Problems from Math 5222 Lecture 1

Problems

1. If we start with the definition of a vector x as an n-tuple of n real or complex numbers (x_1, x_2, \ldots, x_n) , and use for the definition of sum and product the formulas

$$\mathbf{x} + \mathbf{y} \colon (x_1 + y_1, \dots, x_n + y_n),$$

$$k\mathbf{x} \colon (kx_1, \dots, kx_n),$$

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n \bar{x}_i y_i,$$

p.15

p. 19

then

$$(x + y) \cdot z = x \cdot z + y \cdot z,$$

$$x \cdot (y + z) = x \cdot y + x \cdot z,$$

$$(kx) \cdot y = \overline{k}(x \cdot y),$$

$$x \cdot (ky) = k(x \cdot y).$$

- 2. Prove that, if $a^{(1)}$, $a^{(2)}$, ..., $a^{(n)}$ is a set of n linearly independent vectors in a complex n-dimensional vector space, then the only vector x orthogonal to each of the vectors $\mathbf{a}^{(i)}$ is the zero vector.
- 3. Prove that a set of mutually orthogonal nonzero vectors is always linearly
- **4.** Let the set of vectors $\mathbf{a}^{(i)}$ in E_n : $(a_1^{(i)}, a_2^{(i)}, \dots, a_n^{(i)}), i = 1, 2, \dots, n$, be linearly dependent, and suppose that r of them, $a^{(1)}$, $a^{(2)}$, ..., $a^{(r)}$, r < n, are linearly independent. Show that every vector x that is orthogonal to this set of r linearly independent vectors forming the subset of E_n is also orthogonal to the remaining n - r vectors in the given set.

Problems

1. Write out in full the following expressions:

(a)
$$\delta_j{}^i a^j$$
.

(b)
$$\delta_{s,i}x^ix^j$$

(b)
$$\delta_{ij}x^ix^j$$
. (c) $a_{ij}b_{jk} = \delta_{ik}$. (d) $a_{ijk}x^k$.

(d)
$$a_{ijk}x^k$$
.

(e)
$$\frac{\partial f_i}{\partial x_i} dx_i$$

(f)
$$\delta_i$$

(e)
$$\frac{\partial f_i}{\partial x_j} dx_j$$
. (f) δ_i^i . (g) $a^i = \frac{\partial x^i}{\partial y^j} b^j$. (h) $a_{ij(k)} x^j y^{(k)}$.
(i) $g_{ij} = \frac{\partial y^k}{\partial x^i} \frac{\partial y^k}{\partial x^j}$. (j) $a_{i(j)} x^{(j)}$. (k) $\delta_{ij} \delta^{jk}$.

$$(h) \ a_{ij(k)}x^jy^{(k)}$$

$$(k) \delta_{ij}\delta^{jk}$$
.

The symbols $\delta_j{}^i$, δ_{ij} , and δ^{ij} all denote the Kronecker deltas.

 $\sqrt{2}$. Verify that (7.6) is the solution of (7.5).