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We investigate the quantum entanglement between two quantum dots (QDs) in a plasmonic waveguide with a
near-zero mode index, considering the dependence of concurrence on interdot distance, QD waveguide frequency
detuning, and coupling strength ratio. High concurrence is achieved for a wide range of interdot distances due to the
near-zero mode index, which largely relaxes the strict requirement of interdot distance in conventional dielectric
waveguides or metal nanowires. The proposed QD waveguide system with near-zero phase variation along the
waveguide near the mode cutoff frequency shows very promising potential in quantum optics and quantum
information processing. © 2013 Optical Society of America
OCIS codes: (250.5403) Plasmonics; (270.0270) Quantum optics; (270.5580) Quantum electrodynamics.
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Highly entangled quantum states play important roles in
quantum information science, such as schemes for quan-
tum cryptography, quantum teleportation, and quantum
computation [1–4]. Among different physical realizations,
scalable solid-state quantum entanglement is the most
promising one, and the recent successes of quantum en-
tanglement have been obtained with quantum dots (QDs)
or diamond nitrogen vacancy centers [5–8] in the visible
frequency range. For long-distance entanglement, the
correlation between two spatially separated qubits is
usually mediated by photons. However, instead of the
photon, the surface plasmon [9] has attracted much at-
tention, since it reveals a strong analogy to light propa-
gation in conventional dielectric optical components.
Plasmonic waveguides and resonators can be used to
confine light to subwavelength dimensions below the dif-
fraction limit to achieve photonic circuit miniaturization
[10], and furthermore, they strongly interact with quan-
tum emitters for the applications of detectors, transis-
tors, and quantum information processing [11–14]. For a
one-dimensional plasmonic waveguide, the scattering
properties of surface plasmons interacting with QDs have
been studied widely [15–20]. Recently, Chen et al. [21]
and Gonzalez-Tudela et al. [22] have reported quantum
entanglement generation between two separated QDs
mediated by a plasmonic waveguide. A highly entangled
state between QDs can be achieved only when the inter-
dot distance is controlled with specific values, due to the
sinusoidal phase variation of the propagating surface
plasmon mode in the waveguide.
In this work, we examine plasmonic waveguides with

near-zero mode indices and investigate the quantum en-
tanglement between two QDs simultaneously interacting
with the waveguide mode. High concurrence of the en-
tangled state can be obtained for a wide range of interdot
distances d and QD–waveguide coupling strength ratios
g2∕g1, showing the great advantage of relaxing the strict
requirements of QD positions in comparison to previous
schemes. The physical mechanism of the interdot dis-
tance flexibility is the vanishing phase variation between
two arbitrary positions along a plasmonic waveguide
with a near-zero mode index. With the pioneering

experimental verification of n � 0 structures for visible
light by Vesseur et al. [23], the proposed QD–waveguide
platform is certain to be a promising experimental plat-
form for realizing highly entangled quantum states.

Figure 1(a) shows a schematic of one SiO2∕Ag wave-
guide engineered to exhibit a near-zero mode index in the
visible frequency range. The diameter of the SiO2 core is
D, which is fully surrounded by a thick silver cladding.
The permittivity of silver is described by the Drude
model, with a plasmon frequency ωp of 1.37 × 1016 rad∕s
and a collision frequency γ of 8.5 × 1013 rad∕s at room
temperature. The refractive index of SiO2 is 1.46. A pair
of QDs, each of which has one excited state jei and one
ground state jgi, are embedded in the SiO2∕Agwaveguide
as illustrated in Fig. 1(b). δ�Δ� � ωk − ω1�2� is the fre-
quency detuning between the incident waveguide mode
and the QD exciton transition. d is the interdot distance
between the two separated QDs.

The mode indices n of SiO2∕Ag plasmonic waveguides
are plotted in Fig. 2(a), where the loss of Ag is neglected. A
near-zero mode index can be reached around the cutoff
frequency of the waveguidemode, which can be designed
by varying the waveguide diameter. The working wave-
lengthwith anear-zeromode indexcanbecontrolled from
the visible 685 nm to the near-IR 920 nm when the wave-
guide diameter D changes from 100 to 150 nm. Regarding
the experimental condition at a cryogenic temperature for
the interaction between visible QDs and the waveguide
mode, a silver cladding layer with a 0.1γ damping rate

