Midterm Exam Spring 2014

*	
Name:	<u></u>

1.(30 pts.) Define each the following terms, phrases, or symbols.

- (a) A sequence $\{f_n\}_{n=1}^{\infty}$ of real functions converges to f pointwise on a set E.
- (b) A sequence $\{f_n\}_{n=1}^{\infty}$ of real functions converges to f uniformly on a set E.
- (c) If f is a bounded real function on [a,b], P is a partition of [a,b], and α is an increasing real

function on
$$[a,b]$$
, define $U(f,P,\alpha)$, $L(f,P,\alpha)$, $\int_a^b fd\alpha$, and $\int_a^b fd\alpha$.

- (d) The bounded real function f is Riemann-Stieltjes integrable with respect to the increasing real function α on [a,b].
 - (e) The real function α is of bounded variation on [a,b].
- (f) Define the Riemann-Stieltjes integral of a continuous function f with respect to a function α of bounded variation on [a,b].
- (g) The Fourier coefficients $a_0(f)$, $a_n(f)$, and $b_n(f)$ (n=1,2,3,...) of a Riemann integrable function f on the interval $[-\pi,\pi]$.
 - (h) (X, N) is a real normed linear space.
 - (i) $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in a real normed linear space (X, N).
 - (j) (X, N) is a real Banach space.

2.(30 pts.) Give statements for each of the following.

- (a) Lebesgue's theorem about the "smoothness" of monotone functions.
- (b) Jordan's theorem relating increasing functions and functions of bounded variation.
- (c) Holder's inequality and conditions under which it is guaranteed to hold.
- (d) The Weierstrass M-Test.
- (e) Weierstrass' theorem on the approximation of continuous real functions on a closed, bounded interval.
- 3.(50 pts.) In each of the following cases, give an example or tell why such an example is impossible.
 - (a) A set of measure zero which is uncountable.
- (b) A countable set which is not of measure zero.
- (c) A function which is differentiable on [0,1] but not of bounded variation on [0,1].
- (d) A function which is Lipschitz continuous on [0,1] but not of bounded variation on [0,1].
- (e) A uniformly convergent sequence of differentiable functions on [0,1] whose limit function is not differentiable on [0,1].
- (f) A uniformly convergent sequence of differentiable functions on [0,1] whose limit function is not continuous on [0,1].
 - (g) A norm N on the vector space C[0,1] such that (C[0,1], N) is not a Banach space.
 - (h) A norm N on the vector space C[0,1] such that (C[0,1], N) is a Banach space.