Ahlfors Chapter 1. Complex Numbers

EXERCISES

1. Find the values of

$$(1+2i)^3$$
, $\frac{5}{-3+4i}$, $\left(\frac{2+i}{3-2i}\right)^2$, $(1+i)^n+(1-i)^n$.

pp. 2-3

2. If z = x + iy (x and y real), find the real and imaginary parts of z = 1

$$z^4$$
, $\frac{1}{z}$, $\frac{z-1}{z+1}$, $\frac{1}{z^2}$.

3. Show that

$$\left(\frac{-1 \pm i\sqrt{3}}{2}\right)^3 = 1$$
 and $\left(\frac{\pm 1 \pm i\sqrt{3}}{2}\right)^6 = 1$

for all combinations of signs.

EXERCISES

✓1. Compute

$$\sqrt{i}$$
, $\sqrt{-i}$, $\sqrt{1+i}$, $\sqrt{\frac{1-i\sqrt{3}}{2}}$

 $\sqrt{2}$. Find the four values of $\sqrt[4]{-1}$.

3. Compute $\sqrt[4]{i}$ and $\sqrt[4]{-i}$.

√ 4. Solve the quadratic equation

$$z^2 + (\alpha + i\beta)z + \gamma + i\delta = 0.$$

P. 4

EXERCISES (For students with a background in algebra)

y 1. Show that the system of all matrices of the special form

$$\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$

combined by matrix addition and matrix multiplication, is isomorphic to the field of complex numbers.

2. Show that the complex-number system can be thought of as the field of all polynomials with real coefficients modulo the irreducible polynomial $x^2 + 1$.

p.6

 $\sqrt{1}$. Verify by calculation that the values of

$$\frac{z}{z^2+1}$$

for z = x + iy and z = x - iy are conjugate.

2. Find the absolute values of

$$-2i(3+i)(2+4i)(1+i)$$
 and $\frac{(3+4i)(-1+2i)}{(-1-i)(3-i)}$.

/ 3. Prove that

$$\left| \frac{a-b}{1-\bar{a}b} \right| = 1$$

if either |a| = 1 or |b| = 1. What exception must be made if |a| = |b| = 1?

4. Find the conditions under which the equation $az + b\bar{z} + c = 0$ in one complex unknown has exactly one solution, and compute that solution.

5. Prove Lagrange's identity in the complex form

$$\Big|\sum_{i=1}^n a_i b_i\Big|^2 = \sum_{i=1}^n |a_i|^2 \sum_{i=1}^n |b_i|^2 - \sum_{1 \le i < j \le n} |a_i \bar{b}_j - a_j \bar{b}_i|^2.$$

EXERCISES

J. Prove that

$$\left|\frac{a-b}{1-\bar{a}b}\right|<1$$

if |a| < 1 and |b| < 1.

2. Prove Cauchy's inequality by induction.

 \checkmark 3. If $|a_i| < 1$, $\lambda_i \ge 0$ for $i = 1, \ldots, n$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$, show that

$$|\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_n a_n| < 1.$$

$$|z-a|+|z+a|=2|c|$$

if and only if $|a| \le |c|$. If this condition is fulfilled, what are the smallest and largest values of |z|?

pp. 11-12

EXERCISES

- 1. Find the symmetric points of a with respect to the lines which bisect the angles between the coordinate axes.
- **2.** Prove that the points a_1 , a_2 , a_3 are vertices of an equilateral triangle if and only if $a_1^2 + a_2^2 + a_3^2 = a_1a_2 + a_2a_3 + a_3a_4$.
- \sim 3. Suppose that a and b are two vertices of a square. Find the two other vertices in all possible cases.
- 4. Find the center and the radius of the circle which circumscribes the triangle with vertices a_1 , a_2 , a_3 . Express the result in symmetric form.

EXERCISES

- 1. Express $\cos 3\varphi$, $\cos 4\varphi$, and $\sin 5\varphi$ in terms of $\cos \varphi$ and $\sin \varphi$.
- **2.** Simplify $1 + \cos \varphi + \cos 2\varphi + \cdots + \cos n\varphi$ and $\sin \varphi + \sin 2\varphi + \cdots + \sin n\varphi$.
 - - 4. If ω is given by (23), prove that

$$1 + \omega^h + \omega^{2h} + \cdots + \omega^{(n-1)h} = 0$$

for any integer h which is not a multiple of n.

EXERCISES

- 1. When does $az + b\bar{z} + c = 0$ represent a line?
- 2. Write the equation of an ellipse, hyperbola, parabola in complex form.
- ✓ 3. Prove that the diagonals of a parallelogram bisect each other and that the diagonals of a rhombus are orthogonal.
- 4. Prove analytically that the midpoints of parallel chords to a circle lie on a diameter perpendicular to the chords.
- 5. Show that all circles that pass through a and $1/\bar{a}$ intersect the circle |z| = 1 at right angles.

EXERCISES

- \checkmark 1. Show that z and z' correspond to diametrically opposite points on the Riemann sphere if and only if $z\bar{z}' = -1$.
- 2. A cube has its vertices on the sphere S and its edges parallel to the coordinate axes. Find the stereographic projections of the vertices.
 - 3. Same problem for a regular tetrahedron in general position.
- 4. Let Z, Z' denote the stereographic projections of z, z', and let N be the north pole. Show that the triangles NZZ' and Nzz' are similar, and use this to derive (28).
- 5. Find the radius of the spherical image of the circle in the plane whose center is a and radius R.

p. 15

pp.16-17

p.17

p. 20