Fig. 1. (a) Schematic of the cross section of a SiO2 waveguide
with a thick silver cladding.D is the diameter of the SiO2 core. A
3 μm long waveguide is used in the model. (b) Pair of two-level
QDs separated by distance d interacting with the waveguide
mode. δ�Δ� is the frequency detuning between the QD1 (QD2)
transition and the incident waveguide mode.
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andwaveguide ofD � 110 nm is considered in the follow-
ing analysis. Figure 2(b) shows the corresponding mode
index n and group velocity vg, where the mode index
gradually approaches a vanishing small number and the
group velocity slows down to c∕42 at a wavelength of
728.6 nm. Group velocity vg is calculated according to
vg � c∕�n� ω�dn∕dω��, where c is the speed of light in
vacuum. Figures 2(c) and 2(d) show electric field distri-
butions at wavelengths of 600 and 725 nm for the
SiO2∕Ag waveguide calculated in Fig. 2(b). The corre-
sponding mode indices at the wavelengths of 600 and
725 nm are 0.962 and 0.164, respectively. For the wave-
guide mode with a near-zero index, light can propagate
along the waveguide with a spatially uniform phase,
near-infinity phase velocity, and slow group velocity.
Here, we consider the incident waveguide mode with

energy Ek � vgk interacting simultaneously with two
QDs, where k is the wave vector of the incident mode.
Thus the real-space Hamiltonian can be written as (as-
suming ℏ � 1)

H �
Z

dx
�
−ivgc

†

R�x�
∂
∂x

cR�x� � ivgc
†

L�x�
∂
∂x

cL�x�

�
X2
j�1

gjδ�x − �j − 1�d��c†R�x�σj− � cR�x�σj�

�c†L�x�σj− � cL�x�σj��
�
�

X2
j�1

�
ωj − i

Γ
2

�
σej ;ej ; (1)

where c†R�x� [c†L�x�] is the bosonic operator creating a
right-going (left-going) surface plasmon at the position
x, and gj�j � 1; 2� is the coupling strength between indi-
vidual QDs and the waveguide mode. Here, the dipole
moments of the two QDs have the same orientation
and both dipole moments are parallel to the polarization
direction of the waveguide mode. σej ;ej � jeijhej repre-
sents the diagonal element of the j th QD operator,
and σj� � jeijhgj�σj− � jgijhej� represents the rasing (low-
ering) operator. ωj is the transition frequency of the jth
QD, and Γ is the total dissipation including the exciton
decay to free space, ohmic loss, and other dissipative
channels. The eigenstate of the system can be written as

jEki �
Z

dx�ϕ�
k;R�x�c†R�x�

� ϕ�
k;L�x�c†L�x��jg1; g2ij0isp

� ξk1 je1; g2ij0isp � ξk2 jg1; e2ij0isp; (2)

where ξk1 (ξk2) is the probability amplitude that QD1

(QD2) absorbs the waveguide mode and jumps to its
excited state. Supposing a surface plasmon incident
from the left, the scattering amplitudes can be written
as ϕ�

k;R�x�≡ eikx�θ�−x� � aθ�x�θ�d − x� � tθ�x − d�� and
ϕ�
k;L�x�≡ e−ikx�rθ�−x� � bθ�x�θ�d − x��. θ�x� is the unit

step function, which equals unity when x ≥ 0 and zero
when x < 0. a and b are the probability amplitudes of
the field between the two QDs at x � 0 and x � d. t
and r are the transmission and reflection amplitudes,
respectively. By solving the eigenvalue equation
HjEki � EkjEki, one can obtain the following relations
for the coefficients:
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Through solving the Eq. (3), ξk1 and ξk2 can be obtained
as follows:

ξk1 �
−i4g1�−4�−1� e2ikd�J2 � �Γ − 2iδ��

η
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ξk2 �
−i4g2eikd�Γ − 2iΔ�
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2 � 4�J1�Γ − 2iδ�
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where J1 � g21∕vg and J2 � g22∕vg. If there is no transmis-
sion and reflection observed by detectors at the two ends
of the waveguide, the state of the system is projected to
ξk1 je1; g2ij0isp � ξk2 jg1; e2ij0isp, which means that the

Fig. 2. (a) Dependence of waveguide mode indices n on the
wavelengths for different diameters D at 100 nm (greensolid
line), 110 nm (orange-dashed line), 125 nm (navy-dotted line),
and 150 nm (magenta dashed–dotted line); (b) dependence of
group velocity vg and mode index n on the wavelengths for the
waveguide with D � 110 nm when 0.1γ Ag loss is considered;
(c) and (d) the electric field distributions at the wavelengths of
600 and 725 nm for the waveguide in (b).
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entangled state between the two QDs has been gener-
ated. The degree of entanglement can be measured
[24,25] by the concurrence C � max�λ1 − λ2 − λ3 − λ4; 0�.
λi�i � 1; 2; 3; 4� are the square roots of the eigenvalues of
the matrix R � ρ�σy ⊗ σy�ρ��σy ⊗ σy�, where ρ is the
density matrix of the system and σy is the Pauli matrix.
For the system of two QDs, concurrence C takes the form
of C � ��2jξk1 jjξk2 j�∕�jξk1 j2 � jξk2 j2��. Maximum entangle-
ment can be created when amplitude jξk1 j is equal to jξk2 j.
First, we examine the dependence of the concurrence

