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Abstract. Many classical results for ordinary differential equations have counter-

parts in the theory of difference equations, although, in general, the technical details

for the difference versions are more involved than the corresponding ones for dif-

ferential equations. This note surveys material related to a difference analoge of

Lettenmeyer’s theorem. The projection method of W. A. Harris, Jr., Y. Sibuya, and
L. Weinberg, developed to treat certain questions in the analytic theory of ordinary

differential equations is used to obtain counterparts for linear difference equations as

well as extensions to certain nonlinear differential and difference equations.

1. INTRODUCTION. In 1969, the seminal paper of W. A. Harris, Jr., Y.
Sibuya, and L. Weinberg [10] provided simplified proofs of several classical results
in the analytic theory of ordinary differential equations as corollaries of a projection
theorem. Analogous results were obtained by W. J. Fitzpatrick and L. J. Grimm
[1] for a system of linear difference equations in a setting which had been used
by Harris [7] to develop a Frobenius method for constructing a fundamental set of
solutions for a system of linear difference equations of the form

(1) (z − 1)∆−1y(z) = A(z) y(z).

Here ∆−1y(z) = y(z) − y(z − 1) and A(z) is an n× n matrix whose elements have
convergent factorial series expansions in some right half-plane. In this note, we
discuss these and related results, and indicate some directions for further work.

2. FACTORIAL SERIES and LINEAR EQUATIONS. A series, convergent
in some half-plane, having the form

f(z) = f0 +
∞∑

k=0

fk+1k!
z(z + 1)(z + 2) · · · (z + k)

,
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is called a factorial series. We also define the factorial function

z(k) = z(z − 1)(z − 2) · · · (z − k + 1).

Details on the algebra of factorial series can be found in [1] or [13].
Let X(δ) denote the set of all complex-valued functions which have absolutely

convergent factorial series expansions for �(z) ≥ δ > 1. For h ∈ X(δ) with

h(z) = h0 +
∞∑

k=0

hk+1k!
z(z + 1) · · · (z + k)

define

‖h‖ = |h0|+
∞∑

k=0

|hk+1| k!
δ(δ + 1) · · · (δ + k)

.

With the operations of addition and scalar multiplication defined on X(δ) in the
natural way, (X(δ), ‖ · ‖) is a Banach space isomorphic to l1. Let Xn(δ) denote the
set of all n-vector functions f = f(z) =

(
f1(z), f2(z), . . . , fn(z)

)T whose compo-
nents are elements of Xn(δ). With the norm defined by

‖f‖n =
n∑

i=1

‖f i‖,

(Xn(δ), ‖ · ‖) is also a Banach space.
The following result is a difference version of the Harris-Sibuya-Weinberg theo-

rem.

Theorem 1 [1]. Let A(z) be an n× n matrix whose elements belong to X(δ) for
some δ > 1. Let D = diag(d1, d2, . . . , dn), with each di equal to either 1 or 2.
Denote by (z − 1)(D) the matrix diag((z − 1)(d1), (z − 1)(d2), . . . , (z − 1)(dn)). Then
for each positive integer N , sufficiently large, and for each vector-valued function
φ(z) such that (z − 1)(D)φ(z) is a polynomial of degree N , there exists a vector
polynomial f(z;φ), which also depends on A and N , of degree N − 1 such that the
linear difference system

(z − 1)(D)∆−1y(z) = A(z) y(z) + f(z;φ)

has a factorial series solution y(z) ∈ Xn(δ). Further, f and y are linear and
homogeneous in φ, and (z − 1)(D)(y − φ) = O((z − 1)−N ) as z → ∞ in �(z) > δ.

The proof is an application of the Banach fixed point theorem. The polynomials
involved are represented in factorial polynomial form, and the statement of the
theorem in [1] involves factorial polynomials for this reason. The next three results
are corollaries of Theorem 1.
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Corollary 2. Let d denote the number of the dj which equal 2. Then the system

(2) (z − 1)(D)∆−1y(z) = A(z) y(z)

has at least d linearly independent factorial series solutions in Xn(δ).

Remarks.
1. Corollary 2 is a difference equation analogue of a theorem of F. Lettenmeyer

(see [4]).
2. If dj = 2 for j = 1, 2, . . . , n, then (2) has n linearly independent convergent

factorial series solution. this case is analogous to a linear differential system
with an ordinary point at z = ∞.

3. By the use of Waring’s formula [13], the case where some dj > 2 can be
reduced to dj = 2 before using Theorem 1, making Theorem 1 applicable
to all cases where each dj is a positive integer.

4. A result of Harris and H. L. Turrittin [11] on factorial series reciprocals of
factorial series permits reduction of a system of the form

zkF (z)∆−1y(z) = A(z)y(z),

where F and A have factorial series representations and k is a positive
integer, to a system of the form considered here.

5. Corollary 2 can also be obtained by a degree-theoretic argument [6].
In case a formal factorial series solution of (1) exists, we have the following

difference version of the theorem of Sauvage (note that equation (1) is a difference
analogue of a differential equation with a regular singular point at infinity).

Corollary 3. Let

y(z) = y0 +
∞∑

k=0

yk+1k!
z(z + 1) · · · (z + k)

be a formal solution of (1) in the sense of equality of formal factorial series. Then
y ∈ Xn(δ) and thus every formal factorial series solution is convergent.

