Problems from Math 5222 Lectures 4, 5, and 6

Problems

 $\sqrt{1}$. Given the relation $A(i, j, k)B^{jk} = C^i$, where B^{jk} is an arbitrary symmetric tensor. Prove that A(i, j, k) + A(i, k, j) is a tensor. Hence deduce that, if A(i, j, k) is symmetric in j and k, then A(i, j, k) is a tensor.

2. Given the relation $A(i, j, k)B^{jk} = C^i$, where B^{jk} is an arbitrary skew-symmetric tensor. Prove that A(i, j, k) - A(i, k, j) is a tensor. Hence, if A(i, j, k) is skew-symmetric in j and k, then A(i, j, k) is a tensor.

 \checkmark 3. If $a(i,j) dx^i dx^j$ is an invariant for an arbitrary vector dx^i , and a(i,j) is symmetric, show that a(i,j) is a tensor a_{ij} .

 \checkmark 4. If a_{ij} is a tensor, show that A^{ij} , the cofactor of a_{ij} in $|a_{ij}|$ divided by $|a_{ij}| ≠ 0$, is a tensor.

5. If $\phi(x^1, \ldots, x^n)$ is a scalar, show that $\{\partial^2 \phi / \partial x^i \partial x^j\}$ is a tensor with respect to a set of *linear* transformations of coordinates.

6. If $|a_{ij} - \lambda b_{ij}| = 0$ for $\lambda = \lambda_1$, in one set of variables, then $|a_{ij}' - \lambda b_{ij}'| = 0$ for $\lambda = \lambda_1$, in the new set of variables. In other words, the roots of the polynomial $|a_{ij} - \lambda b_{ij}|$ are invariants.

√7. Prove that a tensor with skew-symmetric components in one coordinate
system has skew-symmetric components in all coordinate systems.

 $\sqrt{8}$. Show that every tensor can be expressed as the sum of two tensors, one of which is symmetric and the other skew-symmetric.

 $\sqrt{9}$. Show that the tensor equation $a_j{}^i\lambda_i=\alpha\lambda_j$, where α is an invariant and λ_j an arbitrary vector, demands that $a_j{}^i=\delta_j{}^i\alpha$.

10. Prove directly from the law of transformation of components that symmetry of a tensor is an invariant property.

✓ 11. The square of the element of arc ds appears in the form

$$ds^2 = g_{ij} \, dx^i \, dx^j.$$

Let T be an admissible transformation of coordinates $x^i=x^i(y^1,\ldots,y^n)$; then $ds^2=h_{ij}\,dy^i\,dy^j$. Prove that $|g_{ij}|$ is a relative scalar of weight two. *Hint:* $h_{ij}(y)=\frac{\partial x^\alpha}{\partial u^i}\frac{\partial x^\beta}{\partial u^j}g_{\alpha\beta}(x)$, and recall the rule for multiplication of determinants.

 \checkmark 12. How many independent components are there in a skew-symmetric tensor of rank two?

 \vee 13. If a_{ij} is a skew-symmetric tensor and A^i is a contravariant vector, then $a_{ij}A^iA^j=0$.

14. Prove that, if $A(i, j, k)A^iB^jC_k$ is a scalar for arbitrary vectors A^i , B^j , and C_k , then A(i, j, k) is a tensor.