on waveguide mode index, interdot distance, and QD–
waveguide coupling strengths in the model. Figure 3
shows the concurrence C as a function of the interdot
distance d and the plasmonic waveguide mode index n
when the coupling strength g1 � g2. We take the same
detuning Δ � δ between two QDs and the waveguide
mode (thus J � J1 � J2) for simplicity in the following
discussion. Clearly, in Fig. 3(b), when the incident wave-
guide mode is off-resonance with QDs (Δ � 0.5J), the
concurrence C is higher than in the on-resonant case
shown in Fig. 3(a) over a wide range of mode indices
and interdot distances. For conventional waveguide
modes with nonzero mode indices, maximum entangle-
ment can be achieved if the two QDs are placed at the
right locations, where the interdot distance d is equal
to a multiple half-wavelength of the waveguide mode.
However, when the plasmonic waveguide mode index
n gets close to zero, the concurrence remains above
0.9 over a wide range of interdot distances. The relaxed
distance requirement strongly overcomes the challenges
of precise QD position control in practical situations.
When the coupling strengths between QDs and the

waveguide mode are not identical, the dependence of
the concurrence C as a function of the ratio g2∕g1 is plot-
ted in Fig. 4 when Δ � 0.5J1. In Fig. 4(a), when the mode
index n � 0, maximum concurrence C around unity can
be created for any arbitrary interdot distance when
g2 � g1, and the concurrence decreases when the differ-
ence between g2 and g1 increases. This phenomenon

shows that the amplitudes ξk1 and ξk2 always have the
same value in the case of g1 � g2 and n � 0, which re-
sults in the concurrence C � 1. Even when the mode in-
dex cannot reach exact zero in practical situations, for
example, n � 0.1, high concurrence C can still be
achieved within a relatively broad range of interdot
distances d and g2∕g1 ratios. The dark red region in
Fig. 4(b) highlights that a high concurrence can be ob-
tained as long as d < 100 nm and 1 < g2∕g1 < 4, which
significantly relaxes the strict conditions required in
conventional waveguides.

Next, we discuss concurrence of the entanglement
state between two QDs in a practical D � 110 nm
SiO2∕Ag waveguide with dispersion, as illustrated in
Fig. 2(b). Figure 5(a) shows the concurrence C when
the waveguide mode index n � 0.022, 0.164, 0.462, and
0.962. A near-zero mode index can be chosen by working
near the cutoff wavelength of the waveguide mode. The
corresponding group velocities vg are 0.82 × 107 m∕s,
1.65 × 107 m∕s, 3.44 × 107 m∕s, and 9.55 × 107 m∕s,
respectively. For other parameters of the QD waveguide
device, coupling strength g1 � g2 � 35 GHz, detuning
Δ � 0.5J with J � J1 � J2, and total dissipation
Γ � 500 GHz. When n is 0.962, the maximum value of
concurrence occurs at two locations [green dashed–
dotted line in Fig. 5(a)], where the interdot distance d �
288 nm and d � 312 nm. The special locations for
creating high concurrence generally satisfy Δ � −�2J �
Γ∕2� tan�kd� and kd � mπ (m is an integer), which re-
sults in jξk1 j � jξk2 j. However, when n is 0.022, high con-
currence can be maintained for any interdot distance d
over several hundred nanometers. This is due to the fact
that phase variation along the waveguide is very small for
the plasmonic waveguide mode with a near-zero index.
Moreover, in Fig. 5(b), the concurrence C for various
Δ from 0.1J to 0.5J is shown when the mode index n
is 0.022. Clearly, high concurrence C can be created
for a wide range of the interdot distances d when Δ is
0.5J. This means that a certain amount of QD waveguide

Fig. 3. Dependence of concurrence C on the plasmonic
waveguide mode index n and the interdot distance d for
(a) on-resonance case Δ � 0 and (b) off-resonance case
Δ � 0.5J. Here Γ � 0.01225J is used in the calculations.

Fig. 4. Dependence of the concurrence C on the g2∕g1 ratio
and the interdot distance d when the plasmonic waveguide
mode index (a) n � 0 and (b) n � 0.1. Here Γ � 0.01225J1 is
used in the calculations.
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detuning in the experiment will not be detrimental to the
high concurrence across large interdot distances as long
as the QD–waveguide coupling strength is maintained.
In conclusion, we have examined quantum entangle-

ment in SiO2∕Ag plasmonic waveguides with considera-
tions of QD waveguide detunings, asymmetric coupling
strengths, and dissipations. The waveguides can be de-
signed to possess near-zero mode indices around the
QD transitions, and high concurrence can be achieved
between two QDs interacting with the plasmonic
waveguide modes. A wide range of interdot distances
are allowed for achieving high concurrence due to the
near-zero phase variation along the waveguide, which
shows advantages over the schemes implemented by di-
electric waveguides or metal nanowires, where specific
interdot distances are required. The plasmonic wave-
guide with near-zero mode indices serves as a great plat-
form for solid-state quantum optics and quantum
information processing.
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Development Center at Missouri University of Science
and Technology and the University of Missouri Research
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