Problems from Math 5222 Lecture 3

Problems

- $\sqrt{1}$. Show that if the transformation T: $y^i = a_j^i x^j$ is orthogonal, then the distinction between the covariant and contravariant laws disappears.
- $\sqrt{2}$. Prove the theorem: If $f(x^1, x^2, \dots, x^n)$ is a homogeneous function of degree m, then $\frac{\partial f}{\partial x^i}x^i=mf$.
- 3. Given $f(x^1, x^2, \ldots, x^n)$ and a set of equations of transformation $x^i = x^i(y^1, y^2, \ldots, y^n)$, where each $y^i = y^i(t)$. If the transform of f by invariance is $g(y^1, y^2, \ldots, y^n)$, show that df/dt = dg/dt. Hint: $(\partial f/\partial x^{\alpha})(dx^{\alpha}/dt) = df/dt$ and $dx^{\alpha}/dt = (\partial x^{\alpha}/\partial y^j)(dy^j/dt)$.
- \checkmark 4. Write out the laws of transformation of components of covariant and contravariant vectors when T is the transformation from rectangular cartesian to spherical polar coordinates given in Sec. 19.

p. 58