e) Give an example of a nonnegative, decreasing, measurable sequence of functions for which the conclusion of Lebesgue's Monotone Convergence Theorem does not hold.
- 3. Let $E \subset \mathbb{R}$ be measurable.
 - (a) If $0 , define the space <math>L^p(E)$ and its "norm".
 - (b) Define the space $L^0(E)$ and its metric (provided $m(E) < \infty$).
 - (c) Define the space $L^{\infty}(E)$ and its norm.
 - (d) State Hölder's inequality and the conditions under which it holds.
 - (e) State Minkowski's inequality and the conditions under which it holds.
 - (f) State the inclusions, if any, among the spaces $L^p[0,1]$ where $0 \le p \le \infty$.
 - (g) State the inclusions, if any, among the spaces $L^p(\mathbb{R})$ where $0 \le p \le \infty$.
- 4. (a) Define the Fourier transform of $f \in L^1(\mathbb{R})$.
 - (b) State the Riemann-Lebesgue Lemma for functions in $L^1(\mathbb{R})$.
 - (c) Define the Fourier transform of $f \in L^1[0,1]$.
 - (d) Define the N^{th} Fourier partial sum $S_N f$ of $f \in L^1[0,1]$.
 - (e) For which $L^p[0,1]$ -spaces does $||f S_N f||_p \to 0$ as $N \to \infty$?
 - (f) State Parseval's identity for $f \in L^2[0,1]$.
- 5. (a) Give an example, if possible, of a normed linear space which is not an inner product space.
 - (b) Give an example, if possible, of an inner product space which is not a normed linear space.
 - (c) Define the phrase " $\langle x_n \rangle_{n=1}^{\infty}$ is a Cauchy sequence in the normed linear space $(X, \|\cdot\|)$ ". (continued on the back side)

- (d) Define the phrase " $\langle x_n \rangle_{n=1}^{\infty}$ is a convergent sequence in the normed linear space $(X, \|\cdot\|)$ ".
- (e) Define the phrase "the normed linear space $(X, \|\cdot\|)$ is a Banach (or complete) space".
- (f) Define the phrase " $(X, \langle \cdot, \cdot \rangle)$ is a Hilbert space".
- (g) Give an example of a normed linear space which is not a Banach space.
- (h) State the Riesz-Fischer Theorem.
- 6. (a) Define the phrase " Λ is a bounded linear functional on the normed linear space $(X, \|\cdot\|)$ ".
 - (b) Give an example of a bounded linear functional on \mathbb{R}^n equipped with the Euclidean norm.
 - (c) Give an example of a bounded linear functional on C[0,1] equipped with the uniform norm.
 - (d) Give an example of a bounded linear functional on $(L^{\infty}[0,1], \|\cdot\|_{\infty})$.
 - (e) State the Riesz Representation Theorem for the L^p spaces.