Corollary 4. Let A(z) be an n × n matrix, with elements in X(δ), having the
factorial series expansion

A(z) = A0 +
∞∑

k=0

Ak+1k!
z(z + 1) · · · (z + k)

.

Let nλ be the number of linearly independent eigenvalues of A0 corresponding to the
eigenvalue λ. Then the number Nλ of linearly independent solutions of the system
(1) which have the form

y(z) =
Γ(z)

Γ(z − λ)
w(z),

where w(z) ∈ Xn(β), β = max(δ, 1 + �(λ)), satisfies
max(nλ, nλ−1, . . . ) < Nλ < nλ + nλ−1 + · · · .

The general result corresponding to the Frobenius series representation for so-
lutions at regular singular points is also obtained using a Harris-Sibuya-Weinberg
type procedure.
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Theorem 5. Let A(z) be an n× n matrix as in Corollary 4. If the distinct eigen-
values of A0, λ1, . . . , λk, k ≤ n, do not differ by integers, then (1) has n linearly
independent solutions of the form

Γ(z)
Γ(z − λi)

[
y
[1]
i (z) + y

[2]
i (z)ψ1(z) + y

[3]
i (z)ψ2(z) + · · ·+ y

[si]
i (z)ψsi−1(z)

]

where ψ1(z) =
−Γ(z)
Γ(z+1) is the digamma function, ψj(z) = (−1)jΓ(z) d

dz

(
1

Γ(z)

)
, j =

2, . . . , si−1, and si is less than or equal to the algebraic multiplicity of the eigenvalue
λi. Each y

[j]
i (z) is in Xn(β), where β = max{δ, 1 + �(λi)}.

Remarks.
1. The case where A0 has eigenvalues differing by integers may be reduced to

the above case using a theorem of Harris [7].
2. The proof of Theorem 5 given in [1] follows an argument for differential

equations provided by W. Walter [12]. Harris [9] also obtained that result
by a different argument.

3. NONLINEAR EQUATIONS.
Consider the nonlinear system

(3) (z − 1)(D)∆−1y(z) = f(z, y(z)),

where
(i) y = (y1, y2, . . . , yn)T and f = (f1, f2, . . . , fn)T are n-vectors and f has the

expansion

(4) f(z, y(z)) = f0(z) +A(z)y(z) +
∑
|p|≥2

fp(z)yp

with A an n× n matrix, p a set of nonnegative integers p1, . . . , pn, and

yp =
n∏

i=1

(
yi(z)

)pi
, |p| =

n∑
i=1

|pi|.

(ii) The vectors f0 and fp have absolutely convergent factorial series represen-
tations in the half-plane �(z) ≥ δ > 1.

(iii) There exists a constant η > 0 such that the series
∑

|p|≥2 fp(z)up converges
uniformly in z and u for �(z) ≥ δ for all vectors u = (u1, . . . , un)T satisfying
‖u‖ < η.

A nonlinear version [2] of Theorem 1 can be used to provide results for equation
(3) corresponding to the corollaries of Theorem 1. For example, the analogue of
the Lettenmeyer theorem is as follows.
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Theorem 6. Let D be as in Theorem 1 with d = trace(D) and let f satisfy (4)
with F0(z) ≡ 0. Then the system (3) has at least a (d − n)-parameter algebroid
family of factorial series solutions in Xn(δ) for some δ sufficiently large.

A corresponding result for differential equations is given in [8].

4. NOTES and QUESTIONS.
(a) The proof of Corollary 2 does not extend to any case where any di = 0,

which would correspond to an irregular singular point at infinity of a corre-
sponding differential equation. In the differential equations case, however,
Lettenmeyer’s theorem can apply, and either the Harris-Sibuya-Weinberg
method or degree theory [12] will provide a proof. Corollary 2 also can be
obtained by a degree-theoretic method [6], but again, the proof does not ex-
tend to any irregular singular case. (Actually, the ”restrictive hypothesis”
mentioned in a remark at the end of [6] is an understatement - the hypoth-
esis essentially removes the singularity.) Thus, the question remains: Is
there a Lettenmeyer theorem for any nontrivially irregular singular system
of difference equations?

(b) In the differential equations case, Grimm and Hall [5] used a degree-theoretic
approach to develop an alternative theorem to solve a problem posed by
Turrittin [14], which was based on an example of Briot and Bouquet dat-
ing back as far back as 1845. In the factorial series setting, an analogous
alternative theorem would answer the question:

Given a difference equation

(z − 1)(D)∆−1y(z) = A(z) y(z) + g(z),

where g(z) ∈ Xn(δ), under what conditions will there exist a solution con-
vergent in some right half-plane?

In the special case where all the di are equal to 1 and A0 has no nonpos-
itive integer eigenvalue, a result of Grimm and Fitzpatrick [2] guarantees a
solution in Xn(δ) for δ sufficiently large under no additional hypotheses on
g. A differential equations analogue of this result is in the paper of K. O.
Friedrichs [3].

(c) The recent development of the theory of dynamic equations on time scales
by S. Hilger (who started it all), A. C. Peterson, M. Bohner, and others
has already done much to connect the theories of differential equations and
difference equations. Perhaps some version of the results in this paper can
be developed on time scales.
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