Work any six of the following seven problems. Each problem has the same point value (25 points). Circle the numbers of the problems you wish to have graded.

- 1. In cylindrical coordinates r, θ, z in three-dimensional Euclidean space, a vector field is such that the vector at each point points along the coordinate curve of θ , in the sense of increasing θ , and has magnitude 3r. Find the contravariant and covariant components of this vector field in the cylindrical coordinate system and in the rectangular Cartesian coordinate system.
- 2. Let y^1, y^2, y^3 denote rectangular Cartesian coordinates in three-dimensional Euclidean space. Consider the surface $\mathfrak M$ described parametrically by

$$y^{1} = x^{1}\cos(x^{2})$$

$$y^{2} = x^{1}\sin(x^{2})$$

$$y^{3} = x^{1}$$

where $x^1 > 0$ and $0 \le x^2 < 2\pi$.

- (a) Sketch the surface and show several typical \mathbf{x}^1 and \mathbf{x}^2 coordinate curves in the surface.

 - (b) Find the metric tensor for $\mathfrak{M}\,.$ (c) Find all nonvanishing Christoffel symbols for $\mathfrak{M}\,.$
 - (d) Find the geodesics for \mathfrak{M} .

5 bonus points: (e) Find the distance from the point $(x^1, x^2) = (1,0)$ to $(x^1, x^2) = (2, \pi/2)$ in \mathfrak{M} .

3. Let θ denote the angle between the x^1 and x^2 coordinate curves at a point P in a positive-definite Riemannian space. Show that

$$\cos(\theta) = \frac{a_{12}}{\sqrt{a_{11}a_{22}}}$$
.

- 4. Show that the covariant derivatives of the metric and conjugate metric tensors are identically zero in any Riemannian space.
- 5. Let Tr and S, be vector fields along a curve C in a Riemannian space.
- (a) If the absolute derivatives of $\mathbf{T}^{\mathbf{r}}$ and $\mathbf{S}_{\mathbf{r}}$ are zero along C, show that the invariant $T^{r}S_{r}$ is constant along C.
- (b) If the absolute derivative of T along C is zero and the invariant Trs, is constant along C, what can be said about S,?
- 6. Let ψ be a scalar invariant and let T^S be a tensor in a positivedefinite Riemannian space M. Let a denote the determinant of the metric tensor a_{mn} in \mathfrak{M} .

- (a) Show that $T^{i}_{|i} = \frac{1}{\sqrt{a}} \frac{\partial}{\partial x^{i}} (\sqrt{a} T^{i})$.
- (b) Write out explicitly (the right-hand side of) the formula for the invariant $T^i_{\ |\ i}$ in part (a) for spherical coordinates r,θ,ϕ in three-dimensional Euclidean space.
 - (c) Use part (a) and problem \ref{to} to show that

$$a^{mn}\psi_{|mn} = \frac{1}{\sqrt{a}} \frac{\partial}{\partial x^{i}} (\sqrt{a} \ a^{ij} \frac{\partial \psi}{\partial x^{j}}).$$

- (d) Write out explicitly (the right-hand side of) the invariant $a^{mn}\psi_{|mn}$ in part (c) for spherical coordinates r,θ,ϕ in three-dimensional Euclidean space.
- 7. Let ${\mathfrak M}$ be a Riemannian space with metric tensor ${\bf a}_{mn}$ and dimension 4.
 - (a) If the quantities R(p,r,m,n) satisfy the relations

$$T_{r|mn} - T_{r|nm} = R(p,r,m,n)T^{p}$$

for an arbitrary contravariant vector T^S on \mathfrak{M} , show that the quantities R(p,r,m,n) are the components of a tensor on \mathfrak{M} . Determine the rank and covariant and contravariant types of this tensor.

(b) Show that the tensor of part (a) has the following symmetry properties:

$$R(p,r,s,t) = -R(r,p,s,t)$$

 $R(p,r,s,t) = -R(p,r,t,s)$
 $R(p,r,s,t) = R(s,t,p,r)$

$$R(p,r,s,t) + R(p,s,t,r) + R(p,t,r,s) = 0.$$

(c) Use part (b) to show that the tensor of part (a) has 6 distinct nonvanishing components of type R(p,r,p,r), 12 of type R(p,r,p,t), and 2 of type R(p,r,s,t).

(d) How many distinct nonvanishing components does the tensor in part

(a) have?