You have 50 minutes to complete this test. You must *show all work* to receive full credit. Work any 8 of the following 9 problems. Clearly **CROSS OUT** the problem you do not wish me to grade. Each problem is worth 12 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Solve
$$\frac{dy}{dx} = \frac{xy}{\sqrt{1-x^2}}$$
 if $y = 2$ when $x = 0$.

$$\frac{1}{y} dy = \frac{x}{(1-x^2)^{1/2}} dx$$

$$\int \frac{1}{y} dy = \int x(1-x^2)^{1/2} dx$$

$$\lim_{x \to \infty} x = \int x(1-x^2)^{1/2} d$$

2. Evaluate the following.

(a)
$$\int 5e^{3x} dx = \frac{5}{3}e^{3x} + C$$

(b)
$$\int \frac{3x+6}{2x^2+8x+3} dx = \frac{3}{4} \int \frac{1}{u} du = \frac{3}{4} \ln|u| + C$$

 $u = 2x^2+8x+3 = \frac{3}{4} \ln|2x^2+8x+3| + C$
 $du = (4x+8) dx$
 $du = (x+2) dx \rightarrow \frac{3}{4} du = (3x+6) dx$

3. Find all maxima, minima and inflection points of $f(x) = xe^{-2x}$. Also give the intervals where f is increasing, decreasing, concave up, and concave down. Find all asymptotes. Then carefully sketch the graph of f.

$$f'(x) = e^{-2x} - 2xe^{-2x}$$

$$= e^{-2x} (1 - 2x) = 0$$

$$CN : x = \frac{1}{2} \xrightarrow{+} \xrightarrow{+} f'$$

$$f''(x) = -2e^{-2x} (1 - 2x) - 2e^{-2x} = 0$$

$$= -2e^{-2x} (1 - 2x + 1) = 0$$

$$= -4e^{-2x} (1 - x) = 0$$

$$IN : x = 1 \xrightarrow{-} \xrightarrow{+} f''$$

Results: inc on $(-\infty, \frac{1}{2})$ dec on $(\frac{1}{2}, \frac{1}{2e})$ max $(\frac{1}{2}, \frac{1}{2e})$ min none

concup $(1, \infty)$ conc down $(-\infty, 1)$ $1 \wedge 1 \cdot pt \cdot (1, \frac{1}{e^2})$ VA: none $1 \wedge 4 \cdot y = 0$ as $x \to \infty$

4. Find f'(x) for the following functions. DO NOT simplify!

(a)
$$f(x) = x^2 e^{-x}$$

 $f'(x) = 2x e^{-x} + x^2 e^{-x} (-1)$

(b)
$$f(x) = \ln \sqrt{x^2 + 4x + 1}$$

 $f'(x) = \frac{1}{2} (x^2 + 4x + 1)^{-1/2} (2x + 4)$

5. How long will it take for a \$2000 investment to be worth \$5000 if it grows at an annual rate of 8% compounded continuously?

$$B = Pe^{rt}$$
 $5000 = 2000 e^{.08t}$
 $\frac{5}{2} = e^{.08t}$
 $\ln 2.5 = .08t$
 $t = \frac{\ln 2.5}{.08} \approx 11.454 \text{ years} \approx 11 \frac{1}{2} \text{ years}$

6. A large turkey is placed in a 350°F oven at noon on Thanksgiving Day. The original temperature of the turkey is 70°F. Newton's Law of Cooling states that the temperature of the turkey t minutes later is given by a function of the form $f(t) = 350 - Ae^{kt}$. Suppose that after 1 hour, the temperature of the turkey is 100°F. A turkey is done when its temperature is 165°F. What time is dinner?

(noon)
$$t=0$$
 $f(t)=70$ 0
 $t=1$ $f(t)=100$ 2
 $t=7$ $f(t)=165$ 3

①
$$70 = 350 - 4e^{k(0)}$$

 $A = 350 - 70 = 280$
 $f(t) = 350 - 280e^{kt}$

(2)
$$100 = 350 - 280 e^{K(1)}$$

 $280 e^{K} = 250$
 $e^{K} = \frac{25}{28}$
 $K = 4n \frac{25}{28} \approx -0.11333$
 $f(t) = 350 - 260 e^{K(1)}$

3
$$165 = 350 - 280e^{-0.11333t}$$
 $280e^{-0.11333t} = 185$
 $e^{-0.11333t} = \frac{185}{280}$
 $-0.11333t = 4m\frac{185}{280}$
 $t = 4m\frac{185}{280} \approx 3.657 \text{ hrs}$
 -0.11333
 $3 \text{ hrs} + .657 \text{ hrs} \times \frac{60 \text{ min}}{1 \text{ hr}}$
 $\approx 3 \text{ hrs} = 30 \text{ min}$
Dinner is around
 $3:30 \text{ pm}$.

7. a) Evaluate $e^{3\ln 4 - \ln 2}$. Your answer should be an integer.

$$e^{3\ln 4 - \ln 2}$$
= $e^{\ln 4^3 - \ln 2}$
= $e^{\ln 64 - \ln 2}$
= $e^{\ln 64}$
= $e^{\ln 64}$
= $e^{\ln 64}$

- b) Find $\frac{1}{a} \ln \left(\frac{\sqrt{b}}{c} \right)^a$ if $\ln b = 6$ and $\ln c = 2$. $\frac{1}{a} \operatorname{M} \left(\frac{b}{c} \right)^a = \operatorname{M} \left(\frac{b^{1/2}}{c} \right)$
 - = 1 h b h c = 1 (6) - 2 = 3-2=1
- 8. A manufacturer estimates marginal revenue to be $200q^{-\frac{1}{2}}$ dollars per unit when the level of production is q units. The corresponding marginal cost has been found to be 0.4q dollars per unit. If the manufacturer's profit is \$2000 when the level of production is 25 units, what is the profit when the level of production is 36 units?

Profit = Rev-Cost

$$P' = R' - C'$$

 $P' = 200 g^{-1/2} - 0.4g$
 $P = 400 g^{1/2} - 0.2 g^2 + K$
 $P = 2000 \text{ when } g = 25,50$
 $2000 = 400 \sqrt{25} - 0.2(625) + K$
 $2000 = 2000 - 125 + K$
 $K = 125$
 $P = 400 g^{1/2} - 0.2 g^2 + 125$

when
$$g = 36$$
,
 $P = 400(6) - 0.2(1296) + 125$
 $= 2400 - 259.2 + 125$
 $= 2265.80$

If
$$g = 36$$
 units, profit will be $P = 4265.80$

9. Evaluate $\int x \ln 3x \, dx$.

$$U = \ln 3 \times$$

$$du = \frac{1}{3x} \cdot 3 dx$$

$$= \frac{1}{2} \times 2$$

$$= \frac{1}{2} \times 2$$

$$\int x \ln 3x dx = (\ln 3x)(\frac{1}{2}x^2) - \int (\frac{1}{2}x^2)(\frac{1}{x}dx)$$

$$= \frac{1}{2}x^2 \ln 3x - \frac{1}{2}\int x dx$$

$$= \frac{1}{2}x^2 \ln 3x - \frac{1}{4}x^2 + C$$