You have 60 minutes to complete this test. You must *show all work* to receive full credit. Work any 6 of the following 7 problems. Clearly **CROSS OUT** the problem you do not wish me to grade. Each problem is worth 16 points, and you get 4 points for free, for a total of 100 points. The answers will be posted on the electronic reserves later today.

1. Solve
$$\frac{dy}{dx} = \frac{1}{y^2(2x-5)^6}$$
 if $y = 0$ when $x = 2$.

$$y^{2}dy = \frac{1}{(2x-5)^{6}} dx$$

$$\int y^{2}dy = \int (2x-5)^{-6} dx$$

$$\frac{1}{3}y^{3} = \frac{1}{3} \int u^{-6} du = \frac{1}{10} u^{-5} + C$$

$$= \frac{-1}{10} (2x-5)^{-5} + C$$

$$u = 2x-5$$

$$du = 2dx$$

$$\frac{1}{3}du = dx$$

If
$$x=2$$
, $y=0$, so

$$0 = \frac{1}{10} (4-5)^{-5} + C$$

$$0 = \frac{1}{10} \frac{1}{(-1)^5} + C$$

$$0 = \frac{1}{10} + C$$

$$C = \frac{1}{10} (2x-5)^{-5} - \frac{1}{10}$$

$$y^3 = \frac{3}{10} (2x-5)^{-5} - \frac{3}{10}$$

$$y = \frac{3}{10} (2x-5)^{-5} - \frac{3}{10}$$

2. Find f'(x) for the following functions. DO NOT simplify!

(a)
$$f(x) = x^2 \ln(3x)$$

 $f'(x) = 2x \ln(3x) + x^2 \left(\frac{1}{3x}\right)(3)$

(b)
$$f(x) = \sqrt{e^{x^2-6} + 4x} = (e^{x^2-6} + 4x)^{1/2}$$

 $f'(x) = \frac{1}{2} (e^{x^2-6} + 4x)^{-1/2} (e^{x^2-6} (2x) + 4)$

3. Suppose you want to have \$15,000 three years from now in order to purchase a car. How much will you need to invest in one lump sum now at an annual rate of 6% compounded monthly in order to reach your goal?

$$B = P(1 + \frac{r}{k})^{kt}$$

$$15000 = P(1 + \frac{0.06}{12})^{12.3}$$

$$15000 = P(1.005)^{36}$$

$$P = \frac{15000}{(1.005)^{36}} \approx \frac{12.534.67}{12.534.67}$$

4. Suppose that the number of hamburgers sold by a national fast-food chain grows exponentially. If 4 billion were sold by 2005 and 12 billion had been sold by 2010, in what year will sales reach the 25 billion mark?

$$B = Pe^{rt}$$
 $2005 \quad t = 0$
 $2010 \quad t = 5$
 $t = ?$
 $t = ?$
 $t = ?$
 $t = ?$
 $t = ?$

②
$$12 = 4e^{5r}$$

 $3 = e^{5r}$
 $4n3 = 5r$
 $r = \frac{4n3}{5} \approx 0.2197$
so now $8 = 4e^{0.2197t}$

(3)
$$25 = 4e^{0.2197t}$$

 $6.25 = e^{0.2197t}$
 $4.25 = 0.2197t$
 $t \approx \frac{46.25}{0.2197}$

5. a) If $\log_3 x = 2\log_3 6 - \log_3 7$, find x. Your solution should be a rational number.

$$log_3 \times = log_3 36 - log_3 7$$

 $log_3 \times = log_3 \frac{36}{7}$
 $X = \frac{36}{7}$

- b) If $\log_3 x = 6$, $\log_3 y = \frac{1}{2}$, and $\log_3 z = 3$, calculate $\log_3 \frac{\sqrt{x}}{y^2 z}$. $\log_3 \frac{\sqrt{x}}{y^2 z} = \log_3 \sqrt{x} - (\log_3 y^2 + \log_3 z)$ $= \frac{1}{2} \log_3 x - 2 \log_3 y - \log_3 z$ $= \frac{1}{2} (6) - 2(\frac{1}{2}) - 3 = 3 - 1 - 3 = -1$
- 6. Evaluate the following integrals:

a)
$$\int 5e^{3x} dx = \frac{5}{3} e^{3x} + C$$

b)
$$\int \frac{3x - \sqrt{x}}{x^2} dx = \int (3x^{-1} - x^{-3/2}) dx$$

= $3 \ln|x| + 2x^{-1/2} + C$

c)
$$\int 2xe^{x}dx$$

 $u = 2x$ $dv = e^{x}dx$
 $du = 2dx$ $v = e^{x}$
 $du = 2dx$ $du = 2dx$

7. Find all maxima, minima and inflection points of $f(x) = xe^x$. (If there are none, say so.) Also give the intervals where f is increasing, decreasing, concave up, and concave down. Find all asymptotes (or say there are none). Then carefully sketch the graph of f. Be sure to label the asymptotes, extrema, and inflection points.

$$f'(x) = e^{x} + xe^{x}$$

$$= e^{x} (1+x) = 0$$

$$\frac{CN}{x} : x = -1$$

$$\frac{-1}{-1} + \frac{1}{-1} + \frac{1}{-1}$$

Results

inc on
$$(-1, \infty)$$

dec on $(-\infty, -1)$

min at $(-1, -\frac{1}{e})$

conc up on $(-2, \infty)$

conc down on $(-\infty, -2)$

inf pt $(-2, -\frac{2}{e^2})$

VA: none, defined forall \times

HA: $y = 0$ (happens on left)

