This is an open-book, open-notes examination. You will have two hours to complete your solutions. Solve any four of the following seven problems. Each problem has the same point value ... 75 points. **CIRCLE** the numbers of the four problems which you wish me to grade.

1. Let A and B be subsets of \mathbf{R} with positive Lebesgue measure. Show that

$$A+B = \{a+b : a \in A, b \in B\}$$

contains a nonempty open interval.

2. Let E be a Lebesgue measurable subset of \mathbf{R} . The metric density of E at a real number x is defined to be

$$\lim_{\varepsilon\to 0^+}\frac{m(E\cap(x-\varepsilon,x+\varepsilon))}{2\varepsilon},$$

provided the limit exists. Show that the metric density of E is 1 for almost every point of E and is 0 for almost every point of the complement of E.

3. Let $1 \le p < \infty$ and, for $f \in L^p(0,\infty)$, define

$$F(x) = \frac{1}{x} \int_{0}^{x} f(t)dt \qquad (0 < x < \infty).$$

(a) If $f \ge 0$ and $f \in L^p(0, \infty)$ for some 1 , show that

$$\int_{0}^{\infty} F^{p}(x)dx = -p \int_{0}^{\infty} F^{p-1}(x)xF'(x)dx = -p \int_{0}^{\infty} F^{p-1}(x)(f(x) - F(x))dx.$$

- (b) If $f \in L^p(0,\infty)$ for some $1 , show that <math>||F||_p \le \frac{p}{p-1} ||f||_p$.
- (c) Show that the inequality in part (b) is sharp by considering the function

$$f(x) = \begin{cases} x^{-1/p} & \text{if } 1 \le x \le A, \\ 0 & \text{otherwise,} \end{cases}$$

for large A.

- (d) If $f \ge 0$ and $f \in L^1(0,\infty)$, show that it is possible that $F \notin L^1(0,\infty)$.
- 4. Let $f \in L^p(0,1)$ for some p > 0. For $t \ge 0$, let $E_t = \{x \in (0,1): |f(x)| > t\}$ and let $m_f(t)$ denote the Lebesgue measure of the set E_t .
 - (a) Show that $h(x,t) = t^{p-1}\chi_{E_n}(x)$ is a measurable function on $(0,1)\times(0,\infty)$.
 - (b) Show that $\int_{0}^{1} |f(x)|^{p} dx = p \int_{0}^{\infty} t^{p-1} m_{f}(t) dt$.
 - (c) Use part (b) to show that $f \in L^p(0,1)$ if and only if $\sum_{n=1}^{\infty} m(\left\{x \in (0,1): \left|f(x)\right|^p \ge n\right\}) < \infty$.
- 5. In this problem, define $\ln(0)$ as $-\infty$ and $\exp(-\infty)$ as 0, and let $f \in L^p(0,1)$ for all p > 0.
 - (a) Show that $ln(t) \le t-1$ if $0 \le t < \infty$.
 - (b) Replace t by $|f(x)|/||f||_1$ in the inequality of part (a) and integrate over (0,1). What inequality

results?

(c) Show that for each $t \in [0, \infty)$, $\frac{t^r - 1}{r}$ decreases to $\ln(t)$ as $r \to 0^+$.

(d) Is is true that
$$\lim_{r\to 0^+} \frac{\int_0^1 |f(x)|^r dx - 1}{r} = \int_0^1 \ln |f(x)| dx$$
? Explain.

(e) Prove or disprove:
$$\lim_{r\to 0^+} ||f||_r = \exp\left(\int_0^1 \ln|f(x)| dx\right).$$

6. Let m denote Lebesgue measure on $(0,\infty)$. For any Lebesgue measurable subset E of $(0,\infty)$, define

$$\mu_1(E) = \sum_{n=1}^{\infty} \frac{1}{n^3} \int_{E \cap \{n, n+1\}} x dm,$$

$$\mu_2(E) = \int_{E \cap \{1, \infty\}} \frac{1}{x^2} dm.$$

Is m absolutely continuous with respect to μ_2 ? Is μ_2 absolutely continuous with respect to μ_1 ? Explain why or why not, and find the corresponding Radon-Nikodym derivatives, if they exist.

7. Let (X, Σ, μ) be a finite measure space, and S denote the set of (equivalence classes of) measurable real functions on X. (As usual, we will say that two real measurable functions on X are equivalent if they agree almost everywhere with respect to μ .) For f and g in S, define

$$d(f,g) = \int_{X} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} d\mu(x).$$

Show that d is a metric on S and that $f_n \to f$ in this metric if and only if $f_n \to f$ in measure.