Problems from Math 5222 Lecture 9

- 1. Show that $\frac{\partial g_{ij}}{\partial x^k} \frac{\partial g_{jk}}{\partial x^i} = [jk, i] [ij, k]$. 2. Show that, if $g_{ij} = 0$ for $i \neq j$, then $\binom{k}{ij} = 0$ whenever i, j, and k are
- $\sqrt{3}$. Show that, if $g_{ij} = 0$ for $i \neq j$, then

p.79

where we suspend the summation convention and suppose that $i \neq j$. $\sqrt{4}$. If $|g_{ij}| \neq 0$, show that

$$g_{\alpha\beta} \frac{\partial}{\partial x^{j}} \begin{Bmatrix} \beta \\ ik \end{Bmatrix} = \frac{\partial}{\partial x^{j}} [ik, \alpha] - \begin{Bmatrix} \beta \\ ik \end{Bmatrix} ([\beta j, \alpha] + [\alpha j, \beta]).$$

5. If $y^i = a_j^i x^j$ is a transformation from a set of orthogonal cartesian variables y^i to a set of oblique cartesian coordinates x^i covering E_3 , what are the metric coefficients g_{ij} in $ds^2 = g_{ij} dx^i dx^j$?