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Lecture Notes for Section 6.2
Laplace’s Equation in Rectangles and Cubes

We have already seen how to solve Laplace’s equation in a rectangle. (See the examples from

Sections 4.1 and 5.1.) We will now look at the case of cubes. - 2

Example 1. (Similar to #6 on page 158) Solve V'u =0 inthe cube 0 <x<1, 0<y<], Oixz<1
subject to the inhomogeneous Neumann boundary condition

u,(x, y,1) =cos(zx)cos’(zy) if 0<x<1, 0<y<], 1 Gy =0
and homogeneous Neumann boundary conditions on the other five faces. w (L, #)=0 o Y y

. * -
Solution. Since we are solving a PDE on a bounded region, we use separation of{éiables. We seek
nontrivial solutions to the homogeneous part of the problem above of the form
u(x, y,z) = X(x)Y(¥)Z(z). Differentiating and substituting this functional form for the solution into the

PDE u,, +u, +u, =0 gives
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Separating variables successively yields
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Thus we arrive at the coupled system of three ODEs:

T+ AEH = o,

—

T+ pIly) <o,

2'e) — W) ) =,

where A and u are independent constants. (‘E\L S:;_m;-..it ‘fcma,)

The homogeneous Neumann boundary condition on the face x =1 of the cube is u (1, y,z) = 0.
Substituting the functional form u(x, y,z) = X (x)Y(¥)Z(2) into this boundary condition leads to

T0) Iy = o
forall 0<y <1, 0<z<1. Since we seek nontrivial solutions, it follows that
X0 = o,
Similar reasoning for the homogeneous Neumann conditions on the other four faces leads to:
X@+ I E(F) =0, Bll=c = F0), ot plin
Yitt,) + Ty)= 0 *f'@)__::o = Y'0) |
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Notice that the first two lines above contain eigenvalue problems but there is just one boundary
condition for the second order ODE in z in the last line; so it is not an eigenvalue problem.

From previous work in Section 4.2, we know that the eigenvalues and eigenfunctions for the
problems in the first two lines are, respectively,

M= R, To= wo(frx)  (L=e 1z, .0)
ol o |
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Substituting A, -I;:’p,,, = (17r)2 + (nm‘)2 into the differential equation in the third line, we get
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where 4,,, is an arbitrary constant. Therefore a formal solution to the homogeneous part of the problem
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If possible, we want to choose the constants so that the inhomogeneous boundary condition is met:

cos(zx)cos’(zy) =u,(x,,1) = t j:_ T‘Jﬂf Fm> A MJ»('T Foem )am@ma (mTrj)

L=0 m=o
forall 0<x <1, 0<y<1. Using the identity cos’ (9) = 2cos(fﬁ’) +—1—cos(39) this becomes
st oIl = T 5 7 F STl

K=o M=o -
forall 0<x<1, 0<y<1. By inspection,
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and all other 4, = 0. Therefore
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where A, is an arbitrary constant. In particular, note that there is not a unique solution to this problem.
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Example 2. (#6 on page 158) Solve V?u =0 inthe cube 0 <x <1, 0 <y <1, 0 <z <], subject to the
inhomogeneous Neumann boundary condition ,

u,(x,,)=g(x,y) if 0=xg], 0<y<],
and homogeneous Neumann boundary conditicns on the other five faces. Here g = g(x,y) is a square-
integrable function with zero average on the unit square S: 0<x <1, 0<y<I.

Solution. Proceeding as in Example 1, we find that

u(x,y,z) = i i 4, cosh(yrz\hf2 +m’ )cos (Irx)cos(mmy)

=0 m=0

where the constants 4, are chosen so as to satisfy the inhomogeneous Neumann condition:

1, m

(*) gx, ) =u(x, )= i iyr I* +m’ 4, sinh (n\/lz +m’ )cos(hrx) cos(mry)

1= m=0
forall 0<x<1, 0<y<1.
It is not hard to see that the functions v, (x, ) = cos({zx)cos(mry) (/=0,12,. . and m=0,1,2,...)
form an orthogonal system on the unit square S'. This can be shown directly by verifying
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However, a faster way to show orthogonality is to observe that {w,‘m }m

{.m=

. consists of eigenfunctions of

axQ a}}Z
vV ={y/ eC*(S): w . (1,y)=0=yw (0,y) forall 0<y<land v (x,0)=0=y (x,1) forall Ostl}.

Using general Fourier series, we “know” that

(+) g(x,y)~ i i B, Wi (x,y)= i i B, cos(Izx)cos(mzy)

1=0 m=0 =0 m=0
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the symmetric operator V™ =—| —+——=1 on

where the coefficients B,  are the Fourier coefficients of g with respect to the orthogonal system

im
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Therefore, comparing (*) and (+) we see that
(%) B,,, =7\l +m 4, sih{m I + o7 )
where B,,, is given by (#). Note that if (Z,m) =(0,0) then the right member of (%) is zero for arbitrary

11
4,,- Hence, we musthave 0=5B;, = Ijg(x, y)dxdy in order for a solution to exist for Example 2.
[tl1]

That is, g must have average value zero in the unit square S.



To summarize, a solution to Example 2 is given by

= = B, cosh(:rzwl2 +m’ )cos(lzrx)cos(m;ry)
u(x,y,2) = +
D=t 2 4 N o sioh (7P + )

(L my(0.0}
provided g has average value zero in the unit square S, 4,, is an arbitrary constant, and the
coefficients B, , are given by (#).
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