Mathem	atics	3	1	5
Manicili	autos	J	1	•

Midterm Exam Spring 2006

Name:

1.(25 pts.) Let f be a bounded real function on [a,b] and let α be a real function on [a,b].

- (a) If α is increasing on [a,b], define the phrase "f is Riemann-Stieltjes integrable with respect to α on [a,b]".
 - (b) Define what it means for α to be of bounded variation on [a,b].
 - (c) State Jordan's theorem relating functions of bounded variation and increasing functions.
- (d) State the definition of the Riemann-Stieltjes integral of f with respect to α on [a,b] if f is continuous on [a,b] and α is of bounded variation on [a,b].
- (e) If f is continuous on [0,1] and $\alpha(x) = \sum_{n=2}^{\infty} \frac{1}{n^2} H\left(x \frac{1}{n}\right)$, write, without proof, a formula for the value of $\int_{-1}^{1} f d\alpha$. (Here H denotes the unit Heaviside step function.)

(f) If f is Riemann integrable on [0,1] and α is differentiable with α' Riemann integrable on [0,1], write, without proof, a formula for the value of $\int_{0}^{1} f d\alpha$.

2.(25 pts.) Consider the vector space C[a,b] of all continuous real functions on the interval [a,b].

- (a) Define the phrase "N is a norm on C[a,b]".
- (b) If N is a norm on C[a,b], define the phrase "N is a Banach space norm on C[a,b]".
- (c) Give, without proof, an example of a norm on C[a,b] which is **not** a Banach space norm.
- (d) Give, without proof, an example of a norm on C[a,b] which is a Banach space norm.
- (e) Define the phrase " Λ is a bounded linear functional on the normed linear space (C[a,b], N)".
- (f) State, without proof, the Riesz Representation Theorem characterizing the bounded linear functionals on the space C[a,b]. (Be sure to clearly state the Banach space norm that is being used on C[a,b].)
- (g) Show that $\Lambda(f) = f(0) 3f(1/2) + 2\int_0^1 f(x)xdx$ defines a bounded linear functional on C[0,1] equipped with an appropriate Banach space norm. Then find a function α corresponding to Λ guaranteed by the Riesz Representation Theorem.

3.(25 pts.) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real functions on [a,b], and let f be a real function on [a,b].

- (a) Define the phrase " $\{f_n\}_{n=1}^{\infty}$ converges to f pointwise on [a,b]".
- (b) Define the phrase " $\{f_n\}_{n=1}^{\infty}$ converges to f uniformly on [a,b]".
- (c) Give, without proof, an example of a sequence of functions $\{f_n\}_{n=1}^{\infty}$ which is pointwise convergent but not uniformly convergent on [0,1].
 - (d) State the Stone-Weierstrass approximation theorem.
 - (e) Briefly sketch the steps you would take in showing that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f\left(n\pi\sqrt{2}\right) = \frac{1}{2\pi}\int_{-\pi}^{\pi} f(t)dt$$

for all continuous, complex, 2π – periodic functions f.

- 4.(25 pts.) Let f be a 2π -periodic real function which is Riemann integrable on $[-\pi, \pi]$.
 - (a) Define the Fourier coefficients and Fourier partial sums of f.
- (b) Define the Dirichlet and Fejer kernels and tell how they are related to the Fourier partial sums of f.
 - (c) State the Dirichlet-Jordan theorem for convergence of the Fourier partial sums of f.
- (d) State Fejer's theorem on uniform convergence of the arithmetic means of the Fourier partial sums of f.