- 1.(26 pts.) Define each the following terms, phrases, or symbols.
 - a. The set E is countable.
 - b. The subset E of \mathbb{R} is of measure zero.
 - d. Define $U(P, f, \alpha)$, $L(P, f, \alpha)$, $\int_{a}^{b} f d\alpha$, and $\int_{a}^{b} f d\alpha$ where f is a bounded real function on [a, b]

and α is increasing on [a,b].

- e. The bounded, real function f is Riemann-Stieltjes integrable with respect to the increasing function α on [a,b].
 - f. The real function α is of bounded variation on [a,b].
 - g. Define $\int_{a}^{b} f d\alpha$ where f is continuous and α is of bounded variation on [a,b].
 - h. The sequence of real functions $\langle f_n \rangle_{n=1}^{\infty}$ converges to f pointwise on the set E.
 - i. The sequence of real functions $\langle f_n \rangle_{n=1}^{\infty}$ converges to f uniformly on the set E.
 - j. The function N is a norm on a vector space X.
 - k. The sequence $\langle \mathbf{x}_n \rangle_{n=1}^{\infty}$ in a normed linear space (X, N) is Cauchy.
 - 1. The sequence $\langle \mathbf{x}_n \rangle_{n=1}^{\infty}$ in a normed linear space (X, N) is convergent.
 - m. (X,N) is a Banach space.
- 2.(24 pts.) Give statements for each of the following.
- a. State Lebesgue's theorem characterizing the set of points at which a monotonic function is differentiable.
 - b. State conditions under which the Riemann-Stieltjes integral of a function will exist.
 - c. State Holder's inequality and the conditions under which it holds.
 - d. State Jordan's theorem relating functions of bounded variation and monotonic functions.
 - e. State the integration by parts theorem for Riemann-Stieltjes integrals.
 - f. State the Weierstrass M-test.
- 3.(50 pts.) In each of the following cases, give an example or tell why such an example is impossible.
 - a. An uncountable subset of the real numbers which has measure zero.
 - b. A countable subset of the real numbers which is not of measure zero.
- c. A function which is not Riemann-Stieltjes integrable with respect to the Heaviside unit step function on the interval [-1,1].
 - d. A differentiable function which is not of bounded variation on [0,1].
 - e. A function of bounded variation on [0,1] with an uncountable number of discontinuities.
 - f. A pointwise convergent sequence of real functions which is not uniformly convergent.
 - g. A uniformly convergent sequence of continuous functions whose limit is not continuous.
 - h. A convergent sequence of Riemann integrable functions whose limit is not Riemann integrable.
 - i. A normed linear space.
 - j. A Cauchy sequence in $(C[0,1], \| \|_{u})$ which is not convergent.

Math 315 Midterm Exam Spring 2013

n: 21

mean: 77.4

median: 79

Standard deviation: 15,7

Range	Graduate Letter Grade	Undergraduate Letter Grade	Frequency
85-100	A	Α	10
70 - 84	В	В	4
65 - 69	С	В	0
50 - 64	С	C	6
0 - 49	F	D	1