Name: (1 pt.)

Spring 2005

This is a closed-book examination. You will have 55 minutes to complete your solutions.

1.(20 pts.) Let $\mathbf{u} \sim (1, -1, 1, -1)$ and $\mathbf{v} \sim (1, 1, -1, 1)$ be vectors in \mathbf{E}^4 . Compute:

- (a) $\mathbf{u} \cdot \mathbf{v}$
- (b) the angle between \mathbf{u} and \mathbf{v}
- (c) uv(w).

2.(20 pts.) First simplify and then carry out explicitly any implied summations in three-dimensional space:

- (a) δ_i^i
- (b) $\delta_i^3 \delta_k^j v^k$ (c) $\varepsilon_{i2k} \delta_n^i v^k$

3.(20 pts.) Define the phrase "T is a second order tensor on E^3 " and give an example of such a tensor. Show that your example satisfies the definition of a second order tensor.

4.(20 pts.) Let x, y denote Cartesian coordinates in \mathbf{E}^2 and consider the u, v coordinate system in \mathbf{E}^2 defined by $x = u^2 + v^2$, $y = u^2 - v^2$. Suppose that a second order tensor T in E^2 has contravariant components

in the u, v coordinate system at the point where u = 2, v = 1. Find the component T^{12} of **T** in the Cartesian coordinate system at this point.

5.(20 pts.) Let u^1, u^2, u^3 be a (general) coordinate system in \mathbf{E}^3 . For this coordinate system, define:

- (a) the cellar (covariant) base vectors;
- (b) the reciprocal base vectors;
- (c) the Christoffel symbols (of the second kind).

Also, (d) write Newton's second law $\mathbf{f} = m\mathbf{a}$ for the motion of a point-mass in the u^1, u^2, u^3 coordinate system.

Bonus. (20 pts.) Let $C: x^{i}(u)$ (i=1,2,3) be a smooth curve in \mathbf{E}^{3} in a general coordinate system x^1, x^2, x^3 for \mathbf{E}^3 . Define

$$V(i) = \frac{dx^i}{du} \quad (i = 1, 2, 3)$$

and

$$A(i) = \frac{d^2x^i}{du^2}$$
 (i = 1, 2, 3)

in the x^1, x^2, x^3 coordinate system.

- (a) Determine whether V(1), V(2), V(3) form the components of a vector (first order tensor) in \mathbb{E}^3 . Give reasons for your answer.
- (b) Determine whether A(1), A(2), A(3) form the components of a vector (first order tensor) in \mathbb{E}^3 . Give reasons for your answer

Math 322 Midterm Exam

The Math 322 midterm exam on Friday, March 4 will:

- 1. cover material in Chapters I, II, and III of Simmonds;
- 2. be a closed-book examination;
- 3. emphasize definitions, examples, important relations, and straightforward calculations.

Here are some sample midterm exam problems to help you understand the types of questions I expect you to be able to answer.

- 1. Let $\mathbf{u} \sim (2,1,-2)$, $\mathbf{v} \sim (3,-6,2)$, and $\mathbf{w} \sim (4,1,7)$ be vectors in \mathbf{E}^3 . Compute:
 - (b) the angle between \mathbf{u} and \mathbf{v} (c) $\mathbf{u} \times \mathbf{v}$ (d) uv(w).

Also, (e) determine whether $\{u, v, w\}$ forms a basis for E^3 .

- 2. First simplify and then carry out explicitly any implied summations in three-dimensional space:

- (a) $\delta_j^i v^j u_i$ (b) $\delta_j^2 \delta_k^j v^k$ (c) $\delta_j^3 \delta_1^j$ (d) $\varepsilon_{i3k} \delta_p^i v^k$
- 3. Define the phrase "T is a second order tensor on E^3 " and give an example of such a tensor. Show that your example satisfies the definition of a second order tensor.
- 4. Consider the polar coordinate system (r, θ) in \mathbf{E}^2 defined by $x = r\cos(\theta)$, $y = r\sin(\theta)$. Suppose that a second order tensor T in E^2 has contravariant components

in the polar coordinate system at the point where r=1, $\theta=\pi/4$. Find the component T^{21} of **T** in the Cartesian coordinate system at this point.

- 5. Let $\mathbf{x} = x(t)\mathbf{e}_x + y(t)\mathbf{e}_y + z(t)\mathbf{e}_z$ be a parametric representation of a smooth curve \mathbf{C} in \mathbf{E}^3 . Define (a) the unit tangent T, (b) the principal unit normal N, (c) the curvature κ , (d) the unit binormal B, and (e) the torsion τ for the curve C at each point. Then:
 - (f) Write the Frenet equations for the curve C.
 - (g) Describe the class of smooth space curves whose curvature is zero at each point.
 - (h) Describe the class of smooth space curves whose torsion is zero at each point.
- (i) Describe the class of smooth space curves whose curvature and torsion are positive and constant at each point.
- (j) Describe the class of smooth space curves whose curvature is positive and constant and whose torsion is zero at each point.
- 6. Consider the cylindrical coordinate system (r, θ, z) in \mathbf{E}^3 defined by $x = r\cos(\theta)$, $y = r\sin(\theta)$, and z = z.
- (a) Compute the cellar (covariant) base vectors $\{\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3\} = \{\mathbf{g}_r, \mathbf{g}_\theta, \mathbf{g}_z\}$ in cylindrical coordinates.
- (b) Compute the reciprocal base vectors $\{\mathbf{g}^1, \mathbf{g}^2, \mathbf{g}^3\} = \{\mathbf{g}^r, \mathbf{g}^\theta, \mathbf{g}^z\}$ in cylindrical coordinates.

- (c) Compute the roof (contravariant) components of the vector $\mathbf{v} \sim (x^2 + y^2, z, -2)$ in cylindrical coordinates.
- 7. Let u^1, u^2, u^3 be a (general) coordinate system in \mathbf{E}^3 . For this coordinate system, define:
 - (a) the cellar (covariant) base vectors,
 - (b) the reciprocal base vectors, and
 - (c) the Christoffel symbols (of the second kind).
 - (d) Given that the Christoffel symbols obey

$$\tilde{\Gamma}^{i}_{jk} = \frac{\partial \tilde{u}^{i}}{\partial u^{p}} \left(\frac{\partial u^{q}}{\partial \tilde{u}^{j}} \frac{\partial u^{r}}{\partial \tilde{u}^{k}} \Gamma^{p}_{qr} + \frac{\partial^{2} u^{p}}{\partial \tilde{u}^{j}} \partial \tilde{u}^{k} \right)$$

under a coordinate transformation

$$u^{j} = f^{j}(u^{1}, u^{2}, u^{3}) \quad (j = 1, 2, 3),$$

do they transform like the components of a tensor? Why or why not?

- (e) Write Newton's second law $\mathbf{f} = m\mathbf{a}$ for the motion of a point-mass in the u^1, u^2, u^3 coordinate system.
- (f) Do the contravariant components of acceleration for a moving point-mass in E^3 transform like the contravariant components of a first order tensor? Why or why not?